ECE304 Introduction to Photonics Fall 2023

Prof. Kent Choquette
3108 Micro and Nanotechnology Building
choquett@illinois.edu

Description: Introduction to active and passive photonic devices and applications: optical processes in semiconductor and dielectric materials including electrical junctions, light emission and absorption, and waveguide confinement; photonic components such as light emitting diodes, lasers, photodetectors, solar cells, liquid crystals, and optical fiber; optical information distribution networks and display applications. The cellular phone and the associated information distribution systems introduce and motivate the study of photonic devices.

Wiki: https://wiki.illinois.edu/wiki/diplay/ECE304FA23
See “Lectures and Notes” for slides, reading assignments, and homework.

Supplementary texts:
R. Quimby, *Photonics and Lasers; An Introduction* (Wiley 2006)

Grading:
- Homework: 20%
 Due one week after assigned
- Three exams in-class: 20% each
 - Exam 1: Sept. 22
 - Exam 2: Oct. 25
 - Exam 3: Dec. 4
- Final Exam: 20%
 Dec. 15 @ 1:30-4:30 pm

Syllabus:

1) Introduction
 - Photonics in smart phones
 - Information networks
2) Electrons in solids
 - Energy bands
 - Charge carriers
3) Interaction between light and semiconductor
 - Absorption
 - Emission
 Exam 1
4) Semiconductor P/N junctions
 - Built-in potential
 - Energy bands with forward & reverse bias
5) Diode photonics: detectors
 - Photodetectors
 - Solar cells
6) Diode photonics: emitters
 - LEDs
 - White lighting & display
 Exam 2
7) Semiconductor laser diodes
 - Lasing threshold
 - Light confinement
8) Optical fiber
 - Optical modes and V-parameter
 - Fiber loss & dispersion
9) Optical networks:
 - Modulation & multiplexing
 - Photonic integrated circuits
 Exam 3

Comprehensive Final Exam