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Abstract: Automated environmental compliance checking requires automated extraction of rules from environmental regulatory textual
documents such as energy conservation codes and EPA regulations. Automated rule extraction requires complex text processing and analysis
for information extraction and subsequent formalization of the extracted information into computer-processable rules. In the proposed auto-
mated compliance checking (ACC) approach, the text is first classified into predefined categories before information extraction (IE). The
advantages are that irrelevant text will be filtered out during text classification (TC) and text with similar semantic meaning will be grouped,
thereby improving the efficiency and accuracy of further IE and compliance reasoning (CR). The categories used for TC are predefined in a
semantic TC topic hierarchy, and the classified text is subsequently used in semantic IE and semantic CR. This paper presents the proposed
machine learning (ML)-based TC algorithm for classifying clauses in environmental regulatory documents based on the TC topic hierarchy.
In developing the algorithm, different text preprocessing techniques, ML algorithms, and performance improvement strategies were tested
and used. The final TC algorithm was tested on 10 environmental regulatory documents and evaluated in terms of precision and recall. The
algorithm achieved approximately 97 and 84% average recall and precision, respectively, on the testing data. DOI: 10.1061/(ASCE)CP
.1943-5487.0000513. © 2015 American Society of Civil Engineers.
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Introduction

Compliance checking aims to ensure the compliance of a project
with applicable norms such as laws, regulations, codes, and con-
tractual requirements. Manual compliance checking is a time-
consuming and error-prone task (Eastman et al. 2009; Tan et al.
2010). Automated compliance checking (ACC) has, therefore,
attracted much research effort to reduce the cost and time of this
task. Examples of the most recent efforts in the area of ACC in
construction include (1) using an ontology-based approach to
model regulatory constraints for supporting construction quality
compliance checking (Zhong et al. 2012); and (2) using manually
encoded rules for building design checking (Eastman et al. 2009;
Tan et al. 2010; Nawari 2012). Despite the importance of these ef-
forts, they require manual extraction of requirements from textual
regulatory documents (e.g., codes) and encoding of these require-
ments in a computer-processable rule format, thereby making the
compliance checking process not entirely automated.

To address this gap, in their previous work, the authors proposed
a hybrid deontic-based and natural language processing (NLP)-
enabled approach for automated regulatory and contractual compli-
ance checking in construction. A deontic model for ACC in

construction (a semantic model based on the theory of rights
and obligations) was proposed to support normative automated
reasoning (Salama and El-Gohary 2013a). The NLP techniques,
including text classification (TC) (Salama and El-Gohary 2013b;
Zhou and El-Gohary 2014) and information extraction (IE) (Zhang
and El-Gohary 2013), were proposed to support automated text
processing and analysis for automated IE from regulatory and con-
tractual documents and subsequent formalization of the extracted
information into computer-processable rules. In the proposed ACC
approach, the text is first classified into predefined categories be-
fore IE. The advantages are that irrelevant text will be filtered out
during TC and text with similar semantic meaning will be grouped,
thereby improving the efficiency and accuracy of further IE.

In this research, the authors build on their previous work in NLP
(Salama and El-Gohary 2013b) and TC in seven main ways. First,
the classification and text features of a different type of document
are explored—environmental regulatory documents instead of gen-
eral conditions of contractual documents. Second, and more impor-
tantly, a deeper TC granularity level is addressed. This research
deals with a more detailed level of TC topics–classifying the text
according to topics in the fifth level of the hierarchy instead of the
first level. As you go to a more specialized level of topics, TC be-
comes typically more challenging, because the levels of knowledge
and terminology of the text become more specialized and more
specific, thereby making the text harder to discriminate (Silla
and Freitas 2011). Third, a multiclass classification model is used,
to deal with the multilabel classification problem, instead of a sim-
ple binary classification model. Fourth, the use of domain-specific
stopword lists is explored as a means for domain adaptation. Fifth,
two text representation methods are tested and evaluated: a com-
monly used text representation method [bag of words (BOW)
model] and a more complex method that can capture partial text
semantics (bigram model). Sixth, two supervised term weighting
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schemes [term frequency relevance frequency (TFRF) and term
frequency maximum relevance frequency (TFmaxRF)] that are used
for binary classification are modified (to TFRFM and TFmaxRFM,
where the subscript M means modified) to adapt them to multiclass
classification problems, and are tested and evaluated in comparison
with the commonly used unsupervised term weighting scheme
[term frequency inverse document frequency (TFIDF)]. Seventh,
more ML algorithms are tested, and some important parameters are
tuned for each algorithm, in an effort to improve the process of
selecting the best ML algorithm (including its parameters).

The following sections of the paper present the proposed
domain-specific, ML-based hierarchical TC algorithm for classifying
environmental clauses according to a set of predefined, semantic
labels. The labels are defined based on a hierarchy of topics in the
ACC deontic model. The problem is formulated as a multilabel
classification problem because one clause could be assigned more
than one label. In developing the algorithm, the performance of a
number of popular ML algorithms and NLP techniques (data pre-
processing, feature selection, and stopword removal) were tested
and evaluated.

Background

Text Classification Problems

NLP is a subfield of artificial intelligence that aims to enable
computers to process natural language in a human-similar way
(Manning and Schutze 1999). TC is a subfield of NLP that aims
to assign documents (or text units such as paragraphs or clauses) to
one or more predefined categories (Manning and Schutze 1999).
The text is usually unstructured (i.e., does not have a clear
computer-readable structure). A category is represented by a label
and may refer to a class or concept. TC problems can be categorized
as multilabel or single-label classification problems (Tsoumakas
and Katakis 2007; Ghamrawi and McCallum 2005). Multilabel
classification aims to assign more than one label to a document.
In contrast, single-label classification aims to predict only one label
for each document. A single-label classification problem can be
further categorized as (1) a binary classification problem, if there
are only two classes (usually as a positive class and a negative
class) in the data set; or (2) a multiclass classification problem, if
the number of classes is more than two.

There are two common methods to solve multilabel classifica-
tion problems (Tsoumakas and Katakis 2007). The less commonly
used method is the algorithm adaptation method (AAM), which can
cope with multilabel classification problems directly by modifying
or extending some available algorithms. The advantage of AAM is
that it can predict a set of labels at one time. However, its perfor-
mance is still not good enough (Tsoumakas and Katakis 2007).
The most commonly used method is the problem transformation
method (PTM), in which a multilabel classification problem can
be transformed into two or more single-label classification prob-
lems by assuming the independence of labels. If the number of
labels in the original data sets is L, the transformation will result
in L single-label classification problems (and thus L classifiers) and
L number of data sets (one data set for each label Li). Each data set
is used to train one classifier on predicting the label Li of that data
set. During testing, each test clause is processed by those L number
of classifiers one by one, in which each classifier decides whether
to assign its corresponding label Li or not. The total number of
assigned labels during this process form the final label set of this
test clause.

A multilabel classification problem that was transformed to a
single-label problem can be further addressed using a binary clas-
sification or a multiclass classification approach (Aly 2005). For
each of the transformed data sets with label Li, a binary classifi-
cation approach defines the label Li as the positive class and
combines all other labels in a negative class, and then applies
binary classification algorithms to address this binary classification
problem. In contrast, a multiclass classification approach does not
combine the labels and directly uses multiclass classification algo-
rithms. The advantage of a multiclass classification approach is
that data imbalance problems resulting from the transformation
(i.e., combining labels results in a relatively larger negative data
set in comparison to the smaller positive data set) could be avoided.

Text Classification Using Machine Learning
Techniques

ML techniques are commonly used for TC. ML refers to a system
learning from available data or previous experience (Manning and
Schutze 1999). ML techniques can be categorized into three main
types: (1) supervised ML: human guidance is provided in the form
of labeled documents (all documents are given one or more prede-
fined labels), in which a training data set is used to train the clas-
sifier to automatically classify a given document according to a
predefined set of labels, and a testing data set is used to test the
performance of the classifier; (2) unsupervised ML: documents
are not labeled for training; and thus, instead of classifying given
documents according to a predefined set of labels, classifiers auto-
matically (and without human guidance) cluster documents into
potentially useful categories; and (3) semisupervised ML: only a
fraction of the training data set is labeled, which provides partial
human guidance. In comparison to unsupervised and semisuper-
vised ML, supervised ML algorithms require higher manual effort
for preparing the training data set. However, their precision and
recall are typically higher because of the benefit from human guid-
ance. In this paper, a supervised ML-based approach is adopted
because of the desired high recall results.

ML TC requires the representation of documents in terms
of numerical features. The most commonly used method for rep-
resenting features of the text is the BOW model (Manning and
Schutze 1999). In this model, a document is represented as an un-
ordered set of words along with their corresponding frequencies of
occurrence in this document, and the positions of the words are
ignored. The words are all drawn from the vocabulary used in
the document. The frequency of each word is then normalized
by the total occurrence of this word in the whole document collec-
tion. The advantages of the BOW model are simplicity and com-
putational efficiency, although they come at the cost of discarding
the relationships among words in terms of their relative positions in
the document. Another, but less commonly used, text representa-
tion method is the bigram model (Manning and Schutze 1999). In
this model, the semantic relationships between any two adjacent
words are captured. For example, the word group “spring thermal
radiation” is more likely to occur than “thermal spring radiation”
for the building energy efficiency topic. A document is represented
by all such adjacent pairs of words along with their corresponding
frequencies of occurrence in this document. Aword-pair frequency
in one document is then normalized by its total frequency in the
entire set of documents.

Because different features have different powers in indicating a
category, they should be assigned different weights. There are two
types of weighting schemes: unsupervised term weighting and
supervised term weighting. Membership information refers to
the known information about which category a training document
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belongs to. Unsupervised term weighting does not use this infor-
mation. The most state-of-the-art unsupervised weighting scheme
is TFIDF (Manning et al. 2009). Term frequency (TF) refers to the
total occurrence frequency of a term in one document; document
frequency (DF) refers to the number of documents in the entire
document collection that contains this term; and IDF refers to
the inverse of DF. TFIDF assumes that (1) if a term occurs fre-
quently in one document, then it is highly relevant to the category
of this document, and (2) if a term occurs frequently in many docu-
ments in the collection, then it is probably not discriminative of any
category of documents. Accordingly, TFIDF aims to assign (1) a
higher weight to a term that appears frequently in one document,
and (2) a lower weight to a term that appears frequently in many
documents in a collection.

In contrast to unsupervised term weighting, membership infor-
mation is used in supervised term weighting. Because not all cat-
egories have the same number of documents, supervised term
weighting takes this statistical document distribution information
into account when calculating the weight of a term in a document.
Examples of newly developed supervised term weighting schemes
include TFRF (Man et al. 2009) and logarithmic TFmaxRF (Xuan
and Quang 2014), in which TF is same as that in TFIDF weighting
and RF measures the relevance of a term to a category.

Because not all features contribute to the discrimination of a
category, nondiscriminative features need to be filtered out to en-
hance the power of those discriminative features. Feature selection
(Manning et al. 2009) is the process of selecting a subset of the
features in the training data set and using this subset of features
to represent the text. There are two main advantages of implement-
ing feature selection. First, the computational efficiency can be im-
proved by selecting a fraction of the features, especially in cases in
which the feature size can be in the order of millions and/or when
using algorithms that require expensive computation like Naïve
Bayes (NB) algorithms. Second, as mentioned previously, perfor-
mance can be improved by reducing nondiscriminative features and
keeping the most discriminative features. There are two main ap-
proaches to selecting features: univariate feature selection (UFS)
and recursive feature selection (RFS).

UFS tries to use univariate statistical tests to select features. UFS
involves calculating a score for each feature using a scoring func-
tion, ranking features based on the scores, and then selecting the
best features based on the ranking. To evaluate whether a feature
is helpful in representing a category, a utility function is defined as
U (feature, category) for scoring features. Feature scoring is the
process of ranking features based on a utility function U (feature,
category). All features ranked below a predefined threshold are
discarded and only the features above the ranking threshold are
used in classification. Common feature scoring functions used
for multiclass classification include Chi-square (CHI), information
gain (IG), and mutual information (MI). For the details of these
feature scoring methods, the readers are referred to Aggarwal and
Zhai (2012).

Instead of using a scoring function to rank and select features,
RFS applies a ML algorithm to select features based on the ranking
of features in terms of weights. The ML algorithm is used to assign
weights to the features for ranking. The initial feature set is used as
training data for the ML algorithm. The learned classifier assigns a
weight to every feature. Then, a predefined number of features (N)
with the lowest absolute weights are discarded. The remaining
features are used as new training data for the ML algorithm. Then
the weight of each feature is updated by applying the ML algorithm
again on the new training data and another N features with the low-
est weights are pruned. This recursive process terminates when the

total number of remaining features reaches another predefined
number (M).

Hierarchical Text Classification

TC could be flat (nonhierarchical) or hierarchical. Different from
flat TC, in hierarchical TC, the labels are organized into a class
hierarchy (usually represented as a tree structure or class tax-
onomy) (Silla and Freitas 2011; Fagni and Sebastiani 2010; Yoon
et al. 2006; Sun et al. 2003; Sun and Lim 2001). Representing the
labels in the form of a class hierarchy may support the TC process
by offering a better description of the meanings of the labels in
terms of its superclasses and subclasses. Hierarchical TC problems
can be addressed using one of the following three approaches:
flat approach, local classifier approach, and global classifier ap-
proach (Silla and Freitas 2011). The flat approach does not take the
hierarchical information into account and only uses the labels of
the leaf classes (Silla and Freitas 2011). When a leaf class is as-
signed to a document, all of its superclasses are also assigned to
that document. This provides a simple but indirect solution to hier-
archical TC.

The local classifier approach takes local hierarchical informa-
tion into account (Silla and Freitas 2011; Yoon et al. 2006; Sun
et al. 2003; Sun and Lim 2001). It takes a top-down approach
in assigning documents to classes; for each document, the classifier
assigns its first level class, then proceeds to assign the document to
the direct subclasses of that class, and so on, until reaching the leaf
level of the hierarchy. The main disadvantage of the local classifier
approach is that a misclassification of one class would propagate
down the hierarchy to all subclasses. This may lead to low perfor-
mance results at the lower levels of the hierarchy.

The global classifier approach takes the class hierarchy as a
whole into account (Silla and Freitas 2011; Yoon et al. 2006;
Sun et al. 2003). It tries to build a single classifier that can predict
all classes from all levels of the hierarchy at one time. Global clas-
sifiers are relatively complex and their performances are usually
inconsistent. This has limited the application of global classifiers.

In this research a flat approach is used; all labels used for
classification are leaf classes. Although flat TC is used, retrieving
documents on a parent level is easily achieved by aggregating the
retrieved documents that have been retrieved on the leaf=children
levels.

State of the Art and Knowledge Gaps in Text
Classification

A variety of ML-based TC algorithms (e.g., Aggarwal and Zhai
2012) have been developed in the computer science (CS) domain.
Some common methods and popular algorithms implementing
these methods include (1) decision trees (DT) method implemented
in algorithms of iterative dichotomiser3 (ID3), classifier4.5 (C4.5),
classifier5 (C5), and classification and regression trees (CART)
(Breiman et al. 1984); (2) probabilistic method implemented in
NB algorithm; (3) linear and nonlinear method implemented in
support vector machine (SVM) algorithm with linear and radial ba-
sis function (rbf) kernel; (4) proximity-based method implemented
in algorithms of nearest neighbor and nearest centroid; and (5) en-
semble method implemented in algorithms of random forest (RF)
and gradient boosted regression trees (GBRT). For the details
of these methods, the readers are referred to Aggarwal and Zhai
(2012), Breiman (2001), and Friedman (2001). Similar to other
TC problems, a number of ML algorithms were explored for multi-
class classification problems. For example, Malkani and Gillie
(2012) used SVM and NB to classify tweets into a set of topics,
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Wu et al. (2007) used NB and k-nearest neighbors (kNN) to
classify news stories, and Giorgetti and Sebastiani (2003) used
NB and SVM to classify answers of open-ended questions in
surveys.

Despite of these enormous efforts in the CS domain, many chal-
lenges still exist in constructing classifiers that can be effective
across different domains and, thus, TC models remain highly
domain specific (Blitzer et al. 2007). There is no single best TC
algorithm across all domains; the performance of one best perform-
ing ML algorithm tested on one data set is not necessarily the best
one when tested on another data set, especially when data sets from
different domains are more dissimilar (Sebastiani 2002). As dis-
cussed in Salama and El-Gohary (2013b), it is difficult to reuse
an existing classifier from one domain to another (e.g., medical
versus construction), from one subdomain to another (e.g., safety
versus environmental), or from one application to another
(e.g., document management versus ACC), because text features
vary across domains and subdomains, and performance require-
ments vary across applications (e.g., for ACC, unlike other applica-
tions, recall is more critical than precision). There is, thus, a need to
identify the specific features of domain text and how to adapt or
tune a classifier to those specific features and to the specific perfor-
mance requirements of the domain or application. A construction-
domain-specific TC algorithm is, thus, required for classifying
construction documents.

A number of research efforts in the construction domain focused
on TC (e.g., Caldas et al. 2002; Kovacevic et al. 2008; Mahfouz
2011; Salama and El-Gohary 2013b). However, hierarchical TC
work in the construction domain is limited in the following ways:
(1) the performance of hierarchical TC tends to drop quickly when
reaching a deeper level in the hierarchy. For example, Caldas and
Soibelman (2003) addressed a three-level multilabel binary classi-
fication problem, but the accuracy dropped from 96% at the first
level to 86% at the third level; (2) the algorithms can only handle
single-label classification problems that were transformed from a
multilabel problem using a binary classification approach. Dealing
with a transformed multilabel classification problem as a binary
instead of a multiclass classification problem may encounter data
imbalance problems. A data imbalance problem occurs when the
documents of one class are much more than the documents of an-
other class(es) (Sun et al. 2007); (3) the algorithms are not suffi-
ciently adapted to the domain. It is important to utilize the features
and methods that work best for each domain (Blitzer et al. 2007).
For example, domain-specific stopwords could be removed to
make domain content-bearing words more discriminative; (4) the
types of ML algorithms that were tested and evaluated are limited.
For example, to the best of the authors’ knowledge, the perfor-
mance of ensemble methods in classifying construction text were
not tested; and (5) the types of term weighting schemes that were
tested and evaluated are also limited. Some newly developed super-
vised term weighting schemes that showed effectiveness in some
domains (e.g., Xuan and Quang 2014) were not tested in classify-
ing construction text.

To address these gaps, this research explores the following:
(1) the use of multiclass classification approach to deal with multi-
label classification problems; (2) the use of a domain-specific stop-
word list as an approach for domain adaptation; (3) the testing of a
number of ML algorithms (e.g., RF and GBRT algorithms that im-
plement the ensemble method) and term weighting schemes that
were not commonly evaluated in the construction domain; and
(4) the effect of feature selection and domain-specific stopword re-
moval on the performance of hierarchical classification of environ-
mental regulatory documents.

Methodology for Domain-Specific Hierarchical Text
Classification of Environmental Regulatory
Documents

The TC methodology is summarized in Fig. 1. The TC label hier-
archy (Step 1) is part of the deontic ACC model [the presentation of
the model is outside of the scope of this paper, and is presented in
Salama and El-Gohary (2013a)]. Steps 4 and 5 are iterative. Feature
selection and domain-specific stopword removal are tested as
potential performance improvement strategies.

Step 1: TC Topic Hierarchy Development

This paper focuses on analyzing the energy efficiency topic, which
is a subtopic of the environmental topic (as per Fig. 2). To develop
the topic hierarchy, the established methodologies for taxonomy
development (e.g., El-Gohary and El-Diraby 2010) were followed.
The concepts were extracted based on a review of the main relevant
documents in the domain [e.g., environmental codes and standards
such as the 2012 International Energy Conservation Code (ICC
2012) and the 2010 ASHRAE Energy Standard for Buildings
Except Low-Rise Residential Buildings (ASHRAE 2010)]. Sub-
sequently, the concepts were structured into a taxonomy using a
combination of top-down and bottom-up approaches. The commer-
cial building energy efficiency topic subhierarchy is shown in
Fig. 2. All the leaf nodes (10 subtopics) were used as labels of
classification.

Step 2: Data Preparation and Multilabel Classification
Problem Transformation

Approximately 1,200 clauses were collected from 10 regulatory
documents (Fig. 3). These documents were selected because they
all cover energy efficiency requirements, which is the focus of this
paper. In dividing a document into clauses, the document was split
to the most granular subheading level. One problem that is gener-
ally faced in automatically splitting data is data noise elimination.
Usually, original data are in different formats (e.g., .txt, .pdf, and
.doc) and/or different encodings (e.g., ANSI and Unicode), whereas
a software system can only process files in a certain format. The
collected set of clauses were transformed into .txt format as re-
quired by the developed TC system. However, noise like unknown
characters that occur during transformation to .txt format could
undermine the performance of TC. The noise was reduced by auto-
matically transforming different encodings to the UTF-8 encoding.

Data sufficiency is also, generally, another challenge for ML-
based TC. There is no set definition of how much data are consid-
ered sufficient. In the construction domain, especially, there is no
benchmark of what is a sufficient data size. However, generally, the

STEP 1: STEP 2:

STEP 4: 

STEP 3:

STEP 5: 

TC Topic Hierarchy
Development

Classification Result 
Evaluation

Data Preparation and 
Multilabel Classification 
Problem Transformation

Multiclass Text
Classification

Data Preprocessing

ML Algorithm Selection 
and Implementation

Performance Improvement

Feature Selection

Recursive Domain-
Specific Stopword 

Removal

Fig. 1. Methodology for domain-specific hierarchical text
classification
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more data collected, the more confident it is believed that the data
are sufficient. A series of popular data sets in the CS domain
include kdd 2010 and 20 Newsgroups (Chang and Lin 2011).
The main properties (number of classes, data size, and number
of features) for popular data sets have varied, for example, from
2 to 105 classes, 44 to 10,000 data pieces, and approximately
7,200 to 55,000 text features (Chang and Lin 2011). After data pre-
processing (Step 3), the used data set was composed of 10 classes
(or topics), approximately 1,200 data pieces (or clauses), and 4,200
text features. Compared with popular data sets in other applica-
tions, the number of features in this set is relatively small. However,
it is considered sufficient for the following reasons: (1) the vocabu-
lary used in environmental regulations is relatively standardized;
and, thus, the number of distinctive features (e.g., “wattage,” “day-
light,” “switch,” “insulation,” “leakage,” and “ventilation”) for each
class (topic) is relatively small. As a result, a small feature size
would result in including sufficient features to identify a text;
and (2) the length (number of words) of a clause is relatively small;
and, typically, the number of distinctive features of a data piece is
proportional to its length. The number of clauses collected in the
experiment is also considered sufficient because of the relatively
high performance that the classifier achieved.

After data collection, each clause was manually labeled with one
or more of the 10 topics, which were identified in Step 1. Which
labels should be assigned to a clause is based on analyzing the con-
tent of that clause. For example, the following clause was assigned
the labels air leakage topic and thermal insulation topic, because it

contains requirements for high-pressure ducts in terms of thermal
insulation and sealing to prevent air leakage: “Ducts designed to
operate at static pressures in excess of 3 in. water gauge (w.g.)
(750 Pa) shall be insulated and sealed in accordance with Section
C403.2.7” (ICC 2012). For convenience of computer processing,
each of the 10 labels was represented by a unique serial number
from 1 to 10. The labeling of the data set was reviewed by two
other researchers, and 100% agreement on labeling was achieved.

After data labeling, the multilabel classification problem was
transformed to 10 (because L ¼ 10 in the original data set) single-
label multiclass classification problems.

Step 3: Multiclass Text Classification

Data Preprocessing
Data preprocessing is the process of transforming the raw text into
the format required by the ML algorithm(s). Most ML algorithms
require fixed size numerical feature vectors as the input. Therefore,
raw text documents need to be represented by numerical value fea-
tures. In developing the proposed algorithm, both the BOW model
and the bigram model were tested to determine the best method for
representing environmental regulatory text.

To represent text using either the BOW model or the bigram
model, three commonly used techniques for data preprocessing
were implemented: (1) tokenization: tokenization is the task of seg-
menting the text into pieces called tokens (e.g., words and punc-
tuation), eliminating certain characters such as punctuation, and

Commercial Building Energy Efficiency Topic

Building Envelope System 
Energy Efficiency Topic

Building Electrical 
System Energy 

Efficiency Topic

Thermal 
Insulation 

Topic

Heating and Cooling System and 
Equipment Energy Efficiency Topic

Ventilation System and Equipment 
Energy Efficiency Topic

Lighting System Control Topic

Fenestration 
Topic 

Air Leakage  
Topic

Building Mechanical System  
Energy Efficiency Topic

Building Service 
Water System Energy 

Efficiency Topic

Service Water System 
Insulation Topic

Lighting Power Topic

Service Water Equipment 
Control and Efficiency Topic

Total Building System 
Energy Efficiency Topic

Environmental Topic Energy Efficiency Topic

Fig. 2. Text classification topic hierarchy

2013 Energy Policy and Conservation Act, Section 342
Energy Independence and Security Act of 2007
2011 North American Fenestration Standard/Specification for Windows, Doors and Skylights

Document
2012 International Energy Conservation Code
2010 California Energy Code
ANSI/ASHRAE/IES Standard 90.1-2010 Energy Standard for Buildings Except Low-Rise Residential Buildings
2013 Nonresidential Compliance Manual for the 2013 Building Energy Efficiency Standards
2007 National Green Building Standard, Chapter 7 Energy Efficiency
ANSI/ASHRAE/USGBC/IES Standard 189.1-2009 Standard for the Design of High-Performance Green 
Buildings Except Low-Rise Residential Buildings
2009 LEED Reference Guide for Green Building Design and Construction

Fig. 3. List of regulatory documents
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transforming words to their lowercase forms (e.g., “building, Ther-
mal Insulation” is tokenized into “building thermal insulation”);
(2) stopword removal: stopwords refer to those high-frequency
and low-content words that are not discriminative in classification
such as function words like “am,” “is,” “a,” “the,” and “of”. Accord-
ing to Zipf’s law in NLP (Manning and Schutze 1999), medium and
low-frequency words are usually content bearing and thus have
higher discriminating power, whereas high-frequency words are
low-content bearing and thus have lower discriminating power.
Removing stopwords can, thus, help eliminate nondiscriminative
high-frequency words, thereby reducing the number of features
and revealing the discriminative words; and (3) stemming: stem-
ming is the process of stripping off word suffixes (in some cases
prefixes) to map a word to its root or stem. For example, “insula-
tion” and “insulated” can both be mapped to “insul”. Stemming re-
duces the number of features by combining words sharing the same
stem. It is usually effective in improving the performance of clas-
sification (e.g., Liao et al. 2003). In the proposed TC algorithm,
stemming was implemented because the authors’ previous experi-
mental work (Salama and El-Gohary 2013b) showed improved per-
formance with stemming. A Python implementation of Porter2
stemming algorithm (Porter 2006) for English stemming was used.

Even if all contentless or low-content features are filtered out,
heuristically, not all remaining content-bearing features would have
the same power in predicting a label for a clause. Feature weighting
is, therefore, used to differentiate between features that are impor-
tant for classification and those that are not. In developing the pro-
posed algorithm, one unsupervised (TFIDF) and two supervised
term weighting schemes (TFRF and TFmaxRF) were tested (Man
et al. 2009).

There are many variances of TFIDF weighting schemes. In this
research, Eq. (1) was selected because it can prevent overweighting
a high TF and DF by using a logarithmic function, where tfd =
frequency of a term in one document or clause d; N = total number
of documents or clauses in the collection; and tfN represents the
total frequecy of this term in all documents or clauses

TFIDF ¼ logðtfd þ 1Þ ×
�
1þ log

�
N
tfN

��
ð1Þ

For the two supervised weighting schemes, because both are
developed for binary classification, the weighting equations were
modified to adapt them to multiclass classification (and were called
TFRFM and TFmaxRFM). In both TFRF and TFmaxRF, TF measures
the term frequency in the same way as in TFIDF, whereas RF and
maxRF involve supervised effort in contrast to the unsupervised IDF.
In TFRF, relevance frequency (RF) measures how relevant a term is
to a category. In binary classification, the RF of a term T in the
positive category is the ratio of the number of documents (DF) con-
taining term T in the positive category to that in the negative cat-
egory [as per Eq. (2)]. Because this research deals with multiclass
classification, this original RF was modified (and was called RFM).
The RFM of a term T in a category C is the ratio of the number of
documents (DF) containing term T in category C to that in all other
categories [as per Eq. (3)]. Accordingly, TFRF was modified to
TFRFM, as per Eqs. (4) and (5), respectively. In TFmaxRFM
[Eq. (7)], maxRFM is the maximum RFM of a term T in each cat-
egory Cj [as per Eq. (6)], where the upper bound of j represents the
total number of categories. For implementing TFRFM and
TFmaxRFM [Eqs. (5) and (7), respectively] in multiclass classifica-
tion, a logarithmic TF function [to prevent overweighting of
common, nondiscriminative terms [same as in Eq. (1)] and loga-
rithmic RFM and maxRFM functions [based on the original equa-
tions (Man et al. 2009; Xuan and Quang 2014)] were used.

Accordingly, Eqs. (8) and (9) were used for implementing these
two modified supervised term weighting schemes, where tfd is
the frequency of a term in one document (i.e., clause) d, a is the
number of clauses in category Ci containing this term, c is the num-
ber of clauses of all other categories containing this term, and the
upper bound of i represents the total number of categories.

RF ¼ DF in positive category containingT
DF in negative category containingT

ð2Þ

RFM ¼ DF in categoryC containingT
DF in all categories exceptC containingT

ð3Þ

TFRF ¼ TF × RF ¼ TF ×
DF in positive category containingT
DF in negative categoriy containingT

ð4Þ

TFRFM ¼ TF × RFM

¼ TF ×
DF in categoryC containing T

DF in all categories exceptC containingT
ð5Þ

maxRFM

¼ maximumof set

�
DF in categoryCj containingT

DF in all categories exceptCj containingT

�

ð6Þ

TFmaxRFM ¼ TF × maxRFM ¼ TF

×maximumof set

�
DF in categoryCj containingT

DF in all categories exceptCj containingT

�

ð7Þ

TFRFMCi
¼ logðtfd þ 1Þ × log

�
10þ a

c

�
ð8Þ

TFmaxCi
RFM ¼ logðtfd þ 1Þ ×maxCi

�
log

�
10þ a

c

��
ð9Þ

A preprocessing program for executing the aforementioned data
preprocessing subtasks was coded in Python programming lan-
guage. The input to the program are raw text files (collected clauses
in .txt format), and the output are two data sets (training data set
and testing data set) in the Library for Support Vector Machines
(LIBSVM) format. Each line in the training and testing data set
files represents one clause in feature-numeric value pairs and its
corresponding topic serial number (topics are numbered from 1
to 10). Because the number of clauses for each topic varies very
differently (from approximately 30 to 180, Fig. 4), the input files
(1,215 collected clauses) were randomly split into training and test-
ing data sets, with a ratio of 2:1, respectively, to avoid a very small
testing data set size. Because one classifier needs to be built for
each class, the program was implemented 10 times to obtain 10
pairs of training and testing data sets. These training and testing
data sets were used for classifier training and performance evalu-
ation, respectively.

ML Algorithm Selection and Implementation
Avariety of ML algorithms have shown reasonable performance in
TC. However, no single algorithm has demonstrated to consistently
outperform the others across various applications and domains
(Sebastiani 2002). In this research, 10 popular ML algorithms were
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tested, including SVM (implemented in both linear and rbf
kernel), DT (implemented by CART algorithm), NB (implemented
by three variances of algorithms: Gaussian NB, multinomial NB,
Bernoulli NB), kNN, radius-based neighbors (RBN), nearest cent-
roid (NC), RF, and GBRT (Aggarwal and Zhai 2012; Breiman
2001; Friedman 2001).

Each algorithm has some important parameters that were tuned
and optimized by trial and error on the basis of experimental
results. Tuning and optimizing parameters refer to the process
of looking for the best parameters to maximize the performance.
Experimental results refer to the performance yielded when the
parameters are tested. For example, parameter C in SVM with lin-
ear kernel can control the weight of positive and negative clauses
because the number of them could be unbalanced, which may in-
fluence the performance of the classifier. To tune the parameter C in
SVM, an initial range of values (e.g., 10−3, 10−2, 10−1, 1, 101, 102,
and 103) was tested to identify the approximate magnitude of C.
Then, a range of specific values (e.g., 10−1–1) in that magnitude
was tested to identify the approximately-best C value. The above
testing steps were implemented using loops in the Python program-
ming language. The aforementioned ML algorithms were imple-
mented using the Scikit-Learn ML algorithm(s) package written
in Python programming language (Pedregosa et al. 2011). The
parameters of each algorithm were tuned and optimized to find the
closest-to-best parameters that result in the highest performance.
Closest-to-best parameters are good enough, because it is infeasible
to enumerate all possible values to find the exactly-best parameters
(like finding the exact value of π).

Step 4: Classification Result Evaluation

The performance of the aforementioned ML algorithms was evalu-
ated using recall and precision, as per Eqs. (10) and (11), in which
true positive (TP) refers to the number of clauses labeled correctly
as positive, false positive (FP) refers to the number of clauses la-
beled incorrectly as positive, and false negative (FN) refers to the
number of clauses labeled incorrectly as negative. For this appli-
cation, recall is more important than precision, because missing
to recall one clause means overlooking a relevant clause, which
may affect the performance of the ACC system as a whole. Preci-
sion is not as critical, because irrelevant text could be filtered out
during further IE.

In addition, confusionmatrix (CM)was used to analyze the results.
CM is a very useful tool to analyze the performance of classifiers
(Manning et al. 2009). It is a number-of-classes × number-of-classes

matrix, in which the diagonal shows how many testing clauses are
labeled correctly, and other positions show how many testing clauses
are misclassified from one class to another class. CM can thus help
reveal misclassification causes like human errors in labeling

precision ¼ TP
TPþ FP

ð10Þ

recall ¼ TP
TPþ FN

ð11Þ

Step 5: Performance Improvement

Initial testing and evaluation was conducted without implementing
any performance improvement strategies to establish the baseline
for comparison. Feature selection and recursive stopword removal
were then implemented to explore their effect on improving the
performance.

Feature Selection
The effect of two main approaches of feature selection, UFS and
RFS, on performance improvement was empirically tested.

As mentioned in the “Background” section, common feature
scoring functions used for UFS include CHI, IG, and MI. Although
there is no systematical performance difference among these three
feature scoring functions, CHI tends to select those more low-
frequency features or words (Aggarwal and Zhai 2012; Manning
et al. 2009). Because in this application the text is characterized
by a relatively small number of features, some low-frequency fea-
tures may be significant in identifying the class. Therefore, the CHI
scoring function was used for testing UFS. After scoring and rank-
ing the features, two types of feature selection methods were used:
(1) K-best: a K number of features are selected; and (2) percentage:
a certain percentage of features are selected. Fifty to 3,000 features
were tested for selecting K, with a 50-feature increasing step size;
and 3–75% were tested for selecting the percentage, with a 3%
increasing step size.

For testing RFS, the best performing ML algorithm (defined in
Step 5, as further discussed in the “Experimental Results and
Analysis” section) was used to assign the weights and different
combinations of M and N were tested to select the best feature set.

Recursive Domain-Specific Stopword Removal
For each topic, a domain-specific stopword list was created and
tested in a recursive manner. As mentioned in Step 3, the standard

Fig. 4. Document frequency of topics
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English stopword list was initially used to remove those high-
frequency but low-content words (e.g., “a” and “the”), which tend
to be nondiscriminative for general text. Stopwords are commonly
removed using a standard stopword list. However, a domain-
specific stopword list might be more descriptive of a specific do-
main (or subdomain). Domain-specific stopwords are those words
that have no discriminative power within a specific domain or con-
text (Makrehci and Kamel 2008). Because construction domain
stopword lists are not available, for each topic, a list was created
by manually adding domain-specific, nondiscriminative words
(such as “include”, “allow”, and “install”) to the original standard
English stopword list, in a recursive manner. All words were
counted and then high-frequency, low-content words were identi-
fied based on domain knowledge and using trial and error.

After removing the stopwords using the general stopword list,
the remaining total number of distinct words were approximately
4,000. After sorting these words according to their term frequencies
in the whole document collection, it was found that the term
frequencies decreased from the levels of 5,000 to 1,000, 1,000
to 500, and 500 to 400 for the first 25, second 25, and third 50
words, respectively. This means that the term frequencies of the
remaining 3,900 words were all below 400. Because there is no
benchmark to indicate the cutoff term frequency except using trial
and error (Manning et al. 2009; Van Rijsbergen 1979), in this paper,
those top-100 term frequency words were considered as potential
stopwords. These 100 words were then checked and classified into
two groups: (1) words that are discriminative of specific topics and
thus should be excluded from the stopword list (e.g., “control” is
highly related to the lighting control topic, although it appeared
more than 3,300 times in the data set), and (2) words that are non-
discriminative of any topic and thus are good potential candidate
stopwords (e.g., “include” appeared more than 1,300 times in the
data set and is nondiscriminative and nonpredictive of any topic).
To determine the final stopwords, these nondiscriminative words
(i.e., words in the second group, such as “include”, “allow”, “ac-
cording”, “foot”, “addition”, “install”, “function”, “percent”, etc.)
were tested one by one for each topic: if removing a word from the
features improved performance for a topic, it was added to the do-
main-specific stopword list of that topic.

Experimental Results and Analysis

The experiments were conducted in a performance-boosting man-
ner; for each step, the technique that yields the best performance
was optimized and selected. The final combination of techniques
that were selected for all steps forms the best TC algorithm.

Performance of Different of ML Algorithms

The best performance result of each of the 10 tested algorithms for
each category is summarized in Table 1. kNN, RF, and SVM
showed the top three recall results with 91.60, 91.50, and 89.90%
recall values, respectively. They were selected for further com-
parative evaluation, after implementing feature selection, for the
following reasons: (1) RF inherently implements partial feature
selection because of its internal algorithm design. So, an apple-to-
apple comparison requires further comparison after implementing
feature selection for kNN and SVM; and (2) the three algorithms
have yielded similar much higher average recall and precision with
the least standard deviation, in comparison with the rest of the al-
gorithms. So, there was no need to further evaluate the other algo-
rithms. The results of the comparative evaluation are shown in
Table 2. The SVM (with linear kernel) was selected as the optimal
algorithm for further performance improvement because it showed

relatively robust performance in terms of average and standard
deviation of recall and precision. Although the recall of kNN is
0.2% higher than that of SVM, it comes at a high precision cost
(more than a 10% reduction in precision).

The relative high performance results of SVM could be ex-
plained by the following reasons: (1) SVM is especially suitable
for handling environmental regulatory text, because environmental
topics can usually be represented by a small set of key, discrimi-
native features (e.g., fenestration topic achieved 100% recall and
82% precision using only 100 features); and (2) these key features
usually occur together (e.g., “service,” “water,” “heating,” and
“control” occurred together for the service water equipment control
and efficiency topic). These properties enable those support vectors
to be easily identified for classification, which helps reduce FN er-
rors, thereby improving recall. The relative high performance of
SVM with a linear kernel might also indicate that environmental
regulatory text does not contain as much ambiguity as other types
of text, which would require more complex nonlinear kernels
(e.g., rbf, polynomial) for classification.

The use of SVM is also consistent with recent TC research stud-
ies in the construction domain, which used SVM, such as in
classifying contract documents (Salama and El-Gohary 2013b),
project correspondences and meeting minutes (Mahfouz 2011),
and safety documents like the U.S. Occupational Safety and Health
Administration (OSHA) standards (Chi et al. 2014).

Performance of Different Text Representation Models

As shown in Table 3, the bigram model showed zero precision and
recall for half of the topics, indicating that capturing semantic in-
formation of environmental regulatory text statistically in terms of
word positions in a sentence (as in the bigram model) results in a
much decreased performance in comparison to the use of unordered
words (as in the BOW model). These results are similar to those
reported in other domains and applications (e.g., classifying news
articles and medical abstracts) that show that the BOW model
could perform better than the bigram model despite the fact that
it discards all word association information (Moschitti and Basili
2004). This can be attributed to the following reason: individual
relevant features in the BOW model may become irrelevant when
associated and combined as new features in the bigram model
(Boulis and Ostendorf 2005). Because the relatively small number
of features in environmental regulatory text may make the majority
of new features in the bigram model unique, during term weighting,
these unique features would not contribute to the differentiation of
topics. Accordingly, the BOW model was empirically selected for
text representation.

Performance of Different Term Weighting Schemes

The TFIDF, TFRFM, and TFmaxRFM weighting schemes were
tested using the previously selected BOW model and SVM algo-
rithm. The performance results are shown in Table 4. To ensure that
the performance of different weighting schemes is not affected
by feature selection, comparative experiments were conducted
for all weighting schemes both with and without feature selection.
Although different weighting schemes show different performances
for different topics, only one single term weighting scheme must be
selected for all topics to avoid the use of multiple term weighting
schemes in one classifier. Thus, the average recall of all topics and
the corresponding standard deviation (SD) were used for weighting
scheme selection. Two selection criteria were used: (1) highest re-
call and (2) lowest SD, which indicates robust performance across
topics. Before feature selection, TFIDF achieved the best average
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recall of 89.9% with the least SD of 5.7%, compared with 89.0 and
85.3% recall and 6.88 and 8.25% SD for TFmaxRFM and TFRFM,
respectively. After feature selection, TFIDF still outperformed
in terms of recall (93.5%) but without achieving the least SD
(4.70%). TFmaxRFM achieved 92.1% recall and lowest SD of
3.96%, whereas TFRFM still yielded the lowest recall of 91.1%
and highest SD of 5.59%. Accordingly, TFIDF was selected as
the optimal term weighting scheme because of the desired high
recall.

Additionally, the following three observations were made. First,
TFmaxRFM consistently outperformed TFRFM in terms of both the
average and the standard deviation of recall and precision. These
findings are similar to those reported in the news domain (as tested
on the 20 Newsgroups and Reuters News data sets) (Xuan and
Quang 2014). Second, TFmaxRFM outperformed TFIDF in terms
of precision. Not only did it yield the best precision at 7 out of the
10 topics, it also yielded the best average precision among the three
weighting schemes. Third, feature selection did not affect the recall
ordering of the three weighting schemes.

Baseline Performance

Before the implementation of performance improvement strategies,
the initially selected combination of techniques (BOW model,
TFIDF weighting, and SVM algorithm with linear kernel) was used

as a baseline for comparison. The results before and after imple-
menting the improvement strategies are summarized in Table 5.
Table 5 shows the corresponding best parameters found when
the highest recall is achieved. For the baseline condition, an average
performance of 89.9 and 85.9% recall and precision, respectively,
was achieved.

Effect of Feature Selection

The CHI scoring function and the K-best feature selection method
were empirically selected as the optimal methods for feature selec-
tion, because based on the experimental results they together out-
performed RFS as well as CHI and percentage feature selection.
Based on the results, feature selection has been shown to be ef-
fective in improving the performance in terms of average recall
(Table 5). The average recall and precision have reached 93.5
and 85.2%, respectively. The results also demonstrate the expected
trend that an increase in recall (3.6% in this case) decreases pre-
cision (0.7% in this case). The highest improvement was achieved
for the service water equipment control and efficiency topic at a
16% increase in recall (reaching 96% recall) using 550 features.
Only one of the 10 topics did not show any improvement in recall
(ventilation system and equipment energy efficiency topic), which
indicates that feature selection does not necessarily improve recall
for all classes.

Table 2. Performance of Different ML Algorithms (after Feature Selection)

Topic

Performance of ML algorithm

SVM kNN RF

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

Air leakage topic 86 93 71 88 89 81
Fenestration topic 84 93 90 93 89 93
Heating and cooling system and equipment energy
efficiency topic

86 90 82 86 82 85

Lighting power topic 85 97 44 100 87 96
Lighting system control topic 84 97 54 99 74 99
Service water equipment control and efficiency topic 77 96 82 92 82 92
Service water system insulation topic 76 100 100 100 92 92
Thermal insulation topic 95 94 75 98 84 97
Total building system energy efficiency topic 88 92 56 97 90 91
Ventilation system and equipment energy efficiency topic 91 83 94 84 91 89
Average 85.2 93.5 74.8 93.7 86.0 91.5
Standard deviation 5.71 4.70 18.52 6.02 5.54 5.46

Table 3. Performance of Different Text Representation Models

Topic

Performance of text representation model (no feature selection,
SVM with linear kernel)

BOW Bigram

Ca Precision (%) Recall (%) Ca Precision (%) Recall (%)

Air leakage topic 1 87 90 0.4 26 13
Fenestration topic 0.8 84 90 150 0 0
Heating and cooling system and equipment energy efficiency topic 2 87 89 0.1 0 0
Lighting power topic 1 89 94 0.3 28 48
Lighting system control topic 0.7 82 95 0.1 0 0
Service water equipment control and efficiency topic 2 74 80 0.2 0 0
Service water system insulation topic 1 76 100 0.1 0 0
Thermal insulation topic 3 98 89 9 13 31
Total building system energy efficiency topic 2 91 89 9 15 12
Ventilation system and equipment energy efficiency topic 0.7 91 83 40 17 2
aC is a penalty parameter used in SVM that adjusts the data unbalance problem.
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Table 4. Performance of Different Term Weighting Schemes (before and after Feature Selection)

Topic

Performance of term weighting scheme

TFIDF TFmaxRFM TFRFM

Before FSa After FSa Before FSa After FSa Before FSa After FSa

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Precision
(%)

Recall
(%)

Air leakage topic 87 90 86 93 97 97 97 97 89 78 90 84
Fenestration topic 84 90 84 93 95 86 91 93 93 87 96 96
Heating and cooling system
and equipment energy
efficiency topic

87 89 86 90 77 86 79 88 83 80 83 83

Lighting power topic 89 94 85 97 89 91 89 93 87 83 87 85
Lighting system control
topic

82 95 84 97 90 83 92 85 96 92 96 92

Service water equipment
control and efficiency topic

74 80 77 96 75 75 78 90 75 71 76 94

Service water system
insulation topic

76 100 76 100 82 90 82 90 58 100 64 100

Thermal insulation topic 98 89 95 94 88 98 91 98 88 89 90 91
Total building system
energy efficiency topic

91 89 88 92 88 90 92 93 91 91 91 91

Ventilation system and
equipment energy efficiency
topic

91 83 91 83 94 94 94 94 80 82 84 95

Average 85.9 89.9 85.2 93.5 87.5 89.0 88.5 92.1 84.0 85.3 85.7 91.1
Standard deviation 7.22 5.70 5.71 4.70 7.41 6.88 6.52 3.96 11.05 8.25 9.74 5.59
aFS = feature selection.

Table 5. Effects of Feature Selection and Recursive Domain-Specific Stopword Removal on Performance

Topic

Performance before and after using feature selection and domain-specific stopword removal

No feature selection,
SVM with linear

kernel
Feature selection using K-best,

SVM with linear kernel
Feature selection using K-best, domain-specific
stopword removal, SVM with linear kernel

Ca
Precision

(%)
Recall
(%) Ca Kb

Precision
(%)

Recall
(%)

Increase in
recallc (%) Ca Kb Stopwordsd

Precision
(%)

Recall
(%)

Increase in
recallc (%)

Air leakage topic 1 87 90 2 750 86 93 þ3 4 700 Allow, include 82 98 þ5

Fenestration topic 0.8 84 90 9 350 84 93 þ3 6 100 Allow, include,
according

82 100 þ7

Heating and cooling system
and equipment energy
efficiency topic

2 87 89 2 2,050 86 90 þ1 2 1,100 Allow, include,
section, area,
multiply

83 97 þ7

Lighting power topic 1 89 94 5 1,150 85 97 þ3 5 1,150 N/A 85 97 þ0

Lighting system control
topic

0.7 82 95 2 2,850 84 97 þ2 2 2,850 N/A 84 97 þ0

Service water equipment
control and efficiency topic

2 74 80 9 550 77 96 þ16 9 550 N/A 77 96 þ0

Service water system
insulation topic

1 76 100 7 650 76 100 þ0 5 700 According, addition 88 100 þ0

Thermal insulation topic 3 98 89 6 850 95 94 þ5 6 850 N/A 95 94 þ0

Total building system
energy efficiency topic

2 91 89 3 1,000 88 92 þ3 7 550 Include, install, foot 83 97 þ5

Ventilation system and
equipment energy efficiency
topic

0.7 91 83 0.7 2,500 91 83 þ0 2 1,450 Include, allow,
percent

84 97 þ14

Average — 85.9 89.9 — — 85.2 93.5 þ3.6 — — — 84.3 97.3 þ3.8
Standard deviation — 7.22 5.70 — — 5.71 4.70 — — — — 4.67 1.77 —
aC = penalty parameter used in SVM that adjusts the data unbalance problem.
bK = the number of features selected to achieve the best performance, at a unit of 50.
cShows percentage increase in recall compared with previous performance.
dN/A means there are no effective stopwords found to improve performance.
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The number of features selected at the highest recall (K value
shown in Table 5) provides some insight about the differences
across classes. For example, the fenestration topic used 350 fea-
tures only to achieve maximum recall, which indicates that clauses
belonging to the fenestration topic can be easily classified. In con-
trast, the ventilation system and equipment energy efficiency topic
used 2,500 features but still gained no improvement in recall, which
indicates that clauses belonging to this topic are harder to differ-
entiate. Similarly, other topics using a relatively large K value (rel-
ative to other topics in this data set) to achieve best recall showed
less recall improvement. For example, the heating and cooling sys-
tem and equipment energy efficiency topic used 2,050 features but
achieved only 1% recall increase. In addition, a relatively large K
value may also imply that potential subtopics may exist for that
topic, thereby needing to aggregate more features from each sub-
topic to better represent their parent topic. Overall, none of the
10 topics used more than 2,900 features to achieve its best recall.
This shows the effectiveness of feature selection in enhancing re-
call, even if the original feature size is relatively small.

Effect of Recursive Domain-Specific Stopword
Removal

The performance was significantly improved after using the pro-
posed domain-specific stopword lists (Table 5). This indicates that
the use of domain-specific text characteristics is effective in im-
proving the performance of classification. The final performance
shows an average 97.3 and 84.3% recall and precision, respectively.
The average recall increased by 3.8% at the expense of a 0.9%
decrease in precision. The standard deviation of both recall and
precision continued to decrease and finally dropped to 1.77 and
4.67%, respectively, which indicates that the proposed TC algo-
rithm is relatively robust on all topics. The results also show the
following two findings. First, a change of stopwords caused a varia-
tion in the best parameters. Using parameter K as an illustration, all
those topics that achieved improvement in terms of recall used
fewer features (e.g., the ventilation system and equipment energy
efficiency topic used 1,450 features instead of 2,500 features to
gain 14% increase in recall), whereas topics that gained improve-
ment in terms of precision used more features (e.g., the service
water system insulation topic used 50 more features to reach 12%
increase in precision meanwhile still maintaining 100% recall).
This observation may also substantiate the counteractive recall-
precision relationship in the aspect of number of features: selecting
more features may help identify more feature differences among
topics which reduces FP errors, but may increase FN errors thereby
undermining the recall, and vice versa. Second, stopwords varied
across classes. This indicates that different topics (and subtopics)
may require different stopword lists.

Contribution to the Body of Knowledge

This work offers a domain-specific, ML-based hierarchical TC
algorithm for classifying clauses in environmental regulatory docu-
ments according to a semantic TC topic hierarchy. The topic hier-
archy is part of a deontic ACC model. This algorithm is key
in enabling automated environmental compliance checking in
the construction domain by enhancing the efficiency of automated
IE. In comparison to the authors’ previous efforts in TC for ACC
in construction (Salama and El-Gohary 2013b), this algorithm
addresses a more challenging TC problem—hierarchical TC as
opposed to nonhierarchical TC. Hierarchical TC allows for a more
granular classification of text according to detailed subtopics

(e.g., “thermal insulation” as opposed to “environmental”) and thus
would result in further enhancement of automated IE efficiency.

Beyond this application, this work additionally contributes to
the body of knowledge, in seven main ways. First, it offers a base-
line domain-specific, ML-based hierarchical TC algorithm for clas-
sifying environmental regulatory text according to a hierarchy of
topics. Future research efforts could use this work as a benchmark
and could adapt the algorithm to classify other types of environ-
mental documents (e.g., EPA regulations) and using other types
of topic hierarchies (e.g., hierarchy of environmental emergencies
like chemical pollution). Second, it shows that high recall and pre-
cision results can be achieved for a relatively deep TC granularity
level (classifying the text according to topics in the fifth level of the
hierarchy) for environmental regulatory text, and that the flat ap-
proach in dealing with hierarchical TC is effective. As you go to a
more specialized level of topics, TC becomes typically more chal-
lenging (Khan et al. 2014) and performance could highly drop
[e.g., in the construction domain, classification accuracy dropped
from 95.88% at the first level to 86.37% at the third level of
the hierarchy (Caldas and Soibelman 2003)]. Compared with the
authors’ previous work in nonhierarchical TC (Salama and El-
Gohary 2013b), this study shows a relatively small drop in recall,
a drop from 100% at the first level to 97% at the fifth level. Third,
the research shows the effectiveness of adopting a multiclass clas-
sification approach to deal with multilabel classification problems
in avoiding a data imbalance problem. The use of a multiclass clas-
sification approach is, thus, especially helpful in cases in which the
document frequency is imbalanced across different topics. Fourth,
this research offers two modified supervised term weighting
schemes, which were adapted to multiclass classification problems.
The experimental results showed that they did not perform as well,
in this application, compared with the commonly used TFIDF
weighting scheme. But, having those modified weighting schemes
would allow other researchers to further evaluate them in classify-
ing other types of documents (e.g., OSHA standards) and in other
domains (e.g., safety). Fifth, this research shows the effectiveness
of feature selection in enhancing recall, even if the original feature
size is relatively small (approximately 4,200 features compared
with the millions of features that are commonly seen in CS domain
data sets). It shows that a small selected feature size (less than
2,900) is enough to achieve high performance. Sixth, the research
shows that recursive, domain-specific stopword removal is very ef-
fective in improving recall. It shows that the use of a general stop-
word list is not sufficient as the domain of text becomes highly
specialized, and that the development and use of domain-specific
stopword lists is highly effective in achieving increased perfor-
mance at a low manual effort, especially that such lists are reusable.
Seventh, this work offers a data set of labeled clauses for the energy
efficiency subdomain. Unlike other domains, there is a lack of
benchmark data sets in the construction domain (like the 20 News-
groups data set) that could be used for TC performance evaluation.
Benchmark data sets are important for research, because they are
used by researchers for comparative evaluation of different tech-
niques or algorithms. For example, with such a benchmark data
set, different TC algorithms in the construction domain could be
tested on the same data set, and their performance could be evalu-
ated relative to a known benchmark.

Conclusions and Future Work

This paper presented a domain-specific, ML-based hierarchical TC
algorithm for classifying clauses in environmental regulatory docu-
ments into a number of hierarchically detailed topics for supporting
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ACC in the construction domain. The algorithm classifies clauses
according to leaf topics at the fifth level of a semantic TC topic
hierarchy. The algorithm, thus, addresses a relatively deep TC
granularity level, and therefore a more challenging TC problem.
As you go to a more specialized level of topics, TC becomes
typically more challenging, because the levels of knowledge and
terminology of the text become more specialized and more specific,
which make the text harder to discriminate. A flat approach was
used to deal with the hierarchical TC problem. The multilabel clas-
sification problem was transformed into a multiclass classification
problem. For preparing the training and testing data, approximately
1,200 clauses were collected from 10 environmental regulatory
documents, such as the 2012 International Energy Conservation
Code (ICC 2012), and were classified into 10 leaf subtopics of the
energy efficiency topic (a subclass of environmental topic in the
semantic topic hierarchy).

In developing the TC algorithm, the following techniques were
tested and evaluated in terms of average recall and precision and
their standard deviation: (1) 10 popular ML algorithms; (2) two text
representation methods (BOW model and bigram model); and
(3) three term weighting schemes—two supervised term weighting
schemes (TFRFM and TFmaxRFM) that were modified to adapt them
to multiclass classification and one unsupervised term weighting
scheme (TFIDF) that is commonly used. The best performance was
achieved using SVM algorithm with linear kernel, BOW model,
and TFIDF weighting.

For further performance enhancement, two performance im-
provement strategies were implemented: (1) feature selection
(a number of methods were tested and, accordingly, K-best feature
selection method and CHI feature scoring function were selected)
and (2) domain-specific stopword removal (construction-domain-
specific stopword lists were created and used to facilitate domain
adaptation). A number of primary conclusions were drawn during
performance improvement: (1) both strategies were effective in
enhancing recall; (2) during this process, the standard deviation
of both recall and precision continued to decrease, which indi-
cates enhanced performance consistency and robustness; and
(3) each environmental topic (or subtopic) may need a different
stopword list. The final classifier achieved approximately 97 and
84% average recall and precision, respectively, on the testing data.
Two characteristics of environmental regulatory text may have
contributed to such performance. Compared with general text like
that in news articles, environmental regulatory text is (1) more
specialized in terms of topics; specialized text is usually charac-
terized by a smaller number of features and, thus, more discrimi-
native features; and (2) more standardized in terms of terminology,
with less homonyms and synonyms; standardized terminology re-
sults in higher term frequencies and, thus, more discriminative
features.

In future work, the authors will (1) explore the use (or adapta-
tion) of the proposed TC algorithm for classifying other types of
regulatory documents (e.g., safety regulatory documents such as
OSHA standards) on the basis of other types of topics (e.g., safety
topics); (2) explore the reusability of the developed stopword lists
in classifying other types of environmental documents and auto-
mate the process of constructing domain-specific stopword lists;
(3) explore the use of other approaches for domain adaptation,
in addition to domain-specific stopword lists such as feature aug-
mentation; and (4) explore the use of ontologies and development
of an ontology-based TC algorithm to take advantage of the seman-
tic information of the text to further improve the classification
performance, and compare the ontology-based approach with the
ML-based approach.
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