TAM 531 Fall 2024

Syllabus

Introduction

What this course is about Truly inviscid flow Importance of inviscid flow to understanding real flows

Mathematical Preliminaries

Index notation Vectors and tensors Differential and integral identities

Kinematics

Measures of deformation Vorticity Pathlines, streaklines, and streamlines Integral transport theorems

Conservation Laws

Conservation of mass Conservation of momentum and angular momentum Navier-Stokes equations

Boundary Conditions

Fluid/solid interfaces Fluid/fluid interfaces

Representations other than Navier-Stokes

Irrotational flows Divergence-free (solenoidal, "incompressible") flows Irrotational, divergence-free flows Helmholtz Theorem Biot-Savart Equation

Vorticity Transport

Vorticity transport equation and the fundamental difference between two- and threedimensional flow Circulation Measures and invariants of vorticity

Two-dimensional Potential Flow

Linear superposition Method of images Relationship to complex-variable theory and use of conformal mapping Airfoil theory

Three-dimensional Potential Flow

Flows about axisymmetric bodies Slender-body theory

Inviscid Interfacial Waves

Capillary and gravity waves Group velocity