Introduction to RELIABILITY ENGINEERING

Instructor: Prof. Girish Krishnan, e-mail: gkrishna@illinois.edu

Course Schedule: Tuesdays and Thursdays 2 pm to 3.20 pm. Website: Compass 2g

Course Objectives: After completing this course the student will be able to

- Use first-order second-moment and advanced methods to estimate the reliability of components and systems that can be modeled by failure theories or performance functions
- Determine a design safety factor, or other parameter, to be used in a design equation to achieve a target reliability index
- Predict reliability as a function of time, based on failure rate models of early-life, useful-life and wearout life, or Weibull analysis of life-test data
- Find the reliability of series, parallel and more complicated systems based on component characteristics, system structure, dependency, redundancy, and other properties
- Estimate parameters from strength- or life-test results, and account for the effects of sampletest uncertainty on a reliability estimate
- Describe basic features and/or qualitatively apply: failure modes and effects analysis, fault tree analysis, quality control, reliability economics, risk and safety.

Prerequisites: IE 300 or equivalent with consent of instructor.

Textbooks and Materials:

- Charles E. Ebeling, *An Introduction to Reliability and Maintainability Engineering*, Third Edition, Waveland Press Inc.
- <u>Required</u>: Course notes by Prof. Hall and Prof. Krishnan
- Optional: (1). Nowak and Collins, *Reliability of Structures*, McGraw-Hill.
 (2) P. D. T. O'Connor, *Practical Reliability Engineering*, Wiley

Homework (7):	30%	Credit:	3h for seniors and graduate students.
Midterm Tests (2):	40%		4h credit for graduate students who complete
Final Exam:	20%		two graduate projects.
Project:	10%		
	Homework (7): Midterm Tests (2): Final Exam: Project:	Homework (7):30%Midterm Tests (2):40%Final Exam:20%Project:10%	Homework (7):30%Credit:Midterm Tests (2):40%Final Exam:20%Project:10%

SCHEDULE OF TOPICS

- Weeks 1-6: 1. <u>Component Reliability Analysis and Design</u>: Models of load and resistance, single failure-mode analysis, limit state function, probability of failure, FOSM reliability index. Models of sums, products and extremes. Reliability-based design, safety factor relationships. AFOSM "design-point" methods. Multiple Failure-mode analysis, Simulation methods.
- Weeks 7-9: **2.** <u>Reliability in the Time Domain</u>: Time dependent loads and resistance. Failure rate concepts and the "bathtub" curve. Early life, useful life, wear-out reliability. Time-to-failure distributions. Influence of temperature and environment. Weibull analysis.
- Weeks 9-13: **3.** <u>System Reliability</u>: System structures and features, redundancy, independence. Series and weakest-link systems. Non-independent systems. Active parallel, stand-by and ductile systems. Tri-state devices, availability. Minimal cut and tie sets. Simulation.
- Weeks 14-15: **4.** <u>Testing, Management and Safety:</u> Life testing, parameter estimation, sample size and uncertainty, proof testing. Failure mode and effects analysis, fault tree analysis, quality control, gross error. Reliability economics, safety and risk.

Week/ Date		Course Topic	Notes on Assignments				
Week	1/21	Lec. 01: Course Introduction	HW-1 Assigned				
1 1/23		Lec. 02: Definition of Reliability					
Week	1/28	Lec. 01: Distributions	HW-2 Assigned	HW-1 due			
2	1/30	Lec. 02: Reliability Index and Design					
Week	2/4	Lec. 01: AFOSM methods (Analytical)					
3	2/6	Lec. 02: AFOSM methods (Computational)	HW-3 Assigned	HW-2 Due			
Week	2/11	Lec. 01: AFOSM methods (Some Examples)					
4	2/13	Lec. 02: AFOSM multiple failure modes					
Week	2/18	Lec. 01: Simulations					
5	2/20	Lec. 02: Reliability Based Design Optimization		HW-3 Due			
Week	2/25	Lec. 01: Reliability Based Design Optimization	Grad Project I assigned				
6 2/27		Exam-I					
Week	3/4	Lec. 1: Time Dependent Reliability (Concepts)	HW-4 Assigned				
7	3/6	Lec. 2: Time Dependent Reliability					
Week 3/11		Lec. 1: Time Dependent Reliability					
8	3/13	Lec 2: Introduction to System Reliability					
Week	3/18	Spring Break (no class)					
9 3/20							
Week	3/25	Lec. 1: System Reliability (series, parallel etc.)	HW-5 Assigned	HW-4 Due			
9	3/27 Lec. 2: System Reliability continued						
Week	4/1	Lec. 1: Chains and Weakest links	Project II				
10	4/3	Lec. 2: Review	Assigned	HW – 5 due			
Week 11	4/8	Exam-II					
	4/10	Lec. 1: Chains and Weakest links	HW-6 Assigned				
Week	4/15	Lec. 1: Repairability, Availability,					
12	4/18	Lec. 2: Repairability, Availability,					
Week	4/23	Lec. 1: Fault Tree Continued, FMEA					
13	4/25	Lec. 1: Fault Tree Continued, FMEA	HW-7 Assigned	HW-6 Due			
Week	4/30 Lec. 2: Testing and Analysis						
14	5/01	5/01 Lec. 3: Testing and Analysis					
Week	k 5/06 Summary & Final Exam Review			HW -7 due			
15	5/4	Ready Day (no class)		Grad Projects Due			
5/6 - 5/13		Final Exam (Date TBD)					