
Chapter 09 – Web Security

University of Illinois

ECE 422/CS 461

Some content adapted from materials by Raluca Ada
Popa

Goals

• By the end of this chapter you should:

– Understand the threat model underlying the Web

– Define the same origin policy

– Articulate the two main attacks unique to the web:

CSRF and XSS

– Illustrate common defenses to CSRF and XSS

2

WEB BACKGROUND

3

What is the Web?

• Application layer on top of TCP/UDP that
follows a client-server mode

4

GET …

Response…

• Application layer on top of TCP/UDP that
follows a client-server model

– Web resources are identified by Uniform Resource

Locators (URLs)

What is the Web?

5

Request …

Response…

What is the Web?

• Application layer on top of TCP/UDP that
follows a client-server model

– Web resources are identified by Uniform Resource

Locators (URLs) and transferred via the Hypertext
Transfer Protocol (HTTP)

– Web pages formatted using Hypertext Markup
Language (HTML) and include links to other pages
and resources (specified as URLs) on other servers

6Response…

Request …

What is the Web?

• Application layer on top of TCP/UDP that
follows a client-server model

– Web resources are identified by Uniform Resource

Locators (URLs) and transferred via the Hypertext
Transfer Protocol (HTTP)

– Web pages formatted using Hypertext Markup
Language (HTML) and include links to other pages
and resources (specified as URLs) on other servers

6Response…

Request …

HTML

7

Javascript

From Web Pages to Web Applications
• Initial web pages were static text

- Developed to meet the demand for information sharing

• New applications had interactive functionality

– Games

– Message boards

– Banking

– …

• Needed to track state across HTTP requests

– HTTP is stateless

8

From Web Pages to Web Applications
• Initial web pages were static text

- Developed to meet the demand for information sharing

• New applications had interactive functionality

– Games

– Message boards

– Banking

– …

• Needed to track state across HTTP requests

– HTTP is stateless

8

From Web Pages to Web Applications
• Initial web pages were static text

- Developed to meet the demand for information sharing

• New applications had interactive functionality

– Games

– Message boards

– Banking

– …

• Needed to track state across HTTP requests

– HTTP is stateless

8

From Web Pages to Web Applications
• Initial web pages were static text

- Developed to meet the demand for information sharing

• New applications had interactive functionality

– Games

– Message boards

– Banking

– …

• Needed to track state across HTTP requests

– HTTP is stateless

8

From Web Pages to Web Applications
• Initial web pages were static text

- Developed to meet the demand for information sharing

• New applications had interactive functionality

– Games

– Message boards

– Banking

– …

• Needed to track state across HTTP requests

– HTTP is stateless

8

• A way for websites to store state on clients

Cookies

Http response:

......

Set-cookie: NAME=VALUE ;

9

GET …

• A way for websites to store state on clients
– Browser maintains all cookies it receives

Cookies

Http response:

......

Set-cookie: NAME=VALUE ;

9

GET …

• A way for websites to store state on clients
– Browser maintains all cookies it receives
– Browser automatically attaches all cookies in scope

in subsequent requests to the website

Cookies

Http response:

......

Set-cookie: NAME=VALUE ;

9

GET …

Web Sessions

10

Web Sessions

• A sequence of user interactions with a website

• High security applications: 15 minutes

• Medium security applications: 30 minutes

• Low security applications: 1 hou

10

Web Sessions

• A sequence of user interactions with a website

• High security applications: 15 minutes

• Medium security applications: 30 minutes

• Low security applications: 1 hou

10

Web Sessions

• A sequence of user interactions with a website

• High security applications: 15 minutes

• Medium security applications: 30 minutes

• Low security applications: 1 hou

• Session management

– Authenticate user once, give user a secret token

– User (browser) submits the secret token with every

subsequent request

10

11

Logged in cookies

After logging out

When Request

Web Sessions

• A sequence of user interactions with a website
– Authenticate user once, set a cookie with session ID
– User (browser) submits the session cookie with

every request

12

Web Sessions

• A sequence of user interactions with a website
– Authenticate user once, set a cookie with session ID
– User (browser) submits the session cookie with

every request

• Need to protect the cookie! If stolen, it gives
attacker full access to the user’s account

12

Web Sessions

• A sequence of user interactions with a website
– Authenticate user once, set a cookie with session ID
– User (browser) submits the session cookie with

every request

• Need to protect the cookie! If stolen, it gives
attacker full access to the user’s account

• Impersonation attacks can happen even without
stealing the cookie (CSRF)

12

WEB SECURITY

13

• The web is an example of “bolted-on security”
• Originally, the web was invented to allow

scientists to share their research papers
– Only textual web pages + links to other pages; 

no threat model to speak of

14

Web Security History

• The web is an example of “bolted-on security”
• Originally, the web was invented to allow

scientists to share their research papers
– Only textual web pages + links to other pages; 

no threat model to speak of

• Then, it got more and more complex
– Images, videos, frames, Javascript, …

• Web security is a challenge!

14

Web Security History

• What are we defending?

15

GET …

	 	 	 Http response

Web Security Risks

• What are we defending?
– Confidentiality, integrity and availability

• From whom?

15

GET …

	 	 	 Http response

Web Security Risks

• What are we defending?
– Confidentiality, integrity and availability

• From whom?
– Anyone can be malicious

15

GET …

	 	 	 Http response

Web Security Risks

Web Security Risks

• What are we defending? From whom?

• Risk #1: malicious client steals/modifies data

on a web server, or takes control of server

16

GET …

	 	 	 Http response

Code Red worm

17

GET /default.ida?
NNN
NNN
NNN
NNN
NNNNNNNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd
3%u7801%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00
c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0 

A really bad sever app
<?php

echo system(“ls ” . $_GET[“path”]);

A really bad sever app
<?php

echo system(“ls ” . $_GET[“path”]);

GET /?path=/home/user/ HTTP/1.1

A really bad sever app
<?php

echo system(“ls ” . $_GET[“path”]);

GET /?path=/home/user/ HTTP/1.1

HTTP/1.1 200 OK 
… 
Desktop

Documents

Music

Pictures

A really bad sever app
<?php

echo system(“ls ” . $_GET[“path”]);

A really bad sever app
<?php

echo system(“ls ” . $_GET[“path”]);

GET /?path=$(rm –rf /) HTTP/1.1

A really bad sever app
<?php

echo system(“ls ” . $_GET[“path”]);

GET /?path=$(rm –rf /) HTTP/1.1

<?php

echo system(“ls $(rm –rf /)”);

A really bad sever app
<?php

echo system(“ls ” . $_GET[“path”]);

GET /?path=$(rm –rf /) HTTP/1.1

<?php

echo system(“ls $(rm –rf /)”);

A really bad sever app
<?php

echo system(“ls ” . $_GET[“path”]);

GET /?path=$(rm –rf /) HTTP/1.1

<?php

echo system(“ls $(rm –rf /)”);

Aside: Code Injection

• Confusing Data and Code

– Programmer thought user 

would supply data, 
but instead got (and unintentionally executed) code

• Common and dangerous class of vulnerabilities

– Saw it before

• Control-flow Hijacking (Buffer overflows)

– Will see it today

• Cross-Site Scripting (XSS)

– Will see it next time

• SQL Injection

<?php

echo system(“ls $(rm –rf /)”);

Web Security Risks

• What are we defending? From whom?

• Risk #2: malicious website steals/trashes files

on clients, or infects clients with malware

21

GET …

	 	 	 Http response

Example: FakeAV

22

Web Security Risks

• What are we defending? From whom?

• Risk #3: an attacker spies on or tampers with a

client’s interaction with a website

23

GET …

	 	 	 Http response

Web Security Risks

• What are we defending? From whom?

• Risk #3: an attacker spies on or tampers with a

client’s interaction with a website

– Possibly by baiting the client to visit its own site

24

GET …

	 	 	 Http response

Web Security Risks

• Will focus on risk #3 (more unique to web)

– An on-path adversary is a concern, but we will defer

it to crypto and network security; assume
communication channel is trusted for now

25

GET …

	 	 	 Http response

Web Security Risks

• Will focus on risk #3 (more unique to web)

– An on-path adversary is a concern, but we will defer

it to crypto and network security; assume
communication channel is trusted for now

25

GET …

	 	 	 Http response

WEB SECURITY

26

Review

27

Review

• Who are we defending from in Web security?

27

Review

• Who are we defending from in Web security?
– Malicious clients, servers, and third parties

27

Review

• Who are we defending from in Web security?
– Malicious clients, servers, and third parties

• How does a server track authenticated
sessions?

27

Review

• Who are we defending from in Web security?
– Malicious clients, servers, and third parties

• How does a server track authenticated
sessions?
– Cookies

27

Review

• Who are we defending from in Web security?
– Malicious clients, servers, and third parties

• How does a server track authenticated
sessions?
– Cookies

• What is an important property of
authentication cookies?

27

Review

• Who are we defending from in Web security?
– Malicious clients, servers, and third parties

• How does a server track authenticated
sessions?
– Cookies

• What is an important property of
authentication cookies?
– Must be secret

27

Cross Site Request Forgery (CSRF)

A Web Session

29

POST /login

Host: bank.com

Username=Alice&Password=StrongPW

Set-cookie:

Logged in Alice

A Web Session

29

POST /login

Host: bank.com

Username=Alice&Password=StrongPW

Set-cookie:

Logged in Alice

GET /transfer

<form action="http://bank.com/transfer" method="post">

<input name=”recipient">

<input name=”amount">

<input type="submit" value="Submit">

</form>

A Web Session

29

POST /login

Host: bank.com

Username=Alice&Password=StrongPW

POST /transfer

Host: bank.com

recipient=Carol&amount=10

Set-cookie:

Logged in Alice

GET /transfer

<form action="http://bank.com/transfer" method="post">

<input name=”recipient">

<input name=”amount">

<input type="submit" value="Submit">

</form>

Think Like an Attacker

30

Think Like an Attacker

1. Bank will execute transfer if:

30

Think Like an Attacker

1. Bank will execute transfer if:
A. It receives a POST request

30

Think Like an Attacker

1. Bank will execute transfer if:
A. It receives a POST request
B. With the right parameters (recipient, amount)

30

Think Like an Attacker

1. Bank will execute transfer if:
A. It receives a POST request
B. With the right parameters (recipient, amount)
C. And correct authentication cookie

30

Think Like an Attacker

1. Bank will execute transfer if:
A. It receives a POST request
B. With the right parameters (recipient, amount)
C. And correct authentication cookie

2. User’s browser will send authenticated cookie with
every request to bank.com

30

Think Like an Attacker

1. Bank will execute transfer if:
A. It receives a POST request
B. With the right parameters (recipient, amount)
C. And correct authentication cookie

2. User’s browser will send authenticated cookie with
every request to bank.com

3. User’s browser will send a POST request to
bank.com when user submits a form with
action=“http://bank.com/” on any site

30

Think Like an Attacker

1. Bank will execute transfer if:
A. It receives a POST request
B. With the right parameters (recipient, amount)
C. And correct authentication cookie

2. User’s browser will send authenticated cookie with
every request to bank.com

3. User’s browser will send a POST request to
bank.com when user submits a form with
action=“http://bank.com/” on any site

4. Users will submit the request when promised free
iPhones

30

31

CSRF attack (GET)

31

CSRF attack (GET)

31

Click on

“Get free iPhone”

CSRF attack (GET)

31

Click on

“Get free iPhone”

CSRF attack (GET)
bank server

31

Click on

“Get free iPhone”

attack server

CSRF attack (GET)
bank server

31

Click on

“Get free iPhone”

attack server

CSRF attack (GET)
bank server

<html>

<title>Free iPhone!</title>

<img: src=“http://bank.com/transfer/recipient=attacker&amount=100”>

</html>

31

Click on

“Get free iPhone”

attack server

CSRF attack (GET)
bank server

<html>

<title>Free iPhone!</title>

<img: src=“http://bank.com/transfer/recipient=attacker&amount=100”>

</html>

GET /transfer//transfer/recipient=attacker&amount=100

32

CSRF attack (POST)

32

CSRF attack (POST)

32

CSRF attack (POST)

bank

server

32
attack server

CSRF attack (POST)

bank

server

32
attack server

CSRF attack (POST)

bank

server

<html>

<title>Free iPhone!</title>

<form method=“post” 
action=“http://bank.com/transfer/”>

<input type=“submit” value=“Get free iPhone!”>

32

Click on

“Get free iPhone”

attack server

CSRF attack (POST)

bank

server

<html>

<title>Free iPhone!</title>

<form method=“post” 
action=“http://bank.com/transfer/”>

<input type=“submit” value=“Get free iPhone!”>

32

POST /transfer

Click on

“Get free iPhone”

attack server

CSRF attack (POST)

bank

server

<html>

<title>Free iPhone!</title>

<form method=“post” 
action=“http://bank.com/transfer/”>

<input type=“submit” value=“Get free iPhone!”>

Correct Arguments

How to supply correct arguments to post request?

33

Correct Arguments

How to supply correct arguments to post request?

33

Correct Arguments

How to supply correct arguments to post request?
• Hidden parameters

<input type=“hidden” name=“recipient”
value=“8675309”>
<input type=“hidden” name=“amount” value=“1000”>

33

Think Like a Defender
1. Bank will execute transfer if:

A. It receives a POST request

B. With the right parameters (recipient, amount)

C. And correct authentication cookie

2. User’s browser will send authenticated cookie with
every request to bank.com

3. User’s browser will send a POST request to bank.com
when user submits a form with action=“http://
bank.com/” on any site

4. Users will submit forms when promised free iPhones

Which of these can we change to stop attack?
34

CSRF Defenses

• SameSite cookie

– Let browser attach cookie only if the request

originates from the same site (exceptions exist)

35

SameSite Cookie

• SameSite=None: always sent
• SameSite=Strict: not sent for cross-site requests

– Will affect user experience when following a benign
link from another website

36

SameSite Cookie

• SameSite=None: always sent
• SameSite=Strict: not sent for cross-site requests

– Will affect user experience when following a benign
link from another website

• SameSite=Lax: not sent for cross-site requests
except for top-level GET requests
– I.e., navigate to a new website

36

GET vs. POST

• GET for viewing and POST for changing states

37

GET vs. POST

• GET for viewing and POST for changing states
– Same Origin Policy protects viewing (coming soon)

37

GET vs. POST

• GET for viewing and POST for changing states
– Same Origin Policy protects viewing (coming soon)

• Bad practice: GET /transfer?recipient=bob&amount=10

37

GET vs. POST

• GET for viewing and POST for changing states
– Same Origin Policy protects viewing (coming soon)

• Bad practice: GET /transfer?recipient=bob&amount=10

– CSRF attack will succeed with SameSite=Lax, but
will be prevented with SameSite=Strict

37

CSRF Defenses

• SameSite cookie is a relatively new defense,
proposed in 2016

– Not supported in old versions of browsers

• CSRF token is the recommended defense

• Can be combined for “defense in depth”

38

CSRF Token

39

POST /login

Host: bank.com

Username=Alice&Password=StrongPW

POST /transfer

Host: bank.com

recipient=Carol&amount=10

Set-cookie:

Logged in Alice

GET /transfer

CSRF Token

39

POST /login

Host: bank.com

Username=Alice&Password=StrongPW

POST /transfer

Host: bank.com

recipient=Carol&amount=10

Set-cookie:

Logged in Alice

GET /transfer

<form action="http://bank.com/transfer" method="post">

<input name=”recipient">

<input name=”amount">

<input type=“hidden” name=“CSRFToken” value=“8d642fed”>

<input type="submit" value="Submit">

</form>

CSRF Token

39

POST /login

Host: bank.com

Username=Alice&Password=StrongPW

POST /transfer

Host: bank.com

recipient=Carol&amount=10

Set-cookie:

Logged in Alice

GET /transfer

<form action="http://bank.com/transfer" method="post">

<input name=”recipient">

<input name=”amount">

<input type=“hidden” name=“CSRFToken” value=“8d642fed”>

<input type="submit" value="Submit">

</form>

form served:

8d642fed

CSRF Token

39

POST /login

Host: bank.com

Username=Alice&Password=StrongPW

POST /transfer

Host: bank.com

recipient=Carol&amount=10

Set-cookie:

Logged in Alice

GET /transfer

<form action="http://bank.com/transfer" method="post">

<input name=”recipient">

<input name=”amount">

<input type=“hidden” name=“CSRFToken” value=“8d642fed”>

<input type="submit" value="Submit">

</form>

form served:

8d642fed

&CSRFToken=8d642fed

CSRF Token

40

POST /login

Host: bank.com

Username=Alice&Password=StrongPW

Logged in Alice

Click Here Free iPhone !!!

POST /transfer

Host: bank.com

recipient=attacker&amount=100

Set-cookie:

(cookie automatically

attached by browser)

form served:

8d642fed

JavaScript Sandbox

• JavaScript is an interpreted language running in a
sandbox

• Highly limited access to system

– Can’t e.g., read/write your files

• Instead, focus on implementing interactive browser
functionality

– Take input from user (text, clicks)

– Update web page

– Make new requests

– Read cookies

41

Same-Origin Policy (SOP)

Why We Need SOP

43

Why We Need SOP

• Javascript is powerful; it can

– Alter page contents

– Track events (mouse clicks, motion, keystrokes)

– Issue web requests & read replies

• Same-origin policy ensures a page’s elements
can be accessed only by its own Javascript

43

Same-Origin Policy

44

Same-Origin Policy

44

http://coolsite.com:81/tools/info.html

Same-Origin Policy

44

http://coolsite.com:81/tools/info.html

protocol hostname port

Same-Origin Policy

44

http://coolsite.com:81/tools/info.html

protocol hostname port
except does not

include ports in origins

Same-Origin Policy

• Granularity of protection: the origin

• Origin = (protocol, hostname, port)

• It is string matching! Given two URLs, if these
match, they have the same origin, else they do
not (even though logically they may)

44

http://coolsite.com:81/tools/info.html

protocol hostname port
except does not

include ports in origins

Exercises: Same origin?

Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/

http://wikipedia.org/ http://www.wikipedia.org/

http://wikipedia.org/ https://wikipedia.org/

http://wikipedia.org/a/ http://wikipedia.org:80/b/

http://wikipedia.org:81/ http://wikipedia.org/

45

Exercises: Same origin?

Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/

http://wikipedia.org/ http://www.wikipedia.org/

http://wikipedia.org/ https://wikipedia.org/

http://wikipedia.org/a/ http://wikipedia.org:80/b/

http://wikipedia.org:81/ http://wikipedia.org/

45

Exercises: Same origin?

Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/

http://wikipedia.org/ http://www.wikipedia.org/

http://wikipedia.org/ https://wikipedia.org/

http://wikipedia.org/a/ http://wikipedia.org:80/b/

http://wikipedia.org:81/ http://wikipedia.org/

45

Exercises: Same origin?

Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/

http://wikipedia.org/ http://www.wikipedia.org/

http://wikipedia.org/ https://wikipedia.org/

http://wikipedia.org/a/ http://wikipedia.org:80/b/

http://wikipedia.org:81/ http://wikipedia.org/

45

Exercises: Same origin?

Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/

http://wikipedia.org/ http://www.wikipedia.org/

http://wikipedia.org/ https://wikipedia.org/

http://wikipedia.org/a/ http://wikipedia.org:80/b/

http://wikipedia.org:81/ http://wikipedia.org/

45

Exercises: Same origin?

Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/

http://wikipedia.org/ http://www.wikipedia.org/

http://wikipedia.org/ https://wikipedia.org/

http://wikipedia.org/a/ http://wikipedia.org:80/b/

http://wikipedia.org:81/ http://wikipedia.org/

45

Why We Need SOP

46

Why We Need SOP

• Javascript is powerful; it can

– Alter page contents

– Track events (mouse clicks, motion, keystrokes)

– Issue web requests & read replies

• Same-origin policy ensures a page’s elements
can be accessed only by its own Javascript

• Demo
46

Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS)

• Attacker takes advantage of a vulnerability to
trick a website (e.g., bank.com) to send its user
attacker’s Javascript code

48

Cross-Site Scripting (XSS)

• Attacker takes advantage of a vulnerability to
trick a website (e.g., bank.com) to send its user
attacker’s Javascript code
– Subvert same origin policy

48

Cross-Site Scripting (XSS)

• Attacker takes advantage of a vulnerability to
trick a website (e.g., bank.com) to send its user
attacker’s Javascript code
– Subvert same origin policy
– But does not necessarily involve another website

48

Cross-Site Scripting (XSS)

• Attacker takes advantage of a vulnerability to
trick a website (e.g., bank.com) to send its user
attacker’s Javascript code
– Subvert same origin policy
– But does not necessarily involve another website
– Possibly better name: Javascript injection

48

Cross-Site Scripting (XSS)

• Attacker takes advantage of a vulnerability to
trick a website (e.g., bank.com) to send its user
attacker’s Javascript code
– Subvert same origin policy
– But does not necessarily involve another website
– Possibly better name: Javascript injection

• Two types: stored XSS and reflected XSS

48

Stored XSS

• Imagine a website where users create and view
postings

49

Used iPhone
Good condition

Bought in 2018

Selling for $300

Stored XSS

• Imagine a website where users create and view
postings

49

Used iPhone
Good condition

Bought in 2018

Selling for $300

<html>

……

<body>

 Good condition

 Bought in 2018

 Selling for $300

/body>

</html>

Stored XSS

50

Used iPhone
<script>

alert(“gotcha!”)

</script>

<html>

……

<body>

 <script>

 alert(“gotcha!”)

 </script>

</body>

</html>

Stored XSS

• The injected Javascript code is from the victim
website (same-origin)

– Can take actions on user’s account or send user

data/cookie to attacker

50

Used iPhone
<script>

alert(“gotcha!”)

</script>

<html>

……

<body>

 <script>

 alert(“gotcha!”)

 </script>

</body>

</html>

Reflected XSS

51

• User input echoed back in HTTP response

Reflected XSS

51

• User input echoed back in HTTP response

Cool stuff

Search results for Cool stuff:

……

Reflected XSS

51

• User input echoed back in HTTP response

Cool stuff

Search results for Cool stuff:

……

<html>

……

<body>

Search results for Cool stuff

......

</body>

</html>

Reflected XSS

52

• User input echoed back in HTTP response

<script> alert(“gotcha”) </script>

<html>

……

<body>

Search results for <script>
alert(“gotcha”) </script>

......

</body>

</html>

Reflected XSS

53

• User input echoed back in HTTP response

• Why is this a problem? The user is just

injecting Javascript to itself …

<script> alert(“gotcha”) </script>

<html>

……

<body>

Search results for <script>
alert(“gotcha”) </script>

......

</body>

</html>

Reflected XSS

54

• User input echoed back in HTTP response

• Why is this a problem?

<html>

……

<body>

Search results for <script>
alert(“HiFromAttacker”) </
script>

......

</body>

</html>

Click Here Free iPhone !!!

 http://G00g1o.com/?search=<script>alert(“HiFromAttacker”)</script>

XSS Recap

• Goal: inject malicious Javascript code into a
website’s HTTP response to its user

– Injected script has the website’s origin

• Stored XSS

– Leave content on the website

• Reflected XSS

– Trick user to click on a malicious link  Javascript

injected into a request to the vulnerable website 
Vulnerable website echoes injected Javascript into
its response to the user

55

Twitter XSS Vulnerability

• Some users constructed a tweet that were
automatically retweeted

56

XSS Defenses

• Core issue: confusion between data and code

57

XSS Defenses

• Core issue: confusion between data and code
• Validate and escape user input

57

XSS Defenses

• Core issue: confusion between data and code
• Validate and escape user input

– If user input should not contain special characters,
(e.g., usernames, tracking number), enforce that!

57

XSS Defenses

• Core issue: confusion between data and code
• Validate and escape user input

– If user input should not contain special characters,
(e.g., usernames, tracking number), enforce that!

– If users need to input special characters, escape
them

57

Character Escape sequence
< <
> >
& &
“ "
‘ '

 	 	  HTML tag

	  on screen

XSS Defenses

• Core issue: confusion between data and code
• Validate and escape user input
• Content-Security-Policy (CSP): website specifies

an allowlist of trusted scripts in HTTP header

58

XSS Defenses

• Core issue: confusion between data and code
• Validate and escape user input
• Content-Security-Policy (CSP): website specifies

an allowlist of trusted scripts in HTTP header
– Must use <script src=”trustedScript.js"></script>
– Inline scripts will be ignored by browser

58

Summary

• Cookie is used for web session management

• Same-origin policy (SOP) isolates different

websites on the client side (browser enforced)

• CSRF arises because browser automatically

sends cookies

– Defense: CSRF token, SameSite cookie

• XSS: Javascript injection

– Defense: validate user input, CSP

59

To Learn More …

• Books

– Pfleeger and Pfleeger, Chapter 4

– Goodrich and Tamassia, Chapter 7

– Anderson, Chapter 23

– Du, Chapter 11

• Papers

– Robust Defenses for Cross-Site Request Forgery - Barth

– BLUEPRINT: Robust Prevention of Cross-site Scripting Attacks

for Existing Browsers - Louw

– Cross Site Scripting Explained - Klein

– Securing Frame Communication in Browsers - Barth

– Beware of Finer-Grained Origins – Jackson

60

