
ME 462/597: ADVANCED COMPUTER CONTROL, FALL 2023  
3:30 PM – 4:50 PM Tuesday, Thursday, 3100 LUMEB, per lecture/lab class format below 

Course credits: ME462: 4 hours, ME597: 2 hours 
Prerequisite: ME360 or equivalent (ME460 is not a prerequisite) 

Instructor: Professor Joseph Bentsman, 3054 LUMEB, 244-1076, jbentsma@illinois.edu 
 
Course objective. This course aims at building the foundation of modern real-time-computable 

control design with the elements of machine learning (ML) through progression from the basic theory to 
the advanced state-of-the-art control algorithms proven successful in applications. Both discrete time (DT) 
and continuous time (CT) formats are employed and linked through discrete-continuous (sampled-data) 
concepts. The laboratory part of the course provides exposure to 1) the basic controller code development 
in Python and C(++), including tutorials for students with no prior C(++) coding background, 2) the 
Matlab toolboxes related to the course topics, 2) the implementation of these algorithms on modern 
computing platforms (GPUs and FPGAs), 3) the elements of machine learning proven useful in enhancing 
these algorithms, and 4) the applications in aerospace, power generation, manufacturing, and other areas.  

Format of the class instruction will be half-flipped – the recorded lectures along with the lecture 
slides will be posted online on Canvas course website by 3:30 pm on Monday and Wednesday the day 
before each lecture. Everyone is expected to listen to these lectures in preparation for the weekly material 
review session, which will be held in class every Thursday following the regular class schedule. The lab 
presentations will be held in class on Tuesdays according to the lab schedule, and the recorded lab 
presentations will also be posted on Canvas along with the lab slides. The homework help sessions with 
be held weekly online – the time to be arranged. 

Lecture style. The lecture focus will be on clear control problem statement, analytical expressions  
of the control laws solving the problem, and applicability limitations. The corresponding codes, code 
development guidelines, Matlab-based controller design tools, and applications will be provided in the 
labs. Rigorous mathematical proofs will be given in the lectures for only a few key results – LQR, Kalman 
Filtering, Recursive Least Squares for system identification, GPC, Wavelet decomposition, Projection-
based parameter estimation and adaptive control, and possibly several others. 

Lecture schedule: The lectures will be posted on Canvas by 3:30pm MW and will be available 
after posting through the rest of the semester. The lecture slides will be provided at the lecture posting and 
will be available for download. The weekly material review session will be held in class every Thursday 
by the course instructor. 

The labs will be presented in class on the scheduled lab weeks on Tuesday 3:30 pm - 5 pm 
and posted by 6 pm on that day. The lab schedule is listed below. The labs (slides, and recordings) will 
be available after posting through the rest of the semester. 

The lab part has 8 labs, 2 hours each.  
The ME597 (CRN 23198) addition (recommended for graduate students) will cover several 

additional advanced topics listed in the ME597 lecture topic schedule, with the corresponding homework 
and lab assignments, worth two extra credit hours. Adding this option should be communicated to the 
instructor in the beginning of the course.  

Registration for ME597 only. Students with advanced graduate standing can register for ME597 
only. The requirements will then include submitting all the assignments within the ME597 lecture topics 
schedule and ME597 Labs 7 and 8 description, both given further below. 

Grading: Final Project (also serves as the final exam) - 20%, weekly/biweekly homeworks (total 
12) - 50%, labs (total 8)  - 30%. 

Course Requirements: All lab reports and homeworks should be turned in on time.  



For the undergraduate students, starting from the Nonlinear filtering topic in Week 11, some 
reduction of the assignment difficulty might be provided, if necessary, without affecting the course grade, 
to allow quality completion of all the previous assignments. 

Students registering for ME597 only are required to do the homework assignments and the 
labs related only to the ME597 lecture topics given above.  

 
ME462 lecture topics schedule: 
Weeks 1, 2. System-theoretic properties of DT and sampled-data systems: Sampling of 

continuous time systems with zero order hold. DT systems in state space. Sampled-data systems. Stability, 
controllability, reachability, stabilizability, observability, detectability. Canonical forms. Intersampling 
behavior. 

Weeks 3, 4. DT control fundamentals: pole placement design, observer design, output 
feedback, disturbance rejection, servo design: Design of DT feedback systems using pole-placement. 
Closed-loop state estimation. Prediction estimator. Deadbeat observer. Closed-loop observer. Dynamic 
output feedback. Certainty equivalence principle. Internal model principle, disturbance rejection using 
internal models, integral action. Tracking design. 

Week 5. Linear DT optimal control based on state-space models: Finite and infinite horizon 
optimal control laws. Riccati difference and algebraic equation (RDI and ARE). Receding horizon 
implementation. Linear quadratic (LQ) control. Optimal current and predictor estimation, Kalman filter. 
Linear quadratic Gaussian (LQG) control. CT and DT LQG loop transfer recovery (LQG/LTR). 

Weeks 6, 7. Linear DT self-tuning optimal control with constraints using polynomial models: 
Polynomial division based H2 predictors. Generalized Predictive Control (GPC) and its relation to LQG. 
GPC with control rate and magnitude constraints. Recursive least squares (RLS) and multi-step predictive 
identification (MSPI). Self-tuning control using MSPI/GPC structures under control rate constraints. 

Weeks 8, 9, 10. Introduction to Machine Learning (ML) - universal approximators and 
neural networks. Multiresolution nonlinear DT self-tuning control with constraints using ML 
techniques: Universal approximators – perceptron, feedforward Neural Networks (NNs), gradient descent 
algorithm for NN training. Multiresolution analysis, dyadic dilations. Sinc/rect time-frequency 
multiresolution decomposition example. Radial Marr vector scaling and wavelet functions, NARMAX 
wavelet modeling. Training wavelet network for nonlinear parameter identification using normalized 
gradient descent algorithm. ML-based multiresolution suboptimal self-tuning control with constraints. 

Weeks 10, 11. DT Linear Model Predictive Control (LMPC) synthesis under constraints 
using Quadratic Programming: Introduction to Dynamic Programming and MPC as its moving horizon 
approximation. Linear MPC with constraints. MPC synthesis under equality and inequality constraints for 
embedded applications using sparse formulation and Quadratic Programming. 

Weeks 11, 12. Nonlinear filtering, Introduction to Reinforcement Learning (RL): Extended 
Kalman Filter and its use with LMPC (other nonlinear estimators are covered in Lab 6). Introduction to 
Reinforcement Learning with actor-critic value/policy iterations. Link between MPC and RL. 

Week 13. Robust control: CT and DT linear H∞ control. Single and double Riccati equations H∞ 
design. 

Weeks 14, 15.  DT/sampled-data robust adaptive control: Brief review of robust adaptive 
control techniques of current interest. Projection operator. DT L1 adaptive control. Performance 
enhancements through ML, MPC, and other techniques. 

ME597 lecture topics schedule: 
Week 10. Introduction to Machine Learning (ML): ML applications with Gauss-Newton and 

Levenberg-Marquardt algorithms. ML with wavelet-based multiresolution convolutional neural networks. 



Week 11. DT Linear Model Predictive Control (LMPC): Interior point primal-dual approach, 
barrier functions, soft constraints. Mehrotra’s algorithm.  

Week 12. CT/Sampled-Data Constrained Nonlinear MPC (NMPC): Nonlinear state estimation 
– moving horizon estimator (MHE). Constrained NMPC based on Pontryagin’s Maximum Principle. 
Combination of the MHE with constrained NMPC for output feedback. Reduced computational 
complexity implementation for embedded applications. 

Week 13. Robust control: H∞ design using linear matrix inequalities (LMI). Structured singular 
value and μ-synthesis. Nonlinear H∞ controller design. 

Weeks 14.  Robust adaptive control. LQG/SPR (strictly positive real) approach with projection 
operator based adaptation. 

Weeks 15. Robust adaptive control. Nonlinear H∞ robust adaptive control. Combination of L1 
adaptive control with constrained interior point primal-dual MPC. 

ME462 Laboratory schedule and topics:  
Lab 1, Week 2 (Tuesday, Aug. 29):                                                                                                                   
1) Brief review of system representation concepts and the corresponding Matlab Control Systems 

toolbox functions: State space and input-output models of DT systems. Sampling of CT systems with zero 
order hold. DT systems in state space. Relation between state space and transfer function matrix 
representations. Shift operators. Polynomial matrices. Pole-zero cancellations. Systems with unstable 
inverses.  

2) Introduction to current computer control thinking, parallel programming, and highly 
parallelizable computer control hardware platforms: field-programmable gate arrays (FPGAs) and 
graphical processing units (GPUs). Setting up access to NCSA GPU lab. 

3). Examples of modeling and control of systems of current interest – autonomous vehicles, robotic 
systems, industrial systems. Introduction to distributed parameter (PDE-based) systems - Timoshenko-
beam/hydraulic-actuator testbed – its Matlab Simulink software implementation and FPGA industrial 
controller implementation. 

Lab 2, Week 3 (Tuesday, Sept. 5):  
1) Introduction to thermal and wind power plant models and their control - preview of several 

topics to be studied, including identification and H∞ design. ME597 – Comparison of numerical 
algorithms for H∞ design, including D-K iterations and LMI-based methods. 

2) Familiarization with Matlab and Python FPGA and GPU programming tools, and an 
introduction to basic C++. Discussion on how to decide on hardware and software architecture of 
controllers based on application-dependent constraints. 

Lab 3, Week 5 (Tuesday, Sept. 19):  
1). Introduction to aircraft and UAV models, including those for unmanned aircraft, F-16, and 

quadcopters. Equations of motions, lateral and longitudinal dynamics decoupling, system uncertainties.   
2). Matlab simulation. Control objectives. 
3). CT and DT LQG and LQG/LTR servo design for a selected system with the help of Matlab 

Control Systems toolbox, as well as the design of an LQG/LTR algorithm from scratch in Python. 
Lab 4, Week 7 (Tuesday, Oct. 3):  
1). Introduction to Matlab Model Predictive Control toolbox. Implementation of GPC algorithms 

from scratch in Python. Brief discussion of GPC implementation using gpc2mpc function in Matlab. 
2). Introduction to Matlab System Identification toolbox, as well as common system identification 

models and techniques. 
3). Development of the Python code for the real-time implementation of MSPI/GPC self-tuning 

controller with control rate constraints. 



Lab 5, Week 9 (Tuesday, Oct. 17):  
1). Introduction to Matlab Global Optimization toolbox: genetic algorithms, particle swarm 

optimization (PSO), simulated annealing. Basic Machine Learning - controller tuning by global 
optimization algorithms. GPU global optimizer programming. Discussion of classical and modern 
optimization techniques for machine learning, starting with Jacobian-based methods (Newton-Raphson 
iterations) all the way to state-of-the-art Jacobian-free methods (Jacobian-free Newton-Krylov), as well 
as stochastic gradient descent (SGD). Construction of a toolbox in Python capable of running these 
optimization algorithms for future labs. Performance comparisons and implementational considerations 
on embedded hardware and GPUs. 

2). Introduction to Wavelet toolbox and generation of NARMAX wavelet-based model from noisy 
nonlinear system data using local Machine Learning algorithm - normalized gradient descent. 

3) Deep learning: introduction to neural networks (NN): multi-layer perceptron, wavelet-based 
convolutional (CNN), recurrent (RNN), and generative adversarial (GAN), Matlab Deep Learning 
toolbox. Tensorflow code for CNN.  

Lab 6, Week 11 (Tuesday, Oct. 31):  
1) Review of nonlinear filtering (NF) and related Matlab filtering tools: Kalman extended (EKF), 

Kalman unscented (UKF), particle filter (PF). GPU implementation of an extended Kalman filter 
algorithm. 

2) Review of Matlab Optimization and MPC toolboxes for systems with constraints.  
3) Combining MPC with NF for output feedback. Python code development of the quadratic 

programming (QP) based MPC for systems with constraints. GPU implementation of QPMPC with NF. 
Lab 7, Week 13 (Tuesday, Nov. 14):  
1). Reinforcement Learning policies – Q-learning, DP-learning, and formulating/solving Markov 

Decision Processes (MDPs). Reinforcement Learning Toolbox and example. Reinforcement Learning 
using NNs for value/policy functions approximation. Discussion and small implementation exercise of Q-
learning on a GPU. 

2) Introduction to Matlab Robust Control toolbox: coupled Riccati linear H∞ design for a selected 
system. 

Lab 8, Week 15 (Tuesday, Nov. 28):  
1) Introduction to robust adaptive control – current approaches will be briefly surveyed. L1 

approach will be used for implementation. Discussion on coupling L1 methods with learning-based 
techniques and MDPs. ME597 – introduction to H-infinity and LQG/SPR robust adaptive control. 

2) Discussion of individual projects for a final exam: combination of global optimizers and deep 
learning with self-tuning and robust adaptive control. Application of digital control algorithms 
parallelization on FPGAs and GPUs for solving computationally intensive control problems. This includes 
also students who registered only for ME597. 

3) In-class demo of some real-life control implementations on MCUs, CPUs, GPUs, and FPGAs. 
ME597 lab schedule and topics: 
Lab 7, Week 13 (Tuesday, Nov. 14):  
1) ML with wavelet-based multiresolution convolutional neural networks in Python. 
2) LMI-based linear H∞ design and µ synthesis for a selected system. 
Lab 8, Week 15 (Tuesday, Nov. 28):  
1) Introduction to H-infinity and LQG/SPR robust adaptive control. 
2) Application of GPUs in solving complex controller design problems. 



3) Discussion of individual projects for a final exam: combination of global optimizers and deep 
learning with self-tuning and robust adaptive control. Application of digital control algorithms 
parallelization on FPGAs and GPUs for solving computationally intensive control problems. 

Textbooks: 
Required:  

1) Computer-Controlled Systems: Theory and Design, Third edition, by K. J. Astrom and B. Wittenmark, 
Dover, 2011. A very inexpensive edition from Dover. 
2) Digital Control of Dynamic Systems, Third edition, by G. F. Franklin, J. D. Powell, and M. Workman, 
Addison-Wesley, 1997. Officially available free of charge from  
https://www.researchgate.net/publication/31849881_Digital_Control_of_Dynamic_Systems-
Third_Edition . 
3) Robust Control Design with MATLAB, Second Edition, D.-W. Gu, P. H. Petkov, and M. M. 
Konstantinov, Springer, 2013. Officially available free of charge through Granger Library.  

Strongly recommended:  
1) Signals, Instrumentation, Control, and Machine Learning: an Integrative Introduction, J. Bentsman, 
World Scientific Publishing, 2022. (don’t confuse with 2016 book, which is not suitable). This is ME360 
background, with about quarter of the book used in ME462. 
           Advanced Online Accessible Texts to be used: The advanced part of the course , weeks 7-15, 
will use selected material from papers given in class and several books, many officially accessible online, 
most through Grainger library: 
5) Adaptive Optimal Control: The Thinking Man's GPC, Prentice Hall, R. Bitmead, M. Gevers, V. Wertz, 
Prentice Hall, 1990. 
6) Model Predictive Control, 2nd edition, by E. F. Camacho and C. Bordons, Springer, 2013. 
7) Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive 
Approximation Approaches, by J. A. Farrell and M. M. Polycarpou, Wiley 2006. 
8) L1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation, N. Hovakimyan and C. 
Cao, SIAM, 2010. 
9) Machine Learning Refined: Foundations, Algorithms, and Applications, 2nd edition, J. Watt, R. 
Borhani, A. Katsaggelos, Cambridge University Press, 2020. 

Reference books: 
1) Feedback Systems: An Introduction for Scientists and Engineers, 2nd Edition, K. J. Astrom and R. M. 
Murray, 2020, 
http://www.cds.caltech.edu/~murray/books/AM08/pdf/fbs-public_24Jul2020.pdf , 
https://fbswiki.org/wiki/index.php/Category:Errata 
with supplements given in 
https://fbswiki.org/wiki/index.php/Main_Page 
2) Modern Control Engineering, Fifth edition, by K. Ogata, Prentice Hall, 2010. 
3) Optimal Control, Third edition, by F. L. Lewis, D. Vrabie, and V. L. Syrmos, Wiley, 2012. 
4) Optimal and Robust Estimation, Second edition, by F. L. Lewis, L. Xie, and D. Popa, CRC Press. 2008. 
5) Handbook of Model Predictive Control, S. V. Rakovic and W. S. Levine  Editors, Birkhauser, 2019. 
6) Model Predictive Control: Theory, Computation, and Design, Second Edition, Rawlings, J.B., Mayne 
D.Q. M. M. Diehl, M. M. (2019), Nob Hill Publishing. 
https://sites.engineering.ucsb.edu/~jbraw/mpc/ 
7) Optimal Sampled-Data Control Systems, T. Chen and B. Francis, Springer, 1995.  

Research papers, Theses, and Reports: 



A set of references in these formats highlighting the most recent developments, as well as the classical 
results, will be provided throughout the semester. 


