NPRE 470: Fuel Cells and Hydrogen Sources

Fall 2025

Course Website: https://courses.grainger.illinois.edu/npre470/sp2025/web/NPRE-470.htm

Meeting Times & Location: Tuesdays & Thursdays, 3:30-4:50 p.m. | Engineering Hall 106B8

Credit Hours: 3

Instructor

Instructor: Kyu-Jung Kim

Department: Nuclear, Plasma, and Radiological Engineering (NPRE)

Office Location: 105 Nuclear Engineering Lab.

Email: kyujung@illinois.edu

Phone: (217) 244-7162

Office Hours: by appointment

Course Description

Hydrogen is proposed as the foundation of a global energy economy to address supply challenges and environmental goals. This course covers hydrogen production from nuclear and non-nuclear sources, transport, storage, and applications, with a focus on fuel cells. Lectures include hydrogen handling and safety, storage methods, fuel cell science and thermodynamics, and low- and high-temperature fuel cells for portable, automotive, and space applications.

Prerequisites

Junior, senior, or graduate standing, or consent of the instructor.

CHEM 102, MATH 285, and PHYS 212

Learning Objectives

- Explain the principles and challenges of the hydrogen economy.
- Describe methods of hydrogen production, transport, and storage.
- Analyze the electrochemical and thermodynamic processes in fuel cells.
- Compare different types of fuel cells and their applications.
- Evaluate system-level design and performance of hydrogen-based energy systems.

Course Format

This course consists of two 80-minute lectures per week. Coursework includes homework assignments, two midterm exams, and a final group presentation accompanied by a written report. Students are expected to spend approximately 6–8 hours per week outside of class for readings, assignments, and project work.

Learning Resources

Required Textbook:

O'Hayre, R., Cha, S.-W., Colella, W., and Prinz, F. B., **Fuel Cell Fundamentals**, 3rd Edition, Wiley, 2016.

Recommended Textbook:

Andrew Dicks, David James, Fuel cell systems explained, 3rd edition, Wiley, 2018

Additional reading materials will be provided via the course website.

Course Requirements

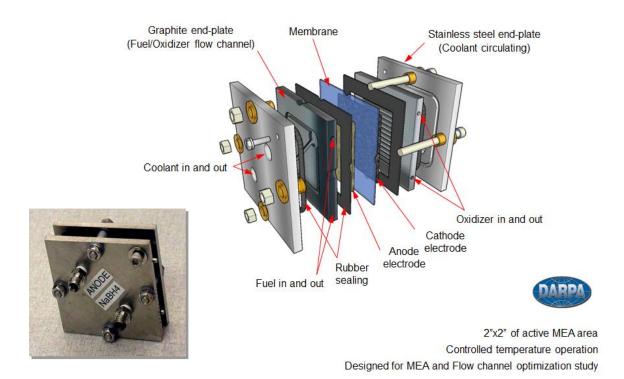
- Assignments: 5 homework sets (40%)
- Midterm Exams: 2 exams (50%)
- Final Project (Term Paper & Group Presentation): 10%
- Participation: 0%

Late Assignment Policy

90% of full credit if submitted within one week of the deadline, 50% of full credit if submitted within two weeks, No credit will be given for submissions more than two weeks late.

Grading Scale

A+: 100% A: 95-99.99% A-: 91.75-94.99%


B+: 82.25-91.74% B: 75-82.24% B-: 66.75-74.99% C+: 58.25-66.74% C: 50-58.24% C-: 41.75-49.99% D+: 33.25-41.74% D: 25-33.24% D-: 16.75-24.99%

F: <16.74%

Course Schedule

- 1. Course introduction
- 2. Introduction to the Hydrogen Economy and Fuel Cells
- 3. Hydrogen Properties and Production
- 4. Hydrogen Transportation
- 5. Hydrogen Conversion Technology I: Combustion
- 6. Hydrogen Conversion Technology II: Metal Hydrides and Applications
- 7. Fuel Cell Fundamentals Introduction (Ch. 1)
- 8. Fuel Cell Thermodynamics (Ch. 2)

- 9. Fuel Cell Reaction Kinetics (Ch. 3)
- 10. Fuel Cell Charge Transport (Ch. 4)
- 11. Fuel Cell Types (Ch. 8)
- 12. Fuel Cell Systems Overview (Ch. 10)
- 13. Applications: Stationary, Mobile, Wearable, and Transportation Power
- 14. Final Presentations

