ME498/598 Carbon Capture and Storage

Instructor: Jiajun He

Spring 2024

Class Contents:

Part I Carbon Capture:

Thermodynamics/kinetics of chemical capture Carbon capture from the industrial sector and power sources IGCC, oxy-fuel combustion, and chemical looping Reliable storage options Carbon dioxide removal from the atmosphere

Part II Carbon Sequestration:

Fundamentals of Carbon Sequestration Injection Methods and Pressure Buildup Modeling Fate and Transport Sequestration Capacity Assessment Health Safety and Environmental Risks of Sequestration Monitoring CO₂ Storage Cost of sequestration and institutional issues

Skills You Will Acquire:

Minimum and real work calculations 2nd-Law efficiency calculations Evaluation of tradeoffs between capture technologies Running IECM Capture Economic Model Assessment of the potential of CCS for global CO₂ emissions reduction Estimates of CO₂ saturation and migration after injection Evaluation of CO₂ storage potential Awareness of CO₂ storage risks as well as monitoring and mitigation methods

Class Meetings:

On-Campus Sections: Mon, Wed and Fri 10:00 am - 10:50 am at 403B2 Engineering Hall.

Online Sections: Lecture recording will be provided after class.

You are expected to attend every class session or watch the lecture recording.

Office hours: If some aspect of the course material is unclear to you after independent study, you are expected to raise the issue in class or during office hours.

Prof. Jiajun He <<u>jiajunhe@illinois.edu</u>>, Mondays 2:00 pm – 3:00 pm and by appointment in 2026 LuMEB

TA: Sadman Sakib < <u>ssakib2@illinois.edu</u>>, time and location TBA

Questions can also be posted on the Piazza site: https://piazza.com/class/lr8lf0p3p8e57/

Text and Notes:

Part 1: **Carbon Capture** by Jennifer Wilcox (Springer, 2012) Part 2: Lecture notes and supplemental reading **Homework:** Problem sets (x6) and writing assignments (x2, for 4-hour sections only) will be assigned throughout the semester. The due date will be announced when the assignment is made. Late homework will not be accepted, unless you make prior arrangements with the instructor (or for a medical emergency). When a homework set involves computer analysis, do not submit a printout alone as your solution. The printout may be part of your solution; however, your approach must be clearly explained and independent of the program listing.

Exams: There will be a one midterm exam and one final exam to be announced later in class. Both exams will be take-home exams, where you will be allowed 48 hours to complete them. Make-up exams will only be permitted by prior arrangement and only for reasons described in the U of I Student Code.

Software: The main computer tool we will use is Integrated Environmental Control Model (IECM). IECM is a tool for calculating the performance, emissions, and cost of a fossil-fueled power plant, developed by Carnegie Mellon University and Department of Engineering & Public Policy. You will need to download the software at <u>https://uwyo.edu/iecm/download-iecm.html</u>. Video Tutorials can be accessed at <u>https://www.uwyo.edu/iecm/videos/</u>.

Grades: Course grades for the 3-hour option will be based on the problem sets, the midterm exam, and the final exam according to the following scheme:

•	Problem Sets	40%
•	Midterm Exam	30%
•	Final Exam	30%

Course grades for the 4-hour option will be based on the problem sets, the writing assignments, the midterm exam, and the final exam according to the following scheme:

Problem Sets	20%
Writing Assignments	20%
Midterm Exam	30%
Final Exam	30%
	Writing Assignments Midterm Exam

Final letter grades will be assigned based on the scale below.

Letter Grade	Final Course Average
A+	97 - 100
А	94 - 96
A-	90 - 93
B+	87 - 89
В	84 - 86
B-	80 - 83
C+	77 – 79
С	74 - 76
C-	70 - 73
D+	67 - 69
D	64 - 66
D-	60 - 63
F	0 – 59

For final grades that are very close to the cutoff lines (**less than 0.5 below the cutoff**, e.g., 96.5, 93.5, ...), the upper letter grade will be given. The instructor has no predetermined 'target' grade distribution, and the distribution can vary significantly from semester to semester.

Academic Integrity: Violations of University policy with respect to academic integrity will not be tolerated and infractions may lead to suspension or dismissal from the University. See: http://admin.illinois.edu/policy/code/article1_part4_1-401.html

Campus Safety: Important information regarding Campus Safety and General Emergency Response are available at <u>http://illinois.edu/emailer/newsletter/39474.html</u>. Please take some time to review these documents.

	Course Schedule (Tentative)				
	Day	Date	Assignments	Topics	Reading
1	Wed	1-17		First Day of Class	
				Introduction to Carbon Capture	
2	Fri	1-19		Introduction to Carbon Capture	Wilcox 2012
				CO ₂ Utilization	Chapter 1
3	Mon	1-22		Minimum work, Separation process overviews	
				Minimum work example problem	
4	Wed	1-24	PS #1 Posted	Carbon Capture Processes (Post, Pre, Oxy)	Wilcox 2012
				Absorption, Gas/liquid diffusion, Henry's Law	Chapter 3
5	Fri	1-26		Modified Henry's Law Coefficient, Liquid-Phase	
	_			Diffusivity, CO ₂ -Water, CO ₂ -amine Reactions	
6	Mon	1-29		Film Theory, CO ₂ Absorption Rate, Real Work	
				Calculations	
7	Wed	1-31	PS #1 Due	Intro to Adsorption, Physisorption/Chemisorption	Wilcox 2012
6				Lennard-Jones, Isotherms	Chapter 4
8	Fri	2-2	PS #2 Posted	Isotherm Types, Langmuir and BET Isotherms	
0	17	~ ~		Intro to different Sorbents, Activated Carbon	
9	Mon	2-5		Zeolite, MOF, Example Problem - Film Model,	
4.0		~ =		Example Problem - Langmuir Isotherm	
10	Wed	2-7		Mass Transport During Adsorption,	
11	F '	2.0		Breakthrough Curves, Molecular Simulations	
11	Fri	2-9		PSA vs TSA, Pressure Drop, Real Work	
10	14	0.10		Intro to Membrane Technology	W/1 0010
12	Mon	2-12	PS #2 Due	Membrane Selectivity, Single/Multistage	Wilcox 2012
10	XX 7 1	0.14		Configurations, Membrane Modules	Chapter 5
13	Wed	2-14	PS #3 Posted	Adsorption Example Problems	
14	D.:	2.16		Later to Internated Provide the LOC of LNC 11	
14	Fri	2-16		Intro to Integrated Environmental Control Model	
15	N/ -	2.10		(IECM) IECM Tutorial (cont.)	
15	Mon	2-19		IECM Tutorial (cont.)	
16	Wad	2.21		Nagativa Emissiona Tackaslasias	
16	Wed	2-21		Negative Emissions Technologies	
17	Fri	2.22	DC #2 Duc	Direct Air Capture Wotch Jappifer Wilson Kathering Hawhoo and	
17	ГIJ	2-23	PS #3 Due	Watch Jennifer Wilcox, Katherine Hayhoe and Marshall Shepard's TED Talks – Online	
10	Mon	2-26	WA #1 Posted	Natural Solutions for Carbon Dioxide Removal	
18	WIOII	2-20	w A #1 Posted	matural Solutions for Cardon Dioxide Removal	
19	Wed	2-28		CO ₂ Conversion	Wilcox 2012
-/	,, cu	2 20			Chapter 8
20	Fri	3-1		Midterm Review	
_ V	1 1 1	51			
21	Mon	3-4		CO ₂ Mineralization	Wilcox 2012
					Chapter 9
22	Wed	3-6		Midterm	•

r				
23	Fri	3-8		Watch Jaeson Cardiff, Bas Sudmeijer, and Steve
				Oldham's TED Talks – Online
	Mon	3-11		Spring Break
	Wed	3-13		Spring Break
	Fri	3-15		Spring Break
24	Mon	3-18		Fundamentals of CO ₂ storage
25	Wed	3-20	WA #1 Due	Thermodynamic properties of CO ₂
26	Fri	3-22	PS #4 Posted (3/24)	Pipeline transport of CO ₂
27	Mon	3-25		Fundamentals of multi-phase flow of CO ₂ and brine
28	Wed	3-27		Multiphase flow and CO ₂ plume migration
29	Fri	3-29	PS #4 Due (4/2)	Injection pressure of single-phase water
30	Mon	4-1	WA #2 Posted PS #5 Posted	Injection pressure of <i>CO</i> ₂ into water reservoir
31	Wed	4-3		Reservoir seals (caprocks)
32	Fri	4-5		Secondary trapping mechanisms
33	Mon	4-8		Numerical simulation of storage efficiency and long-term fate of stored CO ₂
34	Wed	4-10		Environment, health, and safety risks of CO ₂ storage; risk management
35	Fri	4-12	PS #5 Due PS #6 Posted	Monitoring
36	Mon	4-15		Capacity assessment
37	Wed	4-17		Final Review 1
38	Fri	4-19		Final Review 2
	Mon	4-22	PS #6 Due	
	Thu	5-2	WA #2 Due	
	Thu-	5-9 thru		Take-Home Final Exam
	Fri	5-10		