
Ontology-Based Multilabel Text Classification
of Construction Regulatory Documents

Peng Zhou, S.M.ASCE1; and Nora El-Gohary, A.M.ASCE2

Abstract: In order to fully automate the environmental regulatory compliance checking process, rules should be automatically extracted
from applicable environmental regulatory textual documents, such as energy conservation codes. In the authors’ automated compliance
checking (ACC) approach, prior to rule extraction, the text is first classified into predefined categories to only retrieve relevant clauses
and filter out irrelevant ones, thereby improving the efficiency and accuracy of rule extraction. Machine learning (ML) techniques have
been commonly used for text classification (TC). Nonontology-based, ML-based TC has, generally, performed well. However, given
the need for an exceptionally high performance in TC to support high performance in ACC, further TC performance improvement is needed.
To address this need, an ontology-based TC algorithm is proposed to further improve the classification performance by utilizing the semantic
features of the text. A domain ontology for conceptualizing the environmental knowledge was used. The proposed ontology-based
TC algorithm was tested on 25 environmental regulatory documents, evaluated using four evaluation metrics, and compared with the authors’
previously utilized ML-based approach. Based on the testing data, the results show that the ontology-based approach consistently outper-
formed the ML-based approach, under all evaluation metrics. DOI: 10.1061/(ASCE)CP.1943-5487.0000530. © 2015 American Society of
Civil Engineers.

Introduction

Manual compliance checking is costly and time consuming
(Eastman et al. 2009). Automated compliance checking (ACC)
aims to address this practical gap by reducing the cost and time
of checking the compliance of construction projects to regulatory
requirements. A number of important research efforts have been
recently undertaken in the area of ACC, including checking of
building designs (Eastman et al. 2009), building envelope perfor-
mance (Tan et al. 2010), building structural design (Nawari 2012),
construction quality (Zhong et al. 2012), building fire safety
(Dimyadi et al. 2014), and formwork constructability (Jiang and
Leicht 2015). Larger ongoing research efforts that are led by indus-
try organizations include the Autocodes project that is led by
Fiatech, which aims to automate the regulatory compliance review
process with a focus on checking building accessibility and egress,
fire and life safety, and mechanical and engineering (Fiatech 2014).
Despite the importance of these efforts, existing ACC methods and
systems are not fully automated. Existing methods and systems
require manual effort to extract regulatory requirements from tex-
tual regulatory documents (e.g., codes) and encode the extracted
requirements in a computer-processable rule format.

To address this gap, in the authors’ previous work, a natural
language processing (NLP)-enabled approach was proposed for
ACC in construction to support automated text processing and
analysis for automated rule extraction from regulatory documents.

A rule-based semantic information extraction algorithm was pro-
posed to automatically extract regulatory information from building
codes (Zhang and El-Gohary 2013); and a rule-based semantic in-
formation transformation algorithm was proposed to automatically
transform the extracted information into a computer-processable
logic rule format (Zhang and El-Gohary 2015).

In order to further improve the efficiency and accuracy of infor-
mation extraction and transformation, the authors further proposed
a nonontology-based supervised machine learning (ML)-based
multilabel text classification (TC) algorithm to classify regulatory
clauses prior to information extraction. The algorithm aims to only
retrieve relevant clauses, thereby avoiding inefficiency and errors in
information extraction resulting from unnecessary processing of
irrelevant text. The classification problem is multilabel, as opposed
to single label, because one clause could be assigned more than
one label (e.g., one clause could be relevant to both “thermal in-
sulation topic” and “air leakage topic”). As commonly conducted
in nonontology-based, ML-based TC, this multilabel classification
problem was transformed to multiple single-label classification
problems, where—for each classification problem—one clause is
assigned at most one label. A nonontology-based, ML-based TC
algorithm uses an ML algorithm [e.g., support vector machines
(SVM)] to learn the relationships between text and labels based
on previous data. In supervised ML, human supervision is provided
in the form of training data [i.e., a series of labelled text units (data)
that provide guidance in learning].

Nonontology-based, supervised ML-based TC has, generally,
performed well (e.g., Pawar and Gawande 2012; Salama and
El-Gohary 2013; Zhou and El-Gohary 2015). However, given
the need for an exceptionally high performance (100% recall with
high precision) in TC for supporting high performance in ACC,
further TC performance improvement is needed; ideally a 100%
recall of all relevant clauses is needed to avoid consequent compli-
ance reasoning errors.

Ontologies could be explored as means to help capture text se-
mantics for enhancing TC performance. However, there have been
no research efforts for using ontology-based TC in the construction
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domain. Outside of the construction domain, ontology-based ef-
forts (1) rely on supervised ML, which is human effort intensive;
(2) require transformation of multilabel TC problems to multiple
single-label problems, which involves extra data preparation and
classifier building effort; and/or (3) show no single outperforming
ontology-based method or algorithm, which indicates that it is dif-
ficult to reuse an existing ontology-based TC algorithm from one
domain to the other. To address these needs and gaps, an ontology-
based TC algorithm is proposed as a potential approach to further
improve the classification performance by utilizing the semantic
features of the text.

As such, this paper builds on the authors’ previous work in the
area of TC in three primary ways. First, instead of taking a
nonontology-based TC approach, an ontology-based semantic
TC approach for the construction domain is explored. The concepts
and relationships of the ontology help in recognizing the semantic
features of the text. In comparison to the previously-used nonon-
tology-based, ML-based algorithm (Zhou and El-Gohary 2015), in
the proposed ontology-based approach, a document (or clause) is
represented in terms of semantic concepts and relations, rather than
just terms (words). Second, the multilabel classification problem is
addressed in a direct way, instead of transforming the multilabel
classification problem to multiple single-label classification prob-
lems (as commonly used in ML-based TC). Third, no human super-
vision is involved (i.e., training data are provided without labeling).
In the remainder of this paper, the proposed ontology-based TC
approach for classifying environmental regulatory clauses accord-
ing to a set of predefined semantic labels is presented and its
performance is compared with that of the authors’ previous
nonontology-based, supervised ML-based approach (Zhou and
El-Gohary 2015).

Background

Multilabel Text Classification Problems

NLP aims to enable computers to analyze and process natural lan-
guage in a meaningful way to facilitate a range of tasks (e.g., auto-
mated machine translation) (Manning and Schutze 1999). TC, a
subfield of NLP, aims to classify documents (like paragraphs or
clauses) to one or more categories (Manning and Schutze 1999).
A category is represented by a label, and may refer to a class or
concept. A TC problem could be categorized as a multilabel or
single-label TC (Tsoumakas and Katakis 2007). Multilabel TC
can assign more than one label to a document, while single-label
TC can only assign one label to each document. In this research, a
multilabel TC problem is addressed, since multiple labels could be
assigned to one clause. For example, the following clause was as-
signed the labels “air leakage topic” and “thermal insulation topic,”
because it contains requirements for high pressure ducts in terms of
thermal insulation and sealing to prevent air leakage: “C403.2.7.1.2
Medium-pressure duct systems. All ducts and plenums designed to
operate at a static pressure greater than 2 inches water gauge (w.g.)
(500 Pa) but less than 3 in. w.g. (750 Pa) shall be insulated and
sealed in accordance with Section C403.2.7. Pressure classifications
specific to the duct system shall be clearly indicated on the con-
struction documents in accordance with the International Mechani-
cal Code” (ICC 2012).

There are two approaches to address multilabel TC problems:
(1) an indirect approach, called problem transformation method
(PTM), which assumes independence of labels and transforms a
multilabel TC problem to multiple single-label TC problems
(Tsoumakas and Katakis 2007); and (2) a direct approach, called

algorithm adaptation method (AAM), which adapts algorithms to
directly handle the multilabel TC problem (Tsoumakas and Katakis
2007). Using a PTM approach, one classifier is built for each label,
where each classifier is independent of the other classifiers.
Examples of TC work adopting PTM include Caldas et al. (2002),
Kovacevic et al. (2008), and Mahfouz (2011). Using an AAM ap-
proach, only one classifier is built for all labels. Examples of TC
work using AAM include Brinker and Hüllermeier (2007), Zhang
and Zhou (2007), and Spyromitros et al. (2008). The advantages of
AAM are (1) the ability to predict a set of labels at one time; and
(2) avoiding the assumption of label independence, which is not
valid in many cases because labels are usually interrelated in real
world (Manning et al. 2009). Considering interrelationships be-
tween labels may improve the TC performance (Sorower 2010).

Machine Learning Techniques for Text Classification

ML refers to the ability of a computer to learn from data or past
experience (Manning and Schutze 1999). ML-based TC classifies
an unknown document (testing data) based on experience learned
from classifying known documents (training data).

ML can be categorized into three primary types:
1. Supervised ML: Human guidance is involved, in the form of

labelled training data, to guide the learning process;
2. Unsupervised ML: No human guidance is involved. Using un-

labelled training data, the classifier tries to identify some un-
known categories which the data can be clustered into; and

3. Semi-supervised ML: Only partial human guidance is pro-
vided by labeling a fraction of the training data.

Compared with unsupervised and semi-supervised ML tech-
niques, supervised ML techniques require higher manual effort
for preparing the training data but can typically yield better perfor-
mance because of the extra human guidance (Sebastiani 2002).
Some commonly used supervised and semi-supervised ML algo-
rithms include SVM, Naïve Bayes (NB), k-nearest neighbors
(kNN), and decision trees (DT) (Aggarwal and Zhai 2012). SVM
is the most commonly used supervised ML algorithm. It maps the
labelled data into a feature space and tries to find the best separators
that distinguish all categories. The testing data are then mapped to
the feature space and classified by the found separators (Aggarwal
and Zhai 2012). Some commonly used unsupervised ML algo-
rithms (Aggarwal and Zhai 2012) include k-Means and hierarchical
algorithm (Aggarwal and Zhai 2012). Some less commonly used
ML algorithms include labelled-latent Dirichlet allocation (LDA)
(Ramage et al. 2009).

ML can also be classified into two main types: shallow learning
and deep learning. Shallow learning can only learn simple func-
tions with a linear combination of parameters from the training
data (Bengio and LeCun 2007). Shallow learning algorithms
(e.g., SVM) have been successful in TC, but their limited modeling
and representational power make them unable to learn complex
functions such as those involved in text semantics (Bengio and
LeCun 2007). In contrast, deep learning can learn complex func-
tions (cascaded by multiple single functions) with a nonlinear com-
bination of parameters from the training data (Bengio and LeCun
2007). Deep learning attempts to model the data based on the
theory of distributed representations from ML. Distributed repre-
sentations assume that the data are generated by some hidden fac-
tors. Deep learning further assumes that these hidden factors are
organized into a multilevel hierarchy. Therefore, deep learning
models the data in a multilevel hierarchy (Bengio et al. 2013).

The most commonly used algorithm for implementing deep
learning is the neural network algorithm (Bengio et al. 2003). A
neural network algorithm models the iterative learning process
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of the human brain that learns from known information (i.e., unla-
belled data) and infers new unknown information based on the
learned knowledge (e.g., predicting the next word of a partial sen-
tence based on the embedded linguistic characteristics and patterns
learned from seeing a large number of sentences) (Bengio et al.
2003). Examples of neural network algorithms include the feedfor-
ward neural network algorithm (Bengio et al. 2003) and the recur-
rent neural network algorithm (Mikolov et al. 2010). The most
state-of-the-art and best-performing algorithm is the hierarchical
softmax skip-gram algorithm (Mikolov et al. 2013a, b). The hier-
archical softmax skip-gram was developed to improve the accuracy
of distributed representations on large datasets. It tries to learn
word vector representations from the training data and predict sur-
rounding words of the current word in a sentence based on the
corresponding learned word vectors (Mikolov et al. 2013a). The
learned word vectors could predict semantic relationships of
words/concepts (e.g., automatic-turn versus manual-shut, lumen-
luminaire versus watts-lamp, weld-gasket versus fasten-caulk)
based on cosine distance of vectors.

Ontology-Based Techniques for Semantic Text
Classification

Semantic TC refers to using the semantics of text to facilitate TC.
An ontology is a knowledge conceptualization that captures the se-
mantics of a domain in the form of concepts, relationships, and
axioms (El-Gohary and El-Diraby 2010). An ontology can, thus,
help in capturing the semantics of the text. In general, ontologies
may support TC in two main ways: (1) use an ontology to represent
the features of the documents and then use an ML algorithm to
classify documents based on their features. For example, in Lee
et al. (2009), term features are extracted from documents and
mapped to the concepts of the ontology. Documents originally rep-
resented by term features get represented by ontology concept fea-
tures instead. These concept features are then used for ML-based
TC; and (2) use an ontology to represent the categories in terms of
concept features and then use the concept features of each category
to classify the documents (represented in either concept features or
term features) based on either concept-to-concept or concept-to-
term semantic similarity scores. For example, Yu et al. (2006)
use a combination of a linguistic ontology and statistical informa-
tion (such as word frequency) for TC. The ontology covers con-
cepts that describe the syntactic features [e.g., part of speech
(POS) tag of a word] and semantic features of words (e.g., semantic
tag of a word). These syntactic and semantic features of words
[what Yu et al. (2006) call “linguistic ontology knowledge”] are
then learned based on a set of labelled training data. For TC,
the keywords of documents are extracted and the documents are
classified based on the linguistic ontology knowledge of its key-
words. Yang et al. (2008) use concept vectors for TC. A category
is represented in terms of a vector of concept-value pairs, where
(1) the concept is derived from an ontology, and (2) the value is
defined based on their term frequency inverse document frequency
(TFIDF) scores [TFIDF aims to weigh a word in a document in
terms of the total count of that word in the document and the total
number of documents in the whole document collection containing
that word (Aggarwal and Zhai 2012)]. A testing document is
represented in terms of a vector of keyword-TFIDF pairs. The
documents are then classified based on the similarities of document
vectors to category vectors. In contrast to the first example, the sec-
ond example may be classified as an unsupervised ontology-based
effort because labelled training data are not needed. Compared with
supervised ML-based TC, unsupervised ontology-based TC, thus,

provides the opportunity of eliminating the massive manual effort
required for labeling training data.

State of the Art and Knowledge Gaps in Text
Classification

ML techniques have commonly been used for TC (e.g., Caldas
et al. 2002; Kovacevic et al. 2008; Mahfouz 2011; Salama and
El-Gohary 2013; Zhou and El-Gohary 2015). While generally
successful, nonontology-based, ML-based TC usually discards
semantic text information (e.g., meaning of words) although it is
potentially very useful in identifying the correct label(s) of a docu-
ment. Some nonontology-based, ML-based TC algorithms try to
partially and indirectly capture some semantic text information
(e.g., using Bigram model to capture relationships of adjacent
words in a sentence in terms of conditional probability). However,
the probabilistic and statistical methods usually achieve unsatisfac-
tory performance in capturing the semantics of the text (Zhou and
El-Gohary 2015). Semantic-based TC has, thus, been introduced to
capture and take advantage of the semantics of the text for improv-
ing the TC performance. The use of ontologies in TC has, therefore,
recently attracted much research effort.

In this regard, two main research gaps are identified. First, there
have been no research efforts for using ontology-based TC in the
construction domain. This is a lost opportunity for exploring the
use of domain semantics to improve the performance of TC-based
applications in construction. Second, outside of the construction
domain, ontology-based TC efforts: (1) rely on supervised ML
for training the classifier—using labelled training data—to learn
the rules for labeling any given text (e.g., Vogrinčič and Bosnić
2011; Lee et al. 2009; He et al. 2004). This involves much manual
effort in labeling the training data; (2) can only deal with single-
label classification problems (e.g., Yang et al. 2008; Wei et al.
2006; Yu et al. 2006; Song et al. 2005; He et al. 2004) or are unable
to deal with a multilabel TC problem directly (e.g., Waraporn et al.
2010). This requires transformation to multiple single-label prob-
lems; and/or (3) show inconsistent results for ontology-based TC in
comparison with nonontology-based, ML-based TC. Some efforts
(e.g., Fang et al. 2007) compared ontology-based TC with SVM-
ML-based TC and showed that SVM-ML-based TC outperformed.
Some efforts (e.g., Yang et al. 2008; Song et al. 2005; He et al.
2004) compared ontology-based TC with multiple ML algorithms
for TC and showed that ontology-based TC outperformed only
some of these ML algorithms [e.g., only NB in Yang et al.
(2008)]. Other efforts (e.g., Yu et al. 2006) showed that the
ontology-based approach outperformed the nonontology-based,
ML-based approach using multiple algorithms like NB, kNN
and SVM, but only reported enhanced performance in terms of pre-
cision (Yu et al. 2006). These inconsistent results indicate that there
is no single outperforming ontology-based method or algorithm,
and, thus, that it is difficult to reuse an existing ontology-based
TC algorithm from one domain to the other.

Proposed Methodology for Ontology-Based Text
Classification of Environmental Regulatory
Documents

To address these knowledge gaps, in this paper, an ontology-based
multilabel TC approach for semantic TC in the construction domain
is proposed. In comparison to existing ontology-based TC methods,
the proposed method is different in three primary ways. First, instead
of using supervised ML (e.g., He et al. 2004; Lee et al. 2009;
Vogrinčič and Bosnić 2011; Wijewickrema and Gamage 2013)
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for training the classifier to learn the rules of labeling, unsupervised
ML is used for learning the semantic similarity between a term of a
clause and a concept related to a topic from a set of training
clauses. As a result, only the testing data are labelled, which saves
much manual effort that would have been required to label the
training data. Second, instead of using a problem transformation
approach (e.g., He et al. 2004; Lee et al. 2009; Wijewickrema
and Gamage 2013), a direct multilabel ontology-based TC method
is used. As a result, (1) only one pair of training and testing
data needs to be prepared; and (2) only one classifier needs to
be built. This reduces the data preparation and classifier building
effort. Third, instead of using shallow learning (e.g., Lee et al.
2009), deep learning is used to better represent the complexity that
exists in text semantics. This aims to enhance the performance
of TC.

A four-phase methodology for ontology-based domain-specific
TC is proposed, as shown in Fig. 1. The labels are defined based on
a hierarchy of topics. For each topic, a subontology is built to model
the concepts and relationships that are related to this topic. Then, a
deep learning algorithm is applied to learn the similarities between
each clause (based on the terms in the clause) and each topic (based
on the ontological concepts related to this topic) for classifying
each clause into zero or more topics.

TC Topic Hierarchy and Ontology Development

A topic hierarchy was first developed to identify the labels that will
be used for TC. In this paper, the analysis is focused on the “energy
efficiency topic,” which is a subtopic of “environmental topic” (as
per Fig. 2). For developing the topic hierarchy, the established
methodologies for taxonomy development (e.g., El-Gohary and
El-Diraby 2010) were followed. The methodology includes two
primary steps: (1) identification of the main concepts in the domain
of interest: the concepts were extracted based on a review of the
main relevant environmental regulatory documents (e.g., the 2012
International Energy Conservation Code and the 2010 California
Energy Code); and (2) organization of the identified concepts into

a hierarchy of concepts: the concepts were structured into a tax-
onomy using a combination of a top-down (starting by defining
the most abstract concepts) and a bottom-up approach (starting
by defining the most specific concepts). The “commercial building
energy efficiency topic” subhierarchy is shown in Fig. 2. Six of the
ten leaf nodes (subtopics in the taxonomical topic hierarchy) were
used as labels for classification.

For modeling the semantic information associated with each
topic, the hierarchy was extended into an application ontology.
For each topic, a subontology was built to model the concepts
and relationships that are related to this topic. For developing
the ontology, the ontology development methodology by El-
Gohary and El-Diraby (2010) was benchmarked. The main steps
that were used to develop the ontology include: (1) purpose and
scope definition: the purpose of the ontology is to support semantic
TC and the scope is limited to “commercial building energy effi-
ciency”; (2) taxonomy building: the same methodology as that used
for building the TC topic hierarchy was followed (as described
above). For the identification of the main concepts (the first step
in taxonomy development), the scope was focused on identifying
the main concepts that are related to each of the six leaf node con-
cepts in the TC topic hierarchy. For example, the concepts related to
the “lighting control topic” include “multilevel lighting control,”
“daylighting control,” and “demand responsive control”; (3) relation
modeling: the nonhierarchical relationships between concepts were
identified and modeled to describe the semantic links between con-
cepts. For example, “is_controlled_by” links the concepts “lumin-
aire control” and “motion sensor”; and (4) ontology coding: the
concepts and relations were represented using unified modeling
language (UML) class diagrams. For example, Figs. 3 and 4 show
the subontologies for the “lighting system control” and “lighting
power” topics, respectively.

Data Preparation

Approximately 2,400 clauses were collected from 25 regu-
latory documents (Fig. 5). The documents were manually selected

STEP 1 STEP 2 STEP 4STEP 3

Fig. 1. Proposed ontology-based text classification methodology

Commercial Building Energy Efficiency Topic

Building Envelope System 
Energy Efficiency Topic

Building Electrical System
Energy Efficiency Topic

Thermal 
Insulation

Topic*

Ventilation System 
and Equipment 

Energy Efficiency
Topic*

Lighting System 
Control Topic*

Fenestration
Topic*

Air Leakage
Topic*

Building Mechanical System  
Energy Efficiency Topic

Lighting Power 
Topic*

Environmental TopicEnergy Efficiency Topic

Building Service Water System 
Energy Efficiency Topic

Service Water 
System Insulation

Topic

Service Water 
Equipment 
Control and 

Efficiency Topic

Total Building System
Energy Efficiency Topic

Heating and Cooling 
System and 

Equipment Energy 
Efficiency Topic

*Subtopics used as labels for text classification

is-a relationship

Fig. 2. Text classification topic hierarchy
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because they all contain energy efficiency requirements for com-
mercial buildings, which is the scope of this research. All original
documents were downloaded in PDF format. The clauses were
then extracted manually from the documents and each clause
was represented in a separate text (.txt) format file. A clause is de-
fined as a paragraph of text that contains at least one requirement.
For example, the following is a clause that was extracted from
the 2012 International Energy Conservation Code (ICC 2012):
“C403.2.7.1.2 Medium-pressure duct systems. All ducts and ple-
nums designed to operate at a static pressure greater than 2 inches
water gauge (w.g.) (500 Pa) but less than 3 inches w.g. (750 Pa)
shall be insulated and sealed in accordance with Section C403.2.7.
Pressure classifications specific to the duct system shall be clearly
indicated on the construction documents in accordance with the
International Mechanical Code.”

In collecting the data (clauses), data sufficiency in terms of
quantity and quality was taken into account. The performance of
the proposed methodology highly depends on the quantity and
quality of data (Mikolov et al. 2013a) due to the use of deep learn-
ing (in Step 3). The use of large quantities of data can facilitate
accurate learning of semantics. Good quality data refers to the
words in the sentences being logical and coherent. Based on the
experimental results, the good performance results indicate that
data are sufficient in terms of quantity and quality.

The collected clauses were split into two sets, a training set and a
testing set, at a ratio 5∶1. Because the proposed methodology uses
unsupervised ML, only the testing set was manually labelled for

use in performance evaluation (in Step 4). The gold standard
(the labelled testing set) was developed manually. Based on con-
tent, the first author assigned each testing clause zero or more of the
six labels. The labeling was then checked by two other researchers.
Full agreement on labeling was achieved.

Ontology-Based Classification

Data Preprocessing
Data preprocessing is the process of transforming the raw text into
the required format. Three steps of data preprocessing were imple-
mented: (1) Tokenization: Tokenization aims to segment the text
into words or tokens, meanwhile eliminating characters such as
punctuation and transforming words to their lowercase form. For
example, “building, Thermal Insulation” are tokenized to “building
thermal insulation”); (2) Stemming: Stemming aims to strip off
word suffixes (in some cases prefixes) to its root or stem. For ex-
ample, “insulation” and “insulated” can both be mapped to “insul.”
Stemming reduces the number of features by combining words
sharing the same stem. It is usually effective in improving the
performance of classification (e.g., reaching 5% gain in average
precision for English) (Manning et al. 2009). In the proposed
ontology-based methodology, stemming was implemented using
the Porter2 stemming algorithm in Python programming language;
and (3) Stopword removal: Stopwords refer to those high-
frequency and low-content words that are not discriminative in
classification like “am,” “is,” “a,” “the,” and “of.” Removing
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Control 
Device
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Control
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Fig. 3. Partial subontology for “Lighting System Control Topic”
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Fig. 4. Partial subontology for “Lighting Power Topic”

Document
2012 International Energy Conservation Code
2010 California Energy Code
ANSI/ASHRAE/IES Standard 90.1-2010 Energy Standard for Buildings Except Low-Rise Residential Buildings
2013 Nonresidential Compliance Manual for the 2013 Building Energy Efficiency Standards
2007 National Green Building Standard, Chapter 7 Energy Efficiency
ANSI/ASHRAE/USGBC/IES Standard 189.1-2009 Standard for the Design of High-Performance Green Buildings 
Except Low-Rise Residential Buildings
2009 LEED Reference Guide for Green Building Design and Construction
2013 Energy Policy and Conservation Act, Section 342
Energy Independence and Security Act of 2007

2012 Washington State Energy Code

2011 North American Fenestration Standard/Specification for Windows, Doors and Skylights
2008 District of Columbia Construction Code
2009 New Hampshire State Building Code
2011 Vermont Commercial Building Energy Standards
2007 Oregon Structural Specialty Code, Chapter 13 Energy Conservation
2010 Oregon Energy Efficiency Specialty Code
2009 Massachusetts Stretch Energy Code
2009 Virginia Energy Conservation Code
2010 Florida Building Code, Energy Conservation
2012 North Carolina Energy Conservation Code
2009 New Mexico Energy Conservation Code
2011 Houston Commercial Energy Conservation Code
2010 Energy Conservation Construction Code of New York State
2006 Phoenix Green Construction Code, Chapter 6 Energy Conservation, Efficiency and Atmospheric Quality
2006 International Energy Conservation Code as Amended by the City of Phoenix

Fig. 5. Regulatory document list
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stopwords from a document can, thus, reveal the content-bearing,
discriminative words. The similarity between the discriminative
terms of a document and the concepts of each subontology can then
be measured for classification. A Python preprocessing program
was coded for implementing the above-mentioned three subtasks.
The input to the program is two sets of raw .txt files (training and
testing sets, as obtained from Step 2), and the output is two
preprocessed datasets (training dataset and testing dataset). The
training and testing datasets are the input to the ontology-based
TC algorithm (discussed in the “Ontology-Based TC Using Deep
Learning: Proposed Method” subsection).

Ontology-Based TC Using Deep Learning: Proposed Method
The proposed classification method is similarity-based. After the
datasets are preprocessed, a deep learning algorithm is applied
on the training dataset to learn the distributed representations of
terms and concepts for capturing the similarities between each term
in a clause and each concept in the ontology. Accordingly, the sim-
ilarity between a clause and a topic is quantified. The assignment of
a label to a clause is then determined based on similarity values and
two experimentally-defined similarity thresholds.

The hierarchical softmax skip-gram algorithm is used for deep
learning and computing the similarities between each term in a
clause and each concept in the ontology; it was selected because
of its best-reported performance (Mikolov et al. 2013a, b). The al-
gorithm learns the distributed representations of terms (in the
clauses that exist in the training data) and concepts (in the ontology)
from training data. A distributed representation of a term (or
concept) is a real-valued vector of features that characterize the
meaning of the term (or concept). The feature vector includes syn-
tactic features (e.g., morphological category like gender of noun)
and semantic features (e.g., hypernymy relation like room-
bedroom) (Mikolov et al. 2013b). After learning the distributed
representations of terms and concepts, the similarity between each
term in a testing clause (i.e., a clause in the testing dataset) and each
concept in the ontology is measured by the cosine similarity of their
vectors (Mikolov et al. 2013c). Cosine similarity measures the an-
gle between vectors and a smaller angle indicates higher similarity
(Harispe et al. 2013).

The similarities between each term in a testing clause and each
concept related to a topic are then summed up for each clause-topic
pair to compute the total similarity (TS) between a clause and a
topic. All topics with a positive TS with a clause are selected as
potential labels for that clause; and the topics with a negative
TS are filtered out. Zero similarity is used as the threshold for se-
lecting potential labels by assuming that, in this application, any
clause that is relevant to a topic must have a positive TS to that
topic. Under this assumption, all true labels of a clause are a subset
of its potential labels. The experimental results show that this
assumption is valid in this application.

If there is exactly one topic with a positive TS with a clause, then
that topic is assigned as the only label for that clause. If there are no
topics with a positive TS with a clause, then no topics are assigned
to that clause. If there are more than one topic with a positive TS
with a clause, then the topic with the highest TS is assigned as the
primary label for that clause (the corresponding topic is then re-
ferred to as a primary topic). In this case, based on the primary
topic, two thresholds are used for assigning the remaining labels
(referred to as secondary labels) for that clause: (1) the total sim-
ilarity difference (TSD) [Eq. (1)] between the primary topic and the
other topic(s) (potential secondary topics) are measured. Then, a
TSD threshold is used to further identify the secondary labels.
Topics with a TSD equal to or less than the threshold are assigned
to the clause as its secondary labels. The larger the TSD threshold,

the more secondary labels are assigned to the clause. In this case,
more true labels are likely to be recalled, but incorrect labels may
also be assigned to the clause; and (2) the total similarity percentage
difference (TSPD) [Eq. (2)] between the primary topic and the po-
tential secondary topic(s) are measured. Then, a TSPD threshold is
used to further identify the secondary labels. Topics with a TSPD
equal to or less than the threshold are assigned to the clause as its
secondary labels. Both thresholds values are set experimentally for
maximizing the overall performance. TSD and TSPD values are
calculated as per Eqs. (1) and (2), where TSDsd = TSD of topic
s for clause d; TSPDsd = TSPD of topic s for clause d; TSpd =
TS of topic p for clause d; and TSsd = TS of topic s for clause
d, topic s is a potential secondary topic of clause d, and topic p
is the primary topic of clause d.

TSDsd ¼ TSpd − TSsd ð1Þ

TSPDsd ¼ TSpd − TSsd
TSpd

ð2Þ

In using both threshold values, two assumptions are made. First, the
strength or weakness of relevance of a clause to multiple topics
could be reflected and ordered by their corresponding TS values.
The topic with the strongest relevance (i.e., highest TS) is the pri-
mary label, and all other relevant topics are the secondary labels.
Second, for a certain clause, the TS values of all relevant secondary
topics should be closer to the TS value of the primary topic than
those of irrelevant topics, thereby having these relevant topics fall-
ing in a certain TSPD range. The final labels assigned to a clause
are selected based on one of the two threshold values, whichever is
the strictest. Since each topic addresses a different aspect of energy
efficiency, specific threshold values should be set for each topic.

An illustrative example showing label assignments for a given
clause based on similarity and threshold values is provided in
Table 1. The TS value of each topic was computed, as shown in
Table 1. Accordingly, “air leakage topic” was assigned as the pri-
mary label of that clause, because of its highest TS value (1,723.4).
Accordingly, the TSD and TSPD values of each potential secon-
dary topic were computed, as shown in Table 1. For example,
the “thermal insulation topic” has TSD and TSPD values of 396.5
and 23.0%, respectively. Based on these values, the “thermal insu-
lation topic” was assigned as a secondary label of that clause be-
cause both of its TSD and TSPD values fall below the threshold
values (486.9 and 37.8% TSD threshold and TSPD threshold, re-
spectively). All other potential secondary topics were not assigned
because they did not meet the threshold values.

Implementation of the Proposed Method
To implement the proposed method, Generate Similar (Gensim)
(Rehurek and Sojka 2010), a Python programming language
version of the softmax skip-gram algorithm (by Mikolov et al.
(2013b), was used for deep learning and for computing the simi-
larities between each term in a testing clause and each concept in
the ontology. The input to the tool includes (1) the training data,
split as a set of sentences as required by the tool; (2) testing clauses;
and (3) ontology concepts related to each topic. Some input param-
eters that were experimentally set include: (1) the dimensionality of
word vectors was set as 200; (2) the maximum distance between the
current and predicted word in a sentence was set as two; (3) after
removing stopwords, all remaining words that have a frequency
lower than five were ignored; and (4) two worker threads (a param-
eter that is related to the training speed of multicore machines) were
used. For a more detailed description of these parameters, the read-
ers are referred to Rehurek and Sojka (2010). The output of the tool

© ASCE 04015058-7 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 04015058 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
A

t U
rb

an
a 

on
 1

0/
07

/1
5.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



is the similarity values between each term in a testing clause and
each concept in the ontology.

Another program was developed to (1) compute the TS value
between each testing clause and each topic based on the similarity
values (from the previous program); (2) assign the primary labels of
the testing clauses; (3) compute the TSD and TSPD values for each
potential secondary topic of a testing clause; and (4) assign the sec-
ondary labels to the testing clauses based on whether their TSD and
TSPD values meet the threshold values. The program was coded in
Python.

Evaluation

Since the proposed ontology-based TC algorithm can deal with
multilabel classification problems directly, multilabel classification
evaluation metrics were used. Four types of evaluation metrics were
utilized. Although the metrics are different, they all use redefined
recall and precision measures to evaluate the overall performance.
In general, recall measures the number of correctly predicted true
labels [(true positive (tp)] as a percentage of the total number of true
labels [tp plus false negative (fn)]; and precision measures the num-
ber of correctly predicted true labels (tp) as a percentage of the total
number of predicted labels [tp plus false positive (fp)]. Typically,
there is a tradeoff between recall and precision, because the more
true labels are recalled, the higher the risk of making precision
errors. In the subject application, recall is given a higher priority
than precision because missing to recall one relevant clause—
and thus missing to check compliance of the project with this
clause—might result in noncompliance detection errors.

Multilabel evaluation metrics can be categorized into two main
types: example-based metrics and label-based metrics (Tsoumakas
et al. 2010; Madjarov et al. 2012). Using example-based metrics,
the performance (recall and precision) of classification for each test
document (clause, in this research) is calculated, and the overall
performance is obtained by calculating the mean performance over
all test documents. Example-based recall and precision are calcu-
lated using Eqs. (3) and (4) (Madjarov et al. 2012), where tpi =
number of labels predicted correctly as positive for a testing docu-
ment i; fpi = number of labels predicted incorrectly as positive for
a testing document i; fni = number of labels predicted incorrectly
as negative for a testing document i; and N = total number of test
documents

Example–based Recall ¼ 1

N

XN

i¼1

jtpij
jtpi þ fnij

ð3Þ

Example–based Precision ¼ 1

N

XN

i¼1

jtpij
jtpi þ fpij

ð4Þ

Using label-based metrics, the classification performance is cal-
culated for each category, and the overall performance is obtained
by calculating the mean performance across all categories. Six
label-based metrics are used: micro-recall, micro-precision,
macro-recall, macro-precision, weighted-recall, and weighted-
precision. The six metrics are calculated using Eqs. (5)–(10)
(Madjarov et al. 2012; Pedregosa et al. 2011), where tpj = number
of test documents labelled correctly as positive for a category j;
fpj = number of test documents labelled incorrectly as positive
for a category j; fnj = number of test documents labelled incor-
rectly as negative for a category j; C = total number of categories
(in this application, C ¼ 6, since there are six topics in total); and
(tpj þ fnj) = total number of true labels for all test documents for
category j. During the evaluation of each category, the label-based
metrics temporarily treat the category as positive and all other
categories as negative. Micro-recall and micro-precision measure
the overall performance by counting the total number of tp, fp,
and fn across all categories. Macro-recall and macro-precision
calculate the recall and precision by counting the total number
of tp, fp, and fn for each category, and then use the arithmetic
mean performance across all categories to obtain the overall per-
formance. The weighted-based metrics are very similar to the
macro-based metrics, except that the former use the total number
of true labels for all test documents across each category as a weight
to obtain a weighted mean performance

Micro–Recall ¼
P

C
j¼1 tpjP

C
j¼1 tpj þ

P
C
j¼1 fnj

ð5Þ

Micro–Precision ¼
P

C
j¼1 tpjP

C
j¼1 tpj þ

P
C
j¼1 fpj

ð6Þ

Macro–Recall ¼ 1

C

XC

j¼1

tpj

tpj þ fnj
ð7Þ

Macro–Precision ¼ 1

C

XC

j¼1

tpj

tpj þ fpj
ð8Þ

Table 1. Example of Classifying a Testing Clause

Topic
Total

similaritya
Total similarity
differencea

Total similarity
percentage

difference (%)a

Total similarity
difference
thresholda

Total similarity
percentage

difference threshold (%)a Resulta

Air leakage topic 1,723.4 0.0 0.0 486.9 37.8 Assigned (primary)
Thermal insulation topic 1,326.9 396.5 23.0 486.9 37.8 Assigned (secondary)
Fenestration topic 406.0 1,317.4 76.4 486.9 37.8 Not assigned
Ventilation system and
equipment energy efficiency topic

304.2 1,419.2 82.4 486.9 37.8 Not assigned

Lighting power topic 222.0 1,501.4 87.1 486.9 37.8 Not assigned
Lighting system control topic 48.7 1,674.7 97.2 486.9 37.8 Not assigned

aFor the following clause: “503.2.7 Duct and plenum insulation and sealing. All supply and return air ducts and plenums shall be insulated with a minimum of
R-5 insulation when located inside the building thermal envelope and a minimum of R-8 insulation when located outside the building thermal envelope in
accordance with Table 503.2.7. When located within a building envelope assembly, the duct or plenum shall be separated from the building exterior or
unconditioned or exempt spaces by a minimum of R-8 insulation. Exceptions: 1. When located within equipment. 2. When the design temperature
difference between the interior and exterior of the duct or plenum does not exceed 15°F (8°C). All ducts, air handlers and filter boxes shall be sealed
in accordance with the Mechanical Code and SMACNA Method A.” (Houston City Council 2011).
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Weighted–Recall ¼ 1P
C
j¼1ðtpj þ fnjÞ

XC

j¼1

ðtpj þ fnjÞ
tpj

tpj þ fnj

ð9Þ

Weighted–Precision ¼ 1P
C
j¼1ðtpj þ fnjÞ

×
XC

j¼1

ðtpj þ fnjÞ
tpj

tpj þ fpj
ð10Þ

These different types of metrics can be used in combination to
indicate performance from multiple perspectives. Although related,
these metrics measure the performance in different ways (Madjarov
et al. 2012; Pedregosa et al. 2011). Example-based metrics treat all
documents with equal weight regardless of the different number of
labels the documents may have. For example, a two-label document
with only one correctly predicted label and a six-label document
with three correctly predicted labels have equal example-based re-
call (i.e., 1=2 ¼ 3=6), although the two documents contribute to the
absolute number of errors differently. In contrast to the example-
based metrics, label-based metrics take this difference (i.e., number
of labels for each document) into account. Among the three types
of label-based metrics, micro-based metrics do not consider which
category the incorrect labels come from but instead consider all
errors from all categories equally in performance assessment. In
contrast, macro-based metrics consider which category the incor-
rect labels come from and assess the overall performance in terms
of the performance for each category. In comparison to macro-
based metrics, weighted-based metrics further weigh the perfor-
mance for each category in terms of the total number of true labels
in that category. Micro-based metrics are, thus, the most stringent,
because an error from any category contributes equally to the
total performance, whereas in example-based, macro-based, and
weighted-based metrics an error could be discounted during
averaging/weighting. A high performance variance across
macro-based metrics and weighted-based metrics may indicate that
the dataset suffers from a label imbalance problem. Label imbal-
ance problems are common in multilabel classification; they occur
when some categories have much more documents than other cat-
egories (e.g., 1 versus 100) (Chawla et al. 2004; Charte et al. 2013).

Experimental Results and Analysis

The proposed ontology-based TC algorithm was tested on the
six topics using the four types of evaluation metrics. The overall

performance under each metric and their corresponding thresholds
are summarized in Table 2. Among the four types of metrics, the
example-based metric yielded the highest performance at 98.69%
recall and 92.70% precision, while the micro-based metric showed
the least performance at 97.32% recall and 86.51% precision.
These results are consistent with the fact that micro-based metrics
are the most stringent.

Evaluation of the Proposed Ontology-Based TC
Algorithm

The overall performance under each multilabel evaluation metric
may (1) illustrate the strengths and weaknesses of the proposed
methodology in classifying environmental regulatory documents,
thereby providing clues for refining the methodology for further
performance improvement; and (2) indicate some characteristics
of environmental regulatory documents for future comparison with
those of documents of other types (e.g., contract documents) and
other domains (e.g., safety).

Threshold Analysis
A threshold analysis was conducted. The thresholds (TSD thresh-
old and TSPD threshold) of each topic are keys in determining the
assignment of multiple labels to a clause. Analyzing the thresholds
of the topics may thus help in understanding the characteristics/
relationships of the topics and may reveal some clues for further
performance improvement. Based on the analysis, it is observed
that thresholds of topics may reflect the existing semantic
overlaps/relationships among the topics and, thus, the organization
of topics in the hierarchy. Three observations are made. First, a se-
mantic overlap/relationship between two topics may be reflected by
the closeness of their threshold values. For example, the semantic
relationships between the “air leakage topic” and the “thermal in-
sulation topic” (e.g., that air leakage in a building envelope directly
influences its quality of thermal insulation) was reflected by
the closeness of their TSD threshold values (486.9 and 370.1, re-
spectively). Similarly, both “lighting system control topic” and
“lighting power topic” used the same TSD threshold value (79.8).
The close/same threshold values are expected due to the existing
semantic relationships between the two topics. For example, installing
an automatic shut-off in the lighting system can save energy to help
meet the requirements of lighting power. This may be substantiated
by the fact that these two topics are located in the same branch of
the topic hierarchy. Second, the semantic distinctiveness (i.e., less
overlap) of a topic may be reflected by its small threshold values
compared to other topics. For example, the relatively small TSD
thresholds (the smallest at 79.8) of the “lighting system control

Table 2. Performance of Ontology-Based TC Approach

Topic

Ontology-based approach Machine
learning-based

approach
Total

similarity
difference
threshold

Total similarity
percentage
difference

threshold (%)

Example-based
metric

Micro-based
metric

Macro-based
metric

Weighted-based
metric

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Air leakage topic 486.9 37.8 98.69 92.70 97.32 86.51 97.65 90.44 97.32 89.01 97.30 84.30
Fenestration topic 120.2 44.0 98.69 92.70 97.32 86.51 97.65 90.44 97.32 89.01 97.30 84.30
Lighting power topic 79.8 4.3 98.69 92.70 97.32 86.51 97.65 90.44 97.32 89.01 97.30 84.30
Lighting system
control topic

79.8 17.2 98.69 92.70 97.32 86.51 97.65 90.44 97.32 89.01 97.30 84.30

Thermal insulation topic 370.1 0.5 98.69 92.70 97.32 86.51 97.65 90.44 97.32 89.01 97.30 84.30
Ventilation system and
equipment energy
efficiency topic

140.1 18.6 98.69 92.70 97.32 86.51 97.65 90.44 97.32 89.01 97.30 84.30
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topic” and the “lighting power topic” indicate that these two topics
are likely not semantically related to the other topics. This may be
reflected by the fact that these two topics are the only two topics in
their hierarchy branch. Similarly, the TSD and TSPD thresholds of
the “ventilation system and equipment energy efficiency topic”
(140.1 and 18.6%) were small compared to the other topics, indi-
cating that this topic is likely a semantically isolated topic. This
may be substantiated by the fact that it is a sole topic in its hierarchy
branch, thereby sharing less semantic overlaps with the other
topics. Less semantic overlaps with other topics makes the classi-
fication of clauses related to this topic easier, which is partially
reflected by its high performance, namely 100% and 97.8% macro-
based recall and precision, respectively. Third, the semantic domi-
nance of a primary topic, compared to secondary topics, may be
reflected by its large TSD and TSPD thresholds. For example,
the largest TSD threshold (486.9) and the second largest TSPD
threshold (37.8%) were used for the “air leakage topic.” The large
thresholds indicate that the total similarities of the secondary topics
to the labelled clauses are relatively much smaller than that of the
primary topic. This further indicates that the “air leakage topic” is
relatively more relevant to these clauses than their secondary topics.

Performance Analysis
The proposed ontology-based TC methodology achieved overall
recall values from 97.32 to 98.69% and overall precision values
from 86.51 to 92.70%. First, compared to other ontology-based
TC efforts, the proposed methodology: (1) outperforms some ef-
forts (e.g., Fang et al. 2007; Wei et al. 2006) in both recall and
precision; (2) outperforms some efforts in a limited way. For ex-
ample, the proposed algorithm outperforms some efforts (Song et al.
2005; Yang et al. 2008) in recall under all four metrics but in pre-
cision under only example-based and macro-based metrics; and
(3) is outperformed by some efforts in a limited way. For example,
He et al. (2004) only addressed a single-label binary classification
problem, though they achieved both recall and precision values
of over 97%. Second, in terms of performance improvement
compared with the nonontology-based, supervised ML-based TC
[proposed in the authors’ previous work (Zhou and El-Gohary
2015)], the proposed approach shows improvement in both recall
and precision (average improvement of 0.5% in recall and 5.4% in
precision), rather than a trade-off improvement [e.g., recall was im-
proved at the expense of precision in Wei et al. (2006), Fang et al.
(2007), and Yang et al. (2008)]. The proposed algorithm shows
more improvement in precision compared with recall because many
incorrect labels are filtered out during the assignment of secondary
labels.

Among all four types of evaluation metrics, (1) the example-
based metrics showed the highest performance, at 98.69% recall
and 92.70% precision. This indicates a high performance level;
(2) the most stringent metric—the micro-based metrics—showed
97.32% recall and 86.51% precision. This provides the most
conservative performance estimate for comparison with the
nonontology-based, ML-based approach; (3) the macro-based
metrics showed 97.65% recall and 90.44% precision by evaluating
the performance in terms of each category; and (4) the weighted-
based metrics showed 97.32% recall and 89.01% precision. The
small difference between the macro-based and weighted-based
metrics (a difference of 0.33% in recall and 1.43% in precision)
may indicate that the dataset does not suffer from label imbalance
problems.

An error analysis was conducted to identify the sources of er-
rors. Precision errors come from incorrectly assigning false labels
to some clauses. A semantic relationship between two or more
topics may result in misclassification among these topics. For

example, the following clause was labelled incorrectly with
“thermal insulation topic,” in addition to the correct label “air leak-
age topic,” since any air leakage in the building thermal envelope
may compromise the performance of thermal envelope insulation:
“C402.4.8 Recessed lighting. Recessed luminaires installed in the
building thermal envelope shall be sealed to limit air leakage
between conditioned and unconditioned spaces” (ICC 2012).

Recall errors come from incorrectly missing to assign true labels
to some clauses. A semantic dominance of a primary topic, com-
pared to secondary topics, may result in missing secondary labels.
For example, one secondary label (“thermal insulation topic”) was
missed for both of the following two clauses, because their primary
topics (“air leakage topic” and “fenestration topic” for Clauses 1
and 2, respectively) dominated semantically: (1) “C403.2.7.3.3
High-pressure duct systems. Ducts designed to operate at static
pressures in excess of 3 inches water gauge (w.g.) (750 Pa) shall
be insulated and sealed in accordance with Section C403.2.7.” (ICC
2012); and (2) “502.3.2 Maximum U-factor and SHGC. For
vertical fenestration and skylights, the maximum U-factor and solar
heat gain coefficient (SHGC) shall be as specified in Table 502.3.”
(ICC 2009).

Performance Comparison: Ontology-Based Approach
versus ML-Based Approach

The performance of the proposed ontology-based approach was
further compared with that of the nonontology-based, supervised
ML-based approach [proposed in the authors’ previous work (Zhou
and El-Gohary 2015)], in terms of recall and precision, as illus-
trated in Fig. 6. In this work (Zhou and El-Gohary 2015), SVM
was selected based on performance after testing ten commonly used
ML algorithms, including SVM (implemented in both linear and
rbf kernel), DT [implemented by classification and regression
trees algorithm (Breiman et al. 1984)], NB (implemented by three
variances of algorithms: Gaussian NB, multinomial NB, Bernoulli
NB), kNN, radius-based neighbors, nearest centroid, random for-
est, and gradient boosted regression trees (Aggarwal and Zhai
2012; Breiman 2001; Friedman 2001).

Under the four evaluation metrics, the ontology-based approach
achieved recall values from 97.32 to 98.69%, and precision values
from 86.51 to 92.70%. Thus, based on the testing data, it consis-
tently outperformed the nonontology-based, supervised ML-based
approach that had achieved 97.30% and 84.30% overall average
recall and precision, respectively. This shows that the proposed
ontology-based approach is potentially successful in utilizing the
semantics of the text for improving the performance of TC.

Limitations and Future Work

Two main limitations of the work are acknowledged. First, the
performance of the proposed approach—and of ontology-based
approaches in general—depends on the quality of ontologies used.
In their future work, the authors will test the proposed approach in
classifying environmental regulatory documents using other ontol-
ogies. Second, the proposed methodology was tested on only six
topics. In their future work, the authors will test the methodology
in classifying environmental regulatory clauses based on more
environmental topics.

In future work, the authors will also continue to refine the pro-
posed ontology-based methodology. For example, a more complex
threshold function could be used for assigning labels, considering
that the TSD threshold value may relate to the length of each clause.
Since a longer clause usually contains more concepts, its TS to a
topic may be much larger than the TS of a shorter clause to the same
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topic. Therefore, the TSD of other topics for a longer clause may be
much larger than that of a shorter clause.

For recommendations for future research, other researchers may
also adapt the proposed methodology for classifying documents in
other domains. Such adaptation research could focus on three main
areas. First, testing the proposed methodology in classifying
other types of documents [e.g., Occupational Safety and Health
Administration (OSHA) standards] based on other types of topics
(e.g., safety topics). Second, determining the threshold values of
the different topics. Third, investigating how the characteristics
(e.g., depth and breadth) of an ontology could affect the level of
performance of the proposed methodology.

Contribution to the Body of Knowledge

This work contributes to the body of knowledge on two main lev-
els. First, a new ontology-based TC methodology for classifying
environmental regulatory documents in the construction domain
is proposed. This work offers a leading initiative; it is the first
ontology-based TC effort in the construction domain. In
comparison to the commonly used nonontology-based, supervised
ML-based approach [e.g., the authors’ previous work (Zhou and El-
Gohary 2015)], the proposed ontology-based approach
1. Utilizes the knowledge of the domain (in the form of an

ontology) to capture the semantics of the text for enhanced
classification: In nonontology-based, ML-based TC, some
semantics are captured partially and indirectly using statisti-
cal and probabilistic methods. For example, the conditional
probability of adjacent words in a sentence may indicate
some useful word relationships for classification (e.g., using
a Bigram model). However, such limited semantic in-
formation is not sufficient in adequately capturing the se-
mantics of the text. In comparison, an ontology-based
approach allows for capturing deeper semantic information
by representing each category in terms of concepts and
relationships.

2. Outperforms in terms of recall and precision: The experimen-
tal results showed that the proposed algorithm achieved higher

recall and precision in comparison to that proposed in Zhou
and El-Gohary (2015).

3. Eliminates the need for labeling training data, since
unsupervised deep learning is implemented for exploring
similarities: This makes the proposed approach more practical
to use in real-life applications where most of the data are
unlabelled.

4. Reduces the efforts of data preprocessing: The proposed
algorithm only requires data in .txt format. In contrast,
nonontology-based ML-based TC requires preprocessing of
data into numeric vectors using text representation methods
like the bag of words model.

5. Is easier to adapt for classifying other types of documents:
Using the proposed methodology, the major effort in TC lies
in developing an ontology (if one is not readily available) and
labeling the testing dataset. In contrast, nonontology-based,
ML-based TC requires experimental testing of different text
representation methods, term weighting schemes, ML algo-
rithms, etc.

Second, an improved method for ontology-based TC is offered.
In comparison to existing ontology-based TC methods, the pro-
posed method (1) uses unsupervised instead of supervised ML,
which saves the manual effort needed in labeling the training data;
(2) deals with the multilabel classification problem in a direct way
instead of conducting problem transformation, which reduces the
data preparation and classifier building effort; and (3) uses deep
instead of shallow learning, which aims to better represent the com-
plexity that exists in text semantics.

Conclusions

This paper proposed an ontology-based, multilabel TC approach
for classifying environmental regulatory clauses for supporting
ACC in construction. A domain ontology was developed for
representing the hierarchy of environmental topics and the concepts
and relationships associated with each topic. An unsupervised deep
learning technique was used to learn the similarities between each
clause (based on the terms in the clause) and each topic (based on
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the ontological concepts related to this topic) for classifying each
clause into zero or more topics according to two experimentally
set similarity thresholds. Four types of multilabel classification
evaluation metrics were used to measure the performance of the
proposed approach. Based on the testing data, across the four types
of metrics, the proposed algorithm achieved overall recall and
precision values from 97.32 to 98.69% and from 86.51 to
92.70%, respectively.

The experiment results also indicate the following: (1) topics
may semantically overlap because of their interrelationships. For
example, “air leakage topic” and “thermal insulation topic” overlap
because an air leakage in the building envelope is likely to affect the
performance of building thermal insulation; (2) the semantic over-
laps among topics may be manifested through their positions in the
topic hierarchy. For example, the semantically overlapping “air
leakage topic” and “thermal insulation topic” are located under
the same branch in the hierarchy; (3) threshold values may help
identify semantic relationships among topics. For example, close
threshold values of two topics may indicate that two topics are se-
mantically overlapping or related to each other; relatively small
threshold values of one topic compared to other topics may indicate
semantic distinctiveness of that topic (i.e., less overlaps with the
other topics); and relatively large thresholds of a primary topic
compared to the secondary topics may indicate semantic domi-
nance of the primary topic compared to the secondary topics.
Therefore, finding the “right” threshold values are key in achieving
optimal classification performance; and (4) different thresholds
should be used for different topics. Since each topic is associated
with different semantics, the thresholds values should be custom-
ized for each topic to determine the optimal assignment of clauses
to that topic. The thresholds should be set experimentally for maxi-
mizing performance.

Compared with existing ontology-based TC methodologies,
the proposed methodology uses an unsupervised deep learning
algorithm for capturing the semantics behind the words and ad-
dresses the multilabel classification problem in a direct way without
transformation to multiple single-label ones. Compared with the
nonontology-based, supervised ML-based approach (proposed in
the authors’ previous work), the proposed ontology-based approach
outperforms based on four evaluation metrics, reduces the efforts of
data preprocessing and classifier building, and is easier to adapt for
classifying other types of documents.

The proposed ontology-based TC approach could be general-
ized to other domains such as safety regulatory documents. The
same methodology could be employed and tested, but a different
ontology—one that is relevant to the domain of application
(e.g., safety ontology)—would be needed. Like any other
ontology-based method, the performance of the proposed methodol-
ogy could vary depending on the quality of the ontology; and like any
other ML-based algorithm, the performance of the proposed method
could vary depending on the size of the training and testing data sets.

In future work, the authors will further test the proposed meth-
odology in classifying other types of construction documents
(e.g., contract specifications). Further refinement of the methodol-
ogy may be proposed based on the testing results.
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Vogrinčič, S., and Bosnić, Z. (2011). “Ontology-based multi-label classi-
fication of economic articles.” Comput. Sci. Inf. Syst., 8(1), 101–119.

Waraporn, P., Meesad, P., and Clayton, G. (2010). “Ontology-supported
processing of clinical text using medical knowledge integration for
multi-label classification of diagnosis coding.” Int. J. Comput. Sci.
Inf. Security, 7(3), 30–35.

Wei, G. Y., Yu, J., Ling, Y., and Liu, J. (2006). “Design and implementation
of an ontology algorithm for web documents classification.” Lecture
notes in computing science (LNCS), Springer, Berlin, 649–658.

Wijewickrema, C. M., and Gamage, R. (2013). “An ontology based fully
automatic document classification system using an existing semi-
automatic system.” Proc., IFLA 2013 World Library and Information
Congress, International Federation of Library Associations and Institu-
tions (IFLA), Netherlands.

Yang, X. Q., Sun, N., Zhang, Y., and Kong, D. R. (2008). “General frame-
work for text classification based on domain ontology.” Proc., 3rd Int.
Workshop Semantic Media Adaptation and Personalization (SMAP),
IEEE, Washington, DC, 147–152.

Yu, F., Zheng, D. Q., Zhao, T. J., Li, S., and Yu, H. (2006). “Text classi-
fication based on a combination of ontology with statistical method.”
Proc., 5th Int. Conf. Machine Learning and Cybernetics, IEEE,
Washington, DC, 13–16.

Zhang, J., and El-Gohary, N. (2013). “Semantic NLP-based information
extraction from construction regulatory documents for automated
compliance checking.” J. Comput. Civ. Eng., 10.1061/(ASCE)CP
.1943-5487.0000346, 04015014.

Zhang, J., and El-Gohary, N. (2015). “Automated information transforma-
tion for automated regulatory compliance checking in construction.”
J. Comput. Civ. Eng., 10.1061/(ASCE)CP.1943-5487.0000427,
B4015001.

Zhang, M. L., and Zhou, Z. H. (2007). “ML-KNN: A lazy learning ap-
proach to multi-label learning.” Pattern Recognit., 40(7), 2038–2048.

Zhong, B. T., Ding, L. Y., Luo, H. B., Zhou, Y., Hu, Y. Z., and Hu, H. M.
(2012). “Ontology-based semantic modeling of regulation constraint for
automated construction quality compliance checking.” Automat.
Constr., 28(2012), 58–70.

Zhou, P., and El-Gohary, N. (2015). “Domain-specific hierarchical text
classification for supporting automated environmental compliance
checking.” J. Comput. Civ. Eng, 10.1061/(ASCE)CP.1943-5487
.0000513, 04015057.

© ASCE 04015058-13 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 04015058 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
A

t U
rb

an
a 

on
 1

0/
07

/1
5.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

http://dx.doi.org/10.1016/j.patcog.2012.03.004
http://dx.doi.org/10.1061/(ASCE)AE.1943-5568.0000049
http://dx.doi.org/10.1061/(ASCE)AE.1943-5568.0000049
http://dx.doi.org/10.1061/(ASCE)AE.1943-5568.0000049
http://dx.doi.org/10.1061/(ASCE)AE.1943-5568.0000049
http://dx.doi.org/10.7763/IJMLC.2012.V2.158
http://dx.doi.org/10.7763/IJMLC.2012.V2.158
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000301
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000301
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000301
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000301
http://dx.doi.org/10.1145/505282.505283
http://dx.doi.org/10.1061/(ASCE)0887-3801(2010)24:2(203)
http://dx.doi.org/10.1061/(ASCE)0887-3801(2010)24:2(203)
http://dx.doi.org/10.1061/(ASCE)0887-3801(2010)24:2(203)
http://dx.doi.org/10.4018/IJDWM
http://dx.doi.org/10.2298/CSIS100420034V
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000346
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000346
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000346
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000346
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000427
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000427
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000427
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000427
http://dx.doi.org/10.1016/j.patcog.2006.12.019
http://dx.doi.org/10.1016/j.autcon.2012.06.006
http://dx.doi.org/10.1016/j.autcon.2012.06.006
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000513
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000513
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000513
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000513

