Chapter 09 — Web Security

University of lllinois
ECE 422/CS 461

Some content adapted from materials by Raluca Ada

Goals

« By the end of this chapter you should:
— Understand the threat model underlying the Web
— Define the same origin policy

— Articulate the two main attacks unique to the web:
CSRF and XSS

— lllustrate common defenses to CSRF and XSS

WEB BACKGROUND

What is the Web?

« Application layer on top of TCP/UDP that
follows a client-server mode

GET ...

Response...

What is the Web?

« Application layer on top of TCP/UDP that
follows a client-server model

— Web resources are identified by Uniform Resource
Locators (URLs)

Request URL: https://www.google.com/search?q=uiuc+ece
Request Method: GET

Status Code: @® 200 OK

Remote Address: 142.250.190.36:443

Referrer Policy: strict-origin-when-cross-origin

Request ...

A

Response...

What is the Web?

« Application layer on top of TCP/UDP that
follows a client-server model

— Web resources are identified by Uniform Resource
Locators (URLs) and transferred via the Hypertext
Transfer Protocol (HTTP)

— Web pages formatted using Hypertext Markup
Language (HTML) and include links to other pages
and resources (specified as URLs) on other servers

Request ...

Response...

What is the Web?

<html itemscope="" itemtype="http://schema.orqg/SearchResultsPage" lang="en">
<head>
<meta charset="UTF-8">
<meta content="origin" name="referrer">
<meta content="Anm+hhtuh7NJguqSnXHEAIqgMaV+GXCksBWYXHIKF7L6AeYM)+w0+T1i90dDqFnJITg9t0492DykVxx4]jpvFboxnABAAABseyIveminaW4i0iJodHRweczovL2dvb2dsZS5]!
<meta content="/images/branding/googleg/1x/googleg_standard_color_128dp.png" itemprop="image">
<title>uiuc ece - Google Search</title>
<script nonce="YhFRxd LGO7elviIlwX1Ccw">
window._hst = Date.now();
performance && performance.mark && performance.mark('SearchHeadStart");
</script>
<script nonce="YhFRxd1G07elviIlwX1Ccw">
(function() {
var b = window.addEventListener;
window.addEventListener = function(a, c, d) {
a !== "unload" && b(a, c, d)

}

— Web pages formatted using Hypertext Markup
Language (HTML) and include links to other pages
and resources (specified as URLs) on other servers

Request ...

A

Response...

HTML

<html itemscope="" itemtype="http://schema.org/SearchResultsPage" lang="en">
<head>
<meta charset="UTF-8">
<meta content="origin" name="referrer">
<meta content="Anm+hhtuh7NJguqSnXHEAIqgMaV+GXCksBWYXHIKF7 L6AeYM)+w0+T190dDqFn]Tg9t0492DykVxx4]pvFbxnABAAABseyJvemln:
<meta content="/images/branding/googleg/1x/googleg_standard_color_128dp.png" itemprop="image">
<title>uiuc ece - Google Search</title>
<script nonce="YhFRxdLlGO7elvillwXiCcw >
window._hst = Date.now();
performance && performance.mark && performance.mark("SearchHeadStart");
</script>
<script nonce="YhFRxd1GO7elviIlwX1Ccw">
(function() {
var b = window.addEventListener;
window.addEventListener = function(a, c, d)
a !== "unload" && b(a, c, d)

Javascript

From Web Pages to Web Applications

 Initial web pages were static text

- Developed to meet the demand for information sharing
« New applications had interactive functionality

— Games

— Message boards
— Banking

 Needed to track state across HTTP requests
— HTTP is

From Web Pages to Web Applications

 Initial web pages were static text

- Developed to meet the demand for information sharing
« New applications had interactive functionality

— Games

— Message boards
— Banking

 Needed to track state across HTTP requests
— HTTP is

Hi! IM A BROWSER.
IMASERVER! | |IDUKE ® &E
WHO ARE YOU? | | THIS ARTICLE.

TIII0

From Web Pages to Web Applications

 Initial web pages were static text

- Developed to meet the demand for information sharing
« New applications had interactive functionality

— Games

— Message boards
— Banking

 Needed to track state across HTTP requests
— HTTP is

Hi! IMA BROWSER.| | OH BoY! I CAN HELP! | |YERH

TMASERVER! | |TDLKE P e | |LETMEGET TFR= | |2 commott HEY, TVE
WHO ARE YoU? | | THIS ARTICLE. ..WHOA! YOURE A GOT THIS NEW MOGILE
SHARTFHONE BROWSER? | | \ieraion OF MY SITE!

CHECK [Tour!

TIII0

From Web Pages to Web Applications

 Initial web pages were static text
- Developed to meet the demand for information sharing
« New applications had interactive functionality

Games

Message boards

Banking

 Needed to track state across HTTP requests

— HTTP is
Hil IM A BROWSER.| | OH BoY! I CAN HELP! | |YERH. SURE, BUT THIS 1S WHAT ARTICLE?
IMAGERVER! | TDLKE D &E | [LETMEGET TFOR= | 12 corpyey 1 HeY, TvE | | JUSTYOUR MOBILE | [T one T~ |
WHO ARE YOU? | [THIS ARTICLE. | |...WHOA! YOURE A GOT THIS NEW MoBILE. | | STTE'S MAIN PAGE. [\HO ARE YOU?
SHARTFHONE BROWSER? | | viergioN oF MY SITE! | | WHERE'S THE I—

From Web Pages to Web Applications

 Initial web pages were static text
- Developed to meet the demand for information sharing
« New applications had interactive functionality

o .

— Games
— Message boards #
— Bankin i _
g o
« Needed to track state across HTTP requests
— HTTP s
Hil TMA BROWSER.| | OH BOY! I CAN HELP! | | YERH. SURE. BUTTHIS IS| | WHAT ARTICLE?
IMAGERVER! | TDLKE D &E | [LETMEGET TFOR= | 12 corpyey 1 HeY, TvE | | JUSTYOUR MOBILE | [T one T~ |
WHOARE YOU? | | THIS ARTLE. | |...WHOA! YOURE A | [GoT Tiis NEw MOBILE | | STES MAIN PAGE. | | (| 145 e you?
SMARTIHOME BROWSER? VERSION OF MY SITE! | | WHERES THE , I— /
= V) CHECK T OUT ARTIALE TWANTED? | |,/ Wi T ASERVER!

Cookies

« A way for websites to store state on clients

GET ...

Set-cookie: NAME=VALUE ;
¢

Cookies

« A way for websites to store state on clients

— Browser maintains all cookies it receives

GET ...

Set-cookie: NAME=VALUE ;
¢

Cookies

« A way for websites to store state on clients

— Browser maintains all cookies it receives

— Browser automatically attaches all cookies in scope
in subsequent requests to the website

GET ...

Http response:

Set-cookie: NAME=VALUE ;
s

LN

Web Sessions

Web Sessions

« A sequence of user interactions with a website

Web Sessions

« A sequence of user interactions with a website
« High security applications: 15 minutes
« Medium security applications: 30 minutes

« Low security applications: 1 hou

Web Sessions

« A sequence of user interactions with a website
« High security applications: 15 minutes
« Medium security applications: 30 minutes
« Low security applications: 1 hou

« Session management

— Authenticate user once, give user a secret token

— User (browser) submits the secret token with every
subsequent request

[l

Logged in cookies

B IndexedDB
V@ Cookies

@ https://canvas.illinois.edu
@ https://sso.canvasims.com

B Private state tokens
B Interest groups
» & Shared storage

B Cache storage

When Request

X Headers Preview Response

Request Cookies

Initiator

Name A Value
OptanonAlertBoxClosed 2024-09-24T...
OptanonConsent isGpcEnabled...
_csrf_token n65xVgnpUx...
_ga GA1.1.191417 ...
_ga_71JGWHBFGH GS1.1.172714...
_hp2_id.3001039959 %7B%?22userl...
_hp2_props.3001039959 %7B%22Base...
_hp2_ses_props.3001039... %7B%22ts%...
_legacy_normandy_session IWI14cjx49-Li...
canvas_session IWI14cjx49-Li...
dpUselegacy false
log_session_id c721d626bac...

After logging out

» B8 Session storage
£ IndexedDB

v Cookies
@ . IndexedDB
@ https://|09|n.nuuu:unuunne

() show filtered out request cookies

Domain
.illinois.edu
.illinois.edu
canvas.illinois.edu
.illinois.edu
.illinois.edu
.illinois.edu
.illinois.edu
.illinois.edu
canvas.illinois.edu
canvas.illinois.edu
canvas.illinois.edu
canvas.illinois.edu

_hp2_props.300103... %7B%22Bas... .illinois.edu
_hp2_ses_props.300... %7B%22ts%... .illinois.edu
_legacy_normandy_s... IWI14cjx49-... canvas.illinois.edu
canvas_session IWI14cjx49-... canvas.illinois.edu
dpUselegacy false canvas.illinois.edu
inst-fs-session eyJpZGVud... .inst-fs-iad-prod.i...
inst-fs-session.sig XKFOFRNF4... .inst-fs-iad-prod.i...
log_session_id c721d626ba... canvas.illinois.edu
Timing Cookies

Path Expires [Max-... Size

/ 2024-12-23T... 45
/ 2024-12-23T... 260
/ Session 113
/ 2025-10-29T... 29
/ 2025-10-29T... 52
/ 2025-10-23T1... 372
/ 2025-10-23T1... 60
/ 2024-09-24T... 125
/ Session 744
/ Session 734
/ 2024-12-31T0... 16
/ Session 46

/

/

/

/

/

/

/

/

Ht... Se...

4
V4
v4
V4

v v

v v

v v

202...
202...
Ses...
Ses...
202...
202...
202...
Ses...

SameSite
Lax
Lax

None
None
None

None

60
125
744
734
16
143
46

46

Parti...

<

AN NN

<L

Cros...

None
None

None

None
None

Prior...
Medi...
Medi...
Medi...
Medi...
Medi...
Medi...
Medi...
Medi...
Medi...
Medi...
Medi...
Medi...

Web Sessions

« A sequence of user interactions with a website

— Authenticate user once, set a cookie with session ID

— User (browser) submits the session cookie with
every request

Web Sessions

« A sequence of user interactions with a website

— Authenticate user once, set a cookie with session ID

— User (browser) submits the session cookie with
every request

 Need to protect the cookie! If stolen, it gives
attacker full access to the user’s account

Web Sessions

« A sequence of user interactions with a website
— Authenticate user once, set a cookie with session ID
— User (browser) submits the session cookie with
every request
 Need to protect the cookie! If stolen, it gives
attacker full access to the user’s account

e Impersonation attacks can happen even without
stealing the cookie (CSRF)

WEB SECURITY

Web Security History

« The web is an example of “bolted-on security”

e Originally, the web was invented to allow
scientists to share their research papers

— Only textual web pages + links to other pages;
no threat model to speak of

Web Security History

The web is an example of “bolted-on security”

Originally, the web was invented to allow
scientists to share their research papers

— Only textual web pages + links to other pages;
no threat model to speak of

Then, it got more and more complex

— Images, videos, frames, Javascript, ...

Web security is a challenge!

Web Security Risks

« What are we defending?

GET ...

Http response

15

Web Security Risks

« What are we defending?
— Confidentiality, integrity and availability

e From whom?

GET ...

Http response

15

Web Security Risks

« What are we defending?
— Confidentiality, integrity and availability

e From whom?

— Anyone can be malicious

GET ...

Http response

15

Web Security Risks

« What are we defending? From whom?

« Risk #1: malicious client steals/modifies data
on a web server, or takes control of server

GET ...

Http response

16

Code Red worm

GET /default.ida?
NNN
NNN
NNN
NNN
NNNNNNNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd
%U7801%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%ud0d
c3%u0003%u8b00%u531b%u53ff%ud078%u0000%u0d=a HTTP/1.0

A really bad sever app

Eecho system(“ls ” . $ GET[“path”]);

A really bad sever app

Eecho system(“ls ” . $ GET[“path”]);

GET /?path=/home/user/ HTTP/1.1

A really bad sever app

GET /?path=/home/user/ HTTP/1.1

HTTP/1.1 200 OK

Desktop
Documents
Music
Pictures

A really bad sever app

A really bad sever app

A really bad sever app

A really bad sever app

A really bad sever app

Eecho system(“ls ” . $ GET[“path”]);

GET /?path=S(rm —rf /) HTTP/1.1

Aside: Code Injection

e Confusing Data and Code <?php ﬁ

— Programmer thought user ccho system(“ls $(rm —cf /)");
would supply data,
but instead got (and unintentionally executed) code

« Common and dangerous class of vulnerabilities
— Saw it before
« Control-flow Hijacking (Buffer overflows)
— Will see it today
e Cross-Site Scripting (XSS)
— Will see it next time
e SQL Injection

Web Security Risks

« What are we defending? From whom?

« Risk #2: malicious website steals/trashes files
on clients, or infects clients with malware

GET ...

Http response

21

Example: FakeAV

p
System Tasks System folders Opening setup.exe |i
: : o N\
View system information == Shared Documents 2y My Documents You have chosen to open
‘L) Add or remove programs ° 6 Spyware found [27] setup.exe
B’ Change a settings Hard drive which is a: Binary File (2.0 MB)
from: http://lowsolutiontesting.info
Other Places R @ Hard drive (C:) Would you like to save this file?
9 78 Spyware found :
&4 My Network Places ’ Save File ‘ Cancel
) Security
a My Documents
’ %= Windows Security Alert [ﬁj
(D shared Documents Windows Secure Kit
B’ Control Panel Security is affected by spywa

To help protect your computer, Windows Web Secure
Kit have detected Trojans and ready to remove them.

CCC OO

Details Checking: Complete Scan

My Computer Detected spyware and adware on your computer: Filename:

System Folder \)2/ Your Computer is infected ¥ Adware.Win32.Winad noise.dat =

° W32.Yaha.B@mm emptyregdb.dat =
Name Q Magic DVD Ripper mpr.dll
¥ Trojan Horse IRC ¥ Trojan-PSW.Win32.LdPinch.abm ieakui.dl
° Adware.Win32.Look2me @ Trojan virtumonde SET3.tmp =
% Trojan.Qoologic - Key Logger -
° Trojan.Fakealert l Remove all] [Cancel]
g Trojan virtumonde Spyware is software, which can gather information from user's computer
; . @ through Internet connection and send them to its creater. Gather
Recommend: Click "Start Protection” butt information can be passwords, e-mail adresses and all that data, which is
important for you.

22

Web Security Risks

« What are we defending? From whom?

« Risk #3: an attacker spies on or tampers with a
client’s interaction with a website

GET ...

Http response

o

23

Web Security Risks

« What are we defending? From whom?

« Risk #3: an attacker spies on or tampers with a
client’s interaction with a website

— Possibly by baiting the client to visit its own site

GET ...

Http response

| ! i

24

Web Security Risks

o Will focus on risk #3 (more unique to web)

— An on-path adversary is a concern, but we will defer
it to crypto and network security; assume
communication channel is trusted for now

GET ...

Http response

& 25

Web Security Risks

o Will focus on risk #3 (more unique to web)

— An on-path adversary is a concern, but we will defer
it to crypto and network security; assume
communication channel is trusted for now

GET ..

Http response

& 25

WEB SECURITY

Review

Review

« Who are we defending from in Web security?

Review

« Who are we defending from in Web security?

— Malicious clients, servers, and third parties

27

Review

« Who are we defending from in Web security?

— Malicious clients, servers, and third parties

e How does a server track authenticated
sessions?

27

Review

« Who are we defending from in Web security?

— Malicious clients, servers, and third parties

e How does a server track authenticated
sessions?

— Cookies

27

Review

« Who are we defending from in Web security?

— Malicious clients, servers, and third parties

e How does a server track authenticated
sessions?

— Cookies

« What is an important property of
authentication cookies?

27

Review

« Who are we defending from in Web security?

— Malicious clients, servers, and third parties

e How does a server track authenticated
sessions?

— Cookies

« What is an important property of
authentication cookies?

— Must be secret

27

Cross Site Request Forgery (CSRF)

A Web Session

POST /login o

L din Ali
Host: bank.com ogged In Alice

Username=Alice&Password=StrongPW

A
rd

N

Set-cookie: o

29

Recipient:

A Web Session

POST /login

Host: bank.com
Username=Alice&Password=StrongPW

Logged in Alice

A
rd

&
~

Set-cookie: o

GET /transfer o

>
Cd

pd
-

Amount:

<form action="http://bank.com/transfer" method="post">

<input name="recipient">

<input name="amount">

<input type="submit" value="Submit">

</form>

29

A Web Session

Logged in Alice

POST /login
Host: bank.com O

Username=Alice&Password=StrongPW

A
v

&
~

Set-cookie: o

GET /transfer o

>
Cd

pd
-

<form action="http://bank.com/transfer" method="post">

ier’:plerft: <input name="recipient">

ount: <input name="amount">

<input type="submit" value="Submit">
</form>
POST /transfer

Host: bank.com
recipient=Carol&amount=10 o

v

29

&
-~

Think Like an Attacker

Think Like an Attacker

1. Bank will execute transfer if:

Think Like an Attacker

1. Bank will execute transfer if:
A. It receives a POST request

Think Like an Attacker

1. Bank will execute transfer if:
A. It receives a POST request
B. With the right parameters (recipient, amount)

Think Like an Attacker

1. Bank will execute transfer if:
A. It receives a POST request
B. With the right parameters (recipient, amount)
C. And correct authentication cookie

Think Like an Attacker

1. Bank will execute transfer if:
A. It receives a POST request
B. With the right parameters (recipient, amount)
C. And correct authentication cookie

2. User’s browser will send authenticated cookie with

Think Like an Attacker

1. Bank will execute transfer if:
A. It receives a POST request
B. With the right parameters (recipient, amount)
C. And correct authentication cookie

2. User’s browser will send authenticated cookie with

3. User’s browser will send a POST request to
bank.com when user submits a form with
action="http://bank.com/”

Think Like an Attacker

1. Bank will execute transfer if:
A. It receives a POST request
B. With the right parameters (recipient, amount)
C. And correct authentication cookie

2. User’s browser will send authenticated cookie with

3. User’s browser will send a POST request to
bank.com when user submits a form with
action="http://bank.com/”

4. Users will submit the request when promised free
iIPhones

CSRF attack (GET)

CSRF attack (GET)

. Click on

CSRF attack (GET)

“Get free iPhone”

31

CSRF attack (GET)

bank server

. Click on
“Get free iPhone”

31

CSRF attack (GET)

bank server

Click on
“Get free iPhone”

attack server

31

CSRF attack (GET)

bank server

Click on
“Get free iPhone”

<html|>

<title>Free iPhonel</title>

<img: src="http://bank.com/transfer/recipient=attacker&amount=100">
</html>

attack server

31

CSRF attack (GET)

bank server

Click on
“Get free iPhone”

GET /transfer//transfer/recipient=attacker&amount=100

<html|>

<title>Free iPhonel</title>

<img: src="http://bank.com/transfer/recipient=attacker&amount=100">
</html>

attack server

31

CSRF attack (POST)

CSRF attack (POST)

CSRF attack (POST)

bank
server

32

CSRF attack (POST)

bank
server

attack server .

CSRF attack (POST)

attack server

bank
server

<htmlI>
<title>Free iPhonel</title>

<form method="“post”
action="http://bank.com/transfer/”>
<input type=“submit” vallécza=”Get free iPhone!”>

CSRF attack (POST)

Click on
“Get free iPhone”

bank
server

<htmlI>
<title>Free iPhonel</title>

<form method="“post”
action="http://bank.com/transfer/”>
attack server <input type="“submit” valugc23=”Get free iPhone!”>

CSRF attack (POST)

Click on
“Get free iPhone”

P POST /transfer
bank

server

<htmlI>
<title>Free iPhonel</title>

<form method="“post”
action="http://bank.com/transfer/”>
attack server <input type="“submit” vallécza=”Get free iPhone!”>

Correct Arguments

How to supply correct arguments to post request?

Correct Arguments

How to supply correct arguments to post request?

Please type in the text below to prove you are human:

8675809

Please type in the year of your birth to prove you are over 18:

Get free iPhone!

33

Correct Arguments

How to supply correct arguments to post request?
 Hidden parameters

<input type=“hidden” name=“recipient”
value=“8675309”>

<input type=*“hidden” name=“amount” value=“1000>

Please type in the text below to prove you are human:

8675809

Please type in the year of your birth to prove you are over 18:

Get free iPhone!

33

Think Like a Defender

1. Bank will execute transfer if:
A. It receives a POST request
B. With the right parameters (recipient, amount)
C. And correct authentication cookie

2. User’s browser will send authenticated cookie with
every request to bank.com

3. User’s browser will send a POST request to bank.com
when user submits a form with action="http://
bank.com/” on any site

4. Users will submit forms when promised free iPhones

Which of these can we change to stop attack?

CSRF Defenses

o« SameSite cookie

— Let browser attach cookie only if the request
originates from the same site (exceptions exist)

lame A

OptanonAlertBoxClosed
OptanonConsent
_csrf_token

—9ga

_ga_71JGWHBFGH
_hp2_id.3001039959

_hp2_props.30010399...

_hp2_ses_props.3001...
_legacy_normandy_se...
canvas_session
dpUselegacy
inst-fs-session
inst-fs-session.sig
log_session_id

Value
2024-09-24T02:37:...
isGpcEnabled=0&dat...
%2BKp%2BpaljRoy0...
GA1.1.191417252.172...
GS1.1.1727142530.8....
%7B%22userld%22...
%7B%22Base.appNa...
%7B%22ts%22%3A1...

hUbD3JvvYn3X0gOjtl...
hUbD3JvvYn3X0gOijtl...

false
eyJpZGVudGl0aWwVzl...
heHEIO47hOc8FetH...
c0b240bf4a0f20386...

Domain
.llinois.edu
.illinois.edu

canvas.illino...

.illinois.edu
.illinois.edu
.illinois.edu
.illinois.edu
.illinois.edu

canvas.illino...
canvas.illino...
canvas.illino...
.inst-fs-iad-...
.inst-fs-iad-...
canvas.illino...

Expires [Max-...
2024-12-23T...
2024-12-23T...

Session

2025-10-29T...
2025-10-29T...
2025-10-23T...
2025-10-23T...
2024-09-24T...

Session
Session

2024-12-31T...
2024-09-25T...
2024-09-25T...

Session

Size

45
260
113
29
52
371
60
125
744
734
16
143
46
46

Ht...

<

<

Se...

A N N NN

<L

SameSite F
Lax
Lax

None
None
None

None

None
None

35

SameSite Cookie

« SameSite=None: always sent
« SameSite=Strict: not sent for cross-site requests

— Will affect user experience when following a benign
link from another website

SameSite Cookie

« SameSite=None: always sent
« SameSite=Strict: not sent for cross-site requests

— Will affect user experience when following a benign
link from another website

e SameSite=Lax: not sent for cross-site requests
except for top-level GET requests

— l.e., navigate to a new website

GET vs. POST

e GET for viewing and POST for changing states

GET vs. POST

e GET for viewing and POST for changing states

— Same Origin Policy protects viewing (coming soon)

GET vs. POST

e GET for viewing and POST for changing states

— Same Origin Policy protects viewing (coming soon)

e Bad practice: GET /transfer?recipient=bob&amount=10

GET vs. POST

e GET for viewing and POST for changing states

— Same Origin Policy protects viewing (coming soon)

e Bad practice: GET /transfer?recipient=bob&amount=10

— CSRF attack will succeed with SameSite=Lax, but
will be prevented with SameSite=Strict

CSRF Defenses

« SameSite cookie is a relatively new defense,
proposed in 2016

— Not supported in old versions of browsers

e CSRF token is the recommended defense

e Can be combined for “defense in depth”

Recipient:

CSRF Token

POST /login
Host: bank.com O

Logged in Alice

Username=Alice&Password=StrongPW

A
rd

&
~

Set-cookie: o
GET /transfer o

>
Cd

pd
-

Amount:

submit

C recipient=Carol&amount=10

POST /transfer
Host: bank.com

v

pd
-~

39

Recipient:

CSRF Token

POST /login
Host: bank.com O
Username=Alice&Password=StrongPW

A
v

Logged in Alice

&
~

Set-cookie: o
GET /transfer o

>
Cd

pd
-

<form action="http://bank.com/transfer" method="post">
<input name="recipient">

Amount:

<input name="amount">

submit

<input type="hidden” name="CSRFToken"” value="8d642fed"”>
<input type="submit" value="Submit">
</form>

POST /transfer
Host: bank.com
o recipient=Carol&amount=10

v

39

pd
-~

Recipient:

CSRF Token

POST /login
Host: bank.com O
Username=Alice&Password=StrongPW

A
v

form served:
8d642fed

Logged in Alice

&
~

Set-cookie: o
GET /transfer o

>
Cd

pd
-

<form action="http://bank.com/transfer" method="post">
<input name="recipient">

Amount:

<input name="amount">

submit

<input type="hidden” name="CSRFToken"” value="8d642fed"”>
<input type="submit" value="Submit">
</form>

POST /transfer
Host: bank.com
o recipient=Carol&amount=10

v

39

pd
-~

CSRF Token

POST /login
Host: bank.com O
Username=Alice&Password=StrongPW

form served:
8d642fed

Logged in Alice

A
v

&
~

Set-cookie: o

GET /transfer o

>
Cd

pd
-

<form action="http://bank.com/transfer" method="post">

Recipient: <input name="recipient">

Amount: <input name="amount">

<input type="hidden” nhame="CSRFToken” value="8d642fed"”>
<input type="submit" value="Submit">
</form>
POST /transfer

Host: bank.com
9 recipient=Carol&amount=10 g CSRF Token=8d642fed

39

pd
-~

CSRF Token

form served:
8d642fed

POST /login o

L din Ali
Host: bank.com ogged In Alice

Username=Alice&Password=StrongPW

A
rd

N

Set-cookie: o

ﬁ?u Click Here Free iPhone !!!
(cookie automatically

POST /transfer attached by browser)
Host: bank.com

recipient=attacker&amount=100 o

<
-~

40

JavaScript Sandbox

« JavaScript is an interpreted language running in a
sandbox
e Highly limited access to system
— Can’t e.g., read/write your files
e Instead, focus on implementing interactive browser
functionality
— Take input from user (text, clicks)
— Update web page
— Make new requests
— Read cookies

Same-Origin Policy (SOP)

Why We Need SOP

Why We Need SOP

e Javascript is powerful; it can
— Alter page contents
— Track events (mouse clicks, motion, keystrokes)
— Issue web requests & read replies

« Same-origin policy ensures a page’s elements
can be accessed only by its own Javascript

Same-Origin Policy

Same-Origin Policy

http://coolsite.com:81/tools/info.html

44

Same-Origin Policy

@@/tools/info.html
/ “ \

protocol

hostname| [Port

Same-Origin Policy

http://coolsite.com;81/tools/info.html

except @ does not
iInclude ports in origins

44

Same-Origin Policy

e Granularity of protection: the origin
e Origin = (protocol, hostname, port)

http://coolsite.com;81/tools/info.html

except & Q does not
iInclude ports In origins

e |t is string matching! Given two URLs, if these
match, they have the same origin, else they do
not (even though logically they may)

Exercises: Same origin?

Originating document

http://wikipedia.org/a/
http://wikipedia.org/
http://wikipedia.org/
http://wikipedia.org/a/

http://wikipedia.org:81/

Accessed document

http://wikipedia.org/b/

http://www.wikipedia.org/
https://wikipedia.org/
http://wikipedia.org:80/b/

http://wikipedia.org/

45

Exercises: Same origin?

Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/ V
http://wikipedia.org/ http://www.wikipedia.org/
http://wikipedia.org/ https://wikipedia.org/
http://wikipedia.org/a/ http://wikipedia.org:80/b/

http://wikipedia.org:81/ http://wikipedia.org/

45

Exercises: Same origin?

Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/ V
http://wikipedia.org/ http://www.wikipedia.org/ x
http://wikipedia.org/ https://wikipedia.org/
http://wikipedia.org/a/ http://wikipedia.org:80/b/

http://wikipedia.org:81/ http://wikipedia.org/

45

Exercises: Same origin?

Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/ V
http://wikipedia.org/ http://www.wikipedia.org/ x
http://wikipedia.org/ https://wikipedia.org/ x
http://wikipedia.org/a/ http://wikipedia.org:80/b/

http://wikipedia.org:81/ http://wikipedia.org/

45

Exercises: Same origin?

Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/ V
http://wikipedia.org/ http://www.wikipedia.org/ x
http://wikipedia.org/ https://wikipedia.org/ x

http://wikipedia.org/a/ http://wikipedia.org:80/b/ V

http://wikipedia.org:81/ http://wikipedia.org/

45

Exercises: Same origin?

Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/ V
http://wikipedia.org/ http://www.wikipedia.org/ x
http://wikipedia.org/ https://wikipedia.org/ x

http://wikipedia.org/a/ http://wikipedia.org:80/b/ V

http://wikipedia.org:81/ http://wikipedia.org/ x

45

Why We Need SOP

Why We Need SOP

e Javascript is powerful; it can
— Alter page contents
— Track events (mouse clicks, motion, keystrokes)
— Issue web requests & read replies

« Same-origin policy ensures a page’s elements
can be accessed only by its own Javascript

e Demo

Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS)

« Attacker takes advantage of a vulnerability to
trick a website (e.g., bank.com) to send its user
attacker’s Javascript code

Cross-Site Scripting (XSS)

« Attacker takes advantage of a vulnerability to
trick a website (e.g., bank.com) to send its user
attacker’s Javascript code

— Subvert same origin policy

Cross-Site Scripting (XSS)

« Attacker takes advantage of a vulnerability to
trick a website (e.g., bank.com) to send its user
attacker’s Javascript code

— Subvert same origin policy
— But does not necessarily involve another website

Cross-Site Scripting (XSS)

« Attacker takes advantage of a vulnerability to
trick a website (e.g., bank.com) to send its user
attacker’s Javascript code

— Subvert same origin policy
— But does not necessarily involve another website
— Possibly better name: Javascript injection

Cross-Site Scripting (XSS)

« Attacker takes advantage of a vulnerability to
trick a website (e.g., bank.com) to send its user
attacker’s Javascript code

— Subvert same origin policy
— But does not necessarily involve another website
— Possibly better name: Javascript injection

« Two types: stored XSS and reflected XSS

Stored XSS

e Imagine a website where users create and view
postings

Used iPhone

Good condition
Bought in 2018
Selling for $300

N
v

49

Stored XSS

e Imagine a website where users create and view

postings

Used iPhone

Good condition
Bought in 2018
Selling for $300

<body>
Good condition
Bought in 2018
Selling for $300

/body>

</html>

v

49

Stored XSS

Used iPhone

<script>
alert(“gotcha!”)
</script>

A

<body>
<script>
alert(“gotchal”)
</script>
</body>
</html>

N

v

50

Stored XSS

« The injected Javascript code is from the victim
website (same-origin)
— Can take actions on user’s account or send user

data/cookie to attacker <html>
<body>
Used iPhone <script>
: alert(“gotcha!”)
<Scr'8t> , </script>
alert(“gotcha!”) </body>
</script> </html|>

N
N
v

Reflected XSS

e User input echoed back in HTTP response

Reflected XSS

e User input echoed back in HTTP response

Cool stuff

Search results for Cool stuff:

51

Reflected XSS

e User input echoed back in HTTP response

Cool stuff

Search results for Cool stuff:

<body>
Search results for Cool stuff
</body>
</html|>

51

Reflected XSS

e User input echoed back in HTTP response

<script> alert(“gotcha”) </script>

<body>
Search results for <script>
alert(“gotcha”) </script>

52

Reflected XSS

e User input echoed back in HTTP response

« Why is this a problem? The user is just
injecting Javascript to itself ...

meonn

<body>
Search results for <script>
alert(“gotcha”) </script>

<script> alert(“gotcha”) </script>

53

Reflected XSS

e User input echoed back in HTTP response

« Why is this a problem?

ﬁ%} Click Here Free iPhone !!!

- http://G00g10.com/?search=<script>alert(“HiFromAttacker”)</script>

E. !l. <html>

<body>

Search results for <script>
alert(“HiFromAttacker”) </
script>

</html|> 54

XSS Recap

e Goal: inject malicious Javascript code into a
website’s HTTP response to its user

— Injected script has the website’s origin

e Stored XSS
— Leave content on the website

o Reflected XSS

— Trick user to click on a malicious link = Javascript

injected into a request to the vulnerable website 2
Vulnerable website echoes injected Javascript into
its response to the user

Twitter XSS Vulnerability

e Some users constructed a tweet that were
automatically retweeted

*X" +andy ¥ Follow
in orConrt

<script
class="xss">$('.xss").parents().eq(1).find('a’
).eq(1).click();$('[data-
action=retweet]’).click();alert('XSS in
Tweetdeck)</script>

18572 6498 BwMULD &/

56

XSS Defenses

e Coreissue: confusion between data and code

XSS Defenses

e Coreissue: confusion between data and code
« Validate and escape user input

XSS Defenses

e Coreissue: confusion between data and code
« Validate and escape user input

— If user input should not contain special characters,
(e.g., usernames, tracking number), enforce that!

XSS Defenses

e Coreissue: confusion between data and code

« Validate and escape user input

— If user input should not contain special characters,
(e.g., usernames, tracking number), enforce that!

— If users need to input special characters, escape

them Character | Escape sequence
< <
> >
 - HTML tag 2 S
 - on screen |« e

'

XSS Defenses

e Coreissue: confusion between data and code
« Validate and escape user input

o Content-Security-Policy (CSP): website specifies
an allowlist of trusted scripts in HTTP header

XSS Defenses

e Coreissue: confusion between data and code
« Validate and escape user input

o Content-Security-Policy (CSP): website specifies
an allowlist of trusted scripts in HTTP header

— Must use <script src="trustedScript.js"></script>
— Inline scripts will be ignored by browser

Summary

Cookie is used for web session management

Same-origin policy (SOP) isolates different
websites on the client side (browser enforced)

CSRF arises because browser automatically
sends cookies

— Defense: CSRF token, SameSite cookie

XSS: Javascript injection

— Defense: validate user input, CSP

To Learn More ...

e Books
— Pfleeger and Pfleeger, Chapter 4
— Goodrich and Tamassia, Chapter 7
— Anderson, Chapter 23
— Du, Chapter 11

e Papers
— Robust Defenses for Cross-Site Request Forgery - Barth

— BLUEPRINT: Robust Prevention of Cross-site Scripting Attacks
for Existing Browsers - Louw

— Cross Site Scripting Explained - Klein
— Securing Frame Communication in Browsers - Barth
— Beware of Finer-Grained Origins — Jackson

