ME498/505 Carbon Capture and Storage

Instructor: Jiajun He Spring 2025

Class Contents:

Part I Carbon Capture:

Thermodynamics/kinetics of chemical capture

Carbon capture from the industrial sector and power sources

IGCC, oxy-fuel combustion, and chemical looping

Reliable storage options

Carbon dioxide removal from the atmosphere

Part II Carbon Sequestration:

Fundamentals of Carbon Sequestration

Injection Methods and Pressure Buildup

Modeling Fate and Transport

Sequestration Capacity Assessment

Health Safety and Environmental Risks of Sequestration

Monitoring CO₂ Storage

Cost of sequestration and institutional issues

Skills You Will Acquire:

Minimum and real work calculations

2nd-Law efficiency calculations

Evaluation of tradeoffs between capture technologies

Running IECM Capture Economic Model

Assessment of the potential of CCS for global CO₂ emissions reduction

Estimates of CO₂ saturation and migration after injection

Evaluation of CO₂ storage potential

Awareness of CO₂ storage risks as well as monitoring and mitigation methods

Class Meetings:

On-Campus Sections: Mon, Wed and Fri 10:00 am - 10:50 am at 403B2 Engineering Hall.

Online Sections: Synchronous sessions can be accessed through the following Zoom link:

https://illinois.zoom.us/j/87146685138?pwd=GKIEtlngaAsvpliVgh8jGylXMb0m6P.1

Meeting ID: 871 4668 5138

Password: 142346

Lecture recording will be provided after class.

You are expected to attend every class session or watch the lecture recording.

Office hours: If some aspect of the course material is unclear to you after independent study, you are expected to raise the issue in class or during office hours.

Prof. Jiajun He <<u>jiajunhe@illinois.edu</u>>, **Mondays 2:00 pm** – **3:00 pm** or by appointment in 2026 LuMEB. For online students, meetings can be scheduled via Zoom. Please let me know if you need to schedule one.

TA: Sadman Sakib < ssakib2@illinois.edu>, time and location TBA

Questions can also be posted on the Piazza site: https://piazza.com/illinois/spring2025/me505me498

Text and Notes:

Part 1: Carbon Capture by Jennifer Wilcox (Springer, 2012)

Part 2: Lecture notes and supplemental reading

Homework: Problem sets (x6) and writing assignments (x2, for 4-hour sections only) will be assigned throughout the semester. The due date will be announced when the assignment is made. Late homework will not be accepted, unless you make prior arrangements with the instructor (or for a medical emergency). When a homework set involves computer analysis, do not submit a printout alone as your solution. The printout may be part of your solution; however, your approach must be clearly explained and independent of the program listing.

Exams: There will be one midterm exam and one final exam to be announced later in class. Both exams will be take-home exams, where you will be allowed 48 hours to complete them. Make-up exams will only be permitted by prior arrangement and only for reasons described in the U of I Student Code.

Software: The main computer tool we will use is Integrated Environmental Control Model (IECM). IECM is a tool for calculating the performance, emissions, and cost of a fossil-fueled power plant, developed by Carnegie Mellon University and Department of Engineering & Public Policy. You will need to download the software at https://www.uwyo.edu/iecm/rindex.html. Video Tutorials can be accessed at https://www.uwyo.edu/iecm/rindex.html.

Grades: Course grades for the 3-hour option will be based on the problem sets, the midterm exam, and the final exam according to the following scheme:

•	Problem Sets	40%
•	Midterm Exam	30%
•	Final Exam	30%

Course grades for the 4-hour option will be based on the problem sets, the writing assignments, the midterm exam, and the final exam according to the following scheme:

•	Problem Sets	20%
•	Writing Assignments	20%
•	Midterm Exam	30%
•	Final Exam	30%

Final letter grades will be assigned based on the scale below.

Letter Grade	Final Course Average
A+	97 - 100
A	94 - 96
A-	90 - 93
B+	87 - 89
В	84 - 86
B-	80 - 83
C+	77 - 79
C	74 - 76
C-	70 - 73
D+	67 - 69
D	64 - 66

D- 60-63 F 0-59

For final grades that are very close to the cutoff lines (less than 0.5 below the cutoff, e.g., 96.5, 93.5, ...), the upper letter grade will be given. The instructor has no predetermined 'target' grade distribution, and the distribution can vary significantly from semester to semester.

Extra Credit: You will have a chance to earn extra credit (1 pt towards your final score mentioned above) if you choose to complete an extra task. Tasks may vary for different semesters. Please refer to the update-to-date announcement made via Canvas.

Academic Integrity: Violations of University policy with respect to academic integrity will not be tolerated and infractions may lead to suspension or dismissal from the University. See: http://admin.illinois.edu/policy/code/article1_part4_1-401.html

Campus Safety: Important information regarding Campus Safety and General Emergency Response are available at http://illinois.edu/emailer/newsletter/39474.html. Please take some time to review these documents.

See Next Page for Course Schedule

Course Schedule (Tentative)

	Day	Date	Assignments	Topics	Reading
1	Wed	1-22		First Day of Class	J
				Introduction to Carbon Capture	
2	Fri	1-24		Introduction to Carbon Capture	Wilcox 2012
				CO ₂ Utilization	Chapter 1
3	Mon	1-27		Minimum work, Separation process overviews	
				Minimum work example problem	
4	Wed	1-29	PS #1 Posted	Carbon Capture Processes (Post, Pre, Oxy)	Wilcox 2012
				Absorption, Gas/liquid diffusion, Henry's Law	Chapter 3
5	Fri	1-31		Modified Henry's Law Coefficient, Liquid-Phase	
				Diffusivity, CO ₂ -Water, CO ₂ -amine Reactions	
6	Mon	2-3		Film Theory, CO ₂ Absorption Rate, Real Work	
				Calculations	
7	Wed	2-5		Intro to Adsorption, Physisorption/Chemisorption	Wilcox 2012
				Lennard-Jones, Isotherms	Chapter 4
8	Fri	2-7	PS #1 Due	Isotherm Types, Langmuir and BET Isotherms	
			PS #2 Posted	Intro to different Sorbents, Activated Carbon	
9	Mon	2-10		Zeolite, MOF, Example Problem - Film Model,	
10	*** 1	2.12		Example Problem - Langmuir Isotherm	
10	Wed	2-12		Mass Transport During Adsorption,	
11	г.	2.14		Breakthrough Curves, Molecular Simulations	
11	Fri	2-14		PSA vs TSA, Pressure Drop, Real Work	
12	Mon	2-17	PS #2 Due	Intro to Membrane Technology Membrane Selectivity, Single/Multistage	Wilson 2012
14	MOII	2-17	PS #2 Due PS #3 Posted	3 , 8	Wilcox 2012 Chapter 5
13	Wed	2-19	rs #3 rosieu	Configurations, Membrane Modules Adsorption Example Problems	Chapter 5
13	weu	2-19		Adsorption Example Froblems	
14	Fri	2-21		Intro to Integrated Environmental Control Model	
	111	2 21		(IECM)	
15	Mon	2-24		IECM Tutorial (cont.)	
	1,1011			12 cm 1 comm (comm)	
16	Wed	2-26	PS #3 Due	Negative Emissions Technologies	
			WA #1 Posted	Direct Air Capture	
17	Fri	2-28		Watch Jennifer Wilcox, Katherine Hayhoe and	
				Marshall Shepard's TED Talks – Online	
18	Mon	3-3		Natural Solutions for Carbon Dioxide Removal	
19	Wed	3-5		CO ₂ Conversion	Wilcox 2012
					Chapter 8
20	Fri	3-7		Midterm Review	
21	Mon	2 10		CO. Minoralization	Wilcox 2012
21	Mon	3-10		CO ₂ Mineralization	Wilcox 2012 Chapter 9
22	Wed	3-12		Midterm	Chapter 9
44	wea	3-12		MINITERIN	

23	Fri	3-14		Watch Jaeson Cardiff, Bas Sudmeijer, and Steve
	Mon	3-17		Oldham's TED Talks – Online Spring Break
	Wed	3-17		Spring Break
	Fri	3-21		Spring Break
24	Mon	3-24		Fundamentals of CO ₂ storage
25	Wed	3-26	WA #1 Due PS #4 Posted	Thermodynamic properties of CO ₂
26	Fri	3-28		Pipeline transport of CO ₂
27	Mon	3-31		Fundamentals of multi-phase flow of CO ₂ and brine
28	Wed	4-2		Multiphase flow and CO ₂ plume migration
29	Fri	4-4	PS #4 Due WA #2 Posted PS #5 Posted	Injection pressure of single-phase water
30	Mon	4-7		Injection pressure of CO_2 into water reservoir
31	Wed	4-9		Reservoir seals (caprocks)
32	Fri	4-11		Secondary trapping mechanisms
33	Mon	4-14	PS #5 Due PS #6 Posted	Numerical simulation of storage efficiency and long-term fate of stored CO ₂
34	Wed	4-16		Environment, health, and safety risks of CO ₂ storage; risk management
35	Fri	4-18		Monitoring
36	Mon	4-21		Capacity assessment
37	Wed	4-23	PS #6 Due	Final Review 1
38	Fri	4-25		Final Review 2
	Mon	4-28		
	Fri	5-2	WA #2 Due	
	Fri- Sat	5-9 thru 5-10		Take-Home Final Exam