MSE404
Biomaterials Synthesis and Properties
Spring 2023

Instructor: Dr. Nathan Gabrielson
Phone: 217-300-3906
Email: gabrilsn@illinois.edu
Office: 209 Ceramics

Teaching Assistants: TBA
Email: TBA

Course Text:
Available as an online resource at:
https://www.taylorfrancis.com/books/9781420075823

Available as an online resource at:

Website: http://canvas.illinois.edu

Class Meetings:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Section</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td>BS1</td>
<td>2:00 – 4:50 PM, Mon/Wed</td>
<td>218/220 Kiln House*</td>
</tr>
<tr>
<td></td>
<td>BS2</td>
<td>2:00 – 4:50 PM, Tues/Thurs</td>
<td>218/220 Kiln House*</td>
</tr>
<tr>
<td></td>
<td>BS3</td>
<td>8:00 – 10:50 AM, Tues/Thurs</td>
<td>218/220 Kiln House*</td>
</tr>
<tr>
<td>Office Hours</td>
<td></td>
<td>11:00-11:50 AM, Mon/Wed or by appointment</td>
<td>218/220 Kiln House*</td>
</tr>
</tbody>
</table>

*A brief lecture will be given in 122 Kiln House prior to lab as needed

Course Objectives:
1. To learn laboratory science, methods and skills that are necessary for biomedical science and engineering.
2. To develop the written and oral communication skills essential for a clear, concise and persuasive presentation of research findings and results.
3. To facilitate critical thinking about research design, experimental observations and data analysis.
4. To gain experience working as part of a team.
Grading:

Lab reports, executive reports: 75%
Pre-lab quizzes: 15%
Lab participation/attendance: 10%

Grading Scale:

98-100 = A+
92-97 = A
90-91 = A-
88-89 = B+
82-87 = B
80-81 = B-
78-79 = C+
72-77 = C
70-71 = C-
68-69 = D+
62-67 = D
60-61 = D-
≤59 = F

*the lower number of the grading ranges may be lowered but not raised

Grading Notes:
1. This course consists of three modules. An individually written lab report or executive summary will be required for each module. Lab reports will be submitted online. Late submission will receive an automatic point deduction of 5 points per day.
2. You are required to read the lab procedures before attending the lab session. A brief quiz will be given at the beginning of each lab session. The quiz will focus on the fundamental concepts of each lab, not on minute experimental details.
3. Everyone is required to keep a lab notebook which will be subjected to daily inspection.

Laboratory Policies:
1. No food or beverages are allowed in the lab. Chewing gum is discouraged.
2. Long pants (covers the legs to the ankle) and closed-toed shoes are required for entry into the lab.
3. Avoid wearing your “best” clothes and consider wearing a lab coat.
4. Confine long hair, loose clothing and dangling jewelry.
5. Cover any cuts or scrapes with a bandage before attending lab.
6. Goggles/safety glasses are available and must be worn at all times in lab.
7. Wear disposable gloves at all times.
9. Do not pick up broken glass with your hands, use a dust pan and broom.
10. Clean your lab space and equipment before departing.
11. Please exit the lab when making personal calls or sending texts or email messages. Abuse of this rule will result in cell phones being banned from the lab. Smartphones may be used during the lab exercises as references, calculators and other similar tools.
12. Thoroughly wash hands with soap prior to leaving the laboratory.
Homework:
Homework for this course includes reading lecture notes and assigned articles in advance of lectures, as well as preparing for each laboratory session. In addition, during the portion of the semester in which we are culturing cells, each group will be required to maintain their own group’s cell cultures. This includes changing media over weekends. Members of your group will have to coordinate with the instructors to arrange times outside of class to “feed” cell cultures.

Academic Integrity:
Don’t cheat. Anyone caught cheating during a quiz, on a lab report, or on the group project will be given a failing grade on the exercise and is subject to further disciplinary action. This policy also includes any acts of plagiarism. If you do not understand this policy, please see your instructor. For more details on the University’s policy on academic integrity, see http://admin.illinois.edu/policy/code/article1_part4_1-401.html.

Description of Course Modules:

Module I. Controlled release
A model protein, bovine serum albumin (BSA), is encapsulated in a matrix of biodegradable poly(lactic-co-glycolic acid) (PLGA) through a double emulsion process. The encapsulation efficiency and drug loading of the resulting microspheres are evaluated. An in vitro controlled release study is subsequently performed, with data being collected throughout the semester.

Module II. Natural biomaterials
Collagen is extracted from bovine calf skin and purified. The dual nature of collagen as both a natural biomaterials and a protein are studied. Chitosan, another natural biomaterial, is used with collagen to form a collagen/chitosan composite material.

Module V: Bioceramics
Hydroxyapatite (HA) and fluoroapatite (FA) are synthesized. Porous composites of HA/FA and PLGA are fabricated and studied for their morphology, mechanical strength and degradability.