Instructor:
Dr. Rakesh Nagi
Office: 106 Transportation Building
E-mail: nagi@illinois.edu
Phone: (217) 244-3848
Office hrs.: Tu, Th: 2:00-3:00 p.m. (and by appointment)
https://illinois.zoom.us/j/87387510393?pwd=YmFXbnhXSU5FdkJENkVuSThvNDM1QT09

Class Schedule:
When course is online, please see recorded lecture ahead of time.
Discussion Tu, Th: 12:30-1:50 p.m.,
https://illinois.zoom.us/j/89536176124?pwd=NGN2Ky82YkVwV0ZTdjZVe/hHSk96QT09
1131 Siebel Center for Comp Sci (CRN# 73530)

Catalog Description
This course will cover the fundamentals of graph theory and network optimization. It will focus on algorithmic challenges associated with big graphs and intertwine the GPU-CUDA (or Hadoop or another High-Performance Computing Framework) for solving example problems like shortest paths, link analysis, graph association and inexact graph matching. Applications in social network analysis will include study of network types, random graph models, exact and approximate computation of centrality measures, finding high value individuals, community detection, diffusion processes and cascading models, and influence maximization.

Course Overview
This graduate mixed professional/research level course is a comprehensive coverage of concepts network optimization problems and algorithms, high performance computing approaches to dealing with large graphs, network science, and social networks. The course has algorithmic leaning for most topics. Network optimization (about 5 weeks) covers the fundamental problems in algorithms for small graphs as a foundation to build on. The course will shift examples of big graph problems motivated by real-world situations. This aspect should be equally appealing to students interested in making research advances. Specific topics will be link analysis, graph association and graph matching. This will lead to the motivation of high performance and accelerated computing methods. Parallel graph algorithms using CUDA on graphics processing units (GPUs) will be covered (4.5 weeks). Network Science and Social Network structures, centrality measures, diffusion and influence maximization and community detection will be the emphasis (4 weeks). Students will engage in a group project; research students are encouraged to publish their work.

Prerequisites
- Notions of graphs, networks, relational data
- Basic course in discrete mathematics/structures, e.g. MATH 213 or CS 173.
- Basic optimization (linear and mixed-integer linear programming), e.g., IE 411
- Analysis of Data, e.g., IE 300
- Familiarity with C/C++ is expected (and preferably NVIDIA CUDA)

Course Optional References
Course Web Page: Canvas; Lecture videos should be viewed ahead of the discussion session.

Course Topics
I. Graph Theory and Network Optimization (5 weeks)
 1. Introduction to Network Flows
 2. Paths, Trees, and Cycles
 3. Algorithm Design and Analysis
 4. Shortest Paths
 5. Maximum Flows
 6. Minimum Cost Flows
 7. Minimum Spanning Trees
II. Big Graph Algorithms using CUDA Programming (4.5 weeks)
 8. Link Analysis
 9. Graph Association
 10. Graph Matching
 11. Introduction to Accelerated Computing and CUDA
 12. Parallel Algorithms and Graph Data Structures
 13. CUDA: Fundamental Graph Algorithms (Triangle and Truss Counting)
 14. CUDA: Single Source Shortest Path; Linear Assignment Problem
III. Social Networks (4 weeks)
 15. Network Science and Network Types
 16. Working with iGraph
 17. Centrality Measures and Computing Approximate Centrality
 18. Diffusion models and Influence maximization
 19. Community detection

Required Work and Grading Policy
1. Homeworks/Programming Assignments - (bi-)weekly assignments 30%
2. Exam - one mid-term 20%
3. Project (Group of 3) - end of term 50%

(+/- Grading scheme will be in effect; I will grade on a curve; expect average = B)

Computer Usage and Academic Honesty
Students are expected to use computer programs in completing some homework assignments. Plagiarism will constitute grounds of University Sanctions including immediate failure in course for reason of academic dishonesty (see http://studentcode.illinois.edu/article1_part4_1-401.html).