IE 405: Computing for ISE
Fall 2023 TR 3:30 - 4:50 PM CT
114 Transportation Building
(Syllabus)

Instructor: Jugal Garg (jugal@illinois.edu), 216B Transportation Building
TAs: John Qin (johnqin2@illinois.edu) and Joshua Kendrick (joshua39@illinois.edu)
Course website: canvas.illinois.edu; http://jugal.ise.illinois.edu/ie405.html
Zoom link: Available on request
Slack link: ie405-fall23.slack.com
Office hours (Zoom): Friday 3:00 - 4:00 PM CT or by appointment (Jugal)
TBD (John)
TBD (Joshua)

Course Communication
All announcements, assignments, lecture slides, and other materials will be done through the course website on CANVAS.

Course Description
This course will introduce students to algorithm design, computer programming in C++, and database SQL queries. It will provide the fundamental methods, concepts and principles of these topics to give students enough breadth to use these techniques in their jobs and to prepare them to pursue advanced topics in these areas. There will be weekly programming assignments to implement algorithms and SQL covered in the class.

Course Overview
This course aims to cover the breadth of three different topics, namely computer programming in C++, algorithm design and SQL queries. In particular it will cover fundamental techniques such as divide and conquer, greedy algorithms, basic graph algorithms, and dynamic programming. Also, it will cover how to analyze the cost of computing and the limits of what we can and cannot compute in a reasonable amount of time. Furthermore, the basic principles of computer programming in C++, database design and SQL queries will be covered.

Prerequisites
• CS 101 or equivalent, IE 310 or equivalent

References

Course Objectives

Students completing this course will be able to:

1. write computer programs in C++
2. design algorithms using greedy, dynamic programming and divide-and-conquer paradigm, and prove its correctness.
3. analyze an algorithm and how to count number of steps it takes
4. understand basic data structures, e.g., array, list, queue, stack, etc.
5. implement algorithms, designed in the *theory* class, in C++, e.g., Gale-Shapley algorithm for stable matching, Dijkstra’s algorithm for shortest path, Kruskal’s and Prim’s algorithm for minimum spanning tree, check whether a graph is bipartite using Breadth-First-Search (BFS) algorithm, dynamic programming algorithm for knapsack problem, Merge sort, etc.
6. understand complexity classes P/NP and computational intractability
7. understand the role of a database management system in an organization
8. understand the structure and operation of the relational database model
9. construct simple and intermediate level database queries using Structured Query Language (SQL)

Course Project

The goal is to develop a fully-fledged C++ program in a collaborative, team environment, written entirely from the scratch with proper documentation and instructions on how to use the program. Another option is to choose a topic in database design and SQL. More details will be provided in the middle of the course.

Course Topics

- Algorithm Design
 - Stable Matching (Gale-Shapley Algorithm), Basics of Algorithm Analysis (Computational Tractability, Asymptotic Order of Growth, Big O Notation), Graphs (Basic Definitions and Applications, Graph Connectivity, Breadth-First-Search (BFS), Testing Bipartiteness: an application of BFS), Greedy Algorithms (Interval Scheduling, Scheduling to Minimize Lateness, Shortest Paths in a Graph, Minimum Spanning Tree Problem), Divide and Conquer (Merge sort, Integer Multiplication), Dynamic Programming (Rod Cutting Problem, Weighted Interval Scheduling, Knapsack), P/NP and Computational Intractability (Polynomial Time Reductions, Efficient Certification and the Definition of NP, NP-complete Problems).
• C++ Programming
 – Variables and Literals, Statements, Relational and Logical Operators, Loops, Functions, Scope, Arrays, Pointers, Dynamic Memory Allocation, Pseudorandom Number Generator, File I/O, Classes, Libraries, etc.

• Database Design and SQL Queries

Required Work and Grading Policy

• Undergraduate Credit
 1. Homework – Weekly assignments (40%)
 2. 2 Midterm exams (17.5% each)
 3. Final Exam (25%)

• Graduate Credit
 1. Homework – Weekly assignments (30%)
 2. 2 Midterm exams (15% each)
 3. Final Exam (20%)
 4. Project (20%)

Contact Hours

 1 Theory and 1 Lab class (80 minutes each) per week.

Academic Integrity

We will follow Student Code Part 4 1-401 through 1-406 (https://studentcode.illinois.edu/article1/part4/1-401/).