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SUMMARY

A stabilized discontinuous Galerkin method is developed for general hyperelastic materials at finite strains.
Starting from a mixed method incorporating Lagrange multipliers along the interface, the displacement
formulation is systematically derived through a variational multiscale approach whereby the numerical fine
scales are modeled via edge bubble functions. Analytical expressions that are free from user-defined param-
eters arise for the weighted numerical flux and stability tensor. In particular, the specific form taken by these
derived quantities naturally accounts for evolving geometric nonlinearity as well as discontinuous mate-
rial properties. The method is applicable both to problems containing nonconforming meshes or different
element types at specific interfaces and to problems consisting of fully discontinuous numerical approxi-
mations. Representative numerical tests involving large strains and rotations are performed to confirm the
robustness of the method. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The discontinuous Galerkin (DG) method provides an attractive technique for imposing strong or
weak discontinuity conditions efficiently within computational models. The approach yields con-
sistent formulations compared with the penalty method and does not introduce additional unknown
fields as required in Lagrange multiplier methods. Examples from solid mechanics include the relax-
ation of continuity across element boundaries to treat incompressibility [1, 2] as well as the modeling
of material interfaces both along element boundaries [3] and within element interiors [4, 5].

Some of the earliest methods applying discontinuous approximations to solve boundary value
problems include the approaches for hyperbolic problems by Johnson [6] and for elliptical prob-
lems by Arnold [7]. The latter is commonly termed as an interior penalty method, which was
influenced by a method proposed by Nitsche [8] for weakly imposed Dirichlet boundary conditions.
Subsequently, the Nitsche method has been applied in the area of solid mechanics to treat incom-
pressibility [9] and to handle embedded interfaces and cracks within the FE mesh [4, 5, 10]. Similar
applications exist in the context of fluid mechanics, such as the weak imposition of no-slip condi-
tions for wall bounded flows [11]. An extensive summary of the DG method for linear problems is
given by Arnold et al. [12].
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FINITE STRAIN INTERFACE FORMULATION WITH EVOLVING STABILIZATION 279

The key factors impacting the robustness and efficiency of the DG method are the design of the
so-called numerical flux and the penalty or stabilization parameter. Regarding the penalty parame-
ter, studies for embedded interface problems [5] as well as discontinuous discrete approximations
[2, 13] have shown that selecting a value outside of an optimal range leads to issues with accuracy
and stability. Choosing a value that is too low leads to loss of coercivity and results in an ill-posed
discrete problem. On the other hand, choosing a value that is too high leads to ill conditioning
in the stiffness matrix as well as to overly strict enforcement of the displacement jump condition.
When the jump condition is strictly enforced, the computed response approaches that of a contin-
uous Galerkin method, and the rationale for employing DG is lost. Dimensional analyses indicate
that the stability parameter is a function of the element geometry, polynomial order, material proper-
ties, and the local interface topology; however, its magnitude can be elusive. The classical approach
in the context of linear problems is to estimate the parameter through eigenvalue analyses [14, 15].
More recently, in the context of embedded interface problems [4], the values of the parameter for
linear simplex elements were determined by conducting a mathematical analysis of the coercivity
condition. In particular, definitions for the numerical flux and penalty parameter that involved a
weighting of the element size and material properties across the interface emerged. In contrast, the
standard definition for the numerical flux in DG methods [12] assumes an equal weighting of the
flux field from each side of the interface, which is postulated based on the assumption of mesh uni-
formity. Other interface methods have previously employed either area weighting [16] or stiffness
weighting [5] alone. Additional techniques for defining the penalty parameter for linear prob-
lems include developments using bubble functions [17, 18] and the variational multiscale (VMS)
method [19].

For the case of finite strain solid mechanics problems, the design of the stability parameter
becomes more delicate because the material constitutive law evolves with the deformation, thereby
implying that the stability estimates also evolve. In recent years, multiple nonlinear DG methods
have been proposed for solving elasticity and plasticity problems, for which we cite [2, 10, 20-26].
Across each of these studies, the value of the penalty parameter was treated as a user-defined param-
eter that was calibrated for particular numerical test cases; only a few mathematical analyses have
been undertaken for the nonlinear problem [27, 28]. However other researchers have shown [20, 27]
that prescribing a value a priori may not lead to a robust method, particularly when the simulated
response involves large deformations or material instability. These authors proposed an adaptive yet
heuristic method for evolving the penalty parameter separately along each element interface by eval-
uating the minimum eigenvalue of the acoustic tensor of material moduli. These studies indicate that
the increasing degrees of complexity encountered in finite strain problems call for a sophistication
of the underlying variational formulation of the DG method. In particular, the lack of a well-defined
value for the penalty parameter has been a cause for concern that has limited the adoption of this
method by the general research community [4].

In this work, we set out to derive a DG method for large strain kinematics in which computable
expressions for the numerical flux and penalty parameter naturally arise. The derivation parallels
our previous work for linear elasticity [19], where an underlying Lagrange multiplier formulation
for the interface constraints is converted into a primal formulation. By viewing the problem in light
of the VMS philosophy, the mixed formulation gives rise to numerical fine scales locally at the
interface due to sources of instability such as mesh nonconformity or significant material mismatch.
Herein, the associated fine-scale weak form is approximated locally over segments of the interface
by representing the fine-scale fields using edge bubble functions, resulting in fine-scale models that
account for the constitutive response and element geometry on each side of the interface. By embed-
ding these models into the coarse-scale weak form, a displacement-based interface formulation is
obtained through local condensation of the multiplier field. The terms in the formulation share a
resemblance with nonlinear interior penalty DG methods, such as the interface method presented
in [10]. However, the present formulation contains consistent definitions for the penalty parame-
ter along with a weighted numerical flux that are directly linked to the fine-scale models. Namely,
the value of the penalty parameter and flux weights can vary spatially along the interface from
element to element because of the local characteristics of the fine-scale models, a feature that is
reported in [19].
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A distinguishing feature in the present context is that the fine-scale models evolve with the mate-
rial and geometric nonlinearity exhibited in the vicinity of the interface. Therefore, through their
dependence on the fine-scale models, the algorithmic interface parameters are updated automati-
cally in a consistent fashion as the nonlinear problem evolves. The resulting method is free from
tunable parameters and capable of handling nonconforming meshes and material mismatch along
discrete interfaces undergoing general large deformations. A straightforward generalization of the
derivations enables a fully discontinuous functional approximation to be employed throughout the
domain in line with the traditional meaning for discontinuous Galerkin; see, for example, [2, 27].
A series of numerical tests are conducted employing nonconforming interfaces or discontinuous
approximations across a spectrum of deformation modes to assess the stability and robustness of the
method.

In the following section, we begin by discussing the underlying Lagrange multiplier formulation
for imposing continuity across interfaces in the finite deformation context. The derivation of the sta-
bilized interface formulation employing the VMS method is presented in Section 3. The approach is
subsequently extended to domains containing multiple interfaces in Section 4. Key aspects regarding
the implementation of the fine-scale models are discussed in Section 5. In Section 6, multiple bench-
mark problems are considered, including an error convergence analysis. Finally, we give concluding
remarks in Section 7.

2. GOVERNING EQUATIONS AND MIXED INTERFACIAL WEAK FORM

As a model problem, we consider a deformable body 2 C R”s4 that is cut into two disjoint regions
QM and Q@ by an interface of interest I'y; an illustration is given in Figure 1(a) and 1(b), in
which the regions are visibly separated for clarity. The case of multiple interfaces, such as those
encountered in the context of DG methods, is accommodated by a straightforward generalization of
the following developments. Throughout, we denote quantities with counterparts in both regions by
a superscript (), where « takes the value 1 or 2. Additionally, we suppress the superscripts in some
expressions that apply equally to both regions in order to simplify the presentation.

We denote points in the reference configuration by X € QM U Q@ and their corresponding
images in the current configuration by x. The current position of each region Q@ at time ¢ is given
by the image of all points X € Q@ under the deformation map ¢(“)(X ,t) such that x (X ,1) =
¢(°‘) (X, t). An example of the deformed configuration is depicted in Figure 1(c). We also define the
displacement field associated with the deformation ¢(°‘) as u®(X,t) = x(X,t) — X. Finally, the
deformation gradient F ("‘)(X ,1) emanating from q)(“) (X, t) is obtained as follows:

Fx.n=2

oY _ GRAD 1
ox ~ ORADx 0

(1) :¢(3)

I,

D

1—‘(1)

T,

\\

T re
(a) (b) ©

Figure 1. (a) Single domain £2; (b) imposition of interface I';; (c) deformed configuration generated by ¢(1)
and ¢ @,
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Although the deformations ¢(“) could in general take distinct values along I'y, we desire that the
domains QM and Q@ remain compatible and equilibrated with respect to each other for all time
such that the image of the body @ = QM U Q® remains contiguous. Namely, as shown in
Figure 1(c), while the interface may deform and translate, these motions are subject to the constraint
that the mapped portions of the boundary ¢ (I'® N T;) must coincide and conform within
this zone. Thus, the equilibrium equation and boundary conditions for each region Q@ are com-
bined with the statements of deformation continuity and balance of tractions along I'; to yield the
following system of equations for the composite domain £2:

DIV P@ (F("‘)) FP@DB® =0 in QW g=1,2 )
6@ =Xx®  onT\I; =12 3)

¢V —9@ =0 only (4)

PO ND L pAO.ND =0 onry (5)

where B® is the mass-specific body force, ,ogx) is the referential mass density, DIV(-) =
tr [GRAD (-)] is the material divergence operator, and N ) is the unit outward normal on the region
boundary I'®. The first Piola—Kirchhoff stress tensor is denoted by P @ and we restrict our current
focus to hyperelastic materials such that P@ is derived from an associated strain energy density

function W@ (F(“); X):

p@ _ oW @

T OF® ©

We assume for simplicity that W@ is spatially homogeneous, that is, W@ = W@ (F (“)); how-

ever, we in general allow distinct material models such that W) (F) # W® (F). Additionally, we
have prescribed homogeneous Dirichlet conditions on the external boundaries in order to focus on
the interfacial contributions in the following developments; the results are easily extended to treat
nonhomogeneous boundary conditions or Neumann (traction) conditions.

Two classical techniques exist for weakly imposing the interface conditions (4)-(5): the penalty
method and the Lagrange multiplier method. While the penalty method is conceptually simple and
easy to implement, it suffers from the inconsistent enforcement of the traction balance (5), which
is resolved only in the limit as the penalty parameter approaches infinity. Also, overly large values
of the penalty parameter yield ill conditioning in the global stiffness matrix, which can be detri-
mental to the stability of the nonlinear solution procedure [20, 29] or of the iterative linear equation
solver [13]. In contrast, the Lagrange multiplier technique consistently enforces (4)-(5) through the
incorporation of an auxiliary unknown field A at the interface. Thus, we adopt this technique as
the starting point for developing our proposed formulation. The associated weak form is stated as

follows: find {¢(1),¢(2),A} e S x 8@ x g such that for all {nf,”, 7?2, [l,} e VD x Y@ x Q.

2 2
Z/Q(a) GRADp{® : P@dy - > P B@ . pqy —/ A-[n,JdA=0 (7)
a=1 a=1

Q@) T,

- [ wewgla=o ®)

Herein, the Lagrange multiplier field A has the connotation of the traction field on I'; derived from
region Q). Also, we have introduced the jump operator [] = () — (-)® defined for vector-
valued fields on interface I';. Although this definition depends on the ordering of the domains as
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in [19], the final weak form obtained at the completion of the derivations is independent of the
ordering. We specify the functional spaces contained in (7)-(8) as follows:

5@ = {¢("" p@ e [H' (2@)]" det (F@ ($@)) >0, ¢@ e, = X(“)} ©)
1
G {nﬁ“) 2@ e [H} (2)] @ ronr =0} (10)
1
0= {A ‘)L c [H—%(r,)]"“} (11)

An alternate viewpoint for obtaining expressions (7)-(8) is through finding the saddle point
{¢(1), ¢(2), A} of the following interface potential functional (see e.g., [30]):

2

8l (¢(1),¢(2),).) — OZ:I [ o w@ (F(Ol)) dv — /Q(a) p((;x)B(a) .¢(06)de| _/FI A- [[¢(01)]] dA
(12)

This expression, which clearly possesses an underlying variational structure, will serve as the point
of departure for the developments in the following sections. Preserving the characteristics of this
structure will be an important concern through the derivations that follow.

3. MULTISCALE DECOMPOSITION

Our objective at this point is to convert the preceding Lagrange multiplier formulation into a stabi-
lized pure-displacement method reminiscent of the standard DG method. By doing so, we can avoid
the two main shortcomings of the Lagrange multiplier method, namely the inclusion of additional
unknowns to solve for and the stability issues associated with the mixed field problems. While the
mixed weak form (7)-(8) is well posed in the continuum setting for most classes of deformations, the
question of stability is more delicate for the discrete counterpart. Specifically, the choice of approx-
imation for the deformation and multiplier spaces must satisfy an inf-sup condition, commonly
termed as the BabuSka—Brezzi condition [31], the analysis of which can be difficult in the nonlinear
setting [32, 33]. Additional complications for selecting appropriate multipliers spaces arise when
the discretizations of regions () and Q® are nonconforming. To avoid these issues, we employ
the general framework of Masud and Scovazzi [34] for mathematically nonsmooth problems and
consistently combine the stabilized linear DG methods presented by Truster and Masud [19] with
the stabilized finite deformation formulation of Masud and Truster [35] to derive a stabilized finite
strain interface method. The underlying philosophy common to each of these works is the VMS
method [36], which has served as a platform for developing methods with enhanced stability across
solid mechanics [9, 35, 37, 38] and fluid mechanics [11, 39, 40].

The key idea of the VMS philosophy is that the solution field is decomposed into coarse scales,
often associated with the discrete function space, and fine scales, associated with the features of
the solution unresolved by the discrete space. Presently, we follow [35] and assume an overlapping
decomposition of the deformation map ¢(“) in each region Q@ consisting of a fine-scale deforma-

tion q~)(a) superimposed upon a coarse-scale deformation $(a). This deformation can be expressed
in terms of the multiscale displacement field as follows:

d=¢odp=X+a+u (13)

dpX)=X+a(X)=% (14)

¢(®) =%+ (R) (15)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:278-315

DOI: 10.1002/nme



FINITE STRAIN INTERFACE FORMULATION WITH EVOLVING STABILIZATION 283
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Figure 2. Multiscale composition of mappings ¢(l) o q)( ) for region Q1.

An illustrative example of the decomposed deformation is presented in Figure 2 for region Q). As
highlighted in [35], a multiplicative decomposition of the deformation gradient F @ follows from
substituting (13) into (1):

ox ox 0x on ou - A
F(X)—a—X—g-a—X—[l—i-g]-[l—i-a—X}:F-F (16)

Remark:

In the context of small deformations, an additive split of the displacement field is commonly
employed; see, for example, [37, 38]. However, in the finite deformation case, the total displace-
ment is properly defined through the composition of mappings [41]. Consequently, the gradient of
this composite mapping leads to a multiplicative split of the deformation gradient. Similar ideas are
discussed in the context of enhanced strain formulations by Simo and Armero [42].

~a) . . . .

In our developments, we elect to represent the coarse-scale field ¢~ using piecewise continuous
finite element functions in each region Q®. The fine-scale field ¢ * is treated as being local to
the interface in a manner similar to [19]; the specific functional form is discussed in the following
section. For concreteness, we summarize the notation pertaining to the finite element partitions as
follows. Let {ng)}

Mrime
" be a collection of nonoverlapping open subdomains €2 2“) called elements
e=1

@  _ _
that cover region Q@ : U:i”f” an) = Q@ Each element Q‘(ea) has an associated boundary Féa),
and we denote the union of all element interiors and boundaries by Q@ and '@, respectively.

Also, we use the symbol F;ae) to indicate the intersection of an element boundary with the interface
T';, and the union of all such elements boundaries is denoted by f‘}“). We remark that conformity
of the partitions along I'; is not assumed; namely, an element boundary F;ze) may not exist that
coincides precisely with F;lz on the other side of the interface, or vice versa.

With this notation in hand, the spaces of trial coarse-scale maps 8@ and fine-scale maps S@
take the following explicit form:

@ _ { 3@ 1@

~ ()
¢

€’ (@) Ns®.¢

*Tumel

’Q(wepk(szgx)) fore =1,...,n® } (17)

~ (@)

S@ _ {¢ < ()

3 =9 @og W e s@ng@ | (18)

where Pk (an) ) is the space of complete Lagrange polynomials of order k spanning element

QE,“). These definitions ensure a unique decomposition of the component mapping functions.
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Following [19], we retain Q from (11) as the space of trial and test functions for the multiplier field
until later in the derivation.

Returning to the interface potential functional (12) and substituting the multiscale decomposition
(13), we obtain the multiscale interface potential functional:

(¢(a) ¢ ) QX:[ o W(a)(,:(a)(@(a) oé)(“))) av — / . p@B@. (qs(oc) oqAS(a))dV}

—/ A [[(;S(a) O(IAS(D[)H dA
ry

The corresponding multiscale weak form is obtained by taking the variation with respect to both the

19)

coarse-scale arguments (i(a) and A along with the fine-scale arguments (]3(“). To facilitate this step,
we record the following intermediate results from [35]:

DqS(qsoé\)) ¢ noE D(Z(&O&)ﬁo: qA)E (20)
D4F -4, = F - GRAD#, — GRAD& - F ' - GRAD#, = GRAD, 21)
D F - i, = (G’RH);,O) .F = (GRAD,)-F~' - F = GRAD, 22)

where the coarse-scale and fine-scale variations in each region are denoted as 7 (a) and 17(“) respec-

tively, and the variational (Gateaux) derivative is defined as Dy G - 3, = 3 8) 0 G (¢ + en,) (see

[35]). Note that a simplified expression (21) is obtained for the coarse-scale variation of F compared
with the expression in [35] by accounting for the dependence of F on the coarse-scale map ¢
Applying the variational derivative to (19) and incorporating (20)-(22) leads to the following
multiscale interface problem:
Coarse-scale problem C

Dy [11(6.6“.2)] -0 = Ry (38:6 6. )

2
Z o [GRAD S - P@ — - oD B@]av (23

—/ A-Tiylda =0
ry

Du [11(8.64)]-w = Ra (067 6) == [ w-[podfaa=0 9
7
Fine-scale problem F
S [ (¢(tx) ¢ )] ) f,(()a) = Ry (1]((,“),¢(a),<i)(a),l)
= Z /Q " [GRAD 7 : P@ — 7 o@D B@ ]y (5
- [ a-talaa=o
ry

We would now like to adapt the fine-scale modeling procedure presented in [19] to convert the
system (23)-(25) into a primal formulation in which (]A)(a) is the sole unknown. This objective is
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achieved through a three-stage modeling process. First, the fine-scale Equation (25) is localized
to the vicinity of the interface I'; and subsequently linearized to obtain a closed-form expression

for qg(a) in terms of (;S(a) and A. Second, this fine-scale model is substituted into (24) to yield a

point-wise expression for A in terms of ()A)(a). Finally, these models for A and qNS(a) are consistently
embedded into (23) to remove their explicit appearance while retaining their effects.

Remark:

These derivations result in additional interface terms that have a form analogous to numerical flux
and penalty terms found in standard Nitsche or DG formulations [5, 7, 9, 12]. However, the specific
form of these terms is usually selected by the user based on the long history of the method, and
multiple options have been proposed within the context of nonlinear solid mechanics [2, 10, 21, 26,
27, 43]. Herein, these terms arise naturally through the modeling of fine scales within a Lagrange
multiplier interface formulation, thereby providing a rational basis for their origin.

3.1. Modeling of fine scales

The first modeling step is to localize the fine-scale problem (25) around the interface I'y. This
is a reasonable assumption because the boundary layer effects are invariably localized in a nar-
row band around the interface and domain boundaries; in solid mechanics, this effect is known
as Saint-Venant’s principle. In the present problem, these effects are produced because of mesh
nonconformity and the introduction of discrete Lagrange multipliers at the interface.

Accordingly, the effects of (i)(a) are assumed to vanish outside of a small neighborhood of the
interface I'7. Herein, we adopt an explicit representation of the fine-scale fields according to the
procedure described in [19], which we summarize herein for clarity. Recalling the finite element dis-
cretization of the regions () and Q| define a partition of the interface I'; into disjoint segments
ys such that Ug‘:‘f 7s = Ty, where n seg 1s the number of segments. Each segment is generated

such that it is bordered by only a single element from each region @, namely y, € F}ae) for some

element Q& and y; N F;a} for all j # e. Next, on both sides of segment y;, we associate a sector

ws(a) that is a subset of the adjoining element Q((ga) such that one portion of the boundary aw§“)

corresponds with the segment: 3a)s(°’) N 'y = ys. An example partition is shown for a small inter-
face in Figure 3; we also refer the reader to [19] for further elaboration on these definitions. Finally,
we elect to represent the fine scales as edge bubble functions bs(“) spanning these sectors adjoining
the interface:

~(ar) ~
) 0 = BB, iy

@p(X) (26)

@ =Vs

Figure 3. Interface partition into segments y, and sectors a)éa).
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where the bubble functions are nonzero on segment y; and vanish along the remainder of the sector
boundary dw ®

As a result of the localized representation of the fine scales (26), the fine-scale problem (25) can
be segregated into a series of local problems defined over pairs of sectors along the interface:

5 ((a) 3@ 4@ Z/ GRADn(“) P@ _; (a)B(a)]
27)

_/ A-[n,]dA=0fors =1,... N4
Vs

The next important step to enable a closed-form solution of the fine-scale problem (27) is to perform
linearization along the lines of [35]. Because the fine-scale field has been localized, the effects of
this further modeling approximation are also confined to the interface. Thus, fine scales are treated

(@)

LAl
as an incremental displacement Au**’ about the coarse-scale deformation ¢

2
3 f GRAD 7@ : A® (F("‘)) - GRAD Aa@dV = —R, (ﬁf,"‘);xis(“),o,x) (28)
()

where the acoustic tensor of material moduli A (F (“)) is defined as follows:

A@ (F(Ol)) 2w @

OF OF %

Because of this incremental approximation, the fine scales do not contribute significantly to the
deformation gradient such that

F@O=1+0).F =@ (30)
Remark:
In [35], the linearized fine-scale problem was expressed in tzerms of the second Piola—Kirchhoff
stress tensor § = g‘g and the material tangent tensor C = 2% where E is the Green-Lagrange

strain tensor. While that presentation makes explicit the effects of geometric and material nonlinear-
ity, herein, we have employed derivations in terms of A to yield more compact expressions. There
is a one-to-one correspondence between these tensors, presented, for example, in [29, 44] as well as
in Appendix A.

Next, we substitute the explicit form of the fine scales (26) into (28), replacing ﬂg"‘) by Aﬁga),
to obtain

Z,,(a) [ / ( GRADb§°‘>:A(“):GRADbg"‘)dV].AﬂS’"

2
Z @ | [ b (DIV P@ 4 o @) dV}
. U b (<4 — PO NO) dA} e U b (1 - PO . N@) dA}
Vs Vs
(€2
Msd
where bg"‘) =y bs(“)E J is a vector-valued bubble function and E ; are the basis vectors in the

J=1
reference configuration. Note that integration by parts has been applied to the coarse-scale stress
terms and the terms involving A have been separated using the linearity of the jump operator.
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Solving for the fine-scale coefficients A ﬂg"‘) in terms of the coarse-scale fields (i(a) and A yields
the following expression:

AB® =@ U o b§°‘>-(DIV P@ + p§“>3(a>)dv - /
[2h

b - [(—1)"“11 — P@. N(‘")] dA:|
Vs

(32)

where the stability tensor T @ jg expressed in terms of the fine-scale bubble function and the material
tangent tensor as follows:

-1
A [ / GRADbH@ : A® : GRAD bg"‘)dv] (33)
w§ot)

We observe that the fine scales are driven by the residual of the equilibrium equation (2) and traction
balance equation (5) incorporating the multiplier field A.

Three additional simplifying assumptions are now applied to further simplify (32) with direct
analogy to [19]. First, the interior residual term is neglected, which is equivalent to assuming that
the fine-scale bubble function is orthogonal to the coarse-scale residual, such as those employed
by residual-free bubble methods [17, 45]. While this orthogonality condition will not be strictly
enforced, larger contributions to the fine-scale model are expected from the boundary term. Second,
the mean-value theorem is applied to extract the traction boundary residual outside of the integral,
which converts (32) from a nonlocal to a local expression in terms of #® and A. This step is
a commonly employed technique in stabilized methods [37, 40]. Third, the average value of the

bubble function is employed in exPression (26) for é(a). Applying these modeling assumptions to
(32) leads to an expression for Au ) that is analogous to stabilized methods:

AG® =@ [(-1)* 2 - P@ . N©@] (34)

where

2
7@ = [meas (y5)] " ( / bs("‘)dA) @ (35)
Vs

Remark:

The definition for the stability tensor r§“) accounts for the interface-local finite element length
scale through the dependence of the integrals on the segment y;, sector a)s(a), and fine-scale bubble
function b§“). Also, the effects of evolving geometric and material nonlinearity on either side of the
interface are encapsulated through the appearance of the acoustic tensor A@ _ These dependencies
will play a key role in the properties of the numerical flux and penalty parameter derived in the
following section.

3.2. Variational embedding in the coarse-scale problem

The analytical model for the fine scales at the interface (34) will now be incorporated into the coarse-
scale problem. We first concentrate on the contributions to the continuity equation (24) in order to
obtain an expression for the Lagrange multiplier field A and subsequently return to the equilibrium
equation. This equation is nonlinear in ¢(°‘) because of the multiscale decomposition (13). There-
fore, we linearize the jump operator as [[Js o Js]] ~ [[(iﬂ + [Aa], which is a valid approximation
when the fine scales are small and localized as in the preceding section. Incorporating this result and
expression (34) for the fine-scale increment Au@ into (24) leads to the following:

_fr, - HM] Uy (A _p ,Nu)) 4. (_A _ P(z).N(z))]dA 0 (36
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Next, proceeding according to [19], we employ a piecewise L2 functional form for the Lagrange
multipliers A and p, which is admissible because of the enhanced stability afforded by the fine-
scale model. By requiring that (36) holds for all variations g, the quantity in square brackets must
vanish almost everywhere, in the notion of the L? projection. Therefore, the following expression
must hold point-wise on each segment:

tWA4+7@. =D pO.NO_@. p@. N _ [M] fors =1,...,n5g (37)

where we have segregated the coarse-scale displacement terms from the multiplier terms. Solving
this expression for A, we obtain

A=[60-PO.ND 2. pO.NO] . [§] (38)

The flux weighting tensors 82“) and stability tensor 7 are defined in terms of rﬁa) with direct

analogy to [19]:
-1
ro=(eW+2?) 5D =g (39)

With this explicit form for A, a simplified expression for the fine scales results from substitution
in (34):

AaW = —8, [PO.ND 4 PO NO| 50T [§] (40)

AG® = —8,[PO.ND 4+ PO . NO| 1 5@7 . [¢] @1)

where we have employed the symmetry of the tensors r§“) and 7 (derived from (33)) to enable the
substitution 8 §°‘)T = rﬁa) - 7. Also, the additional stability tensor 8 arises during the substitution
and is defined as follows:

-1 -177!
8, =780 = ;@ .50 [(r§‘>) +(z?) } 42)

Remark:

Note that in general § g"‘)T #£8§ g"‘) according to (39). Therefore, proper care must be taken during the
following derivations and subsequent implementation to maintain the consistency and variational
structure of the method.

We return to the weak form (23) and embed the representation of the fine scales (40)-(41) and the

- . . . . ~lo) .
multiplier A (38) to obtain a formulation that is only a function of the coarse scale ¢ . First, the
stress term is linearized with respect to the fine scales:

Dy’ [ f GRAD 7@ : P("‘)dV]-A&("‘) = / GRAD 7 : A® : GRAD Aa@dV  (43)
Q@) Q)

Next, we integrate this term by parts, taking into account the representation for the fine scales
(26) that vanish on element boundaries that do not intersect the interface:

/ GRAD 7@ : A®) : GRAD Aa@dV = — / DIV [GRAD 7@ A("‘)] - Aa®ay
Q)

Q@)

+ / [(GRAD ﬁga) : A(“)) . N(a)] CAR@dA
r

[ (44)
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As was adopted in [19], we neglect the contribution of the domain interior term from the right-
hand side of (44) to align with our assumption in Section 3.1 that the fine scales become vanishingly
small with distance from the interface. Also, this assumption simplifies the final form of the method
and enables the direct substitution of the interface fine-scale model (34). Incorporating the expres-
sions for A (38) and the fine-scale fields Aa® (40)-(41) along with (44) into the coarse-scale
problem (23) yields the following stabilized interface formulation for finite deformations:

2
3 /Q y [GRAD 7S : P@ — 7 o B@ | ay
a=1

_/ [moﬂ,(59)_P(l)‘N(l)_ng),P<2>,N<z)) dA
ry

N 0T M dA (45)

(GRAD P : A®) . N@|. 527 . [3] da

To cast (45) in a more compact form, we introduce the following notation for the so-called weighted
average flux operators:

(P-N}=§0.p0.ND _§2.p@. NO (46)

{(GRAD7j, : A)- N} = §). [(GRAD IOk A“>) : N<1)]

(47)
-8 [(crAD Y : A?) - N @]

Also, herein, we choose to neglect the contribution from the stress jump term, which is the last
two terms in (45), in order to improve the computational expediency of the method. Namely, fewer
terms would need to be calculated for the residual force vector and stiffness matrix, as discussed in
Section 3.3. Also, this term and its counterpart in the small strain context [19] are not commonly
employed in interface methods (see e.g., [4, 5, 12, 26, 27]). However, these terms may provide addi-
tional stability in the presence of highly nonlinear material response. Adopting these conventions
in (45) and removing the superimposed hats for clarity, we arrive at the final form of the stabilized
finite strain interface formulation:

2
R(19.6@) = Y /Q . [GRAD 1) : P@ — 9@ o B@ | ay
a=1
—/ [[no]]-{P-N}dA—/ {(GRAD7, :A)-N}-[¢p]da 43
Iy r;,
+ [ gl 9laa =0
Iy
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A remarkable similarity is apparent between the formulation (48) and both linear [5, 9, 12] and
nonlinear [2, 10, 24, 25, 27] DG and Nitsche interface methods. However, the key distinction is
that the definitions for the numerical flux (46)-(47) and the penalty parameter (39) are derived with
recourse to the modeling of fine scales to stabilize a Lagrange multiplier interface formulation. In
particular, (48) is free from user-defined parameters. Because of the close analogy of the present
derivations to those in the linear context [19], many of the salient features from that method carry
over to the proposed formulation (48). For example, the definition for the flux weighting tensors
delta exhibits the features of area-weighting approaches [16] and stiffness-weighting approaches
[5]. The reader is referred to Section 2.3.2 of [19] for additional remarks.

Remark:

We emphasize the key feature unique to the present nonlinear context whereby the penalty tensor
T evolves with the nonlinear deformations according to the stability tensors T sa). The evolution of
these parameters leads to a robust formulation for highly nonlinear problems.

Remark:

The provision for the evolution of these stability parameters as a function of the evolving nonlinear
fields is similar to the adaptive schemes proposed in [20, 27]. In the former, a heuristic approach
wherein the penalty term is scaled locally by the minimum eigenvalue of the acoustic tensor is
advocated based on a mathematical analysis of linearized stress-free elasticity. Rigorous bounds
on stability are proved in the latter for a DG method containing nonstandard stabilizing terms that
are valid for general nonlinear hyperelastic material response. In both cases, the numerical flux is
defined through lifting operators and employs the simple average of the fields across the interface.
Our derivation presented in this paper instead adopts the VMS philosophy for developing stabilized
methods along the lines of [19, 35].

3.3. Consistent linearization

To complete the derivation in the preceding sections, we carry out the consistent linearization of the
stabilized interface formulation (48) to provide the tangent stiffness matrix required for the Newton—
Raphson nonlinear solution scheme. These derivations also highlight that the variational structure
of the formulation, which originated from (19), has been preserved through the consistent fine-
scale modeling procedure and condensation of the multiplier fields. Throughout, we will neglect the
dependence of T4 and § §°‘) on the displacement field.

Because the penalty term is linear in the deformation fields ¢(°‘) and the treatment of the domain
terms can be found elsewhere (see e.g., [29]), we focus on the contributions emanating from the
interface flux terms. These contributions are highlighted in the following expression:

K (ngco’ Au("‘);¢(“>) = Dy [R (nfﬁ‘), ¢(a))] NG

2
=3 / GRAD 7@ : A® : GRAD Au®dV
a=1 Q@

2
+ 3 [ il v Do [181)- Aua
a=1Y11

2 @ “49)
_Z/ [n,] Dy [{P - N}]- Au'*dA
a=1 Ty
2
=2 | {(GRAD 2, : A)- N} - Dy [19]] - Aud4
a= I
2
- Z/F {(GRAD N, : (D¢(a) [A] - Au("‘))> .N} -[¢]dA
a=1 1
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The first interface term in (49) involving the first Piola—Kirchhoff stress follows similarly to
the linearization of the fine-scale field presented in (43) by treating each component of the flux
separately:

2
Y Dy [{P - N}]- Au® =5V '(D¢“) [P(l)] .A"(l))' N 52 (D¢<2> [P(Z)] 'A"(Z)) -N®
a=1
={(A : GRADAu)- N}
(50)
Also, the second flux term is obtained trivially along with the penalty term through the linearity of
the jump operator:

2
Z Dy [[¢]]- Au® = Au® — Au® = [Au] (51)

a=1

However, the last term gives rise to a nonstandard contribution because of the dependence of the
acoustic tensor A on the deformation gradient F. The result, similar to the term appearing in the
interface method of Mergheim et al. [10], is expressed as follows:

Dy [A("‘)] . Au® = E@ . GRAD Au'@ (52)
where E @ (F (“)) is a sixth-order tensor of material moduli defined as follows:

Pwe
E@O(F@)= ——— 53
( ) dFIFOF oY

The contraction of the tensors in (52) is handled through the extension of the double-contraction
operator : to higher-order tensors in a similar manner as presented in Section 3.2 of [35].
Substituting (50)-(53) into (49) leads to the final linearized form:

2
K (ngv, Au(“);(b(“)) =y /Q(a) GRAD 7@ : A® : GRAD Au@dv
a=1

—i—/ [[no]}~rs-[[Au]]dA—/ [7,]-{(A: GRAD Au) - N}dA
r; I, (54)
— | ((GRADy, : A)-N}-[Au]dA

s

— | {(GRADy,: E :GRAD Au)- N} -[¢]dA
ry,

We observe that (54) is symmetric with respect to the variations )7,(,“) and the incremental displace-
ment Au® . Therefore, the underlying variational structure associated with the mixed interface
problem (12) has been preserved throughout the fine-scale modeling procedure. The fact that the
stiffness matrix is symmetric also makes this formulation amenable for incorporation into standard
pure-displacement finite element codes. Additionally, once an explicit form of the material model
W@ is chosen for each region Q@ all of the terms in the weak form (48) and the incremental
form (54) can be directly evaluated through the constitutive equations (6), (29), and (53).

Remark:

The higher-order derivatives involved in the definition of E@ may be difficult to derive and
subsequently expensive to evaluate within an element subroutine for complex material models.
However, the term involving this sixth-order material moduli tensor in (54) is driven by the interface
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residual, namely the discrete interface gap [¢]. When the value of this residual is small within a
finite element simulation, the contribution from this term becomes less significant. Also, this term
does not appear in (48), and thus, it only contributes to the stiffness matrix. The effect of neglecting
these terms will be considered in future work.

Remark:

While the derivations in Section 3 have been carried out in the reference configuration, the resulting
expressions may be pushed forward to the spatial configuration, which may be easier to imple-
ment in the finite element context. We provide the spatial counterpart of the significant equations in
Appendix A.

4. EXTENSION TO MULTIPLE INTERFACES AND FULLY DISCONTINUOUS
APPROXIMATIONS

The preceding derivations can be readily extended to domains containing multiple interfaces and
ultimately lead to a formulation analogous to the classical DG interior penalty method. To expand
upon this point, consider the weak form (7) involving the Lagrange multiplier at the interface I';.
We apply the integration by parts and the divergence theorem in each domain Q@ to obtain the
Euler-Lagrange equations through the weighted-residual form:

- Z/ . DIV P@ 4 p("‘)B(“)) dv + Z[
(ot)

P(a) -N(“)) 1dA
1"(0‘)\1"]

(55)
+/ (P(l)-N(l)—A)-ngl)dA—i—/ (P® N@ 4 2)-nPda =0
Iy s

Here, the traction boundary integral Q) = I'"® has been split into a portion adjoining the inter-
face and the remainder of the boundary. The terms on I'®\T; vanish because 17((,“) = 0 according
to the functional space V@ in (10). Therefore, upon invoking the fundamental theorem of the cal-
culus of variations, we arrive at the equilibrium equation in each region Q@ as in (2) along with
traction equilibrium on I'y as in (5) imposed through A.

Now suppose that multiple interfaces are present in domain 2. The continuity conditions on
each interface can be imposed weakly by incorporating independent Lagrange multiplier fields A ®)
over each unique pair of adjacent region boundaries. The corresponding weak form would be the
generalization of the integrals in (5) to summations over all domain regions and over all region
boundary pairs constituting interfaces. However, by assuming that the fine-scale fields are localized
to the vicinity of the interfaces, the fine-scale problem corresponding to (25) may again be separated
into a series of smaller problems posed over individual interfaces and, furthermore, over discrete
interface segments as in (27). Thereafter, the remainder of the derivations applies identically to each
specific interface, allowing a condensation of each A® analogous to (38) and resulting in a global

problem expressed entirely in terms of the coarse scale qAS(a) across all regions.

Taking this argument further, let the domain €2 be discretized into a set of finite elements
{Q. }""’""l Within the context of the preceding discussion, we now treat each inter-element bound-
ary as an interface and each element as a region. By weakly imposing continuity across each pair of
adjacent elements, we arrive at a fully discontinuous approximation of the solution field ¢, where
the integrals in (48) are evaluated over all element interiors Q and element interfaces T'. The result-
ing formulation appears quite similar to the classical interior penalty DG method [7, 10, 12, 24].
Note that in these methods, the numerical flux is almost invariably defined as the arithmetic average
of tractions and the penalty parameter is obtained via dimensional and scaling arguments. In con-
trast, we emphasize that the penalty parameter contained herein has been consistently derived and
the numerical flux is obtained as a weighted average according to (46).
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Remark:

A strong point of the present framework is that it naturally accommodates a spectrum of problems
from domains with a single interface to domains with multiple interfaces and to fully discontinu-
ous approximations across finite element boundaries. The inherent stability enabling this range of
problem classes derives from the stability afforded by the evolving fine-scale models for r§“).

Remark:

As is the case among almost all DG methods, the fully discontinuous approximation case is
computationally more expensive than the corresponding continuous Galerkin approximation for
the same number of elements because of the increased number of degrees of freedom in the
global stiffness matrix. This cost is greatly reduced for domains with specific nonconforming
interfaces wherein continuous approximations are employed in the region interiors. For such prob-
lems, the cost of the present method is lower than the comparable mortar methods because the
Lagrange multiplier field is not solved as an added unknown in the discrete problem. The only rel-
ative increase in element-level calculations compared with existing DG methods [24] and Nitsche
methods [16] is the evaluation of the stability tensors, which represents the crucial benefit of the
proposed method. A remark on the relative cost increase at the interface element level is contained
in Section 6.3.

Remark:

Special care must be taken when localizing the fine scales within elements in the context of the fully
discontinuous approximation. For example, consider a triangular element €2, that has individual
interface segments ys(ﬂ ) corresponding to each of its three edges. Each segment is assigned a sector
a)bglS ) C Q. over which a portion of the fine-scale field (;) is supported as in (26). Strictly speaking, to
ensure that the fine-scale problems (27) for each interface segment/sector pair remain independent,
the sectors a)s(ﬂ ) within the common element 2, must not overlap, namely a)s(l) N a)s(z) =0, a)§2) N
a)s(3) =@, and a)s(3) N a)§1) = (. This issue is discussed further in Section 5.

5. ASPECTS OF IMPLEMENTATION: FINE-SCALE SECTORS AND BUBBLE FUNCTIONS

In this section, we elaborate on the key aspects of our implementation of the proposed method. As
noted in [19], the choice of the fine-scale bubble functions b§°" has an important impact on the
accuracy of the computed results. One possible representation considered in other interface meth-
ods [17] is the use of residual-free bubbles, which are designed to be orthogonal to the space of the
coarse-scale equilibrium residual, implying [ ) b . (DIV P@ 4 )@ B@) gy = 0. Although
these functions satisfy the assumption that was employed to simplify the fine-scale solution (32),
they are obtained by solving a local boundary-value problem and are therefore quite expensive. As
an alternative, simple polynomial bubble functions were analyzed in [19] for two-dimensional lin-
ear elasticity problems and found to provide robust performance across various element types and
mesh distortion. Therefore, we elect to use these edge bubble functions for the present nonlinear
formulation, which are summarized in Table I; note that the letter and number designate the element
shape and number of nodes, respectively. For three-dimensional domains, the authors proposed in
[19] to partition the interface into triangular segments in order to accommodate general noncon-
forming meshes. The corresponding sectors for tetrahedral and hexahedral elements take the form
of smaller tetrahedral and wedge-shaped regions, respectively. Polynomial bubble functions that are
nonzero within the base of these sectors are listed in Table II. To simplify these tables, the reference
sector coordinate system (&, ) or (&, 1, ) is assumed to be oriented such that the interface segment
corresponds to the bottom of the sector. The reader is referred to [19] for several figures illustrating
the definitions of the sectors along with further discussion on the bubble functions.

Another key factor in the fine-scale modeling procedure is the definition of the interface sectors
a)s(a) C Q. over which the localized fine-scale equation (27) is solved. An obvious convention is
to define a tributary sector that extends from the interface segment through the entire depth of the
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Table I. Edge bubble functions employed for fine-scale
fields, two dimensions.

Element Bubble function

T3 46(1—£—n)

Q4 s (1-8)-n

T6 482(1—€—1)?

Qo F(1-E0-n2+3(1-E)1—n)

Table II. Face bubble functions employed for
fine-scale fields, three dimensions.

Element Bubble function
T4 276n(1-§—-n-29)
B8 Fen1--n1-9)

element, as illustrated in Figure 3. However, the authors advocated in [19] to employ truncated
definitions of the interface sectors for elements with large aspect ratios, whereby the maximum
extension of the sector into the element is approximately limited to the size of the segment y;.
This procedure, contained in Boxes 1 to 4 of [19], is related solely to the element geometry in the
reference configuration and readily extendable to the present nonlinear formulation. Therefore, we
adopt it for the numerical studies in Section 6. Note that the integrals in the fine-scale model (27)
are performed in the reference configuration; as such, we treat the image of the interface sectors in
the reference configuration to be fixed throughout the course of the numerical simulations.

Remark:

A physical motivation for limiting the support of the bubble functions is that the interfacial effects,
which they model, are localized according to Saint-Venant’s principle, mentioned previously in
Section 3.2. While other functions that decay exponentially with distance from the interface could
be proposed, the bubble functions presented here have the advantages of being simple in form and
easily integrated by numerical quadrature.

As remarked at the end of Section 4, instances may arise in which an element has multiple
edges serving as interfaces, particularly in the case when fully discontinuous approximations are
employed. Each of the sectors that are assigned to these edges should be taken as disjoint regions
of the element such that the localized fine-scale problems (27) remain independent. A possible def-
inition for the sectors of a quadrilateral element with all four edges identified as interface segments
is illustrated in Figure 4. However, the definition of such regions is not directly compatible with
the procedure summarized in the preceding paragraphs, which is adapted from [19]. Previously, the
sectors were assumed to be freely extendable across the entire depth of the element in the direc-
tion orthogonal to the interface segment without conflict from neighboring sectors. In order to keep
the implementation of the method simple, we adopt the following heuristic approach. For each
edge serving as an interface segment, we define the sector according to the appropriate Box from
[19] without considering the presence of other segments. Then, the value of the stabilizing tensor
r§°‘) for each sector is computed using (35). Finally, each tensor is scaled down by the number of
edges e : f§°‘) = (es)_11§a) to approximately account for the overlap of the sectors. For exam-
ple, notice that in Figure 4, the area of each sector a)s(a) is one-fourth the area of €2,. The values
of 7% = (e5)"17® are then substituted into definition (39) for the numerical flux weights §@
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Figure 4. Disjoint sectors within a quadrilateral element possessing multiple interface segments.

and the penalty parameter 7. Combining the definitions of the bubble functions bg“) from Tables I
and II with the previous definitions for the sectors a)s(a) completes the description of the fine-scale

models employed in this study.

Remark:

Notice from definition (39) that when the stability tensors rgl) ~ r§2) across a segment, the weights
8§°‘) are not significantly affected by this heuristic modification of r§°‘). In contrast, the value of
the stability parameter T is increased proportional to es. This small increase tends to enhance the
stability of the method without inducing ill conditioning of the stiffness matrix (54).

6. NUMERICAL RESULTS

We investigate the performance of the proposed interface method across a range of deformation
modes. Standard Lagrange polynomials are employed within the finite elements of either linear
or quadratic degree, and both two-dimensional and three-dimensional problems are considered. A
common neo-Hookean material model is employed for each of the problems, with a strain energy
density function as follows:

W(F) = %u (tr (FTF>—3)—,uan+%/\(J—1)2 (56)

Expressions for the corresponding constitutive tensors P, A, and E are provided in the Appendix.
All integral expressions over surfaces and volumes are evaluated using Gauss quadrature rules of
sufficient degree. Results are presented first for meshes with specific interfaces where continuity is
weakly imposed, which corresponds with the formulation derived in Sections 2 and 3. Additional
numerical tests are performed using fully discontinuous approximations across all elements as illus-
trations of the multiple interface formulation discussed in Section 4. To distinguish these cases, we
refer to the former case by the name stabilized Nitsche interface method while the latter case is
termed as the stabilized DG method.

Remark:
The integration of the material contribution to r§°‘) according to (33) is performed over the interface
sector a)§°‘) , which is typically a subset of the element €2,. However, the acoustic tensor A@ is eval-

uated in terms of the deformation gradient F, which is a function of the coarse-scale deformation
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Figure 5. Patch test problem description.

43 defined over the entire element. Thus, evaluating these integrals requires a transformation of
coordinates between the sector and the parent element, which is not encountered for homogeneous
materials in the linear setting [19].

Remark:

Because the fine-scale tensors r§°‘) are a function of the deformation, their value evolves during
each iteration of the Newton—Raphson solution procedure. However, this effect is not accounted for
in the linearization provided in Section 3.3, as remarked at that point. Similar to observations in the
context of a VMS formulation for nonlinear incompressible elasticity [35], neglecting these effects
leads to a reduced convergence rate of the out-of-balance force vector. To restore the quadratic rate
of iterative convergence, the value of rff‘) can be frozen for each interface segment after a specified
number of iterations and held constant over the remainder of the load step. Herein, the value is
frozen after three iterations.

6.1. Tensile patch test

We begin by solving a simple patch test to verify the consistency of the interface formulation. A
rectangular bar of 1 mm x 1 mm is separated into two rectangular regions by a nonconforming
interface over which the proposed stabilized Nitsche interface method is employed, as shown in
Figure 5. The material properties within the neo-Hookean model (56) are taken as £ = 100 MPa
and v = 0.25. A uniform traction of 20 MPa is applied to the right edge of the domain, and boundary
conditions are assigned on the left face in order to create a state of uniform tensile stress throughout
the specimen. Under these conditions, the exact value for the tip elongation is § = 0.2110.

Two meshes that contain linear triangular and quadrilateral elements, respectively, as shown in
Figure 6, are considered. Each region contains four quadrilateral elements; the triangular mesh is
obtained by bisecting the quadrilateral elements. In the left region, the elements are rectangles 0.25x
0.5; in the right region, the line of nodes in the center is dropped downward to the coordinate
Y = 0.4 to make the interface nonconforming. The traction field is applied in a single-load step
to produce the numerical solutions in Figure 6. The solution field from both meshes is smooth and
reproduces the exact value of the tip displacement, with the displacement gap between the regions
correctly resolved as identically zero.

In Table III, we record the Euclidean norm of the out-of-balance force vector computed at each
iteration during the Newton—Raphson solution procedure. The observed quadratic convergence rate
numerically confirms the consistent linearization and tangent matrix provided in Section 3.3.

6.2. Trapezoidal deformation problem
As further verification of consistency and stability, we consider another problem with an exact

solution that was originally proposed in [35]. The geometry consists of a square domain that
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Figure 6. Displacement u x contour on nonconforming meshes: (a) triangular mesh; (b) quadrilateral mesh.

Table III. Evolution of residual /2 norm for nonconforming meshes.

Residual norm

Iteration number T3 elements Q4 elements

1 5.6094580 x 1072 5.6094580 x 1072
2 2.9576726 x 107> 2.9576726 x 107>
3 8.1814644 x 10~12 8.1870099 x 10~12
4 3.0798871 x 1014 2.2733456 x 10714

|
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~
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Figure 7. Trapezoidal deformation problem: (a) problem domain; (b) exact vertical displacement on

deformed configuration.

is subsequently deformed into a trapezoid by raising the upper right-hand corner. A single
pure-displacement quadrilateral element is capable of representing this deformation mode, as shown
in Figure 7(b). The analytical solution is reproduced below in Cartesian coordinates in terms of the

vertical displacement § of the corner node:
x =X, y=6XY 47, z=27

The deformation gradient and Jacobian are given as follows:

1 0 0
F=|46Y3dX+10], J=486X+1
0 0 1
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Figure 8. Nonconforming meshes: (a) bilinear quadrilaterals; (b) linear and quadratic elements.

Considering the stored elastic strain energy function given by (56), the first Piola—Kirchhoff stress
tensor follows as

SAJX  SuY/J —§2AXY 0
P=1| SuY [BXOAJ +pu+pul)]/J O (59)
0 0 SATX

Substituting (59) into (2) leads to an expression for the body force term (60):
poB =-DIVP =[—@u/J +61J)00]" (60)

The material parameters are taken as A = u = 40, and the load parameter as § = 1.01. To inves-
tigate this problem in the numerical setting, we apply fixed boundary conditions on the lower edge
and apply the analytical tractions arising from (59) on the other edges, as depicted in Figure 7(a).
Because of the appearance of / = §X + 1 in the denominator of (59) and (60), the integrands
within the finite element residual vector and tangent matrix will contain rational polynomials that
are not precisely evaluated through low-order Gauss quadrature. In order to obtain the exact solu-
tion to numerical precision, we employ higher-order rules using 10 x 10 quadrature points for
element-interior integrals and 10 points for boundary or interface integrals.

Two discretizations of the domain are considered, as shown in Figure 8. The first mesh consists
of two regions of four bilinear quadrilateral elements separated by an initially horizontal stabilized
Nitsche interface. In the second mesh, the lower region is represented using two quadratic triangular
elements in the lower left and one biquadratic element in the lower right; the upper region contains
three bilinear quadrilaterals such that the interface is nonconforming. Note that linear triangular
elements cannot reproduce the exact solution except in the limit of mesh refinement [35] and, thus,
are not employed in this study. Also, the mid-side nodes of the quadratic elements must be located
at the midpoint of the associated element edge in order for the finite element shape functions to
reproduce the exact solution. Using this problem, we investigate the performance of the interface
method for higher-order elements and for an interface that undergoes rotation during the loading.

The body force and tractions (59)-(60) are applied in four equal load steps to reach the deformed
configurations presented in Figure 9. For both meshes, the displacement field matches precisely
with the solution contour in Figure 7(b), confirming the consistency of the formulation. No gaps
or distortion of the interface is evident in the discrete response. Thus, the proposed interface
method is capable of tying meshes with different element types across interfaces undergoing finite
deformations.

In Table IV, we again show the Euclidean norm of the out-of-balance force vector computed
at each iteration during the Newton—Raphson solution procedure. The quadratic convergence rate
is achieved.
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Figure 9. Vertical displacement contours on deformed configuration: (a) bilinear quadrilaterals; (b) mixture
of linear and quadratic elements.

Table IV. Evolution of residual /2 norm for two different mesh types.

Residual norm

Iteration number Q4 elements Q4-T6-Q9 elements
1 6.1686067 x 10~1 1.0397659 x 100

2 2.6368099 x 1072 1.8790396 x 1072
3 2.0567903 x 10~° 5.0704490 x 10
4 4.0519883 x 10714 4.0763657 x 10713

Remark:

The number of quadrature points is increased solely for this numerical example in order to resolve
the analytical solution to numerical precision. For low-order rules, the slight errors in the discrete
solution are directly attributed to the quadrature error. Note that because the stress tensor (59)
involves rational polynomials, the computation of the internal force vector associated with (48)
also requires higher-order quadrature. As an alternative, quadrature rules for integrating rational
functions could be employed.

6.3. Parabolic indentation of a square block

In this problem, we investigate the ability of the fine-scale models to provide varying levels of
stabilization across a domain in accordance with the evolving geometric and material nonlinearity.
The domain consists of a bi-unit square with fixed boundary conditions on the lower edge and
traction-free vertical edges. The top surface of the block is indented by an applied displacement that
maps it into a parabola according to the following:

Uz (X1, X2 = 1.0) = a(X; —0.25)(X, —0.75) (61)

where a is a proportional loading parameter and the horizontal displacement component is left free.
This problem was originally studied by Ten Eyck and Lew [27]; the distinguishing feature is that the
acoustic tensor A becomes indefinite in the vicinity of the bowl of the parabola for values of a > 0.1.
The resulting negative eigenvalues are an indicator of localized material instability. When a DG
method with a spatially uniform value for the stabilization parameter was employed, spurious oscil-
lations in the inter-element displacement field jumps were manifested in this region of the domain.
This observation prompted the adaptive stabilization strategy in [27] where the stability parameter
along each element edge was scaled by the magnitude of the largest negative eigenvalue of A along
that same edge. This strategy led to stable discrete response whereby the jump discontinuities were
controlled throughout the domain.

Presently, we employ a DG approximation using linear triangular elements within the interface
method proposed herein. The key idea is to determine whether the consistent definitions for the
numerical flux and penalty parameter (39) are able to naturally accommodate the local material
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instability. Three levels of mesh resolution are selected to coincide with the meshes from [27].
However, the Dirichlet boundary conditions are strongly rather than weakly imposed, which leads to
slight discrepancies in the computed results compared with the reference. The indentation is applied
in 10 equal load steps Aa = 0.25 up to the maximum value a = 2.5.

Deformed configurations obtained at two load levels are shown in Figure 10 for the mesh with
h = é. As the indentation is increased, larger inter-element discontinuities appear in the upper-left
portion of the domain, which can be attributed to the strongly imposed boundary conditions and the
coarseness of the mesh. However, the global response is quite stable and in close agreement with
the stable results presented in [27].

We also compare the final deformed configurations obtained on the three mesh resolutions in
Figure 11. On the coarse mesh in Figure 11(a), discontinuities are reasonably significant throughout

0.4
0.15 0.3
0.1 0.2
0.05 0.1
0 0
-0.05 01
(@) (b)

Figure 10. Vertical displacement u» superimposed on deformed configuration, mesh 2 = 1/9: (a) a = 1.0;

(b)a =2.5.
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Figure 11. Vertical displacement u» superimposed on deformed configuration at load level a = 2.5: (a)
h=1/4,b)h=1/9;(c)h =1/14.
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Figure 12. Wire-frame contour of stabilization tensor | 7| along element edges: (a) h = 1/4; (b) h = 1/9;
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the domain. A key attribute of DG methods as advocated in [27] is that coarse-mesh solutions can
be obtained with improved accuracy in the gradient fields compared with continuous Galerkin (CG)
approximations by relaxing inter-element continuity. Our results in Figure 11 agree qualitatively
with that assessment, and the discontinuities steadily diminish as the mesh is refined. Additionally,
across all meshes, the proposed formulation yields stable results free from spurious oscillations in
the displacement jumps.

In order to examine the stabilization afforded by the fine-scale models, in Figure 12, we plot
the norm of the penalty parameter ||75|| = /7T, : T5 computed according to (39) along each ele-
ment interface at the final indentation level. The colors of the element edges in the mesh correspond
to the magnitude of the parameter as denoted by the color bar. Clearly, significant spatial vari-
ability is present in the stabilization parameters. First, the magnitude of the parameters increases
uniformly with mesh refinement while the distributions remain fairly consistent, indicating proper
scaling with the element length scale [12, 27]. Thus, the remarks that follow apply equally to each of
Figure 12(a)-12(c). Another common trend is that the values for diagonal edges are larger than those
for edges aligned with the coordinate axes. Namely, the fine scales are attuned to the anisotropy
induced in the discrete problem by isosceles triangular elements. More importantly, the values near
the bowl of the parabola are about 5—10 times higher than the values observed throughout the rest
of the domain. This results in more stabilization being applied in regions coinciding with the indef-
inite acoustic tensor, which agrees closely with the adaptive strategy considered in [27]. However,
we emphasize that the trends presented here arise automatically from the fine-scale models (34)
without any external calibration or monitoring.

Remark:
Similar spatial variation in the stabilization tensors was observed in the context of a VMS-stabilized
method for finite mixed hyperelasticity [35], whereby the magnitude of the tensors was larger
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in regions corresponding to larger stresses. Therein, the stabilization tensors are also derived in
terms of fine-scale bubble functions and incorporate the constitutive material tensors. Thus, the
strong link between the fine scales and the evolving coarse-scale deformations is shared with the
present method.

Remark:

From the perspective of the cost of computation of the element-level quantities, the computation of
the stability tensors r§°‘), Tg, and 8§a) add approximately one-third additional computational cost
relative to the cost of evaluation of the residual vector and stiffness matrix associated with the inter-
face terms as compared with using constant values for the parameters. In the opinion of the authors,
this cost is offset by the benefits of having robust, nonlinearly evolving definitions of the parame-
ters that require no calibration by the end user. This enables the confident application of the method
to problems containing non-matching meshes, different element types, and heterogeneous material
properties in the context of finite strains.

6.4. Finite deformation pure bending

In the fourth example problem, we investigate the performance of the proposed DG method under
significant bending deformation. The domain of interest is a rectangular bar that is bent into an arc
subtending an angle 2, as illustrated in Figure 13. The solution for this plane strain problem is pre-
sented in Ogden [46] for an incompressible neo-Hookean material model, for which the deformation
map x = ¢(X) takes the following form:

rcos@
v=|rsing |, ro= [EEX e MLy oY 62)
Z v v L

where R, and R; are the outer and inner radii, respectively, of the beam in the deformed
configuration.

Notice that each longitudinal fiber of the beam originally parallel to the Y -axis is mapped into
an arc of radius r, although this radius is not directly proportional to the original depth X of the
fiber in the reference configuration. Additionally, the radius r and angle 6 are separable functions
of the reference coordinates X and Y, respectively. Therefore, the deformation gradient F can be
expressed in the following simple form:

y
A
Y
Ri
L r
X
> X
L w
H
RO
(a) (b)

Figure 13. Pure bending of a rectangular beam: (a) undeformed configuration; (b) deformed configuration.
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(L/yrycos@ —(yr/L)sinf 0
F=| (L/Yyr)sin8 (yr/L)cosf 0 (63)
0 0 1

It can be seen that the deformation represents pure bending because the off-diagonal components
of the Green deformation tensor C = FT F are identically zero and is also isochoric because
J = det(F) = 1. To ensure globally incompressible response, the deformed and undeformed areas
of the beam must be equal:

2HL = ¢ (R2 — R?) (64)

Furthermore, a second condition on the radii is obtained from the equilibrium equation [46] such
that the tractions on the inner and outer surfaces vanish for an incompressible material:

(L/¥)* = RoR; (65)

For a given value of the bend angle v, the system of Equations (64)—(65) can be solved simultane-
ously to determine the relationships for R; and R, in order to express the deformed radius r solely
in terms ¥ (These rather lengthy expressions are not reported here). While this solution was origi-
nally derived for an ideal incompressible material, the deformation remains valid for a compressible
material. Employing (63) within the constitutive law (56) results in the following expressions for
the stress tensor and consistent body force for equilibrium:

cosf sinf 0

P = (u(L*—y?r?)/yLr) | sinf —cos6 0 (66)
0 0 0
d C?SG 2.4 (~.2 2 2(72 2 2
poB = iy | S0 | K=Ky (2r2 — R2) + L2 (L* + y2(H — 2X)?)  (67)
0

Using this exact solution, we conduct a numerical convergence analysis on a sequence of uniformly
refined meshes. Only the top half of the beam is modeled, and symmetry boundary conditions are
applied to the mid-plane of the beam ¥ = 0. The traction field resulting from (66) is applied to
all surfaces of the beam (including the mid-plane) along with the body force (67) throughout the
domain. Although the surfaces X = £+W/2 are traction free for an incompressible material due to
the volumetric pressure field, this condition is lost for the compressible case. Uniform discretizations
with quadrilateral and triangular elements are employed with fully discontinuous function spaces,
where the coarsest quadrilateral mesh is 2 x 16 elements. Their performance will be benchmarked
against the results from continuous finite element approximations on the same meshes. During the
simulations, the bend angle ¥ is increased up to a maximum value of 7 in increments Ay =
7 /16. We remark that because the applied forces from (66)-(67) are nonlinear functions of , the
consistent external nodal loads for the finite element mesh must be recomputed at each load step
rather than proportionally incremented.

The bending stress agg plot for the 8 x 64 element mesh is illustrated on the deformed configu-
ration of the beam for two load levels ¥ = x/2 and ¢ = & in Figure 14. At the first load level,
the discretized beam is almost bent into a quarter of a circular arc. Because the load level is con-
trolled through force-type boundary conditions rather than prescribed displacement, the bend angle
observed in the computed results will be less than the actual value. Furthermore, the displacement-
based finite element methods typically produces approximations that are stiffer than the actual
structure. Nonetheless, the deformed configuration in Figure 14(b) is approaching a half-circular arc
and is fairly accurate for a coarse approximation.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:278-315
DOI: 10.1002/nme



304 T.J. TRUSTER, P. CHEN AND A. MASUD

4_
15
5- 6
o 4t 4 o 10
© ©
£ 2
S 3 5 5
o o
S 2 ° 8 0
> 2 >
1t 4 -5
HH -10
0 4 2 0 4 2 0
x-coordinate x-coordinate
(a) (b)
Figure 14. Stress ggg on deformed configuration under pure bending of 8 x 64 quadrilateral mesh: (a)
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Figure 15. Convergence rate of displacement error norm for pure bending at bend angle v = 31—76’: (a) L?
norm; (b) H'! seminorm.

To quantify the accuracy of the results, we compute the error in the displacement field e =
u — u” obtained at each level of mesh refinement and record the value of the L2 norm in Figure 15.
The error norms are evaluated at the load level ¢ = 37/16. For nonlinear field theories, proving
the theoretical convergence rate for the finite element method can be quite involved. However, the
optimal rate of convergence for linear-interpolation elements from the linear field theory is a rate
of 2.0 in the L2 norm and 1.0 in the H! norm. We observe rates close to this optimal limit for
the present analysis. Also, the triangular meshes contain a higher level of absolute error compared
with the quadrilateral meshes, indicating that these elements are rather stiff, which is a common
observation among discrete approximations with triangles [29]. However, the DG approximation
does provide a slightly more accurate solution compared with CG for the same number of elements.
This response indicates that the displacement jumps increase the flexibility of the discrete domain.
The results for the DG and CG quadrilateral meshes are nearly identical.

As a final result, we determined the discrete angle 1" from the computed solution at each load
level for comparison against the prescribed angle v and present the values in Figure 16. Because the
deformation of the beam is driven by the applied tractions in terms of ¥, the actual deflection of the
beam becomes a derived quantity for measuring the accuracy. We illustrate a consistent procedure
for determining the angle ¥ in Figure 16(a). First, a line segment is drawn connecting the endpoints
A and B of the beam. Next, a perpendicular bisector CD is constructed, where the point D is located
at the intersection with the horizontal axis. Finally, the angle ¥/ between line segments AD and
BD is calculated using the law of cosines. This angle is determined for four of the quadrilateral DG
meshes and plotted in Figure 16(b); the angle is measured in radians, and » indicates the number of
elements through the thickness of the beam. Clearly, the exact curve is ¥ = v, a line with a slope
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Figure 16. Discrete angle ¥ for pure bending: (a) determination from computed results; (b) discrete angle
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Figure 17. Rectangular bar under longitudinal torsion.

of one. We observe that as the mesh is refined, the values from the quadrilateral DG meshes converge
to the correct result. Similar trends were obtained for the CG method and the triangular meshes.

6.5. Torsion at finite strains

For the final numerical problem, we consider a rectangular bar subjected to torsion, as shown in
Figure 17. A deformation map that induces longitudinal twist to the bar can be expressed as follows:

cosd —sinf 0

2nZ
Y =R@)-X. RO =]|sinf cosd 0|. 0(z)="2Y (68)
L
0 0 1
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where L is the length of the bar and the parameter 1 represents the number of complete revolutions
of the top face of the bar with respect to the bottom face. This deformation mode is described
in [46], where the expressions have been converted from cylindrical to Cartesian components by
using the trigonometric identity concerning the summation of angles. Similar to the problems in
Sections 6.2 and 6.4, equation (68) is taken as the exact solution, and the surface tractions and
body force required for equilibrium are derived and applied within the computational model. The
resulting expressions for F, P, and B are given by

cos6 —sinf 2w (y/L)(—Y cosf — X sin 0)
F = | sinf cosf 2n(y/L)(X cosh —Y sinh) (69)
0 0 1

0 0 —Ycosf — Xsinf
P=2mu(/L)| 0 0 Xcosf —Ysinf (70)
-Y X 0

X cosf —Ysind
poB = p[27(¥/L)]* | Y cos@ + X sinf (71)
0

where u = E/2(1 4 v) again is the shear modulus. Note that the deformation induces pure shear
and is thus isochoric, namely J = 1. Therefore, this problem will be used to test the performance
of the DG method for large shearing and rotational effects.

In the benchmark study herein, the dimensions of the bar are taken as L = 4 and W = 2 along
with the material properties £ = 100 and v = 0.25. Uniform meshes of linear tetrahedral elements
and trilinear hexahedral elements are employed with fully discontinuous approximations between
each element. The coarsest mesh consists of 2 x 2 x 8 hexahedral elements, and the tetrahedral
meshes are formed by subdividing each hexahedral element into six tetrahedra, similar to [35].
Again, continuous finite element approximations will serve as a reference. The bottom face of the
bar is held fixed in the Z-direction and prevented from rigid-body rotation by restraining the middle
node along each edge. Surface tractions according to T = P - N from (70) are applied to all
faces of the bar; in particular, the vertical faces have nonzero tractions because the cross section is
not circular.

For a series of uniformly refined meshes, simulations were conducted in which the bar was twisted
to a maximum revolution of ¥ = 2 at equal intervals of Ay = 0.125. Representative deformed con-
figurations of the bar are shown in Figure 18 for two load levels on the crudest 2x2x § element mesh
and a refined mesh. The superimposed contour plot represents the value of the torsional Cauchy
stress 0,9 computed at the center of each element from the DG approximations. For planes of ele-
ments parallel to the X—Y plane, we observe a constant value of the torsional stress for elements
that are equidistant from the longitudinal axis, which agrees with the intuition from the classical
mechanics of materials. Namely, as the mesh is refined, the computed solution more closely captures
the linearly varying torsional stress in the radial direction. This is evidenced by the similar magni-
tude but increased resolution provided between Figure 18(a) and 18(c) at load level ¥ = 0.5 and
similarly for Figure 18(b) and 18(d). Moreover, the level of stress remains constant along the length
of the bar in the computed results and does not show any decay or spurious features. Note that these
stresses are computed in the rotated coordinate system obtained from the deformed configuration of
the mesh. The uniformity of the results obtained both in the longitudinal and in the transverse direc-
tions is a testimony to the accuracy of the results. In particular, significant deformations are present
at the load level {» = 1.0 as evidenced in Figure 18(b) and 18(d).

Because this problem has an exact solution, we compute the displacement discretization error
obtained on each mesh and plot the value of the L? norm and H! seminorm in Figure 19(a) and (b),
respectively, at the loading stage y = 0.125. For this problem, the DG approximation outperforms
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Figure 18. Stress 09 on deformed configuration at two load levels: (a) h = 2; ¢ = 0.125; (b) h = 2; ¢ =
0.5;(c)h =49 =0.125;(d) h = 4;¢ = 0.5.

the CG approximation for tetrahedral elements in both error measures. Also, the optimal conver-
gence rate of 1.0 in the ! seminorm is obtained by each of the element types. These smooth trends
are a strong indicator of the stability of the results. The convergence rates in the L2 norm are fairly
optimal for the tetrahedral elements. The hexahedral meshes also exhibit slightly suboptimal per-
formance in the field norm upon mesh refinement; however, the convergent results of the gradients
indicate that these elements are stable nonetheless.

By inspecting the deformation map (68) as well as considering the response of the bar in
Figure 18, we observe that the response is quasi-periodic. Namely, the response of a bar with length
nL could be obtained by simulating one bar of length L and appending n copies of the response
end to end, with appropriate rigid rotations applied to match the bases from each section. Further-
more, the traction field on cross sections parallel to the X—Y plane with normal N = E 3 takes the
following simple form according to (70):

P-E3=2mu(y/L)[—Y cosf — X sinf, X cos —Y sin6, O]T

(72)
=2mpu(Y/L)R(0) - (X — ZE3) = 2npu(y/L)RT(0) - X 12

where R is the tensor that produces rotations, which are orthogonal to R, such that (R - X 15) -
(Rt - X15) = 0. This traction vector clearly lies in the plane of the cross section, is perpendicular
to the twisted radial vector R - X 15, and has a magnitude equal to 2z (/L) when normalized by
the radial distance. An example of these vectors is provided in Figure 20(a).
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Now suppose that two different bars undergo torsion such that pu® (y®/LM) =
pn@ (y@/L®) = C. According to (72), the cross sections of each bar would experience the same
traction field. This thought experiment suggests a possible sophistication of the previous problem to
a bar consisting of two materials, which is illustrated in Figure 20(b). In light of the previous dis-
cussion, we obtain the solution for the deformed shape of the upper portion of the bar simply by
rotating and translating the general expressions (68)-(71):

x'=0q-x(X), T'=Q,-PX):-N, B =0y BX) (73)

where the translated coordinate is X’ = X — LV E5 and the rotation tensor 0Oy = RQay M)
reorients the bases of the bars to match at the interface. The expressions in (73) are evaluated in
terms of the properties u®, @, L® for the second portion of the bar. These results align with
the classical strength of materials theory: when a composite rod is subjected to torsion, the twist
experienced by each component is inversely proportional to its shear modulus while the torqueing
moment in each component remains constant.
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Figure 19. Convergence rates of displacement error for longitudinal torsion at load level ¥ = 0.125: (a) L>
norm; (b) H' seminorm.
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Figure 20. Enhanced torsion problem: (a) traction vector on twisted cross section; (b) bi-material
rectangular bar.
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Figure 21. Plan view of nonconforming coarse mesh: (a) bottom region; (b) top region.
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Figure 22. Displacement u, contour plot on the deformed shape for the bi-material torsion problem: (a)
load level (V) = 0.25; (a) load level ¥V = 0.5.

For the numerical tests that follow, we adopt the geometric and material properties L) = L) =
2. W =2,EM =100, E® = 400, and vV = v® = 0.25. Also, to make this test more strin-
gent, the portions of the bar are discretized in a biased fashion to create a nonconforming mesh in
the zone of the material interface. Plan views of the coarse meshes for the top and bottom portions
of the bar are shown in Figure 21; subsequent meshes are obtained by bisecting this discretiza-
tion. Within the remainder of the bar, continuous finite element approximations are employed. This
problem is a good test case for a unified CG-DG method under large rotational effects wherein
potential weak discontinuities from material mismatch can evolve into strong discontinuities such as
debonding. Therefore, it serves as a test bed for mathematically nonsmooth problems under evolving
finite rotations.

The response of the bar is simulated on the coarse mesh by increasing the twist angle ¥ in
increments Ay () = 0.125 and computing applied tractions and body forces on both regions, with
v ® = M /4. The deformed configuration of the domain is shown in Figure 22 for two rep-
resentative load levels. We highlight that the top half of the bar indeed twists less than the lower
portion. However, both the displacement field and the tractions are continuous at the interface.
Spurious gaps have not opened up between the nonconforming meshes, and the discrete solution
is quite smooth. Thus, the stabilized interface formulation provides very accurate results for this
challenging problem.

To further investigate the properties at the nonconforming interface, we compute some quantities
of interest such as the magnitude of the discrete interface gap [¢] and the interface numerical flux
vector, which are shown in Figure 23. The contour of the interface gap [@] is not symmetric because
of the differing bias in the top and bottom meshes along with the fact that the loading and deformed
configuration in Figure 22 do not display symmetry. However, the jump is three orders of magnitude
smaller than the displacement field, indicating that the discontinuities are well controlled. Also, the
traction field at the interface appears quite smooth in Figure 23(b), where the edge lines have been

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2015; 102:278-315
DOI: 10.1002/nme



310 T.J. TRUSTER, P. CHEN AND A. MASUD

1 10" 1 ! '
100
0.5
o 0.5 3 o | 1 80
2 £
S T
g 0 2 s O %0
8 8 s |
ES g 40
-0.5 1 -0.5
20
1 L 1 L I
-1 -05 0 0.5 1 -1 -05 0 0.5 1
x-coordinate x-coordinate
(a) (b

y-coordinate
o

)
05 . H
- 5 1

-1 -0.5 0 0
x-coordinate

©

Figure 23. Contour plots at material interface for twist (1) = 0.375: (a) magnitude of discrete interface
gap [¢]; (b) magnitude of numerical flux vector; (c) exact interface stress o, ¢.

removed for clarity. Note that the total numerical flux A = {P - N} — 7, - [¢] as given by (38)
containing both the average traction and the penalty term is plotted in the figure, which is tradition-
ally the defining measure of interface stress [4, 19]. Slight over-predictions of the numerical flux,
indicated by the red color contour, are present in the extremely small triangular interface segments
formed from slightly mismatched nodes in the upper and lower portions of the bar. These artifacts
are generated by the over-prediction of the penalty tensor 7 in these segments, which is an issue
similar to that encountered in embedded mesh techniques in the presence of vanishingly small cut
elements [4]. Nonetheless, the accuracy of the computed stresses compared with the exact stress in
Figure 23(c) is a testament to the quality of the stability tensors derived from the fine-scale models
(35) in the presence of significant geometric and material mismatch.

7. CONCLUSIONS

In this work, we derive a DG interface formulation for finite strain kinematics by extending the
developments for linear elasticity contained in the general framework of [19]. A Lagrange multiplier
treatment of the interface continuity constraints serves as the starting point for the derivation, and
this mixed field problem is stabilized by invoking concepts from the VMS method. Herein, a distin-
guishing feature is that the localized fine-scale problems at the interface are consistently linearized
in order to develop analytical models for the fine-scale displacement field. By embedding these fine-
scale models into the coarse-scale problem, enhanced stability is obtained that subsequently enables
the Lagrange multipliers to be condensed from the formulation, leading to a primal weak form anal-
ogous to the DG method. Through the fine-scale stabilization process, closed-form expressions are
obtained for the numerical flux and penalty parameter that vary from element to element based on
the material properties and local mesh topology at the interface. Unique to the present nonlinear con-
text, these fine-scale models evolve with the local material and geometric nonlinearity of the bulk
domain in the vicinity of the interface. By accounting for the complete spectrum of the constitutive
material model, element geometry and length scale, and nonlinear effects, the robust definitions for
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the numerical flux and penalty parameter herein adaptively compensate for instabilities that may
arise under increasing deformations.

To facilitate the implementation of the method, we represent the fine-scale fields using simple
polynomial bubble functions, similar to those previously investigated in the context of small strains
[19]. While the method was originally developed for imposing continuity weakly over nonconform-
ing meshes within a domain, a natural extension of the ideas yields a formulation accommodating
fully discontinuous approximations over the discretized domain. Both versions of the method,
enforcing continuity across nonconforming interfaces or across inter-element boundaries, are inves-
tigated through a series of two-dimensional and three-dimensional test problems that cover a range
of deformation modes. Particular emphasis is placed on problems incorporating significant bending
and torsional effects to verify that the fine-scale models remain objective and provide stability under
large strains. In all cases, accurate results were obtained from the method by using the form of the
stability parameters derived herein without additional calibration. Strong performance is exhibited
by both triangular and quadrilateral elements along with their higher-dimensional counterparts for
problems with material mismatch and significant mesh nonconformity. Error convergence analyses
were conducted for problems with analytical solutions, and the convergence of the discretization
error confirmed the stability of the proposed interface method. The next logical steps for extending
this formulation, which we plan to pursue, are the treatment of history-dependent material response
as well as the treatment of evolving strong discontinuities such as delamination.

APPENDIX A

The derivations in Section 3 have been carried out in the reference configuration in terms of the
first Piola—Kirchhoff stress P and the acoustic tensor A so that the resulting interface formulation
(48) can be expressed in a form closely resembling the small strain counterpart [19]. An entirely
equivalent representation can be written using the second Piola—Kirchhoff stress S and the material
tangent tensor C by recourse to transformations from continuum mechanics [41, 44]:

Piy = FirS1y (A1)

Airjs = 8ijS17 + Fix FjLCkrrs (A2)

where g is the spatial metric tensor and, throughout the following discussion, lower-case and
upper-case subscripts refer to components expressed in current and reference coordinate systems,
respectively. Expressions for S and C arise in the usual manner by differentiating the strain energy
density function W with respect to the Green—Lagrange strain tensor E. By carefully differentiat-
ing (A.2), we obtain the following relation for the sixth-order material tangent tensor D that was
defined in [41]:

Eirjskk = 8ij FxrCroik + ik FirCxirrs + gk FirCoxrr + Fir Fim FenDrimsng (A3)

Notice that & possesses major symmetry for each pair of dual-basis components because of the
symmetries of C and D.

To obtain the spatial counterpart of the weak form (48) and the linearized form (54), we require
the following transformation relations for the Cauchy stress tensor o, spatial tangent tensor ¢, and
spatial sixth-order tensor d :

Joij = Fi S1yFjy,
Jeijki = Fir FigCryxr Frx Fir, (A4)
Jdijkimn = Fir Fjs Frk Drankimn Fip Fnm Fun

where J = det(F). Furthermore, we will use the following transformation of area and surface
infinitesimal elements as well as the unit normal vector V:
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dv=JdV, nda=JF TNdA, da/dA=097'=J HF—TNH (A.5)

where n is the unit outward normal to the deformed domain ¢ (£2). The last expression (A.5) has
a very important implication: in the discrete setting, the mapped unit vectors n® in the spatial
configuration on either side of the interface I'; will not be identical in general. This observation
is due to the dependence of the unit normal on the deformation gradient F @ which may take
distinct values across the interface when continuity and equilibrium are enforced only in a weak
sense through (4) and (5). Therefore, numerical integration in the deformed configuration must take
this consideration into account. Additionally, the differential area element da for each side of the
interface may also be different because of the discontinuity of F.

We omit the details of substituting the transformations (A.1)-(A.5) within the weak form (48) and
provide the final results:

( @ ¢<a)) Z/ Vs,,(a) 6@ _ @ ,p(a)Bm)] v
(a)(gz(a))
_ Z/ ) [ (8- 0@ 0 @) da
(O‘)(F1)
- Z/ (-1*t [8(“) . (Vsn(“) : c(“)> ~n(°‘)] - [¢] da
<a>(r,) ’

; Z / (D@ 7, - [§] D4da = 0

(‘“(FI)

(A.6)

-1
where 17("‘) = 17((,“) o (gb("‘)) is the spatial displacement variation, V(-) = d(-)/dx is the spatial
gradient, V5(-) = % [V(-) + (V(-))T], and p = J!p, is the spatial density. The values of the sta-
bilization tensors T and 8 §°‘) are unaffected by the transformation. However, if desired, the stability

tensors rg @) may be evaluated in the spatial configuration by pushing forward (33) as follows:

-1
F@ = [ VB - (¢ V) + Vb : ¢ : Vb dv (A7)
¢(ot)( (0‘))
Finally, the spatial counterpart of the linearized weak form (54) is presented in (A.8):
2
K (,,(a), Au(“);q)("‘)) — Z/ (Vn("" . (a(oo . V,,(a)) L V@ @, Vs,,(a)) dv
el ¢(a)(gz(a))
+ / —-1)*~ 117(“) - [Au] ¥ g4da
Z ("‘)(FI) o

)% n]- [8§°‘) . (c(“) A (Au(“))) ~n(°‘)] da

(a)(rl)

(—1)e-1 [350!) : (Vsn("‘) : c(“)) -n(a)] -[Au] da
(oc)(]",)

1)0[—1 I:Sga) . Kuu (n(a), All(a); ¢(°‘)) . n(a)] . [[¢H da
(D‘)(Fl)
(A8)
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and the additional stiffness term is defined as follows, where the superscripts () have been
suppressed:
Kyy (n, Au; @) = Vy-[c : VI(Au)] + V(Au) - [c : Vi)

(A.9)
F[(d : V(Aw) : Vo] + ¢ : [(V(Au))T - vn]

APPENDIX B

Here, we provide the expressions for the material tensors corresponding to the strain energy density
function (56); a similar material model was considered in [10].
First Piola—Kirchhoff stress tensor P:

Py =pn(Fi;' + Fir) + AJ(J — D F! (B.1)
Acoustic tensor A:
Airjs = w(Fi;' Fr' + 8 G7}) + A[JQJ — DF Fril = J(J — ) F Frl (B.2)
Sixth-order material tensor Z:

Eirjskk = AW (J = 1) — ) (Fyl Fxl Fi;' + Fi FRl Fil) + A[J(4J — DFr Fril Fy ]

—AJQI =) [FFe! Fi' + Fi Fl i} + Frp Fri Fr' ©3)

where G ! is the inverse of the material metric tensor. The spatial constitutive tensors take a much
simpler form.
Cauchy stress tensor g':

Joij = u (g + Fir Fjr) + AJ(J — g (B.4)

Spatial tangent tensor c:

Jer = 1 (g g5t + g &) + A [J(2J ~ Vg gt = I = (giten + g,-‘llg}kl)]

(B.5)
Table B.1. Components of spatial sixth-order
volumetric tensor.
Component Value Condition
[d 1]iijjkk 1 None
[d 2Jiiiii —6 None
d 2 i -2 i #]
[d 2 ]iijkjk -1 J#k
(d 3iiiiii 8 None
d 3]iiiji 2 i #]
[d 3]ijikki 1 i #]#k
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Sixth-order material tensor d :

Tdijiimn = AT = 1) — 1] (d3)ijkimn + A [TET = 1) (d1)ijk1mn)

(B.6)
+ AJ(2J = ) 2)ijkimn

where the tensors d1,d,, and d3 are defined in [35], and the values of their components in a
Cartesian coordinate frame are listed in Table B.1.
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