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We propose a one-dimensional isothermal hydrodynamic transport model for non-reacting binary
mixtures in slit shaped nanochannels. The coupled species momentum equations contain viscous
dissipation and interspecies friction term of Maxwell-Stefan form. Species partial viscosity variations
in the confinement are modeled using the van der Waals one fluid approximation and the local average
density method. Species specific macroscopic friction coefficient based Robin boundary conditions
are provided to capture the species wall slip effects. The value of this friction coefficient is computed
using a species specific generalized Langevin formulation. Gravity driven flow of methane-hydrogen
and methane-argon mixtures confined between graphene slit shaped nanochannels are considered
as examples. The proposed model yields good quantitative agreement with the velocity profiles
obtained from the non-equilibrium molecular dynamics simulations. The mixtures considered are
observed to behave as single species pseudo fluid, with the interfacial friction displaying linear
dependence on molar composition of the mixture. The results also indicate that the different species
have different slip lengths, which remain unchanged with the channel width. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4961226]

I. INTRODUCTION

The topical problem of mixture transport is of interest
in many areas including gas separation,1 heterogeneous
catalysis,2 flow inside biological membranes,3–5 and water
purification using artificial membranes.6 A large number of
physical systems encountered in transport problems consist
of two or more interacting species. Therefore, a deeper
understanding of the two component transport problem is
of paramount importance. Unlike single component transport
problem, which has been studied extensively for simple and
complex polar fluids, the theory of mixture transport is a
relatively open problem and has been given little attention.

The complexity in modeling the mixture transport
problem at nanoscale is twofold. The first challenge is to
eliminate the different choice of governing equations. The
equations describing the mixture transport in majority of the
literature are based on the fluid center of mass (COM) frame
of reference.7 In these methods, the momentum equation
has the conventional hydrodynamic stress and strain rate
relationship based on the mixture motion. The mixture
barycentric (mass averaged) velocity is treated as the advective
velocity that enters the species mass balance equations and
also appears in the constitutive relationship between the stress
and the strain-rate. One can, in principle, decompose the
total mass flux of a particular species into advective and
diffusive mass fluxes relative to the COM motion and then
use Fick’s law to close the equation for density.8,9 Bearman
and Kirkwood (BK) have presented the species momentum
equation, using expansion around the COM velocity with a
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statistical-mechanical approach on particle trajectories based
on the Liouville and Boltzmann equation framework.10 The
partial stress tensor is identified as the sum of “molecular
force” tensor and a diffusion velocity dyadic, where the
contribution from the latter term is purely kinetic in nature.
The species momentum equations are closed by prescribing
the species partial viscosities that relate the species partial
stress tensors to the strain-rate tensor of the mixture center
of mass velocity. The criticism of this framework is that
the partial stress tensor could be non-symmetric even in the
absence of angular momentum.11 Snell et al. have tried to
readdress this problem by suggesting perturbative expansions
around mean species velocities, both from phenomenological
macroscopic equations12 and microscopic statistical basis.13

The partial viscosity in their work relates the species partial
stresses to the species specific strain rates. However, the
theory is not very tractable and therefore is not attractive for
further investigation. A comprehensive review of these issues
is presented elsewhere.11

Recently, Kerkhof and Geboers (KG) have critically
reviewed the prevalent approaches to mixture transport
and have demonstrated the limitations of BK treatment in
classical problems like gaseous counter-diffusion and Stefan
tube.14–16 Especially, when the mobilities of the species differ
significantly, their individual velocities can be very different
from the mixture COM velocity, leading to convergence
problems in the BK formulation. To alleviate this, KG
have also suggested that the velocity distributions should
be centered around average species velocities. Their resulting
species momentum balance equation contains species specific
stress that is constitutively related to the species individual
velocity.
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The second challenge in the theory of mixture transport
is to correctly model the effects of confinement and liquid-
solid interfacial effects, which are relevant at nanoscale. This
entails capturing the inhomogeneity of the relevant parameters
along the confined direction, such as density and viscosity
variations.17–20 In addition, fluid-surface interactions along
the streaming direction become particularly important to the
flow profile, due to the relative motion between the surface
and the fluid that is also known as slip. Although significant
progress has been made to understand the slip phenomenon for
single component fluids from an atomistic point of view,18,21–23

limited efforts have been undertaken for the mixture transport.
Recently, to model this effect, Bhatia and Nicholson have
included a continuous friction based term in the governing
equation which is active only in the repulsive region of the
wall-fluid interaction potential.19,20 The friction parameter in
their model is based on the low density transport diffusion
coefficient that can be computed using the oscillator model.24

The limitation of their model arises from the treatment of
the walls, which are diffusive in nature. The incident particle,
upon collision with the wall, loses its entire memory of motion
in the streaming direction and is re-thermalized, which may
not be the case for all surface-fluid interactions in general.
This limitation can be addressed by the introduction of
Smoluchowski coefficient,25 which at present can be obtained
from experiments or Equilibrium Molecular Dynamics (EMD)
computations.26,27

Recently, we characterized the slip of a single component
fluid using a Generalized Langevin Equation (GLE) based
model.18 The single particle trajectories are evolved using
a phenomenological GLE using the total Potential of Mean
Force (PMF) as an input. The microscopic thermal noise
of the fluid in the confinement is assumed to be equal
to that of the unconfined fluid in equilibrium. Making
use of the linear response theory,28 a macroscopic friction
coefficient is computed using the wall-fluid structure force
autocorrelation and wall-fluid force–velocity cross correlation
functions. This friction coefficient can then be incorporated
into the one-dimensional (1D) continuum transport model
as a Dirichlet boundary condition for the slip velocity. The
resulting transport model, by construction, is a multiscale
formulation as it embeds the atomic scale details into the
continuum model via macroscopic friction coefficient. We
also demonstrated that the Dirichlet condition is equivalent to
the interfacial friction based Robin type boundary condition
(FBC) that describes the force balance between interfacial
shear and friction forces.18

In this paper, we extend our transport model from a single
component fluid to binary Lennard-Jones (LJ) type mixtures.
The equations of momentum for the species reflect the shear
term dependent on species velocities and an interspecies
friction term of the Maxwell-Stefan form.14–16,19,20 The
boundary conditions in the continuum model are applied
in the FBC form. The friction coefficient is separately
obtained for both species using distinct GLE for each species
that evolve single particle trajectories in their respective
PMF landscape, thereby retaining the multiscale nature of
the formulation. The thermal noise for the species under
confinement, characterized by the memory function in the

species GLE, is chosen equal to its respective value in the
bulk mixture at the same thermodynamic state and molar
fraction.

The remainder of the paper is organized as follows: in
Sec. II, we present the relevant transport model. We review an
empirical potential based quasi-continuum theory (EQT) to
calculate the density profiles of the species under confinement
in slit channels.29 Local partial viscosities are obtained as
the mass weighted fraction of the local mixture viscosity,
where the latter is evaluated using van der Waals one-fluid
(vdW1) approximation30 in conjunction with Local Average
Density Method (LADM).31–33 The slip motion is described
by novel species-specific GLE framework that eliminates
the need to perform an EMD simulation to compute the
relevant correlations. In Sec. III, details of the Molecular
Dynamics (MD) and GLE simulations are provided. In
Sec. IV, results obtained from the hydrodynamical model
are discussed and compared with NEMD simulations. Finally,
we draw conclusions in Sec. V.

II. TRANSPORT MODEL

The 1D momentum equation for an arbitrary species α
of an isothermal, non-reacting binary mixture can be written
as14–16,19,20

d
dz


µP
α

duα

dz


+ mαραgα +

2
β=1
β,α

kBT ραρβ
ρtDαβ

�
uβ − uα

�
= 0, (1)

where z is the direction of the confinement, uα(z) and uβ(z)
are the unknown streaming direction (x) velocity fields, while
ρα(z) and ρβ(z) are the concentration fields of the species
α = 1,2; β = 1,2 inside the slit channel, ρt(z) = 

α ρα(z)
is the mixture density, mα is the molecular mass, gα is the
applied gravity in the streaming direction of the species α,
kB is the Boltzmann constant, and T is the temperature. The
partial viscosity µP

α(z) is used to characterize the intraspecies
momentum transfer. The variable Dαβ(z) is the binary
Maxwell-Stefan diffusivity, the inverse of which is understood
as interspecies friction between species α and β. It should be
noted that the interspecies friction term in Eq. (1) contains
the total contribution of all pairs of α and β species, in a
generalized multicomponent case. The binary diffusivities are
symmetric, i.e., they follow Dαβ = Dβα, so therefore for a two
component system there is only one diffusivity characterizing
the interspecies friction. The FBC’s are applied at the slip
plane located at z = −L/2 + δ, where δ = max(δ1, δ2), and δ1
and δ2 denote the nearest distance from the wall where species
number densities are greater than a specified tolerance value
ρtol. The FBC can be written as

AµP
α(z)duα(z)

dz

�����z=−L/2+δ
= ζαuαs, (2)

where A is the interfacial area and ζα is the macroscopic
interfacial friction coefficient for species α. The FBC describes
the species force balance at the interface, where the wall shear
force is balanced by the interfacial friction force that is
proportional to the relative velocity between the wall and
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the fluid (slip velocity). In addition to the FBC, a second
condition that is representative of the symmetry of the velocity
profiles at the center point of the slit channel can be written
as

duα(z)
dz

�����z=0
= 0. (3)

Inputs required for this framework are density, viscosity,
and the interfacial friction coefficient for both compo-
nents. The methods to obtain these inputs are discussed
below.

A. Inhomogeneous effects: Variation of density
and transport properties across confinement

Due to the presence of the confining walls, the density
profiles of species show oscillations normal to the wall.
Consequently, transport properties such as species partial
shear viscosity and binary diffusivities also vary across the
confinement. Variations in the densities can be captured using
MD and spatial binning or the recently proposed empirical
potential based quasi-continuum theory (EQT).29,34–39 EQT
is a multiscale formulation to compute density and the
associated PMF profiles along the confinement. Being a
continuum based formulation, it is orders of magnitude
faster than the particle sampling methods such as MD
and Monte Carlo (MC). Coupled with the classical Density
Functional Theory (c-DFT) formulation, it can also be used to
predict several thermodynamic properties in confined slit
systems such as lateral and confined direction pressure,
surface tension, solvation force, and adsorption isotherm.39

EQT has demonstrated significant accuracy over conventional
methods such as c-DFT for non-spherical molecules such
as carbon-dioxide36 and SPC/E water37,38 by incorporating
anisotropy in the choice of potentials. The framework is
recently extended to binary LJ mixtures, with methane
and hydrogen as an example.29 The framework is robust,
tractable and is able to provide density profiles with
varying molar fraction of species and temperature with high
fidelity.

To capture the viscosity variation along the confined
direction, we use the LADM31–33 on species density profiles
to obtain the coarse grained density as

ρ̄α(z) = 6
σ3
αα


|z−z′|<σαα/2

(
σαα

2

)2
− (z − z′)2


ρα(z′) dz′,

(4)

where σαα is the LJ diameter of species α. The coarse grained
density ρ̄α along with temperature T provides an equivalent
thermodynamic state of the species in a locally homogeneous
mixture. The potential parameters of a pseudo LJ fluid, which
has the same thermodynamic properties (excess potential
energy and compressibility) as that of the homogeneous
mixture, are computed using the vdW1 approximation30

as

mf =

2
α=1

χαmα, (5a)

σ3
f =

2
α=1

2
β=1

χα χβσ
3
αβ, (5b)

ϵ fσ
3
f =

2
α=1

2
β=1

χα χβϵαβσ
3
αβ, (5c)

where χα = ρ̄α/ρ̄ is the molar fraction of species α,
ρ̄ =


α ρ̄α being the total homogeneous mixture density;

and mf, σf, and ϵ f are the mass, LJ diameter, and LJ energy
parameter of the pseudo LJ fluid. Lorentz-Berthelot (LB)
combination rules are used to obtain the cross parameters
σαβ and ϵαβ. Once the homogeneous pseudo fluid state of
the mixture is characterized, we computed its viscosity to
use as mixture viscosity following the correlations provided
by Galliéro et al.40 that have strong foundation of the
comprehensive dataset provided by Meier et al.41 These
correlations are summarized as

µf = µ0 + ∆µ
∗ (T∗, ρ̄∗) σ2

f√
mfϵ f

, (6a)

µ0 =
5

16σ2
f


mfkBT
π

fµ
Ω(2,2) , (6b)

∆µ∗ = b1[eb2ρ̄
∗ − 1] + b3[eb4ρ̄

∗ − 1] + b5

(T∗)2 [e
b6ρ̄
∗ − 1]. (6c)

The dilute gas viscosity µ0 is at the vanishing density limit,
and density dependent residual viscosity ∆µ∗ is added to get
the mixture viscosity µf. LADM and vdW1 methods are used
to evaluate the reduced homogeneous density ρ̄∗ = ρ̄σ3

f and
reduced temperature T∗ = kBT/ϵ f. The collision integral Ω(2,2)
and variable fµ are discussed in Ref. 42. The coefficients
bγ, where γ = 1,2, . . . ,6, are provided in Table 1 of Ref. 40.
To compute the local partial viscosities µP

α, we adopt the
approach of Bhatia and Nicholson.19,20 In their method, the
shear stress of the homogeneous mixture is assumed to be
equal to the sum of species stresses, yielding the relation
µP
α = ωαµf, where ωα is the mass fraction of species α, and

is computed using the species coarse grained density ρ̄α from
Eq. (4). There also exist alternative semiempirical methods
to compute partial viscosities of a binary mixture,16,43 with
limited accuracy for mixtures of heavy and light gases.44

The LADM serves as an excellent predictive tool to
calculate viscosity under certain conditions, and while it uses
a coarse grained averaged density, it is still not a non-local
model in the strictest sense. A genuinely non-local model
takes into account that the viscosity of an inhomogeneous
fluid is a non-local kernel in space. Thus, the stress at a point
is a convolution of viscosity kernel with the strain rate over the
width of the kernel in space. First reported by Todd et al.,45

it is also discussed in recent studies46,47 where it has been
conclusively demonstrated that LADM based methodologies
fail when significant velocity gradient reversals are present in
the velocity profile.

To compute the interspecies diffusion coefficient D12, we
adopt the method proposed by Reis et al.48 Their correlations
are generic for LJ chain fluids, so we provide a simplified
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expression for monoatomic LJ fluids as

D12 =
D0(

g (ρ̄)
R(ρ̂, T̂ ) +

0.04
T̂ 1.5

) , (7a)

D0 =
3

8 ρ̄σ2
12

(
kBT

2πm12

)
, (7b)

g( ρ̄) = 1
1 − ξ3

+
3σ11σ22

(σ11 + σ22)
ξ2

(1 − ξ3)2

+ 2


σ11σ22

(σ11 + σ22)
2 ξ2

2

(1 − ξ3)3 , (7c)

ξl =
π

6
ρ̄

2
α=1

χασ
l
αα, for l = 2,3, (7d)

R( ρ̂, T̂) =
(
1 − ρ̂

1.12T̂0.2

)
×


1 + 0.97 ρ̂0.5 + 5.1 ρ̂2 +

3.1 ρ̂ − 2.9 ρ̂0.5

T̂1.5



× exp
(
− ρ̂

2T̂

)
, (7e)

T̂ = kBT/ϵ̂ , ϵ̂ =
2

α=1

2
β=1

χα χβϵαβ, (7f)

where a reduced mixture density is defined as ρ̂ =


α ρ̄ασ
3
αα,

where ρ̄α is the usual local average density of species α.
The reduced mass is defined as m12 = m1m2/(m1 + m2) and
is used to calculate the low density kinetic theory limit (D0)
of the interspecies diffusion.49 Further corrections to the low
density estimate of diffusion are incorporated using the hard
sphere radial distribution function at the contact g( ρ̄)50 and
finite density polynomial correction using R( ρ̂, T̂).51 At this
stage, all confinement effects along the confined direction are
accounted for. Next we would discuss the streaming direction
slip effects.

B. Surface friction: Boundary conditions

In this section, we discuss the method to compute the
species-specific friction coefficients ζ1 and ζ2. Similar to
the single component case, the species interfacial friction
is additive.18,28 Therefore, we first compute the friction
coefficient of a single particle j of species α using the
expression

ζ
j
0 =

∞
0
⟨ f wf

x, j(0) f wf
x, j(t)⟩dt

kBT +
∞
0
⟨vx, j(0) f wf

x, j(t)⟩dt
, j ∈ α, (8)

where ζ j
0 is the friction coefficient of the particle, f wf

x, j and vx, j
are the instantaneous streaming direction wall-fluid force and
velocity of the particle near the solid wall. The angular brackets
⟨· · · ⟩ denote the ensemble average. The time correlation
appearing in the numerator is the well known single-
particle wall-fluid force autocorrelation function (FACF),
while the denominator consists of wall-fluid force–velocity
cross-correlation function (FVCCF). The total value of
the macroscopic friction coefficient is obtained by adding
contributions from all interfacial particles as ζα =


j ∈α ζ

j
0 .

This value of the macroscopic friction coefficient is used in
the FBC described by Eq. (2), which closes the transport
model.

Similar to our previous work,18 we generate the trajectory
of the representative particle j using the GLE. The coarse-
grained phenomenological dynamical framework of GLE
allows one to evolve the dynamics of the single particle
sandwiched between the atomically rough surfaces by taking
the streaming and confined direction force fields into account.
The dissipative and thermal motion of the particle is accounted
by incorporating a non-Markovian friction force and its
corresponding random force. The equations of motion can
be written as

mα

dvz, j(t)
dt

= −mα

t
0

Kα(t − t ′)vz, j(t ′)dt ′ + f tot
z, j(z j(t)) + Rz, j(t), (9a)

mα

dvx, j(t)
dt

= −mα

t
0

Kα(t − t ′)vx, j(t ′)dt ′ + f tot
x, j(x j(t), z j(t)) + Rx, j(t), (9b)

dz j(t)
dt
= vz, j(t), dx j(t)

dt
= vx, j(t), (9c)

where mα is the mass of the particle j representing species
α, while vz, j and vx, j are the velocities of the particle
in the confined and streaming direction, respectively. The
random forces Rz, j(t) and Rx, j(t) in the corresponding
directions have zero mean and are only auto-correlated by
virtue of the fluctuation-dissipation theorem as ⟨Rx, j(0)Rz, j(t)⟩
= mαkBT Kα(t)δxz, with δxz being the Kronecker delta. The
corresponding structure based instantaneous force values
on particle, i.e., f tot

z, j and f tot
x, j, are sampled using the

static mean force maps F tot
z (z) and F tot

x (x, z) that can be
analytically calculated as explained in Ref. 18. The presented
equations are quite similar to that of the single species case,
with one exception being the memory function Kα(t) in
Eqs. (9a) and (9b) does not correspond to the pure component.
Instead, it describes the noise characteristics of species
α for its thermodynamic state in the mixture. The non-
Markovian dissipative effects from other species are implicitly
accounted in this representation. More explicit representations
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of memory function are discussed for colloidal mixtures by
Chávez-Rojo and Medina-Noyola,52 where it is expressed in
terms of the partial intermediate scattering functions involving
the inter- and intraspecies contributions, but are not attractive
due to their complexity and approximate nature.

To calculate the species specific memory function in the
mixture, we use the corresponding memory function equation
(MFE)53 that can be written as

dψ j(t)
dt

= −
t

0

Kα(t − t ′)ψ j(t ′)dt ′, (10a)

ψ j(t) = ⟨v j(t) · v j(0)⟩
⟨v j(0) · v j(0)⟩ ; j ∈ α, (10b)

where ψ j(t) is the input velocity autocorrelation function
(VACF) of species α from a bulk EMD simulation of the
corresponding homogeneous mixture. Note that a vector value
of particle velocity v j(t) is used because noise is isotropic in
the homogeneous mixture. Also, being a bulk homogeneous
case, the FVCCF term does not appear in Eq. (10a). The
numerical method to solve Volterra type integro-differential
equation (Eq. (10a)) is discussed in Ref. 54. Further discussion
on the memory function at different molar compositions of
the mixture along with comments on the accuracy of the
corresponding confined GLE simulations versus EMD is
provided in Sec. IV.

III. SIMULATION DETAILS

Different types of MD simulations are performed in the
present work using the LAMMPS package.55 All molecules
are modeled as single site LJ particles, with their interactions
described using the LJ 12–6 potential force fields. The majority
of the examples in the present work comprise of methane and
hydrogen mixtures at variable molar fractions. To test the
robustness of the continuum method, additional calculations
are performed for methane and argon mixture at a fixed molar
fraction. For methane-hydrogen mixtures, an integration time
step of 0.5 fs is used, while for methane-argon mixture, a time
step of 1 fs is used in MD simulations. The cut-off parameter
for all simulations is 1.5 nm, and the interaction parameters are
listed in Table I. All cross parameters are obtained using the
LB combination rule. All EMD simulations are performed for
12 ns, where the first 2 ns data are discarded to allow system
equilibration, and the trajectory data are saved at every 20 fs.
We use the convention “X–Y α-β” to identify the bulk state
molar composition. For example, a 30–70 methane-hydrogen
mixture would mean a binary mixture consisting of 30%
methane by molar fraction.

TABLE I. Properties of species considered in present study.

Type σ (nm) ϵ/kB (K) Mass (g/mol)

Carbon (C) 0.3400 28.0 12.0107
Methane (CH4) 0.3810 148.1 16.0429
Hydrogen (H2) 0.2915 38.0 2.0160
Argon (Ar) 0.3410 119.8 39.9480

We first perform a series of EMD simulations of
methane-hydrogen mixture in bulk homogeneous environment
using a isothermal-isobaric (NPT) ensemble at variable
molar fractions. The temperature is set to 300 K using a
Nosé–Hoover thermostat56 with a time constant of 0.2 ps,
and the pressure to 1580 bars using a Parrinello-Rahman
barostat.57 The values of chosen temperature and pressure
correspond to a supercritical thermodynamic state of the
mixture.29 The total number of particles in each molar
composition is kept constant at 1660, only to be redistributed
to fix the molar fraction of the species. The volume is
allowed to fluctuate to fix the species densities. We perform
5 statistically identical NPT runs for every molar fraction
case. The fluctuations in the box volume in these statistically
identical NPT runs are averaged to compute the species bulk
densities at a given molar fraction. The resulting species
and mixture bulk densities for methane-hydrogen cases are
plotted in Fig. 1, where it can be seen that the density
of the mixture decreases with increasing molar fraction of
methane at constant pressure. Further, a NVT run using the
averaged box dimensions from NPT calculations is performed
for each molar fraction, where the output pressure value is
confirmed equal to the target value. These simulations are
used for computing and verifying bulk dynamical properties,
e.g., VACF to obtain the species memory function Kα(t) using
Eq. (10). The procedure is identical for 70–30 methane-argon
mixture at 3680 bars and 300 K.

Next, confined EMD runs of the mixture sandwiched
between two rigid graphene surfaces (channel width 6.34 nm)
are performed keeping the lateral pressure equal to the target
pressure. Channel width is defined as the center to center
distance between the first layer of wall atoms and is used to
calculate the average channel density ρavg. The other channel
widths considered in this work are 3.21 nm, 2.25 nm, and
1.28 nm to test the model accuracy for various length scales
and are only simulated for 30–70 methane-hydrogen mixture.
For smaller channel widths, the number of species particles

FIG. 1. Mixture (green line, solid) and species bulk density at 1580 bars pres-
sure and 300 K temperature for different molar compositions of a methane-
hydrogen mixture. Methane is represented by blue dashed line, while hydro-
gen is orange dashed-dotted line. Results are averaged over 5 NPT ensembles
and errorbars are smaller than the size of the symbols.
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is estimated using the linear superposition approximation that
ensures the confined fluid pressure is constant under variable
channel width.58,59 The simulation trajectory is divided into
1000 samples of 10 ps, which under ergodic hypothesis serve
as ensembles to compute the necessary correlations for friction
coefficient.

For confined NEMD simulations, we apply different
magnitudes of gravity to test and demonstrate the applicability
of the continuum formulation under the linear response
regime, where the velocity profile scales linearly with the
applied gravity, and the slip length is independent of the
applied gravity.60 The thermostat controlling the temperature
is only applied to non-streaming directions to prevent any
artifacts in the simulation, i.e., bias in the velocity profiles. To
perform the ensemble average, 10 identical simulations are
performed, differing only in their initial velocity distribution.
Each ensemble is simulated for 30 ns, with the first 10 ns
discarded to obtain the fully developed, steady-state velocity
profiles.

In the transport model, the slip plane location (δ) is
defined to be the larger of the distances δ1 and δ2, which
correspond to the respective positions where the fluid layers
of the two species start to develop. They (δ1 and δ2) are
estimated using the tolerance on the species densities as
10−3 molecules/nm3. For methane-hydrogen system, this
value is approximately 0.24 nm for all molar fraction cases,
while for 70–30 methane-argon system, it is 0.3 nm. Its precise
location is dependent upon the thermodynamic state and the
force-fields used in the MD simulation. To compute the species
interfacial friction, 2D GLE simulations are performed with a
time step of 0.01 ps, with the production trajectory of 400 ps,
with data saved at every other step (0.02 ps). The numerical
method for time integration of the GLE is discussed in Ref. 53.
First 100 ps of the simulation trajectory was discarded
to allow the equilibration of the species GLE particle.
Approximately 2 × 104 instances of particle trajectories were
generated to compute the relevant time correlations in
Eq. (8).

FIG. 2. Variation of (a) local density, (b) local average density, (c) shear viscosity, and (d) interspecies diffusion for 30–70 methane-hydrogen mixture in a
6.34 nm wide graphene slit. Mixture is represented by solid blue line, while methane is orange dashed line and hydrogen is green dashed-dotted line. The dotted
red line in (d) is from bulk homogeneous EMD calculations outlined in Ref. 61.
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To compare the time estimates, we compared the Central
Processing Unit (CPU) time, which is wall-clock time
multiplied by the number of parallel processors in a simulation.
A single process GLE simulation for 100 ps equilibration and
400 ps production run takes about 120 s in CPU time. In
comparison, a typical EMD simulation is orders of magnitude
slower (approximately 540 CPU hours to simulate a 12 ns run
for the largest system size). Also, GLE can be run on a personal
workstation as it uses a single CPU process, and it does not
scale with particle number, as compared to EMD/NEMD
simulation, which require massive parallelization to curtail
the wall-time. The continuum formulation for a binary
mixture typically takes 300 s as compared to NEMD, where
meaningful data for velocity profiles require 33 230 CPU
hours of production runs. Therefore, our GLE/continuum
framework provides a massive speedup over NEMD to obtain
the velocity profiles.

IV. RESULTS

In this section, we test the accuracy of the continuum
framework by comparing the predicted velocity profiles
against the ones provided by the NEMD simulations. Using
the species density profiles ρα, presented in Fig. 2(a) for 30–70
methane-hydrogen mixture in 6.34 nm wide slit channel, we
first calculate the local average density ρ̄α of the species using
Eq. (4) and plot them in Fig. 2(b). It can be observed that (a)
hydrogen being smaller in size than methane has density peak
closer to the wall, and (b) the coarse grained local average
density is a homogenized version of local density and contains
non-local effects due to the spatial averaging of the latter. The
local average density of the mixture is then obtained as the sum
of local average density of the species and is used to compute
the shear viscosity of mixture as a pseudo LJ fluid using
Eqs. (5) and (6) as shown in Fig. 2(c). This is further divided
by the local mass fraction ωα(z) of the species to obtain the
species partial viscosities. Although the number density of
the hydrogen is higher than that of methane in the center of
the slit channel, the partial viscosity of methane is higher as
it is approximately 8 times heavier than hydrogen. We then
calculate interspecies diffusion coefficient D12 using Eq. (7)
and plot it in Fig. 2(d). We also compared the value of D12
obtained in the center of the channel with one obtained from
the corresponding bulk homogeneous EMD simulation using
the method outlined by Heyes in Ref. 61 and found good agree-
ment with the values predicted by empirical correlations.48

Next, we compare the effectiveness of the GLE framework
to provide species friction coefficient, by comparing the time
correlations appearing in Eq. (8) with EMD calculations. As
explained previously,18 we only consider a small interfacial
region (about 0.4 nm from the wall) contribution towards the
interfacial friction, in conjunction with initial time occupancy
based tagging method.53,62 This is necessary to exclude the
viscous effects from the friction computations.23,28 In order to
obtain the memory function, we use the MFE in Eq. (10), with
bulk EMD simulation VACF. We plot the resultant memory
function of methane (Fig. 3(a)) and hydrogen (Fig. 3(b)) for
a homogeneous mixture at 1580 bars and 300 K for different

FIG. 3. Memory function at 300 K and 1580 bars of (a) methane in 30–70
(blue line, solid), 50–50 (red line, dashed), 70–30 (green, dashed-dotted), and
100–0 (purple, dotted), and (b) hydrogen in 70–30 (blue line, solid), 50–50
(red line, dashed), 30–70 (green line, dashed-dotted), and 0–100 (purple line,
dotted) methane-hydrogen mixture.

molar fractions. As a consistency check, we performed bulk
GLE simulations (in the absence of structure based mean
forces) of methane and hydrogen to reproduce the input
VACF from EMD. It can be understood from the plots that
the noise relaxation (memory of dissipation) of hydrogen is
faster than that of methane, and change in molar fraction does
not alter the noise relaxation time significantly. However, the
variance of the thermal force, which is proportional to K(0) as
understood by the fluctuation-dissipation theorem, increases
with increase in molar fraction of methane, with reversing
trends for increase in hydrogen composition. Therefore, one
can conclude that methane rich mixtures are more dissipative
in nature as compared to hydrogen rich mixtures. We show the
comparison of the species FACF calculated from EMD and
GLE formulations for 30–70 methane-hydrogen mixture in
Figs. 4(a) and 4(b). We observe that there is a good agreement
between the two approaches, again validating our choice of
using the implicit memory function to compute the transport
properties. The contribution of FVCCF to friction coefficient
on graphene surface was found to be negligible, in accordance
with our previous observations of water on graphene
surface.18

We now compare the species velocity profiles predicted
by the continuum/GLE framework with the ones obtained
from NEMD simulations. Figures 5(a) and 5(b) depict the
comparison for methane and hydrogen velocities, respectively,
for 30–70 methane-hydrogen mixture for different gravity
values and channel widths, where a good agreement
is observed between the two methods. Similar accuracy
is obtained for all molar compositions of the mixture,
including the limiting cases comprising of only one species.
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FIG. 4. Wall-fluid FACF from GLE (bold line, blue) and EMD (circles, red) for (a) methane and (b) hydrogen in 30% methane rich mixture composition.

The momentum equation (Eq. (1)) in the limiting case
appropriately reduces to that of one component fluid transport
because in the limit ρβ → 0, the interspecies friction term
vanishes and µP

α → µf. Also, the pseudo fluid viscosity
in Eq. (6) obtained from vdW1 approximation (Eq. (5))
reduces to pure component viscosity, thereby providing an
internal consistency of this formulation for limiting cases.
We also tested the framework for 70–30 methane-argon
mixture confined in graphene and observed similar fidelity
for velocity profiles as depicted in Figs. 6(a) and 6(b) for
methane and argon. By construction, the model includes both

viscous and slip effects that are superimposed. The relatively
dominant contribution of slip in graphene nanochannels results
in plug type of velocity profiles instead of the parabolic type.
A systematic analysis of high to low degree of slip with
different wall types has been presented before,17,18 which
demonstrate the transition from slip to no-slip type of velocity
profiles.

In order to check the accuracy of the framework with
differing value of gravity for the two species, we compared the
results with g1 = 1 × 10−4 nm/ps2 and g2 = 2 × 10−4 nm/ps2,
for 30–70 methane-hydrogen mixture in a 6.34 nm wide

FIG. 5. (a) Methane and (b) hydrogen velocity profiles for 30-70 methane-hydrogen mixture. Continuum results are in solid line (blue), while MD results are
represented by error bars (red).
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FIG. 6. (a) Methane and (b) argon velocity profiles for 70-30 methane-argon mixture. Continuum results are in solid line (blue), while MD results are represented
by error bars (red).

graphene slit as shown in Figs. 7(a) and 7(b). Even under the
action of different force per unit mass, the faster species
drags the slower species with itself, giving rise to very
similar velocity profiles that are corroborated from NEMD
and theoretical framework.

Next, we discuss the mixture barycentric velocities. In
principle, they can be obtained by taking the mass weighted
average of species velocity profiles, but an approximate
single fluid representation can also be provided. We start
with adding the momentum equation of two species to
obtain

FIG. 7. (a) Methane, and (b) hydrogen velocity profiles of 30-70 methane-
hydrogen mixture with methane gravity g1= 1×10−4 nm/ps2 and hydrogen
gravity g2= 2×10−4 nm/ps2. Continuum results are in solid line (blue), while
MD results are represented by error bars (red).

d
dz


µP

1
du1

dz
+ µP

2
du2

dz


+ m1ρ1g1 + m2ρ2g2 = 0, (11)

where the last two terms represent the total body force on
the mixture, and the term inside the square brackets is
the sum of the shear stresses of the species that can be
approximated by the mixture shear stress as µf duf/dz. Then,
the resulting formulation transforms to an equivalent one
component transport problem involving pseudo fluid and can
be solved with FBC Aµf duf/dz = ζfuf at the slip plane.
The effective friction for the mixture ζf can be apportioned
as the sum of species friction as ζf = ζ1 + ζ2, by utilizing
its additive nature. As an alternative to the FBC to solve
Eq. (11), one can also use the Dirichlet type boundary
condition discussed in our previous work for single component
transport.18 We carried out the calculations for the mixture
barycentric velocity profile and observed good agreement with
the NEMD computed mixture velocity. Next, we computed
the value of mixture friction coefficient at different molar
concentrations for methane-hydrogen mixture and observed
a linear variation as shown in Fig. 8. Therefore, once the
pure component friction coefficients of the species are known
at a fixed temperature and pressure, the molarity dependent
mixture friction coefficient can be predicted by utilizing the
linear relationship, without necessitating additional GLE or
EMD computations.

Last, we calculate the species slip length lαs using the
continuum velocity profiles from the expression

lαs
duα(z)

dz

�����z=−L/2+δ
= uαs (12)

and observed that the species slip length remains unchanged
for different channel widths with the same mixture
composition (with reference cases being 30–70 methane-
hydrogen and 70–30 methane-argon). However, it varies with
the mixture composition and is not same for the two species
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FIG. 8. Friction factor of mixture dependence on methane molar concen-
tration in methane-hydrogen mixtures at 1580 bars and 300 K. GLE com-
puted data points are displayed in blue open circles, while the red line is the
linear least squares fit.

TABLE II. Slip lengths (nm) of species on graphene interfaces for selected
methane-hydrogen mixtures.

Molar fraction Methane Hydrogen

0-100 . . . 6.6354
30-70 13.8585 3.5225
50-50 12.7025 2.7957
70-30 11.9140 2.0656
100-0 10.5062 . . .

(see Table II), despite seemingly similar velocity profiles. To
understand this, we write the expression for the ratio of the
slip lengths

l1s

l2s
=
ζ2

ζ1

µP
1(z)
µP

2(z)
�����z=−L/2+δ

=
ζ2

ζ1

ω1(z)
ω2(z)

�����z=−L/2+δ
, (13)

where we utilize the aforementioned relationship of partial
viscosities to pseudo fluid viscosity as µP

α = ωαµf. It is clear
that the equal slip lengths would require the ratio ζ1/ζ2 equal
to ω1/ω2, which is not strictly satisfied.

V. CONCLUSIONS

In this study, we have developed a continuum based
hydrodynamic transport model for isothermal, non-reacting
mixture transport in slit shaped nanochannels. We have
focused on species transport equation instead of mixture
motion as a whole. Viscous contributions are incorporated
using partial viscosities, which are evaluated using vdW1 and
LADM formulation. A Maxwell-Stefan type term is included
to characterize the interspecies friction. The boundary
conditions are provided in the form of a friction based
condition that contains the interfacial friction coefficient.
The friction coefficient connects the continuum description
of the problem to the atomistics by particle based wall-
fluid force autocorrelation and force-velocity cross-correlation
functions, which are computed using a refined GLE based

dynamical framework for mixtures. The species specific
memory function for the GLE is obtained implicitly by
utilizing the corresponding MFE of the single particle VACF.
The resulting correlations show good agreement with their
EMD counterparts. Under application of gravity, the species
velocity profiles are predicted that are in excellent agreement
with NEMD velocities. The accuracy of the model remains
unchanged in cases of species driven by different gravity fields.
In the cases considered, the mixture was observed to behave
as a pseudo fluid that can be solved with preexisting one
component transport models. Furthermore, it is also revealed
from the calculations that the effective friction coefficient of
the mixture varies linearly with molar composition at constant
pressure and temperature and therefore can be directly
predicted from the pure component friction coefficients. The
slip lengths of the species are observed to be different from
each other. The proposed framework is extremely fast and
comparable in accuracy with the atomic scale methods used
to study the mixture transport problem.
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