
IE523: Financial Computing
Fall, 2016

Instructor: Prof. R.S. Sreenivas
201E Transportation Building (Primary Office)

155 Coordinated Science Laboratory (Secondary Office)
e-mail: rsree@illinois.edu

MW, 2:00-3:20PM, 106B8 Engineering Hall
Teaching Assistant: Arun Raman (raman12@illinois.edu)

Office hours: Tue-Thu 11:00AM-12:30PM

Course Description: This course will introduce you to programming and
computational concepts in C++ using examples that are relevant to Financial
Engineering.

Primary Text: Lessons with Code Samples written by me.

1 Tentative Syllabus

“You must fill your heads with wisdom before you can break boards with it.”
−− Karate instructor on “The Simpsons”.

Lectures

1. Overview of C++.

(a) Lesson 1: Recursion in C++; Tower of Hanoi Problem; The Master
Theorem; Karatsuba’s O(n1.585) algorithm for multiplying two n bit
numbers; Strassen’s O(n2.81) algorithm for multiplying two n × n
matrices.

2. Methods.

(a) Lesson 2: Review of Linear Algebra: Linear Independence,
Bases and Subspaces; Orthogonality, Orthogonal Projection, Pseudo-
Inverses; General Solution to Ax = b; The NEWMAT C++ library
for linear algebra problems; Installing the Lpsolve API; Solving Mixed
Integer Linear Programs (MILPs) within C++ code using the Lpsolve
API.

(b) Lesson 3: Root-finding by Method of Bisection; Newton’s Method;
Secant Method; Descartes’ Rule of Signs; Application to IRR-computation
in C++.

(c) Lesson 4: Taylor’s Expansion and its uses; Bond Duration, Convex-
ity, etc.; Bond Immunization in C++; Maximizing Convexity subject
to Duration-matching constraints: An illustration “by-hand” and lp-
solve.

1



(d) Lesson 5: Statistics and Simulation: (C++ code for) Pseudo
Random number generation and Uniform Distributions; (C++ code
for) Inverse Transform Technique for other distributions; Efficient
Discrete Random Variate generation; (C++ code for) Geometric Dis-
tributions; (C++ code for) Binomial Random Variates; The Box-
Muller Transform and (C++ code for) Unit-Normal Variate gen-
eration; (C++ code for) Multivariate Gaussian; Generating con-
strained Random Variates; Generating Random Variates from Em-
pirical Data; Basics of Discrete-time Markov Chains and some related
computational problems (in C++); Infinitesimal Perturbation Anal-
ysis via Examples.

(e) Lesson 6: Frequency Domain Methods: Fourier Transform and
the Fast Fourier Transform (FFT) algorithm; MATLAB Signal Pro-
cessing Toolkit Review; (C++ code for) Spectral analysis of financial
data and related observations.

3. Computational Finance: Case Studies (Tentative)

(a) Lesson 7: Computational Aspects of Option Pricing: Mod-
els for the dynamics of Asset Price; Ito calculus and Delta Hedg-
ing ; Short introduction to the Black-Scholes PDE for the value of a
derivative instrument; (C++ code for) Black-Scholes formula for the
price of an European Option; Put-Call parity; Binomial Trees and Bi-
nomial Lattices; The Martingale Property ; Option Pricing using the
Binomial Lattice via Recursion (in C++); Pricing a path-dependent
(American-Asian) Option using Recursion (in C++); Computational
limitations of the Binomial Model; Discretization of asset-price in
to b-many values; (C++ code for an) O(b2T )-algorithm for pric-
ing American Option of duration T discrete-steps using Dynamic
Programming; (C++ code for an) O(b3 log T )-algorithm for pricing
an European Option using Dynamic Programming and the method
of repeated-squaring ; Replication Portfolios; (C++ code for) Ediris-
inghe et al’s approach to pricing European Options with transaction
costs using Linear Programming. (C++ code for) Carr and Madan’s
approach to price an European Option with the Fast Fourier Trans-
form (FFT).

(b) Lesson 8: Pricing Exotic Options – Barrier Options: (C++
code for) Pricing using Truncated Binomial Lattices; “Overestima-
tion of price” phenomenon; (C++ code for) Adjusted Binomial Lat-
tices using the Baron-Adesi, Fusari and Theal correction-term; Com-
pendium of Closed-Form Expressions for European Barrier Options;
Pricing an European Discrete Barrier Option – role of Random Walks,
Weiner Processes, Brownian-bridges in asset pricing; (C++ code for)
Computing the price of an European Discrete Barrier Option using
Brownian-bridge correction-terms.

2



(c) Lesson 9: Recursion for Statistical Computing: Median (and
k-th order statistic) selection using sorting; The Blum-Floyd-Pratt-
Tarjan O(n) Median-of-Median algorithm for efficient picking of the
k-th order statistic in a list; Experimental Determination of the rele-
vant constants in implementation of algorithms; Moving-Median fil-
tering vs. Moving-Average Filtering for out-lier elimination in noisy
real-time data.

(d) Lesson 10: Pricing an American-Asian Option using the
Hull-White Interpolation Method: The intractability of path-
dependent option pricing; (C++ code for) Hull and White’s interpo-
lation method; Experimental observations of accuracy vs. grid-size
trade-off.

(e) Lesson 11: Simulation: Simulating Random-walks in C++; Pric-
ing an European Option by Simulation; Computing the greeks from a
single-run simulation using Infinitesimal Perturbation Analysis; Can
we run a simulation “backwards” and price an American Option?;
Pricing American Options and the “Monte-Carlo within Monte-Carlo”
problem; Longstaff and Schwartz’s solution to the “Monte-Carlo within
Monte-Carlo” problem; (C++ code for) Least Squares Monte Carlo.

(f) Lesson 12: Fractional Brownian Motion Models: Geometric
Brownian Motion and the “fat-tail” problem; Fractional Brownian
Motion overview; the Hurst exponent ; (C++ code for) Estimating
the Hurst exponent from sample-paths; Using the Hurst exponent in
the validation of Financial Models.

(g) . Lesson 13: Epilogue: The “do not drink the kool-aid” spiel;
Videos of – Nicholas Taleb, Robert Merton and Benoit Mandelbrot
(on Bachelier, Brownian Motion, Markets and Risk-Management);
Problems/Issues with the Fractional Brownian Motion model; Sta-
tistical and Computational undecidability and its implications to ag-
nosticism in model estimation and validation.

2 Grade Composition

• ≈ 10 Programming Assignments (50%).

• (≈ 10) Quizzes (10%)

• (Take-Home + In-Class) Mid-Term (20%).

• (Take-Home + In-Class) Final (20%).

3 General Instructions

I plan to have ≈ 10 programming assignments for this course. Since the pace
of the course will be dictated by the class needs/skills, the exact number of

3



these assignments might vary. The contribution to your final grade will be 50%
independent of the number.

I am planning to have ≈ 10 quizzes/assessments, that you can take on Com-
pass. Their contribution to your final grade will be 10% independent of the
number. These will be short, mostly multiple-choice, questions. I am trying
this Compass-function out for the first-time, and if we run into issues, we might
switch to doing them on paper. Stay tuned for more details!

Since this is a 500-level course on programming, your proficiency in the
course material will be tested primarily in your programming assignments. You
must turn-in an electronic version of your code on or before the date they are
due. Please do not ask for extensions in the 11-th hour. The TA and I have a
very demanding schedule this semester and delays intrude into the other tasks
that we need to get done. You will get full-credit if your submitted code works
when compiled and run on a data-set of my choice. We will revert back to you
if there is an error/problem with your submission. You then have three days to
turn-in a corrected version, at the loss of 20 points. This process is repeated at
most two times (i.e. inclusive of your first attempt, you have three chances at
getting the programming assignment right).

The TA would require that you follow these submission guidelines for the
programming assignments:

1. The *.cpp and *.h files should be named/labelled according to this format:
first name last name assignment number.cpp and/or
first name last name assignment number.h

2. Send the file(s) as attachments to his e-mail address (i.e. do not send the
entire “solution” folder from your Mac/Windows machine – it takes too
much space!).

The graded quiz can be picked from the TA during his office hours –

Tue-Thu 11:00AM - 12:30PM.

Make sure you e-mail him with your questions before you show up at his desk.
This way, he will be able to answer your questions better.

The mid-term and final examinations consist of two parts (1) a take-home
component, that is a programming project, and (2) an in-class written com-
ponent with short-answers. You have a week to design, compile and test your
C++ code. You turn-in your code on the due date (no extensions, please!). Just
as with the programming assignments, we will get back to you if your code does
not do what it is supposed to. You have three days to turn-in a corrected version
for a loss of 20 points. This process is repeated at most two times (i.e. inclu-
sive of your first attempt, you have three chances at getting the programming
component of the mid-term and final exams right).

The mid-term exam will be held during class-hours at a date that is to be
announced. I expect it to be during the first week of November. The details
regarding the final exam schedule can be found at this link. Since we have a
full class (≈ 60 students), I will arrange for an alternate venue for our exams.

4

http://registrar.illinois.edu/fall2016schedulingguidelinespublic


If I am not able to find a suitable classroom, the exams will most likely be held
in the same classroom where we meet regularly.

I intend to use the ±-grading system. My lecture notes for the course can
be found on the University of Illinois’ Compass Website. I suggest you print
the appropriate lesson before class and follow-along. This will free you from
the tedium of copying material off the board during class, you can use that
time to follow the material presented in class instead. It is your responsibility
to check the above URL regularly for updates/due-date-announcements as the
course progresses.

The TA can help you with any programming related questions you might
have. If you have coding-related questions, you can address it to him via e-mail.
If you cannot resolve the issue over e-mail, you can meet with him at a time
that is to-be-announced.

I will be happy to speak to you if you are having trouble with the algorithmic-
aspects of the course material. I prefer to work on an “interrupt-driven” mode
– as opposed to having a fixed-meeting time each week. If you need to speak
to me for any reason, just send me an e-mail, and I will let you know the times
when I can meet with you. I will let you know where, among my two offices, we
will meet.

Good luck and I am looking forward to seeing you do well in this course!

5

https://compass.illinois.edu/webct/entryPageIns.dowebct

	Tentative Syllabus
	Grade Composition
	General Instructions

