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a b s t r a c t

In this work, algorithmicmodifications are proposed and analyzed for a recently developed
stabilized finite strain Discontinuous Galerkin (DG) method. The distinguishing feature
of the original method, referred to as VMDG, is a consistently derived expression for
the numerical flux and stability tensor that account for evolving material and geometric
nonlinearity in the vicinity of the interface. Herein, the proposed modifications involve
simplifications to the residual force vector and tangent stiffness matrix of the VMDG
method that lead to formulations similar to other existing DG methods but retain the
enhanced definition for the stability parameters. The primary objective is to reduce the
costs associated with implementing the method as well as executing simulations while
retaining accuracy and flexibility, thereby making the formulation amenable to boarder
material classes such as inelasticity. Each simplification has associated implications on
the mathematical and algorithmic properties of the method, such as L2 convergence
rate, solution accuracy, continuity enforcement, and stability of the nonlinear equation
solver. These implications are carefully quantified and assessed through a comprehensive
numerical performance study. The range of two and three dimensional problems under
consideration involves both isotropic and anisotropic materials. Both triangular and
quadrilateral element types are employed along with h and p refinement. The ability of the
proposedmethods to produce stable and accurate results for such a broad class of problems
is highlighted.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, a stabilized Discontinuous Galerkin (DG) method was developed by Truster et al. [1] for modeling large strain
solid mechanics problems. The method, denoted herein as the Variational Multiscale Discontinuous Galerkin (VMDG)
method, is consistently derived from an underlying Lagrange multiplier interface formulation and possesses a form
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analogous to the symmetric interior penalty Galerkin method [2]. Its novel feature is that computable expressions
emerge during the course of the derivation for the stability tensor and numerical flux weighting tensors that ac-
count for geometric and material nonlinearity. While accurate and stable results were obtained for problems involv-
ing large rotations and nonconforming interfaces, the formulation is more involved to implement than the classical
DG method. Namely, its consistent linearization involves the nonstandard inclusion of the sixth-order tensor of mate-
rial moduli, which is the derivative of the tangent material moduli. This higher order tensor can be difficult to derive
in closed-form and subsequently implement for complicated material models, particularly materials exhibiting history de-
pendence such as plasticity. Thus, while the VMDG method is mathematically and mechanically sound, the formulation
would benefit from carefully designed modifications to reduce the complexity of implementation and cost of computation
while maintaining superior mathematical properties, thereby increasing its appeal to the mechanics community.

Additionally, the existing literature on theoretical and computational aspects of DG methods for nonlinear solid
mechanics possesses some gaps. The fundamental theory for DG methods applied to linear PDEs has become well-
established; see e.g. the analyses and references from the treatise by Arnold et al. [2]. However, theorems and analyses
conducted in the linear context do not always carry over to the nonlinear context. For example, many existing DG methods
for finite strains, including those for hyperelasticity [3], plasticity [4], and second-order computational homogenization [5],
possess a nonsymmetric incremental weak form. Loss of symmetry has been shown in the linear context [6] to upset adjoint
consistency as well as yielding suboptimal L2 error convergence rates. While studies on adjoint consistency have been
performed for nonlinear fluid mechanics [7], the suboptimal L2 convergence has not been demonstrated or investigated for
DG methods for nonlinear solid mechanics. Fewer nonlinear DG methods employ symmetric tangent matrices; examples
include [1,8]. Another noteworthy symmetric DG formulation was developed by Lew and co-workers [9], for which
extensive stability and accuracy analyses were conducted in [10]. In contrast to the classical interior penalty approach, their
formulation employs the concept of interface lifting operators, previously analyzed for linear PDEs in [2,11]. More recently,
the hybridizable DG method [12,13] has emerged which utilizes numerical traces to treat the inter-element continuity
constraints. The benefit of this alternative approach is that element interior fields consisting of the displacement and strain
fields can be condensed locally to leave the trace field as the only global unknown field, yielding significant cost savings.
Finite strain hybrid DG formulations are presented in [14,15], where the latter was shown to possess a variational structure.
However, amongst all the preceding methods, the design of the stability parameter is crucial to obtaining stable computed
response, particularly in the nonlinear context. The idea of adapting [10] or evolving [1] the stability parameterwith solution
nonlinearity has received little attention in the literature. In summary, the preceding developments for solid mechanics DG
methods would be greatly enhanced by qualitatively investigating the effects of method attributes such as symmetry and
stability parameter definition upon the method performance such as accuracy and number of required Newton–Raphson
iterations.

The objective of this paper is to propose a family of algorithmicmodifications to the VMDGmethod [1] and systematically
analyze their mathematical and algorithmic properties. These modifications consist of selectively neglecting terms in the
interface nonlinear and incremental weak forms, resulting in both symmetric and nonsymmetric formulations reminiscent
of other existing methods [3,4,8]. Throughout, emphasis is placed on analyzing how these simplifications affect the balance
of ease of implementation, computational efficiency, and numerical accuracy across a range of problems. Insights into
this balance are gained through carefully designed numerical studies involving large strains and rotations, isotropic and
anisotropic materials, and h and p refinement. Specific measures of performance include (i) maximum convergent load
level, (ii) number of Newton–Raphson iterations, (iii) cost of element integration, (iv) convergence rate in L2 and H1 norms
with respect to analytical solutions, and (v) accuracy compared to continuous Galerkin (CG) benchmarks. Additionally,
we investigate the tensorial nature of the stability tensors in the VMDG method with respect to material and geometric
nonlinearity. The results of these numerical investigations provide insight into themathematical and algorithmic properties
of the VMDG method and other existing nonlinear interior penalty DG methods as well as providing a reference point for
methods employing lifting operators or hybridization. Finally, the proposed simplifications enable the ready extension of
the VMDG method to wider classes of materials, including inelasticity, by removing the need to evaluate the sixth-order
algorithmic material moduli and by minimizing the additional computational cost at integration points.

We begin in Section 2 with a brief review of the VMDG method [1] and highlight the major equations. Then, various
simplifications are proposed in Section 3 and evaluated through a comparison of numerical results in Section 4. Conclusions
concerning the algorithmic attributes are drawn in Section 5.

2. Review of a finite strain stabilized discontinuous Galerkin method: VMDG

Let Ω ⊂ Rnsd be a mechanical body that is acted upon by a deformation φ. We denote a point in the reference
configuration as X ∈ Ω and its image in the current configuration as x ∈ Ωφ . The deformation gradient associated with φ
is defined by F = ∂x/∂X . The classical weak form of the governing equilibrium equation is stated as: Find φ ∈ S such that
for all variations ηo ∈ V:

Ω

GRAD ηo : P dV =


Ω

ηo · ρo f dV +


Γσ

ηo · T dA (1)
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in which the following notation is adopted: N is the unit outward normal on domain boundary ∂Ω , f is the body force, T is
the prescribed traction on Γσ ⊂ ∂Ω , and g is the prescribed displacement on Γu ⊆ ∂Ω . The portions of the boundary Γσ
and Γu satisfy Γσ ∩ Γu = ∅, Γσ ∪ Γu = ∂Ω . Also, S and V are appropriate spaces of trial and test functions satisfying the
Dirichlet boundary conditions and appropriate smoothness properties [1]. Finally, P is the first Piola–Kirchhoff stress tensor.
While the developments that follow accommodate general constitutive relations, wewill focus on the case of hyperelasticity
whereby P is related to the deformation gradient F through a strain–energy density function Ψ according to P = ∂Ψ /∂F .

Herein, we consider discontinuous approximations of the solution field φ. Let T be a discretization of Ω into disjoint
open regions Ωe called elements such that


e Ω̄e = Ω̄ . We denote the union of element interiors and boundaries as Ω̃

and Γ̃ , respectively. Three subsets of element boundaries are considered: traction-type Γ̃σ = Γ̃ ∩ Γσ , displacement-type
Γ̃u = Γ̃ ∩ Γu, and interior-type Γ̃I = Γ̃ \


Γ̃σ ∪ Γ̃u


. The discrete solution space Sh is taken to be the space of polynomial

functions of order k that are continuous on elementsΩe ∈ T but possibly discontinuous along element interfaces Γ̃I . With
these preceding conventions in hand, the stabilized discontinuous Galerkin formulation associated with (1) as proposed
in [1] is expressed as:

R

ηh
o; φh

=


Ω̃

GRAD ηh
o : Ph dV  

R0

+


Γ̃I


ηh
o


:

τs ·


φh dA  

R1

−


Γ̃I


ηh
o


:

Ph dA  

R2

−


Γ̃I


GRAD ηh

o : Ah
:

φh dA  

R3

−


Ω̃

ηh
o · ρo f dV  

FΩ

−


Γ̃σ

ηh
o · T dA  
FΓ

= 0 (2)

in which Ah is the fourth-order acoustic tensor of material moduli Ah
= ∂Ph/∂F . Also, the superscript h has been inserted

to indicate the finite-dimensional counterparts of the continuum fields. As is typical amongst DG methods, we note that
Sh

⊄ S due to the use of discontinuous trial functions. In the sections that follow, we refer to the combination of (2) with its
corresponding consistent linearization as the Variational Multiscale Discontinuous Galerkin (VMDG) method in reference
to its derivation employing Variational Multiscale concepts [1,16,17].

For subsequent discussions, we have labeled each term within (2) in order to isolate its purpose within the weak form.
The standard Galerkin term R0 enforces equilibrium on element interiors and follows directly from the first term in (1).
The terms FΩ and FΓ represent the external forces applied within the body and along the boundary Γσ , respectively, as
appearing on the right-hand side of (1). The penalty term R1 plays the key role of stabilizing the present DG formulation,
whereas in the classical penalty method it serves to weakly impose the inter-element continuity of φh. This role is instead
fulfilled by R3, which we call the symmetrizing term. Finally, R2 serves to weakly enforce traction equilibrium along the
Γ̃I and is designated as the average-stress term; this term ensures the variational consistency of the method. These roles
are made readily apparent by examining an underlying Lagrange multiplier interface formulation, for which the reader is
referred to [1].

Remark. The Dirichlet boundary conditions could also be weakly imposed in a similar manner as inter-element continuity
through the addition of integrals along Γ̃u. However, hereinwe have elected to strongly enforceφh

= g within the definition
of Sh both within the theoretical developments and the subsequent numerical studies in order to focus on the performance
of the inter-element DG contributions.

The interface terms in (2) are a function of the so-called jump operator and averaging operator, which are defined as
follows for an adjacent element pairΩ(+)

e andΩ(−)
e :

φh
= φh(+)

⊗ N (+)
+ φh(−)

⊗ N (−) (3)
Ph

= δ(+)s · Ph(+)
+ δ(−)s · Ph(−) (4)

GRAD ηh
o : Ah

= δ(+)s ·

GRAD ηh(+)

o : Ah(+)
+ δ(−)s ·


GRAD ηh(−)

o : Ah(−) (5)

where we have adopted element-numbering invariant definitions that are presented in [18].
As shown in [1,17], definitions for the weighting tensors δ(α)s in (4) arise naturally frommodeling the effects of fine scales

within Lagrange multiplier interface formulations:

τs =

τ(+)s + τ(−)s

−1
, δ(α)s = τs · τ(α)s (6)

where α takes the value +/− to designate the quantity on the corresponding side of the elemental interface. The stability
tensors τ

(α)
s are evaluated in terms of edge bubble functions modeling the fine scales within each elementΩ(α)

e :

τ(α)s = b(α)s,aveτ̃
(α)
s = [meas (γs)]−1


γs

b(α)s dA
2 

ω
(α)
s

GRAD b(α)s : Ah(α)
: GRAD b(α)s dV

−1

(7)
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Fig. 1. Element pairΩ(+)
e andΩ(−)

e sharing interface segment γs: (a) reference configuration; (b) current configuration.

where γs denotes the commonboundary segment between elementsΩ(+)
e andΩ(−)

e , andω(α)s ⊆ Ω
(α)
e is the sector of support

for the bubble b(α)s =
nsd

J=1 b
(α)
s E J . Herein, we take the bubble functions b(α)s to be higher order polynomials (m > k) that

vanish on the boundaries of the sector ω(α)s not in contact with the segment γs. Further elaboration on these definitions is
provided in [1,17].

We highlight three key features of the stabilization terms as derived in [1]:

1. When τ
(+)
s ≠ τ

(−)
s , the tensors δ(α)s from (6) induce aweighted average definition of the numerical flux in (4)–(5). Through

the explicit dependence on the sectorω(α)s ⊆ Ω
(α)
e , the edge bubble function b(α)s , and thematerial tensor Ah(α) according

to (7), the weighting tensors account for (i) element size, (ii) element shape, (iii) polynomial order, (iv) and material
properties. Improvements in the accuracy of computed results on cruder discretizations has been demonstrated by other
authors [17,19].

2. The effects of geometric andmaterial nonlinearity are incorporated through the dependence of Ah(α) on the deformation
φh(α). The evolution of the stability tensors derived from evolving φh(α) during quasi-static loading histories will be
exhibited in the numerical results of Section 4. Previous studies [1,10] have demonstrated enhanced stability under large
deformations by adapting the penalty parameter according to geometric and material nonlinearity.

3. The stability parameters contained in (6) and (7) are tensorial quantities, which is a unique feature of the present
approach that arises from the derivations in [1,17].

An illustrative example of the preceding definitions is presented in Fig. 1 for the case of two quadrilateral elements; while
the elements shown share an entire edge, generalizing the preceding definitions to partial element segments is easily ac-
complished [1,17]. Observe thatwhile the element boundaries initially coincide along γs ⊂ Γ̃I in the reference configuration,
the image of the boundaries in the deformed configuration can be distinct due to the independent approximations of φh in
Ω
(+)
e andΩ(−)

e .
To complete the discussion of the VMDG method, we reproduce from [1] the consistent linearization of (2):

K(ηh
o,1uh

; φh) =


Ω̃

GRAD ηh
o : Ah

: GRAD 1uh dV  
K0

+


Γ̃I


ηh
o


:

τs ·


1uh dA  

K1

−


Γ̃I


ηh
o


:

GRAD 1uh

: Ah dA  
K2

−


Γ̃I


GRAD ηh

o : Ah
:

1uh dA  

K3

−


Γ̃I


GRAD ηh

o : 4h
: GRAD 1uh

·

φh dA  

K4

(8)

where1uh is the incremental displacement field. Expression (8) leads to the tangent stiffness matrix to be employedwithin
the Newton–Raphson iterative procedure for solving the nonlinear weak form (2).

Remark. By employing (8) within the Newton–Raphson solution procedure, a quadratic rate of convergence of the out-of-
balance force vector has been observed [1].

The terms in (8) have also been labeledwith numbers corresponding to the ‘‘parent’’ terms in theweak form (2).Wewish
to call the reader’s attention to the additional term K4 that involves the sixth-order tensor of material moduli 4h, defined
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in [1,8] as: 4h
= ∂2Ph/∂F∂F . The appearance of this so-called unusual term is a consequence of the nonlinear dependence

of Ah on the deformation gradient F :

Dφ(α)


GRAD ηh
o : Ah

·

φh

·1uh(α)
=


GRAD ηh

o : Ah
· Dφ(α)


φh

·1uh(α)

+

GRAD ηh

o :

Dφ(α)


Ah

·1uh(α)
·

φh

=

GRAD ηh

o : Ah
·

1uh

+

GRAD ηh

o : 4h
: GRAD 1uh

·

φh (9)

where the definition of the variational (Gateaux) derivative can be found e.g. in [20].
We briefly focus on the structure of the unusual term K4 and its contribution to the overall global stiffness matrix. This

term contributes only to the block-diagonal of the interface element stiffness matrix and does not induce further coupling
betweenΩ(+)

e andΩ(−)
e , which can be seen by expanding (9):

GRAD ηh
o : 4h

: GRAD 1uh
= δ(+)s ·


GRAD ηh(+)

o : 4h(+)
: GRAD 1uh(+)

+ δ(−)s ·

GRAD ηh(−)

o : 4h(−)
: GRAD 1uh(−) . (10)

In contrast, the terms K2 and K3, which are analogous to standard DG terms [2,3,21], involve a product of the jump and
averaging operators, leading to cross terms between η

h(+)
o and1uh(−) as well as between η

h(−)
o and1uh(+). We also remark

that the K4 term is driven by the inter-element deformation residual

φh; recall that the continuum solution to (1) is such

that [[φ]] = 0 on Γ̃I . Thus, themagnitude of K4will be significantly reduced for problems inwhich the computed solution has
very small jumps


φh along element boundaries. Therefore, because of its block-diagonal structure and residual-driven

nature, the effect of the K4 term within the global stiffness matrix may be less significant compared to the other interface
stiffness terms K1 through K3.

Remark. For small strain DG methods, the penalty term K1 is positive definite and the flux terms K2 and K3 are negative
definite [2]. However, the unusual term is indefinite due to the general nature of the material tensor 4h as well as the
dependence on the sign of the deformation jump


φh. For example, given a fixed4h, the sign of K4 changes if the elements

Ω
(+)
e andΩ(−)

e are penetrating or separated in the deformed configuration. We do not closely investigate the impact of this
observation in the present work, but we remark that all the numerical results herein as well as in [1] are highly stable across
large strains and rotations.

Nonetheless, the evaluation of the unusual term K4 in (8) significantly increases the complexity of the VMDG method.
In principle, a closed-form expression for the sixth-order material tensor 4h, which we term as the curvature tensor, can
always be derived from a closed-form expression for the acoustic tensor Ah associated with a constitutive material model;
an example for a neo-Hookean material is contained in [1]. However, such a derivation can be quite involved for more
complex material models. In the case of von-Mises plasticity, the second variational derivative would be required for the
radial return algorithm and the associated nonlinear kinematic tensors. Additionally, the implementation of the K4 term
is somewhat non-standard and involves additional calculations at the element level, although a generic representation in
the form of shape function derivatives and constitutive matrices


BTDB


is possible by adopting the ideas presented in the

appendix of [20].
Therefore, the primary motivation for the present efforts is to devise algorithmic modifications to the VMDG method in

order to avoid evaluating the unusual term K4.While the original method contained in (2) and (8) produces accurate results
in a stable and robust fashion for hyperelastic problems [1], suchmodifications would streamline the implementation of the
method and also simplify the extension of method to generalized constitutive models. The various methods are discussed
in Section 3 and then assessed through numerical test cases in Section 4.

Remark. The linearized weak form (8) is symmetric in terms of ηh
o and 1uh, which can be verified by recalling the

symmetries of Ah and 4h for hyperelasticity. Maintaining symmetry will be an important consideration when evaluating
the proposed modifications to (2) and (8) in the following section.

Remark. The preceding developments have been presented in terms of kinematic and constitutive quantities associated
with the reference configuration. An entirely equivalent set of expressions can be written for the current or spatial
configuration, which may be more desirable from the standpoint of implementation. These expressions are contained in
the appendix of [1].

3. Algorithmic modifications to VMDGmethod

As discussed at the end of Section 2, the VMDG method as originally proposed in [1] contains a term in the consistent
tangent matrix involving the sixth-order curvature tensor 4h, which increases both the implementational effort and the
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Table 1
Summary of interface terms and mathematical properties of VMDG method family.

Name Residual Tangent Consistency Tangent symmetry
Variational Adjoint Algorithmic

VMDG R1 R2 R3 K1 K2 K3 K4 Yes Yes Yes Yes
VMDGs R1 R2 R3 K1 K2 K3 Yes Yes No Yes
IVMDG R1 R2 K1 K2 Yes No Yes No
IVMDGs R1 R2 K1 K2 K3 Yes No No Yes
RVMDG R1 R2 R̄o3 K1 K2 K̄o3 Yes No Yes No
RVMDGs R1 R2 R̄o3 K1 K2 K3 Yes No No Yes

computational cost of the method. Therefore, we propose a series of approximations to (2) and (8) that require less effort to
implement in existing codes, which are summarized in Table 1. For each algorithm, the labels R• and K• indicate the terms
from the residual vector and tangent stiffness matrix, respectively, that are retained from (2) and (8). The original proposed
method VMDG is listed first for comparison. Each member of this family of modified VMDG algorithms are described in
greater detail in the following sections.

A comprehensive comparative analysis is conducted in Section 4 whereby the computational economy, accuracy, and
robustness of eachmethod is assessed through carefully designed numerical benchmark problems. In particular, three types
of consistency will be quantitatively assessed: variational, adjoint, and algorithmic. By definition, variational consistency
implies that the exact continuum solution φ to (1) satisfies the Euler–Lagrange equations associated with the discrete
weak form, namely that substituting φ into the modified counterpart to (2) produces a zero residual for all weighting
functions ηh

o . Since variational consistency combined with stability are necessary and sufficient conditions for convergence
of discrete approximations in the context of linear PDEs [22], we require that all of the proposed modifications remain
variationally consistent. Adjoint or dual consistency means that the exact solution ηo of the dual problem associated with
the (consistently) linearized weak form posed at the deformation φ satisfies the counterpart to (8) for all incremental
displacements 1uh. This property has important implications in the proofs of optimal L2 convergence, a-posteriori error
estimation, and inverse problems; see [2,23–25] and references therein for a precise definition and further discussions
on these implications. Finally, a method possesses algorithmic consistency if the entire and un-altered incremental weak
form obtained from applying the variational derivative to the corresponding nonlinear weak form is used to evaluate the
stiffness matrix within the Newton–Raphson solution procedure. Loss of algorithmic consistency can significantly increase
the number of iterations required to reduce the norm of the out-of-balance force vector to a specified tolerance, particularly
due to the loss of asymptotically quadratic convergence rate for the Newton–Raphson algorithm [26,27].

Each of these consistency properties along with accuracy and computational costs will be key factors in determining the
validity of the proposed algorithmic modifications.

Remark. As indicated in Table 1, the VMDG method is the only method currently investigated (aside from the classical
continuous Galerkin method) that possesses all three types of consistency. These properties are verified numerically in
Section 4.

Remark. As will become obvious in the following sections, the weak forms of the VMDG (2), IVMDG (13), and RVMDG (16)
methods possess a similar form as existing approaches in the literature [3–5,8]. The distinguishing feature of the present
developments is the use of consistently derived expressions (6) for the penalty tensor and numerical flux terms according
to [1]. In certain aspects, the existing approaches may be viewed as subsets of the present proposed methods, obtained by
restricting the definition of the weighting tensors to δ(α)s =

1
2 I and the penalty tensor to τs = (ϵ/h) I with ϵ as a free

parameter. Therefore, the conclusions drawn in Section 4 concerning the family of VMDGmethods can provide insight into
the performance of these referenced methods as well.

3.1. VMDGs: neglecting 4h in the linearized form

Since the higher order material moduli 4h is the major cause for concern, an obvious approximation is to drop the
calculation of this term from (8)when evaluating the tangent stiffnessmatrix. The resultingmethod is referred to as VMDGs,
for which the residual vector and tangent matrix are obtained from the following (see Table 1 row 2):

R̃

ηh
o; φh

=


Ω̃

GRAD ηh
o : Ph dV  

R0

+


Γ̃I


ηh
o


:

τs ·


φh dA  

R1

−


Γ̃I


ηh
o


:

Ph dA  

R2

−


Γ̃I


GRAD ηh

o : Ah
:

φh dA  

R3

−


Ω̃

ηh
o · ρo f dV  

FΩ

−


Γ̃σ

ηh
o · T dA  
FΓ

= 0 (11)
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K̃(ηh
o,1uh

; φh) =


Ω̃

GRAD ηh
o : Ah

: GRAD 1uh dV  
K0

+


Γ̃I


ηh
o


:

τs ·


1uh dA  

K1

−


Γ̃I


ηh
o


:

GRAD 1uh

: Ah dA  
K2

−


Γ̃I


GRAD ηh

o : Ah
:

1uh dA  

K3

. (12)

The primary advantage of this approach is that (2) and (11) are identical, which implies that the discrete solutions obtained
from VMDG and VMDGs are identical. Most significantly, this equivalence implies that variational and adjoint consistency
along with the accuracy of the VMDGmethod are inherited by VMDGs. Additionally, from (12) we observe that the stiffness
matrix remains symmetric.

However, disappearance of the K4 term from (12) implies that the VMDGs method is not algorithmically consistent,
which may cause a drop in the observed convergence rate in the Newton–Raphson scheme from second to first order. The
number of extra iterations required likely depends heavily upon the nonlinearity of the constitutive model, the domain
geometry, as well as the loading and boundary conditions. We also recall from Section 2 that the K4 term is driven by
the inter-element deformation residual


φh. Therefore, when the computed solution has very small inter-element jumps

φh, the effect of this term on the Newton–Raphson convergence rate should also be insignificant.

Remark. As an alternative to dropping the K4 term, the sixth-order tensor 4h could be evaluated through numerical
differentiation of the reference material moduli Ch in a manner exactly analogous to the technique presented by Miehe [28]
for computing the material moduli from the second PK-stress tensor. However, this approach would require evaluating
the stress and material moduli six additional times for every integration point for every interface segment in the mesh.
Therefore, the user must weigh the trade-offs of increased element-level calculation time versus increasing the number
of global Newton–Raphson iterations. The numerical results in Section 4 can serve as a reference for making an informed
decision.

3.2. IVMDG and IVMDGs: incomplete interior penalty method

As a more substantial modification, a formulation analogous to the incomplete interior penalty Galerkin (IIPG) method
[6,29] is obtained by dropping the symmetrizing term R3 altogether from the residual vector (2). The resulting method,
abbreviated IVMDG, is the computationally simplest method considered in the present study (see Table 1 row 3):

R̂

ηh
o; φh

=


Ω̃

GRAD ηh
o : Ph dV  

R0

+


Γ̃I


ηh
o


:
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R1

−


Γ̃I


ηh
o


:

Ph dA  

R2

−


Ω̃

ηh
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K̂(ηh
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:
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:
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: Ah dA  
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. (14)

Similar approaches have been adopted by other authors for developing finite strain DG methods for hyperelasticity [3]
and plasticity [4]; note that these approaches employ the standard average definition for the numerical flux and a scalar
penalty parameter in contrast to (4)–(6). The clear advantage of this algorithmic modification is the simplicity as well as the
avoidance of specifying the ‘‘stress’’ of the weighting function. Except for a few references [1,8], in the context of nonlinear
solid mechanics the symmetrizing term R3 has been avoided either through adopting a lifting operator approach [10,30] or
by neglecting it [3,4,31]. Additionally, within the context of the linear PDEs, the IIPG method has been shown to possess
enhanced stability properties [21,31] in comparison to the symmetric interior penalty Galerkin (SIPG) method, which
corresponds to the VMDGmethod. Similar behavior was proven [32] for the related nonsymmetric interior penalty Galerkin
(NIPG) method, in which the sign of the R3 term is switched to positive.

However, two major drawbacks arise as a consequence of dropping the symmetrizing term. The first is that the IVMDG
method loses the property of adjoint consistency, which has been linked by other researchers to degraded solution accuracy
and convergence in the L2 norm [6,23,25]. This consequencewill be investigated for the first time in the context of nonlinear
solid mechanics in Section 4.2. As previously mentioned, the loss of L2 optimality can be detrimental in the context of



T.J. Truster et al. / Computers and Mathematics with Applications 70 (2015) 1266–1289 1273

inverse problems and a-posteriori error estimation of quantities of interest [23,24]. The secondmajor consequence is that the
consistent tangent matrix obtained from (14) is nonsymmetric, which increases the memory requirements for the method
as well as necessitating the use of nonsymmetric direct or indirect solvers. Also, many solid mechanics finite element codes
contain data-structures that are hard-coded for symmetric matrices; therefore, additional effort would be required to re-
code these data-structures cost in order to accommodate the IVMDGmethod. However, this latter effect is less of a concern
when solving problems involving certain plasticity or friction models which engender a nonsymmetric tangent matrix by
default [3,4].

To address this secondary concern of the nonsymmetric stiffness matrix in the IVMDG method, we also propose adding
back the symmetrizing term K3 to the tangent matrix in (14), resulting in the IVMDGs method (see Table 1 row 4):

K̂s(η
h
o,1uh

; φh) = K̃(ηh
o,1uh

; φh). (15)

This modification requires negligible additional calculations because K3 is the transpose of the K2 stiffness term, which
is already included within the IVMDG method. Also, symmetry is restored to the tangent stiffness matrix, which can be
confirmed by examining the form of K̃ in (12). However, the price of this modification is the trade-off of symmetry for
algorithmic consistency. Since the algorithmic tangent (12) does not correspond with the consistent tangent (14), the
IVMDGs method results in a modified-Newton approach. Notice that K3 involves the product of GRAD η

h(α)
o and 1uh(α)

from both elements Ω(+)
e and Ω(−)

e across an interface, implying that the structure of K̃ and K̂ are significantly different.
The impact of adopting this modified-Newton approach on the number of iterations required to reduce the norm of the
out-of-balance force vector to a specified tolerance during a sequence of large deformation load steps will be investigated
in Section 4.

Remark. Other authors have reported in [21] that smaller values of the penalty parameter are permissible within the IIPG
method compared to the SIPG method while still yielding stable numerical results. Such claims could also be extended by
analogy to the methods IVMDG and VMDG studied herein. However, we will employ the same values for τs and δ(α)s across
all the methods in Table 1 in order to retain a uniform standard across the numerical benchmark problems.

3.3. RVMDG, RVMDGs: reference configuration acoustic tensor Āh
o

The final method we consider involves a compromise between the VMDG and IVMDG methods whereby an
approximation is applied to the acoustic tensor Ah in the R3 term. Rather than updating the tensor Ah at each load step
and iteration, a substitute tensor Āh

o is evaluated once in the reference configuration F = 1 and then kept frozen during the
simulation process. This idea was previously proposed by Nguyen et al. [5] in the context of a DG approach for weakly
enforcing the continuity requirements of a second-order homogenization scheme. By freezing the acoustic tensor, the
numerical flux in R3 no longer depends on the deformation gradient, and the unusual term vanishes from the linearization
in (9). The resulting algorithmic modification is termed as the reference Discontinuous Galerkin (RVMDG) method and can
be expressed as follows:
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This method retains more closely the appearance of the VMDGs method from Section 3.1 while also removing the effect
of the unusual term K4. In particular, the symmetrizing terms R3 and K3 have been replaced with counterparts R̄o3 and
K̄o3 evaluated in terms of the reference material moduli Āh

o . Thus, the element-level calculations and the implementational
cost of the RVMDG method are reduced compared to the VMDG method. However, like the IVMDG method, the consistent
tangent matrix (17) obtained from linearizing (16) is again nonsymmetric. The numerical results from Section 4.2 also
indicate that the RVMDG method does not possess adjoint consistency. Therefore, the drawbacks of additional memory
burden and the loss of L2 optimality attributed to the IVMDGmethod also apply in the present case. Another possible concern
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with (16) centers upon the fixed material tensor Āh
o . In the presence of large deformations, this reference configuration

approximation may reduce the accuracy of the physical response that is computed from (16). One possible alternative
would be to replace Āh

o with the acoustic tensor Ã
h
n evaluated in terms of the deformation field φh

n obtained at the previous
converged load step. While this adjustment would make (16) more closely aligned with the current deformed state, the use
of Ã

h
n engenders a step size dependence on the computed solution history, which may be undesirable. Also, the issues of

symmetry and adjoint consistency are not repaired through this modification. Finally, employing the tensor Ah evaluated
at the current iteration of the Newton–Raphson method amounts to the VMDGs method, which is considered within the
present investigations.

Similar to the symmetrized counterpart to the IVMDG method proposed in Section 3.2, the term K̄o3 in (17) may be
replaced with K3 to arrive at a symmetrized method termed as the RVMDGs method:

K̄s(η
h
o,1uh

; φh) = K̃(ηh
o,1uh

; φh). (18)

As before, the term K3 can be obtained simply as the transpose of K2, thereby minimizing the additional element-level
calculations compared to (17). In fact, (18) is slightly less expensive to evaluate than (17) by avoiding the computation of
K̄o3. However, the possible deficiencies regarding the introduction of amodified tangentmatrix in the context of the IVMDGs
method apply to the present case as well, namely the reduced convergence rate of the modified-Newton algorithm.

4. Numerical results

In this section, the attributes of each modified DG method proposed in Table 1 of Section 3 are quantitatively assessed
through a series of four carefully designed benchmark problems of increasing complexity. These problems represent a
range of geometric, deformational, and material features often encountered in engineering applications. The properties
to be assessed include: (i) variational consistency; (ii) adjoint consistency; (iii) algorithmic consistency; (iv) stability and
robustness; (v) accuracy; (vi) element-level calculation cost; and (vii) domain-level iteration cost (related to algorithmic
consistency). Both the implementational cost and the costs related to symmetry of the tangent stiffness matrix have been
treated for each method. Emphasis is placed upon examples with closed-form solutions to facilitate exact quantification of
accuracy. In particular, this enables the mathematical properties of the modified formulations in Section 3 to be assessed in
a similar manner as the original formulation according to [1].

For all problems except for the anisotropic tension problem in Section 4.4, the material model employed is an isotropic
neo-Hookean model of the following form:

Ψ (F) =
1
2
µ


tr


F TF


− 3


− µ ln J +

1
2
λ (J − 1)2 (19)

whereµ and λ are the Lamé parameters and J = det F . Expressions for the material tensors P , A, and 4 associated with this
model are presented in [1]. All two-dimensional problems are solved assuming plane strain conditions.

All computations were performed using a serial finite element code. The convergence criterion for the Newton–Raphson
solver was specified as ∥Ri∥/∥Ro∥ < 10−12, where ∥Ri∥ and ∥Ro∥ are the l2 (Euclidean) norms of the out-of-balance force
vector at the current and initial iteration, respectively. This tight relative tolerance was selected in order to sufficiently
minimize algebraic error in the computed solutions and also to provide a uniform metric for assessing the six DG methods.
Additionally, direct factorization of the stiffness matrix was employed in the Newton–Raphson algorithm for all cases.
Numerical integration of the element interior terms R0 and K0 was performed using Gauss quadrature of sufficient order to
fully integrate the polynomial shape functions of the corresponding element.

The various bubble functions representing the fine-scale models for evaluating the stability tensors τ
(α)
s are listed in

Tables 2 and 3. The element types are designated first by shape according to the letter and second by number of nodes. Note
that the bubble functions for wedges are applied only for the nonconforming interface segments in Section 4.3.2. The fine-
scale bubble functions have been designed to be sufficiently higher-order compared to the coarse-scale functional space
(either linear or quadratic) and to satisfy the requisite property that they vanish along all boundaries of the interface sector
ω
(α)
s except along the interface segment γs [17]. We have selected these particular fine-scale bubbles so that the computed

values of the stability tensors τ
(α)
s remain close to those obtained using so-called residual-free bubbles [33]. While residual-

free bubbles represent a higher-fidelity fine-scale modeling procedure, polynomial bubble functions greatly simplify the
evaluation of the stability tensors τ

(α)
s in the computational setting. Additionally, we adopt the truncated sector approach

proposed in [17] and augmented in [1] for determining the region of supportω(α)s ⊆ Ω
(α)
e for the fine-scale bubble functions.

Theparametric coordinates (ξ , η, ζ ) listed in the tables are referred to the local coordinate systemdefinedover the truncated
sector, which coincides with the parent element coordinate system only when ω(α)s = Ω

(α)
e . The reader is referred to [1,17]

for a detailed explanation of the fully automatic procedure for determining ω(α)s .
Standard Gauss quadrature rules are employed for computing all interface-related integrals; the number of points used

in each rule is listed in Tables 2 and 3. The third column refers to boundary or segment integrals, e.g. those in (2), while
the fourth column refers to the sector integral contained in expression (7) for the stability tensors τ

(α)
s . Also, the evolution
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Table 2
Edge bubble functions employed for stability tensors τ

(α)
s , two dimensions.

Element Bubble function Edge rule Area rule

T3 4ξ (1 − ξ − η) 3 4
Q4 1

2


1 − ξ 2


(1 − η) 3 9

T6 16ξ (1 − ξ − η) (1 − ξ) (ξ + η) 3 13
Q9 1

4


1 − ξ 4


(1 − η)2 (2 + η) 3 16

Table 3
Face bubble functions employed for stability tensors τ

(α)
s , three dimensions.

Element Bubble function Face rule Volume rule

T4 27ξη (1 − ξ − η − ζ ) 3 4
W6 27

2 ξη (1 − ξ − η) (1 − ζ ) 3 6
B8 1

2


1 − ξ 2

 
1 − η2


(1 − ζ ) 4 8

T10
 81
80

3 
1 − (2ξ − 1)4

 
1 − (2η − 1)4

 
1 − (2 (1 − ξ − η − ζ )− 1)4


7 24

B27 1
2


1 − ξ 4

 
1 − η4


(1 − ζ )2 (2 + ζ ) 9 27

Fig. 2. Discontinuous Galerkin meshes for tensile test: (a) four Q4 elements; (b) one Q4 element oriented at 45°.

of the stability tensors τ
(α)
s during the Newton–Raphson iterations can degrade the observed convergence rate since their

contributions to the consistent linearization are ignored. Therefore, as proposed in [1], the values of τ
(α)
s are updated only

during the first three iterations and subsequently kept frozen during the remaining iterations of a load step.

4.1. Tensile patch test

The first problem consists of a square domain that is loaded by a tensile traction on the right face, as shown in Fig. 2.
Two meshes are considered: one containing four bilinear quadrilateral elements and one containing a single quadrilateral
surrounded by four triangular elements. In both cases, DG treatment is applied between each of the element interfaces,
resulting in a discontinuous discrete approximation. The material properties are E = 100 and ν = 0.25 and the traction is
T = 10. Both the VMDG and VMDGs methods are applied to solve this problem in one load step. Our objective for studying
this problem is to verify variational consistency, demonstrate the residual-driven nature of the K4 term involving 4h, and
investigate the evolution of τ(α)s from the reference to current configurations.

The computed displacement of the node in the upper-right corner is u = (0.19874,−0.067363) for the first mesh,
which agrees exactly with the analytical solution that can be found through recourse to the material model (19). Also, the
computed overlaps or gaps between the elements in both meshes are zero up to machine precision. These results indicate
the variational consistency of the VMDG method.

We report the value of the l2 norm of the residual vector for each iteration of the nonlinear solution procedure in
Tables 4 and 5 for both the VMDG and VMDGs method. Recall that in the VMDGs method, the K4 term involving both
4h and the inter-element jump


φh is dropped. However, the linear finite element shape functions are capable of exactly

representing a state of uniform tension, which happens to be the state of the computed domain during each iteration of the
Newton–Raphson procedure. Therefore, the K4 identically vanishes because


φh

= 0, and thus the VMDG and VMDGs
iteration histories are indistinguishable. These results confirm that the effect of the K4 term is negligible for problems in
φh

≈ 0. Additionally, quadratic convergence of the residual vector is evident in both Tables 4 and 5.
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Table 4
Evolution of residual l2 norm, four Q4 element mesh.

Iteration number Absolute residual norm Relative residual norm
VMDG method VMDGs method VMDG method VMDGs method

1 5.2042771 × 10−1 5.2042771 × 10−1 1.0 × 100 1.0 × 100

2 1.7771327 × 10−3 1.7771327 × 10−3 3.4035332 × 10−3 3.4035332 × 10−3

3 1.5476954 × 10−8 1.5476954 × 10−8 2.9738341 × 10−8 2.9738341 × 10−8

4 1.6178823 × 10−14 1.6105750 × 10−14 3.1086954 × 10−14 3.0946547 × 10−14

Table 5
Evolution of residual l2 norm, single Q4 element mesh.

Iteration number Absolute residual norm Relative residual norm
VMDG method VMDGs method VMDG method VMDGs method

1 3.6799796 × 10−1 3.6799796 × 10−1 1.0 × 100 1.0 × 100

2 1.2566226 × 10−3 1.2566226 × 10−3 3.4147635 × 10−3 3.4147635 × 10−3

3 1.0943854 × 10−8 1.0943853 × 10−8 2.9738899 × 10−8 2.9738899 × 10−8

4 2.4372275 × 10−14 1.8757708 × 10−14 6.6229375 × 10−14 5.0972315 × 10−14

Table 6
Cartesian components of stability tensors τ

(+)
s , reference and current configurations.

Edge Reference Current

A τ
(+)
s =


3.2895 0.0000
0.0000 1.8939


× 10−3 τ

(+)
s =


3.6315 0.0000
0.0000 1.8549


× 10−3

B τ
(+)
s =


1.8939 0.0000
0.0000 3.2895


× 10−3 τ

(+)
s =


2.1690 0.0000
0.0000 3.3468


× 10−3

C τ
(+)
s =


2.5917 0.6978
0.6978 2.5917


× 10−3 τ

(+)
s =


2.9276 0.7381
0.7381 2.9276


× 10−3

Table 7
Normal and tangential components of τ(+)s .

Edge Configuration Normal Tangential Cross
N (+)

· τ
(+)
s · N (+) T (+) · τ

(+)
s · T (+) N (+)

·τ
(+)
s ·T (+)

A Reference 3.2895 × 10−3 1.8939 × 10−3 0.0000
A Current 3.6315 × 10−3 1.8549 × 10−3 0.0000
B Reference 3.2895 × 10−3 1.8939 × 10−3 0.0000
B Current 3.3468 × 10−3 2.1690 × 10−3 0.0000
C Reference 3.2895 × 10−3 1.8939 × 10−3 0.0000
C Current 3.4595 × 10−3 2.0411 × 10−3 2.7053 × 10−4

This problem also provides a setting to investigate the effect of element orientation on the computed stability tensors
τ
(α)
s . The Cartesian components of τ(+)s for elementΩ1 computed along edges A and B in the four quadrilateral mesh along

with edge C of elementΩ5 in the single quadrilateral mesh are provided in Table 6. Observe that while bothΩ1 andΩ5 are
square elements with unit dimensions, the orientation of the element affects the magnitude of the computed Cartesian
components. To clarify this point, in Table 7 we also provide the normal component N (+)

· τ
(+)
s · N (+) and tangential

component T (+) · τ(+)s · T (+) of the tensors, in which N (+) denotes the outward unit normal to the respective element edge
and T (+) denotes the tangential unit vector which is parallel to the edge. In the reference configuration, we clearly see that
all three interface segments have identical components. Also, the cross terms values N (+)

· τ
(+)
s · T (+) are zero, as expected

from the analytical expressions. However, the normal and tangential components are distinct. Therefore, while the interface
segment orientation affects the Cartesian coordinates of the stability tensors and by extension the penalty parameter τs, the
orientation does not impact the normal and tangential components. Finally, the values of the stability tensors clearly evolve
from the reference to the current configuration due to the large deformation of the elements (20% elongation). Note that the
deformed shape of elementΩ5 is a rhombus while elementΩ1 is a rectangle, which accounts for the appearance of a cross
term for edge C in Table 7. We remark that the current configuration values in Tables 6 and 7 are computed from the final
deformed state, not the second iteration as alluded to in the beginning of Section 4.
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Fig. 3. Computed bending stresses σθθ on deformed configuration: (a) curvature ψ = 22.5°; (b) curvature ψ = 180°.

4.2. Pure bending of rectangular beam

The domain for this problem consists of an 8 unit long by 1 unit deep rectangular beammade of an elastic material with
constants E = 100 and ν = 0.25. The beam is bent from a straight, vertical configuration into a semi-circular shape in
eight equal load steps with increments to the angle of curvature1ψ = 22.5°. Contours of the computed bending stress σθθ
obtained from the VMDG method on a 4 × 32 linear quadrilateral element mesh are depicted in Fig. 3, where the origin of
the cylindrical coordinate system is placed at the analytical center point for the subtended arc of the beam. The deformed
configuration and the stress contours clearly illustrate the bending nature of this problem, which involves large strains and
rotations of the elements. The exact solution for this problem is summarized in [1] and the references therein; the body
force and surface tractions from this exact solution are applied as external loads in order to drive the computational model.
Symmetry boundary conditions are applied to the lower edge of the beam, and the bottom point on the beam centerline is
fixed in the horizontal direction to prevent rigid body motion.

We conduct a convergence rate study for this problem in order to evaluate the variational consistency, adjoint
consistency, and accuracy properties of the proposed algorithmic modifications. All four element types are considered:
triangles and quadrilaterals, linear and quadratic. The results from the VMDG, IVMDG, and RVMDG methods are
benchmarked against the continuous Galerkin (CG) method using the same number of elements on uniform discretizations
of the beam. The coarsest CG mesh for each element type contains 51 nodes (e.g. 2 × 16 linear quadrilateral elements), and
uniform bisection is applied to obtain five levels of mesh refinement yielding meshes containing 33,345 nodes (64 × 512
elements). Diagonals for triangular meshes are oriented upper-left to lower-right. Each DG mesh is then formed directly
from the skeleton of the corresponding CG mesh. However, the number of nodes for the DG meshes is equal to the number
of elements times the number of nodes per element, which always exceeds the amount of the corresponding CG mesh. We
mention again that the relative tolerance for the Newton–Raphsonmethod is prescribed as ∥Ri∥l2/∥Ro∥l2 < 10−12 to isolate
discretization error from algebraic (solver) error.

The error norms between the displacement field of the exact and computed solution are evaluated at the load level
ψ = 22.5° so that the results quickly reach the asymptotic convergence rates. Even so, from Fig. 3(a), the deformations are
large enough such that elements at the top of the beam have moved horizontally by one entire edge length with respect
to the bottom of the beam. In Fig. 4, the L2 displacement error norms are recorded separately for each method grouped
according to element type. We first focus on the convergence rates and then comment on accuracy. For linear elements, all
methods converge at the optimal rate of 2.0 from the general theory of finite elements. However, we highlight in Fig. 4(c) and
(d) that both the Incomplete DG and Reference DG methods exhibit suboptimal convergence rates for quadratic elements
while the VMDG and CG methods attain the optimal rate of 3.0. This result clearly indicates that the IVMDG and RVMDG
methods do not possess adjoint consistency. The dichotomy of the response fromodd and even order element types has been
observed by other authors in the context of linear PDEs and uniform meshes [6,25]. The present results are the first time
this phenomenon has been presented for nonlinear solid mechanics. While the IVMDG and RVMDGmethods still converge
in the L2 norm, the suboptimal rate has implications for inverse problems and error estimation [23] that the computational
modeler should be aware of when selecting these methods.

For all element types in Fig. 4, we observe that the VariationalMultiscale DGmethod is slightlymore accurate than the CG
method for the samenumber of elements, indicating that the element jumps increase the flexibility of the discretemodel and
its ability to represent the exact solution. Also, the coarsest mesh from the IVMDGmethod also possesses the same accuracy
as the other methods for all element types for this problem; recall that the IVMDGmethod is less expensive than the VMDG
method excluding the effect of the nonsymmetric stiffness matrix. However, the accuracy of the RVMDGmethod in Fig. 4(c)
and (d) is one order magnitude lower compared to the other methods. Indeed, the results on the finest RVMDGmesh for T6
and Q9 elements is only slightly better than the solution on the coarsest mesh for the other three methods. Therefore, while
all methods provide comparable accuracy for linear elements, the viability of the RVMDG method is significantly reduced
by the poor quadratic element results.

Corresponding plots for theH1 seminorm of displacement error are provided in Fig. 5. All of themethods exhibit uniform
convergence at the optimal rates for each element type, namely rates near 1.0 for linear elements and 2.0 for quadratic
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Fig. 4. Convergence rates of L2 displacement error for CGandDGmethods: (a) linear triangles; (b) linear quadrilaterals; (c) quadratic triangles; (d) quadratic
quadrilaterals.

elements. These trends indicate that all the methods are variationally consistent. Similar to Fig. 4, the accuracy produced by
all the methods is nearly equal except for the RVMDG method for quadratic elements.

Furthermore, for each DG method, we determined the maximum norm of the inter-element jumps

φh across all

integration points in a given mesh and report these values in Fig. 6. These quantities provide a measure of the amount
of discontinuity introduced by the DG approximations. Note that the deformation field φ is O (1) while the jumps are 4–5
magnitudes lower. Clearly, the jumps along inter-element boundaries are well controlled and converge toward zero upon
mesh refinement.

As a final result for this problem, we provide further numerical proof that the stability tensors τ
(α)
s evolve with the

deformation. In Fig. 7, the norm of the penalty parameter
√

τs : τs at two load levels is plotted along each inter-element
interface of the 4 × 32 linear quadrilateral mesh. The color of the edge indicates the value of the norm according to
the associated legend. Comparing the trends in Fig. 7 with Fig. 3, we observe that the penalty tensor is larger in regions
experiencing tensile stress at the outer radius and smaller in regions experiencing compressive stress at the inner radius,
highlighting the effect of geometric stiffness on the stability tensors. We remark that the radial symmetry of the colors in
Fig. 7(a) and (b) is a natural result from the computation of the stability tensors through (7) during the solution process; it is
not a-priori injected into the system. Finally, the norm of the penalty tensor increases by about 20% in the tensile regionwith
respect to the mean value of 4900; an equal but opposite change is evident in the compressive region near the inner radius.

Remark. Additional investigations of the evolution of the stability tensors τ
(α)
s are contained in Section 4.4 herein as well

as in [1]. In this reference, the norm of the tensors was observed to remain bounded in the presence of indefinite or near-
buckling material response.

4.3. Torsion of prismatic rod

4.3.1. Homogeneous rod
Consider a rod that is 4 units long and has a 1 unit square cross-section; the origin of coordinates is taken to be at the

center of the bottom face. A torsional deformation is applied to the rod, expressed as follows:

φ =

X cos θ − Y sin θ X sin θ + Y cos θ Z

T
, θ (Z) =

2πZψ
L

(20)
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Fig. 5. Convergence rates of H1 displacement error for CG and DG methods: (a) linear triangles; (b) linear quadrilaterals; (c) quadratic triangles;
(d) quadratic quadrilaterals.

Table 8
Condition number of global tangent matrix for two load levels.

Twist CG VMDG VMDGs IVMDG IVMDGs RVMDG RVMDGs

ψ = 0.0 1.06 × 104 6.99 × 104 6.99 × 104 7.03 × 104 6.99 × 104 6.99 × 104 6.99 × 104

ψ = 2.0 2.50 × 103 1.86 × 104 1.76 × 104 2.00 × 104 2.01 × 104 1.93 × 104 1.92 × 104

where L = 4 and ψ is the number of complete revolutions of the top face with respect to the bottom face. The rod is made
of a neo-Hookean material with properties E = 100 and ν = 0.25. For the following tests, the bottom face of the rod is
fixed and the analytical tractions and body force derived from the deformation φ and the constitutive law are applied to the
other faces and to the domain; expressions for these forces are provided in [1]. Contour plots of the exact torsional stress
field σzθ on the deformed rod are depicted in Fig. 8 for revolutionsψ = 0.25 andψ = 1.0. The solution possesses a radially
increasing shear stress analogous to the classical strength of materials solution for a circular rod under end torques. As is
evident from the deformed states, this problem incorporates both significant rotational and straining effects.

For this numerical test, we quantitatively assess the following algorithmic properties of the proposedDGmethods: global
robustness and stability, algorithmic consistency (number of iterations), and computational cost at the element level. Each
of the six methods discussed in Section 3 are investigated: VMDG, VMDGs, IVMDG, IVMDGs, RVMDG, and RVMDGs. A fixed,
coarse mesh of 2× 2× 8 trilinear hexahedral elements is employed for each simulation. As done previously, the uniform CG
mesh is taken as the skeleton for defining the DGmeshes, and a fully discontinuous approximation is appliedwith continuity
weakly enforced between each element pair.

Before investigating the computational performance of the methods, we briefly highlight the condition number of the
tangent stiffness matrix from each algorithm as an indicator of the relative conditioning of the formulations. These values
are presented in Table 8 for the undeformed stateψ = 0.0 as well as for the last iteration of the Newton–Raphson algorithm
at twist level ψ = 2.0 with load increment 1ψ = 0.125. In all cases, the condition numbers for the DG methods are less
than one order greater than for the CG method, and the condition numbers are found to decrease as the twist is increased.
Thus, all of the algorithms can be considered as well-conditioned.

We begin by comparing the computational time required to evaluate the element force vector and stiffness matrices
emanating from (2) and (8) along with the corresponding expressions from the modified algorithms. The actual
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Fig. 6. Convergence rates of inter-element jumps

φh for DGmethods: (a) linear triangles; (b) linear quadrilaterals; (c) quadratic triangles; (d) quadratic

quadrilaterals.

Fig. 7. Penalty tensor norm
√

τs : τs from VMDGmethod along element interfaces: (a) curvatureψ = 22.5°; (b) curvatureψ = 180°. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

wall-time for evaluating these quantities depends on a number of factors: programming language, level of optimization
of the matrix–vector product, CPU and machine properties, etc. Therefore, we aim to provide a relative comparison of the
effort required to evaluate the interface terms R1–R3 and K1–K4 between each of the methods. To set a common metric
for timing, each of the required matrices of shape functions and derivatives, Ph, Ah, τs, and δ(α)s are precomputed at an
integration point along a representative inter-element interface in the hexahedral mesh. For each method, these quantities
are employed to repeatedly compute the associated residual vector and tangent matrix terms in Table 1, each for a total
of 10,000 times. The total elapsed times are recorded in Fig. 9, normalized with respect to the baseline VMDG method. We
observe that all of the other proposedDGmethods require only 30%–40% of calculation time compared to the VMDGmethod.
These savings are realized by avoiding the evaluation of the sixth-order tensor4h and the associatedmatrix multiplications
in the K4 term. Also, the IVMDG method does not involve the evaluation of the R3 and K3 terms and therefore is the least
expensive method at the element level. These cost savings at the element level translate to faster computation of the global
force vector and stiffness matrix. Additionally, we emphasize that substantial implementational effort is saved by avoiding
the derivation of 4h from Ah employing tensorial calculus and continuummechanics principles, as remarked in Section 3.
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Fig. 8. Exact torsional stress σzθ on deformed configuration: (a) twist ψ = 0.25; (b) twist ψ = 1.0.

Fig. 9. Normalized wall-time to evaluate element force vector and stiffness matrix at an integration point.

Fig. 10. Maximum twist factor ψ achieved by each method.

Next, a series of quasi-static simulations by eachmethod are performed for the torsion problemwhereby the twist factor
ψ is increased from 0 in increments of1ψ = 0.125. Recall that a uniform 2 × 2× 8 trilinear element mesh is employed for
each case. The maximum twist factor achieved prior to divergence of the Newton–Raphson algorithm is shown in Fig. 10.
All of the methods, including the classical CG method, are able to reach the valueψ = 2.5, which represents two and a half
complete revolutions of the top face of the bar with respect to the bottom face. Thus, each of the methods are equally robust
in terms of the level of deformation of the mesh sustained prior to divergence. In particular, we highlight that the use of the
algorithmically inconsistent tangent matrices for the VMDGs, IVMDGs, and RVMDGsmethods did not significantly limit the
extent of deformation achieved.

Another key factor impacting the relative costs of the modified DG methods is the number of iterations required to
reach a specified convergence tolerance during a load step of the nonlinear solution procedure. The number of iterations
translates directly to the number of factorizations of the global stiffness matrix, an operation that scales as O


n3


for

direct solvers. Therefore, for large meshes, minimizing the number of Newton–Raphson iterations is crucial to maintain
the competitiveness of overall numerical method. As an overview of the performance of the various proposed methods, in
Fig. 11 we report the number of iterations required at three different load steps to reach a common convergence criterion of
∥R∥ < 10−12. Each of the algorithmically consistent methods listed in Table 1, namely VMDG, IVMDG, and RVMDG, exhibit
a uniform level of five iterations for each load step of the simulation. This performance indicates that they achieve quadratic
rates of convergence analogous to the CG method.

In contrast, the symmetrized methods IVMDGs and RVMDGs required significantly more iterations to reach the same
tolerance, approximately five times the other methods as seen in Fig. 11. Also, the behavior was less uniform across the
load levels. Recall that these methods were designed to offset the extra memory and linear solver costs associated with
the nonsymmetric consistent tangent matrices of the IVMDG and RVMDG methods. However, the poor performance of the
nonlinear solution algorithm for the IVMDGs and RVMDGsmethods indicates that the inclusion of the K3 term represents a
significant perturbation to the consistent tangent matrix. The degraded convergence rate directly results in a substantially
greater number of global linear equation solves, which is an added expense whether a direct or indirect solver is employed.
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Fig. 11. Number of Newton–Raphson iterations for each method at load levels ψ = 0.375, ψ = 1.0, and ψ = 2.0.

Thus, the IVMDGs and RVMDGs methods are not economical alternatives when fully discontinuous approximations are
employed.

The results for theVMDGsmethod represent a compromise between the quadratic convergence rate of theVMDGmethod
and the suboptimal rate of the IVMDGs method. As evident in Fig. 11, only about 3–10 extra iterations are needed to reach
the same converged solution as the VMDG method. Recall that the K4 term, which is neglected in the VMDGs method, is
proportional to the inter-element jump


φh and was determined to have a comparatively minor effect on the stiffness

matrix in Section 4.1. Therefore, this method provides a reasonable tradeoff of paying for a few extra iterations while
saving on the effort to evaluate the 4h tensor and also retaining the other mathematical properties of the VMDG method
demonstrated in Section 4.2.

Remark. The total run-time of a load step for each algorithm is a composite of the local element level calculations and
number of global iterations as presented in Fig. 9 and Fig. 11, respectively. The actual wall time depends heavily upon
the actual hardware and software platform and therefore is not reported. For example, on serial machines and small scale
applications, the evaluation and assembly of the stiffness matrix may consume more time than the global factorization.
In contrast, for large problems conducted on parallel computing architectures, the number of direct or indirect solves of
the stiffness matrix is the primary computational cost. For the latter case, we point the reader to the remark at the end of
Section 3.1 concerning thenumerical evaluation of4h. Such an approachwould almost eliminate the extraNewton–Raphson
iterations by restoring algorithmic consistency while avoiding the burden of implementing the sixth-order moduli tensor.

4.3.2. Bi-material rod
Next, we perform a secondary investigation of algorithmic consistency on a 4-unit long rod consisting of two sections

placed end-to-end with distinct material moduli, E = 400 in the upper half and E = 100 in the lower half. The performance
of the DG method for materials with disparate moduli is relevant to the modeling of interfacial response of fibrous com-
posites [34]. As shown in [1], an exact solution for the composite rod can be manufactured by carefully appending the two
solutions for the component sections through a rigid body rotation. Contour plots of the ux displacement component on the
deformed configuration at the load levels ψ = 0.25 and ψ = 1.25 are provided in Fig. 12, where the reduced twisting of
the top section indicates the material mismatch. Here,ψ now refers to the number of revolutions of the mid-plane with re-
spect to the rod’s bottom face. Additionally, the superimposed mesh lines indicate that the discretization employed for this
problem is intentionally nonconforming, where we have introduced bias in the edge spacing which is opposite in the upper
and lower sections of the rod. The resulting discretization of thematerial interface is shown in Fig. 13 alongwith contours of
the interface jump


φh and magnitude of numerical flux vector at the load levelψ = 0.375. The gray lines and black lines

represent edges from the faces of elements derived from the lower section and upper section of the rod, respectively. This
nonconforming mesh necessitates special treatment of the interface between the materials; thus, we apply the proposed
DGmethods locally at this interface while employing continuous approximations with trilinear hexahedral elements in the
interior of the rod sections. The highly disparate size of the interface sectors (varying from 75% to less than 1% of a given
element face) along with the differing material moduli creates a significant challenge for the numerical method. Nonethe-
less, the consistently derived weighted numerical flux and stability tensors within the DGmethod as presented in Section 2
yield accurate and stable results for this problem, as seen in Fig. 13(a) and (b). We remark that the total numerical flux
λh

=

Ph

+τs

φh is slightly over-predicted within the very small interface segments due to the somewhat larger values

of the penalty tensor τs computed in those regions compared to the larger interface segments. The difficulty of evaluating
the interface stability parameters inside disparate-sized segments has also been a significant issue for embedded interface
methods [19].

For this bi-material problem with localized DG treatment, we repeat the investigations from Section 4.3.1. The applied
torsional tractions and body forces are increased through increments of 1ψ = 0.0625 to the loading parameter, and the
maximum twist sustained prior to divergence of the Newton–Raphson algorithm is recorded in Fig. 14 for each DGmethod.
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Fig. 12. Displacement ux on deformed configuration of bi-material rod: (a) twist ψ = 0.25; (b) twist ψ = 1.25.

Fig. 13. Contour plots at material interface for twist ψ = 0.375: (a) magnitude of discrete interface gap [[φ]]; (b) magnitude of numerical flux vector.

Fig. 14. Maximum twist factor ψ achieved by each method.

The results are again similar from each of the six DGmethods, indicating a similar level of robustness. Note that two regions
of 4 × 4 × 8 elements have been utilized in the present case, which is a one level finer mesh compared to that employed
in Section 4.3.1. Therefore, the maximum twist has also increased by nearly a factor of 2 as a reflection of the more flexible
(and thus more accurate) finite element mesh.

The number of iterations required to reach convergence of the out-of-balance force vector is tabulated in Fig. 15 for
different load levels. Similar trends are evident as compared to the results in Fig. 11 of Section 4.3.1 for the uniformmaterial
case and fully discontinuous approximations. Namely, the methods employing algorithmically modified tangent stiffness
matrices (VMDGs, IVMDGs, and RVMDGs) requiremore iterations compared to their algorithmically consistent counterparts
(VMDG, IVMDG, and RVMDG). However, the increase for each method (e.g. from IVMDG to IVMDGs) is much smaller for
the present bi-material rod results in Fig. 15 compared to the uniform material rod in Fig. 11. This behavior makes sense
when it is recognized that the modified interface stiffness terms affect only a small percentage of the global tangent matrix
for localized interface problems, where the matrix is dominated by the continuous Galerkin contributions on the domain
interior. In contrast, for fully discontinuous approximations, modifications to the interface segment stiffness matrices affect
a majority of the terms in the global tangent matrix. Therefore, the IVMDGs and RVMDGs methods are viable options for
problems in which the DG treatment is applied only to isolated nonconforming interfaces in an overall continuous Galerkin
discretization. Recall that these methods realize a sizable memory savings and linear-equation solver time reduction by
employing symmetric element tangent matrices.
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Fig. 15. Number of Newton–Raphson iterations for each method at load levels ψ = 0.25, ψ = 1.25, and ψ = 1.75.

Fig. 16. Tensile stress σyy on deformed configuration, CG method, Ef /Em = 1.0: (a) θ = 30°; (b) θ = 60°.

4.4. Anisotropic stair-step plate under tension

We nowwish to assess whether the conclusions drawn about the algorithmic properties of the proposed methods in the
context of isotropic materials and smooth loading carries over problem classes with anisotropic materials and less-regular
solution fields. To this end, we apply the VMDGs, IVMDG, and IVMDGs methods to model the problem of a stair-step plate
loaded in tension. The domain consists of a 1 mm wide by 2 mm long plate with a 0.5 mm × 1 mm rectangle cut out of the
upper-left corner as shown in the contour plots in Fig. 16. The lower edge of the plate is fully-fixed, and a tensile traction of
5 MPa is applied along the top surface Y = 2 mm. The plate is assumed to be made of an anisotropic material given by the
following strain–energy density function:

Ψ (C) = C1

Ī1 (C)− 3


+ C2


Ī1 (C)− 3

2
+ C3


Ī1 (C)− 3

3
+ Ef /4


Ī4 (C,A)− 3


+ κ/2 (J − 1)2 (21)

where Ī1 (C) ≡ tr

C̄

, Ī4 (C,A) = A · C̄ · A, and C̄ ≡ J−2/3C ; further references for the form of the stress tensor and material

moduli are contained in [20]. The unit vector A =

cos θ sin θ 0

T indicates the orientation of reinforcing fibers within
an underlying isotropic matrix represented through a Yeoh-type material model; the fiber angle θ is measured with respect
to the X axis. The fiber orientation influences the characteristics of the deformed shape depending upon whether they are
primarily aligned or perpendicular to the applied loading, as exhibited in Fig. 16(a) and (b). In the simulations that follow,
we define the material parameters as: Em = 100 MPa, ν = 0.35, Gm = Em/2 (1 + ν), κ = Em/3 (1 − 2ν), C1 = 0.5Gm,
C2 = −0.05Gm, and C3 = 0.025Gm.

We conducted a comprehensive numerical study of this problememploying the VMDGs, IVMDG, and IVMDGsmethods as
well as the CGmethod as a benchmark. Due to the relative complexity of the constitutivemodel (21), the VMDGmethodwas
not tested because it would require the evaluation of 4 = ∂3Ψ /∂F∂F∂F . A family of 15 physical problems was generated
from the parameter sets Ef /Em = {0.1, 1.0, 10.0} and θ = {0°, 30°, 45°, 60°, 90°}. Each problem was simulated with
all 4 methods using both linear quadrilateral and linear triangular elements on three levels of nested, uniform meshes; the
coarsest Q4mesh is illustrated in Fig. 16. For the case of DGmeshes, fully discontinuous approximationswere employed. The
diagonals for the triangular meshes are oriented in a union-jack fashion. In all cases, the 5 MPa tensile traction was applied
in a single load step; this magnitude was the largest load level for which the CG method was able to converge across all of
the simulations. Highlights of the comprehensive results are presented below in order to assess the algorithmic properties
of the proposed DG methods.
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Fig. 17. Convergence of plate tip displacement, θ = 45° and Ef /Em = 1.0: (a) ux displacement; (b) uy displacement.

Fig. 18. Variation of tip displacement as a function of Ef /Em and θ : (a) ux displacement; (b) uy displacement.

Remark. For increasing moduli ratio Ef /Em, the deviation from isotropic constitutive response increases. Also, the
orientation of the fibers with respect to the inter-element interfaces could have a significant effect on the ratio of normal to
tangential components of the stability tensors. These effects are carefully investigated below.

We first present the convergence of the displacement values at the point (X, Y ) = (0.5, 2) obtained from a series of
uniformly refined meshes in Fig. 17. A representative simulation with the material properties θ = 45° and Ef /Em = 1.0
is considered. All three methods and both element types demonstrate convergence toward a common value both for the
horizontal and vertical components of displacement. Note that the IVMDGs results are not included because they exactly
match the values from the IVMDG method, which is to be expected according to the discussion in Section 3.2. Also, in
Fig. 17(b), the DG methods exhibit slightly higher accuracy than the CG method for both element types, which can be
attributed to the flexibility afforded by the inter-element jumps that help to offset the constraining effect of the fully-fixed
boundary condition. Other combinations of thematerial properties (fiber orientation and fibermoduli) produced convergent
displacement results that exhibited similar trends amongst the CG and DGmethods as exhibited by Fig. 17. We remark that
while the tip displacement value is only 0.35 mm, the deformations are relatively large compared to the 2 mm length of the
plate, justifying the use of finite strain kinematics.

In Fig. 18, we present the variation of the plate’s tip displacement as a function of the changing material properties as
obtained from the most-refined quadrilateral VMDGs meshes. Similar results are obtained from each of the other methods
in accordance with the remarks on the preceding figure. As expected, the orientation of the fibers as well as their relative
stiffness compared to the underlying isotropic matrix has a significant effect on the computed response. Only for the value
θ = 30° do the results indicateminimal variation of the tip deflectionwith respect to themoduli ratio. For small values of Ef ,
the tip displacement is nearly constant as the angle θ is adjusted, indicating that the isotropic material response dominates.
In contrast, the stiffest response corresponds to Ef /Em = 10 and θ = 90° in which the reinforcing fibers are oriented in the
direction of the tensile load; for this case, the displacements are 10 times smaller than for the softest case Ef /Em = 0.1 and
θ = 30°. Recall that the fibers are not discretely represented in themesh but are rather accounted for within the anisotropic
constitutive model (21). The significant variation in the computed response exhibited in Fig. 18 indicates that this problem
provides for an extensive numerical test of the proposed DG methods across a range of constitutive behavior.
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Fig. 19. Penalty tensor τs components from VMDGs method along element interfaces: (a) τnn , θ = 0°; (b) τtt , θ = 0°; (c) τnn , θ = 90°; (d) τtt , θ = 90°.

This anisotropic material problem also serves to highlight the tensorial nature of the stability tensors in the proposed DG
method. In Fig. 19, edge contour plots are provided for the components of the penalty tensor τs obtained from the VMDGs
method applied to the Ef /Em = 1.0 case. The normal and tangential components are denoted by τnn = n · τs · n and
τtt = t · τs · t , respectively, where n is the normal unit vector and t is the tangential unit vector to the associated element
interface in the deformed configuration. From Fig. 19(a) for the θ = 0 case, we observe that the edges with unit normal n
aligned with the fiber orientation A have a larger normal component τnn compared to perpendicularly oriented edges. The
exact opposite is true in Fig. 19(b): the tangential component τtt is larger on edges with t parallel to A. These features carry
over into Fig. 19(c) and (d) by recognizing that the orientation vector A points vertically instead of horizontally. Thus, the
VMDG method automatically accounts for material anisotropy by increasing the components of the penalty tensor in the
preferential material direction. This feature is unique to the present method and is not shared by formulations with scalar-
valued stability parameters. The effects of these tensorial weights and penalty terms on the computed results in general
have yet to be fully investigated.

Remark. Note in Fig. 19 that the magnitude of the tangential component is about twice that of the normal component,
which is the inverse of the trend observed for τ

(+)
s in Section 4.1. This result agrees with the inverse relationship between

τ
(+)
s and τs defined in (6).

Remark. We again emphasize that expressions (6), as derived from the fine-scale models, provide an automatic and robust
definition for the DG stability tensors δ(α)s and τs that account for evolving geometric and material nonlinearity. This
automatic procedure frees the user from having to specify a fixed value of the stability parameters across the large spectrum
of anisotropic material response.

Finally, the most important objective of this section is to determine whether the variations in material anisotropy have a
significant effect on the algorithmic performance of the modified DG methods. The number of Newton–Raphson iterations
required for convergence of eachmethod is reported in Fig. 20 as a function of the anisotropicmaterial parameters. All results
are shown for the finest meshes; almost identical values were obtained on the coarser meshes except with less variation as
a function of angle θ . For the IVMDG and CG methods, the number of iterations is nearly constant across all cases; only one
or two extra iterations were needed for Ef /Em = 10. The VMDGs method also exhibited fairly uniform performance, with
variations of about 3–4 iterations for larger moduli ratios. Also, this method required only about 4–5 more iterations than
the algorithmically consistent CG and IVMDG methods. However, the IVMDGs method again required significantly more
iterations to reach convergence. Its performance also varied significantly with increasing anisotropy; in fact, the method
was divergent for all cases with Ef /Em = 10.
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Fig. 20. Number of Newton–Raphson iterations for each method: (a) linear quadrilaterals, Ef /Em = 0.1; (b) linear quadrilaterals, Ef /Em = 1.0; (c) linear
quadrilaterals, Ef /Em = 10; (d) linear triangles, Ef /Em = 1.0.

Fig. 21. Number of Newton–Raphson iterations for levels of mesh refinement, linear quadrilaterals, Ef /Em = 1.0, θ = 45°.

As a representative result, the number of iterations required for each method as mesh refinement is applied is shown in
Fig. 21. In particular, this case corresponds to meshes of linear quadrilateral elements with Ef = Em and θ = 45°. Each of
the CG, IVMDG, and VMDGs methods demonstrate uniform performance with respect to the mesh resolution. The IVMDGs
method is more sensitive, consistent with the behavior found in Fig. 20.
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Overall, the trends observed in this section were analogous to those from Sections 4.2 and 4.3, particularly nonlinear
iterative performance in Figs. 11 and 20. Therefore, we conclude that the conclusions drawn in the case of material isotropy
may also be extended to problems exhibiting anisotropic material response.

5. Conclusion

We have proposed and systematically analyzed a series of algorithmic modifications to a finite strain stabilized
Discontinuous Galerkin (DG) method [1], herein denoted as VMDG. The major aim of the modifications is to improve the
cost effectiveness of the original method as well as simplify its implementation while retaining its robustness and stability.
Namely, specific terms in the nonlinear and incremental weak forms are selectively neglected, resulting in a family of
methods summarized in Table 1 of Section 3. Each of these modifications has important effects on the mathematical and
algorithmic properties of the DG method, including accuracy and stability as well as variational, adjoint, and algorithmic
consistency. For example, while the VMDG method possesses a symmetric consistent tangent matrix, certain proposed
modifications yield non-symmetric tangent stiffness matrices.

To analyze these properties of the VMDG algorithmic family, a comprehensive numerical study was conducted across
a range of two and three-dimensional problems addressing h and p refinement, various hyperelastic materials, and large
strains and rotations. The first three problems possessed exact analytical solutions such that the accuracy of the computed
solutions could be unambiguously measured and convergence rates could be obtained in various error norms. The fourth
problem involved more complex material response and served as a means to quantify the number of iterations required
during the Newton–Raphson solution procedure, one of the key measures of computational cost alongside the element-
level calculations. The consistent numerical performance across all element types indicates that the generality of the VMDG
method is not compromised by the algorithmic modifications. Additionally, these studies highlighted the tensorial nature
and nonlinear evolution of the consistently derived stability tensors τ

(α)
s contained within the numerical flux and other

interface terms of the VMDG formulation, which is a defining feature of the method.
Our conclusion from the study is that the VMDGs method is the optimal member of the proposed algorithmic family.

This method has exactly the same nonlinear weak form as the VMDG method and therefore inherits all of its underlying
mathematical properties. The only modification is the dropping of the sixth-order tensor term from the incremental weak
form, leading to 50% cost savings at the element level while retaining the symmetry of the stiffnessmatrix and only adding a
relatively small number of iterations to theNewton–Raphson scheme. The other strong candidate emerging from the study is
the IVMDGmethod,which contains the fewest number of interface terms to be evaluated and is therefore the least expensive
at the element level. This method exhibits a quadratic rate of convergence during the Newton–Raphson solution procedure
and produces solutions on coarse meshes with comparable accuracy to the VMDG method. However, the downsides to the
IVMDGmethod are the lack of symmetry in the consistent tangent matrix and the possible suboptimal convergence rate in
the L2 norm of displacement error upon mesh refinement.

More generally, the results of these extensive numerical studies provide valuable insight into the performance of
Discontinuous Galerkin methods in the context of finite strain hyperelasticity. In particular, the weak forms of various
members of the VMDG family share features with other existing DG methods [3–5,8], where the distinguishing feature
herein is the enhanced definition of the numerical flux and stability parameters at the interface. By way of this similarity,
the present results and conclusions complement these preceding works and empower the end-user to select the optimal
method accounting for their computing architecture and desired numerical performance.
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