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Abstract

Changes in the mechanical properties of soft tissues that accompany pathol-

ogy can potentially be used as a biomarker for detection and diagnosis of dis-

ease. Quasi-static ultrasonic elastography (QUSE) is one of several elasticity

imaging techniques sensitive to mechanical contrast and offers a way to vi-

sualize the spatiotemporal distribution of material properties within tissues.

Unfortunately, QUSE is generally an ill-posed inverse problem. Quantifying

the mechanical properties requires measurements of more stress-strain data

than can be acquired during a typical ultrasonic (US) imaging exam. Model-

based inverse methods attempt to circumvent these limitations in part by es-

timating the spatial distribution of a pre-defined set of material parameters.

As a consequence, model-based methods provide no means for discovering

new diagnostically-relevant mechanical properties or for exploring ranges of

known model parameters for relevance in a given situation.

We are developing a data-driven approach for quantitative QUSE us-

ing the Autoprogressive method (AutoP), which combines artificial neural

networks (ANNs) and finite element analysis (FEA). AutoP has previously

been used in geotechnical and civil engineering applications to build “soft-

computational” models of materials. Using knowledge of object shape and

force-displacement measurements, investigators were able to build neural net-

work constitutive models (NNCMs) that accurately describe the behavior of

linear, non-linear, and time-dependent materials with no prior constitutive

model assumptions. Furthermore, NNCMs provide a means to estimate spa-

tiotemporal stress and strain distributions from force-displacement data.

NNCMs and AutoP offer a fundamentally different approach to QUSE.

We first demonstrate that a very sparse sampling of force-displacement data

is sufficient for estimating the linear-elastic properties of gelatin phantoms

when the interior geometry is known. Then, we introduce Cartesian NNCMs

(CaNNCMs), a novel ANN architecture, capable of learning both material
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property and geometric information. We begin exploring the spatial sampling

requirements to reconstruct Young’s modulus distributions in both 2-D and

3-D. Moreover, we show how CaNNCMs can be used to estimate the spatial

distribution of all stresses and strains and can be directly interrogated to infer

the mechanical properties governing measured data. Further development of

this method to non-linear and viscoelastic materials may provide a means to

discover the mechanical parameters most relevant to clinical elastography.
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Chapter 1

Introduction

Contrast in medical images arises from spatiotemporal variations in the phys-

ical properties of tissue. Different imaging modalities apply a particular stim-

ulus and observe the response of the body to reconstruct maps of properties

associated with health and disease states. For example, x-ray computed to-

mography (CT) illuminates the body with x-ray radiation, detects the frac-

tion of transmitted photons, and reconstructs a map of tissue density that

reveals inner anatomy. Magnetic resonance imaging (MRI) uses magnetic

fields to map the local chemical environment surrounding hydrogen nuclei

(protons) [1]. Positron emission tomography (PET) measures the spatiotem-

poral distribution of blood-born radioactive isotopes that are deposited and

concentrate differentially in tissue regions depending on healthy and diseased

cell functions [2]. Ultrasonic (US) imaging interrogates the tissue with high

frequency sound waves and records the echo signal to reconstruct a map

of acoustic impedance, which is determined by spatial fluctuations in tissue

density and bulk modulus. Similarly, optical coherence tomography (OCT)

observes the backscatter of coherent light to create an image dependent on

the light scattering characteristics of tissues.

Changes in mechanical properties are strongly correlated with various tis-

sue pathologies. However, a change in material properties is not always ac-

companied by morphological changes. As a consequence, the aforementioned

imaging modalities are not effective at revealing the mechanical contrast in

tissues. Sarvazyan et al. [3, 4] compiled measurements of tissue elasticity and

showed that the bulk modulus of all soft tissues are in the range ≈ 109 kPa

whereas the shear modulus of soft tissues span the 103–108 kPa range. Physi-

cians exploit this contrast during manual palpation to literally feel for signs

of pathology. One notable use of palpation is in clinical breast exams to aid

in the detection of cancerous lesions. Despite its utility, palpation is subjec-

tive and lesion detection depends on the skill of the physician in addition to
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lesion size and depth [5, 6].

Elasticity imaging (or elastography) emerged as a modality to visualize

mechanical contrast of soft tissues. As the field progresses, the potential

clinical applications continue to grow. For example, the strain profile of an

atherosclerotic plaque may reveal if it is a “vulnerable” plaque at risk of rup-

ture, which causes the formation of a thrombus and results in an acute heart

attack and often patient death [7, 8, 9]. Increased liver stiffness can be an in-

dicator of liver fibrosis [10, 11, 12, 13] or hepatocellular carcinoma [14, 15, 16].

Measurements of viscosity along with stiffness can increase the diagnostic

accuracy of elasticity imaging [17, 18]. Similarly, the stiffness [19, 20, 21],

viscoelastic [22, 23, 24, 25], and non-linear [26, 27, 28, 29] properties of focal

breast lesions can aid in the differentiation between benign and malignant tu-

mors. Interestingly, cancerous lesions often appear larger on an elastogram

than on the corresponding B-mode image [30, 31, 32], potentially due to

restructuring of the cellular microenvironment which alters the mechanoen-

vironment [33], but does not necessarily induce morphological changes visible

on US B-mode images [34, 35].

1.1 Elasticity Imaging Techniques

Much like MRI, OCT, etc., elasticity images are formed by observing the

tissue response to some applied stimulus. Here, a mechanical load is applied

and the time-varying tissue motion is measured. Local displacements are

often tracked with US, MRI, or OCT because they are phase-sensitive and can

detect very small movements. The general procedure for elasticity imaging

is

1) Apply an excitation force to the tissue,

2) Measure the responding tissue motion with US, MRI, or OCT,

3) Infer mechanical parameters from the measured response.

Broadly speaking, elasticity imaging techniques can be categorized as quasi-

static or dynamic based on the type of excitation force applied. We cover

some of the major advancements in ultrasonic elasticity imaging in the fol-

lowing sections. Mainly, we aim to provide a glimpse into the evolution of
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ultrasonic elastography techniques and cover how different methods probe

the mechanical properties of tissues.

1.1.1 Quasi-static Elastography

Quasi-static ultrasonic elastography (QUSE) was first introduced by Ophir

et al. in the early 1990s [36]. It is performed by observing tissue motion as

compressive forces are slowly applied by a US probe. Quasi-static loading al-

lows time for the force to distribute through and affect the whole contiguous

volume, including boundaries, thus the deformation of a whole tissue region

can be monitored with a single force stimulus. Internal motion is estimated

by recording RF echo frames after each compressive load and operating on

said frames with a speckle-tracking algorithm (e.g., [37, 38]). Because all

phase information is contained along the axial direction (the direction of the

US pulse propagation), axial displacements are most accurately estimated,

although some algorithms have been developed to estimate lateral displace-

ments [39, 40, 41]. Computing the gradient of the displacement fields results

in a map of the local strains that correspond to stiffness. This type of QUSE

is often referred to as strain elastography. Areas of high strain are softer

whereas low-strain areas are stiffer. If the compressive force was applied over

a large area — which can be achieved by attaching a rigid plate to the face of

the US probe — the resulting stress field can be assumed to be roughly uni-

form. Then, the strains are approximately inversely proportional to Young’s

modulus (or shear modulus) [42, 43]. Some applications of strain elastogra-

phy include detection and differentiation of cancerous breast lesions [44, 45],

prediction of breast cancer tumor grades [46], and as an aid in differential

diagnosis of liver masses [47].

Of course, the stress field is not actually uniform and artifacts caused

by violating this assumption make interpreting strain images more difficult.

Furthermore, strain is only a qualitative proxy for stiffness and does not

provide an absolute measure of elasticity. Section 1.2 addresses methods by

which quantitative estimates of material properties are made in QUSE.

Non-linear [48, 49, 50] and viscoelastic [51, 24] material properties can

also be estimated in quasi-static elastography. Non-linear properties reveal

how the tissue stiffness changes with the applied force. Most tissues exhibit
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strain-stiffening behavior, but the rates at which the tissues “stiffen” may aid

in the differentiation of benign and malignant lesions [52, 27]. Or, a quasi-

static load can be applied by the US probe and held constant to observe

time-varying tissue deformation. Maintaining a steady force allows one to

measure the creep behavior. Conversely, if the US probe is pressed into the

tissue surface and held still, the relaxation of dynamics can be measured.

Creep or relaxation behavior can be used to infer the viscoelastic properties

of soft tissues with potential applications in breast cancer detection [53, 54].

Quasi-static forces need not be applied at the tissue surface. The acoustic

radiation force is the phenomenon whereby momentum is transferred from

the compressive US wave to a dissipative medium through reflection or ab-

sorption [55]. Some investigators exploit this phenomenon to apply internal

forces with a “virtual finger”. For example, by focusing the US beam to

a point on the surface of a sample, Sugimoto et al. were able to measure

local motion using Doppler ultrasound, from which the elastic properties of

the tissue were estimated [56]. Later, Nightingale et al. introduced acoustic

radiation force impulse (ARFI) imaging whereby the tissue is “pushed” in-

ternally and correlation techniques are used to track tissue displacement [57].

Unlike QUSE methods where the excitation force is the US probe pressing

into the tissue, ARFI can only measure tissue motion at the site where the

“push-pulse” is focused. Therefore, to reconstruct an image, the push-pulse

must be raster scanned over a region. Furthermore, the resulting images map

the maximum local displacements, not strain. Aside from increasing the ac-

quisition time, repeated push-pulses increase the risk of bioeffects from tissue

heating [58] but may be less operator dependent [59]. Research on the po-

tential clinical applications of ARFI include evaluating liver fibrosis [60, 61],

characterizing lesions in the breast [62, 63], and facilitating diagnosis of thy-

roid nodules [64, 65].

Probing the viscoelastic properties with ARFI-based techniques requires

an adjustment to the sampling procedure. One method called Viscoelastic

Response (VisR) imaging [66] uses two time-delayed push-pulses at each lo-

cation. Between each pulse, correlation techniques track displacement of the

tissue as it relaxes back to its initial state. The time-varying relaxation be-

havior can then be used to infer the viscoelastic properties. Investigations

have begun for utilizing VisR in monitoring progression of muscle fibrosis in

Duchenne muscular dystrophy [67, 68]
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1.1.2 Dynamic Elastography

Dynamic elasticity imaging methods can be divided into harmonic (narrow-

band forces applied) and transient (broad-band forces applied) elastography.

Most dynamics methods measure the propagation of shear waves incited by

the force stimulus. Fortunately, the shear waves do not interact with the bulk

(or compressional) waves used in conventional ultrasonic imaging. As will

be described for the various methods below, the shear waves induce tissue

motion that can be measured via US imaging and correlation methods.

Harmonic Methods

Sonoelastography was reported in 1988 by Lerner et al. as one of the first

methods to image the elastic properties of tissues [69, 70]. It is a type of

harmonic elastography whereby an external source excites low-frequency har-

monic vibrations (20–1000 Hz) within the tissue. Vibrational patterns vary

in space based on the variance in material properties and are measured by US

pulsed Doppler imaging. Later techniques building upon sonoelastography

measure the amplitude and phase of the propagating waves to ascertain the

elastic and viscous properties of tissues [71, 72, 73].

Harmonic motion can also be initiated via ultrasonic pulses much like

ARFI techniques. Fatemi and Greenleaf introduced vibro-acoustic spectrog-

raphy that relied on the acoustic radiation force to generate harmonic tissue

motion [74]. Two US transducers with coincident foci were driven at two dif-

ferent frequencies, causing the tissue to oscillate locally at the beat frequency.

A separate hydrophone tuned to the beat frequency recorded the scattered

acoustic signal. Adjusting the difference in frequencies allowed the tissue to

be driven and its response measured at various frequencies. Coupled with

raster scanning the focal point over the sample, spectroscopic information

could be measured within a region to, for example, detect microcalcifications

in breast tissue [75, 76].

Crawling wave elastography in a sense combines sonoelastography and

vibro-acoustography [77, 78]. Here, external actuators vibrate the tissue at

slightly different frequencies to induce an interference pattern. This resulting

shear wave propagates slower than the waves induced by the actuators, hence

the name “crawling” waves. A US imaging probe acquires RF frames and
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shear wave velocity is estimated through speckle-tracking methods. Shear

wave speed can then be related back to the viscoelastic properties of tissues

like skeletal muscle [79, 80].

Transient Methods

Sarvazyan et al. first described shear wave elasticity imaging (SWEI) by

inducing a shear wave with the acoustic radiation force. Like the harmonic

elastography techniques described above, a conventional US imaging probe

and speckle-tracking algorithms track the propagation of the shear wave.

Shear wave speed is estimated by either measuring the amount of time re-

quired for the wave to propagate from its origin to the point of measurement

or by tracking two locations within the tissue and measuring how long it

takes for the shear wave to propagate from one point to the next. Further-

more, the generated shear wave is assumed to ripple outward within a plane.

When observed on a US echo frame, the shear wave would reside within a line

of the image frame. Thus, to create an image of shear wave speed, multiple

shear waves would have to be generated at several depths in succession.

SWEI was the catalyst for a number of transient ultrasonic elastography

methods. Two particular techniques are supersonic shear imaging (SSI) [81]

and shear dispersion ultrasound vibrometry [82]. SSI induces a “mach cone”

by firing multiple push-pulses along a line at a rate faster than the shear

wave speed (hence the name “supersonic”). An ultra high frame-rate US

scanner measures the propagation of the shear wave. In this way, SSI is able

to measure shear wave speeds throughout a region and estimate viscoelastic

properties with a single push-measure sequence [23]. For SDUV, a harmonic

shear wave is again induced with a push-pulse and its speed is estimated

by measuring the wave at two different points. Modifying the frequency of

the generated shear wave allows the dispersion properties of the wave to be

measured, from which viscoelastic material properties are estimated [83].

1.2 Model-based Inverse Methods

The preceding discussion of ultrasonic elasticity imaging only briefly intro-

duced some of the developed techniques, what material properties they probe,
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and some of the relevant clinical applications. However, there was no expla-

nation for how the material properties were estimated. Our aim in this

section is to clarify the inverse problem in elastography and review some

of the model-based approaches to its solution. Since the remainder of this

dissertation describes a quasi-static approach to elasticity imaging, the focus

will remain on QUSE.

Recall that QUSE is performed by slowly pressing the US probe into

the tissue surface while acquiring RF echo frames. In addition to estimat-

ing internal motion with speckle-tracking techniques, displacement of the US

probe and quantitative measures of the applied force can be collected. Fur-

thermore, the surface shape of the tissue may be known. Thus, each data

set acquired during QUSE at most contains the time-varying 1) force applied

by the US probe, 2) motion of the probe, 3) internal deformation of a tissue

volume sampled within a finite plane, and 4) the external geometry of the

tissue being imaged (e.g., the shape of the breast or abdomen).

One can define the forward problem as: given the force applied by the

US probe and distribution of the material properties, what are the displace-

ments of the probe and body? The forward problem is governed by well-

defined physical laws. From the conservation of linear momentum, stresses

σ throughout a body in static equilibrium can be related to deforming forces

f [84]:

∇ · σ + f = 0, (1.1)

(1.2)

where ∇ is the del operator. Often in QUSE the body forces comprising f

are neglected and the term is removed. For an elastic body, the material

properties are described by the stiffness tensor C relating stresses to strains

ε:

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (1.3)

σij = Cijklεkl, (1.4)

where u refers to displacement, the tensors are expressed in component form,

i, j = 1, 2, 3, and repeated indices imply summation (e,g., AikBkj = Ai1B1j +

Ai2B2j+Ai3B3j). A total of 81 components are contained within C, although
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major and minor symmetry of the tensor reduces it to a maximum of 21

independent parameters.

Knowledge of the governing laws and kinematic relationships are used in

formulating the inverse problem. One can state the inverse problem simply:

given a set of force-displacement estimates and overall object shape, recon-

struct the spatial distribution of mechanical properties. Alternatively, what

is the spatial distribution of the 21 components of C?

QUSE is generally an ill-posed inverse problem because we cannot nor-

mally acquire all of the data necessary to solve for material properties exactly.

Current solutions take a model-based (or knowledge-driven) approach, where

the mechanical properties of tissues are defined by parameters of a consti-

tutive model relating stresses and strains. This problem is ill-posed in part

due to the presence of measurement noise and limited force-displacement

sampling from which stress-strain behavior is determined. Some strain in-

formation can be computed as spatial derivatives of the displacements, but

stresses cannot be calculated from force data without knowing the object’s

geometry, boundary conditions, and material properties.

Simplifying assumptions are adopted in model-based techniques to help

overcome the ill-posed nature of the inverse problem. Most often the tissue

is assumed to be linear-elastic, isotropic, (nearly) incompressible, and under

small strain. These materials are defined by the two Lamé parameters µ and

λ:

σij = 2µεij + λεkkδij (1.5)

where δij is the Kronecker delta and εkk = tr(ε). The Lamé parameters are

related to the Young’s modulus E and Poisson’s ratio ν [85]:

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
. (1.6)

Soft tissues are primarily composed of water and thus assumed to be incom-

pressible (ν = 0.5) leaving only the shear modulus µ to be estimated.

Stresses cannot typically be measured and therefore the stress term in

(1.1) is replaced with (1.5). Making said replacement, neglecting body forces,

and expressing strain in terms of displacements in (1.3), the resulting equa-
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tion is [86]

∇ · µ∇u+∇(λ+ µ)∇ · u = 0. (1.7)

Equation (1.7) relates 3-D displacement and the two Lamé parameters

whereas internal displacements in QUSE are estimated only within a finite

plane. Due to this limitation, the inverse problem is often reduced to 2-D

via a plane-stress or plane-strain approximation. In one of the first inverse

schemes for elasticity imaging, Skovoroda et al. [87] used a plane-strain ap-

proximation and rearranged the PDE in (1.7) to arrive at

∂2µεxy
∂x2

− ∂2µεxy
∂y2

+ 2
∂2µεyy
∂x∂y

= 0. (1.8)

Solving (1.8) for the spatial distribution of the shear modulus is a direct

inverse method. In this case, a solution can only be found if the shear

modulus is known on the boundary of the ROI. Furthermore, the existence

of second-order derivatives greatly amplifies noise in the estimated strain

fields, causing the inverse to be unstable. Smoothing operations can reduce

the effects of noise at the cost of decreased resolution.

Barbone and Bamber [88] proved that displacement measurements both

within and on the boundary are insufficient for uniquely determining the

shear modulus distribution of the material. In fact, they provided examples

where the exact same displacement fields can arise in materials with different

shear modulus distributions. They also conclude that, lacking information

of the stress distribution, surface force measurements must be incorporated

into the inverse problem to uniquely estimate the shear modulus, a fact later

corroborated by Tyagi et al. [89]. Barbone and Gokhale further demonstrated

that a significant amount of prior information of the shear modulus must be

known in order to uniquely reconstruct a map of its distribution [90]. They

also proved that the shear modulus can be determined up to a multiplicative

constant if multiple independent displacement fields are measured. Given

these results, investigators have sought ways to overcome the ill-posed inverse

by including prior information in different ways.

A different direct inverse approach was developed by Zhu et al. that

incorporates surface force information in the solution [91]. Their method

was based on finite element analysis (FEA) techniques to construct a linear
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system of equations. Their method was able to produce absolute estimates

of shear modulus from a single displacement field due to the incorporated

force measurement. However, their approach was still sensitive to noise and

because of technical limitations, they were unable to provide examples of

Young’s modulus reconstructions with experimentally acquired measurement

data.

Kallel and Bertrand introduced iterative inverse methods in 1996 [92].

Generally speaking, iterative methods express the inverse problem as an

objective function to be minimized by seeking a pre-defined set of model

parameters at position x, θ(x),

θ(x) = argmin
θ̂(x) ∈ R

Np∑
n=1

Nd∑
k=1

fu(unk{θ̂(x)}, ûnk) + g(θ̂(x)), (1.9)

where Np refers to the number of measured data sets (i.e., number of com-

pressive loads), Nd is the number of measured displacements in each of the

Np sets, ûnk are the measured displacement vectors, unk are displacements es-

timated via a forward problem (e.g., via FEA), and fu is often the L2 norm of

their difference. A regularization term g(·) may be added to improve the con-

ditioning of the inverse problem. For the cases where the tissue is assumed

to be linear-elastic, θ(x) = µ(x). Direct methods are limited in accuracy

and resolution by the least accurate component of displacement, which is the

lateral displacement in QUSE, and the implied continuity for both strain and

modulus means they have difficulty capturing sharp transitions. Compared

to direct solution methods, iterative approaches are typically more robust

to measurement noise, make no implicit assumptions on continuity (unless

enforced via regularization), and have generally performed better at the cost

of computational complexity (i.e., direct methods typically are much faster).

The iterative approach developed by Kallel and Bertrand minimized (1.9)

via Newton-Raphson iterations and utilized Tikhonov regularization, but

assumed uniformity in the stress field because only displacement data was

available. Later, Doyley et al. evaluated a similar iterative algorithm and

compared the results when only simulated displacement or boundary stress
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information was available [93]. They defined the objective function

π =

∫
Ω

(U1 − U1
meas)

2dΩ, (1.10)

where U1
meas are the measured displacements and U1 are the displacements

computed in a forward problem using (1.5) as the constitutive model. In-

stead of a regularization term, they included spatial filtering in the Young’s

modulus estimate. They found the resolution of the reconstructed shear

modulus distribution was better when using only displacements, but solving

the problem with only stress data allowed the magnitude of the shear mod-

ulus to be estimated. Samani et al. developed a method whereby stresses

were iteratively estimated via FEA from displacement data and paired with

strains computed from full 3-D displacement data (acquired from MRI) to

estimate the relative Young’s modulus distributions [94]. They later adapted

the method for QUSE [95]. Again, they could achieve fairly high resolu-

tion elastograms under controlled experimental settings, but only obtain the

relative modulus values.

For imaging the non-linear elastic properties of tissues, Oberai et al. re-

placed the linear constitutive equation in (1.5) with the Veronda-Westmann

model [50]:

W = µ0

(
eγ(I1−3) − 1

γ
− I2 − 3

2

)
. (1.11)

Equation 1.11 is a strain-energy function describing a hyperelastic material,

hence the different form compared to (1.5). Terms I1 and I2 are the first

and second invariants of the Cauchy-Green strain tensor, µ0 is the shear

modulus at zero strain, and γ is the non-linear parameter. They defined an

objective function using two measured displacement fields: U1
meas acquired

under small strain (in the linear-elastic regime) and U2
meas under large strain

(in the non-linear regime):

π =
1

2

∫
Ω

(
w1(U1 − U1

meas) + w2(U2 − U2
meas)

)
dΩ +

αµ
2
R(µ0) +

αγ
2
R(γ).

(1.12)

U1 and U2 are the displacements computed in a forward problem using (1.11)

as the constitutive model, w1 and w2 are weighting terms, R is the total-
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variation diminishing regularization functional that penalizes large changes

in the corresponding parameter without penalizing steepness, and αµ and αγ

are regularization parameters. They found that while reconstructing images

of the non-linear parameter γ was difficult, it was independent of the local

strain state. Meaning γ is independent of the force loading and, theoretically,

can be estimated quantitatively without any information of force BCs or

stress fields. The caveat is that this non-linear parameter is specific to the

Veronda-Westmann model and is not immune to modeling errors. However,

in a later study using this inverse method, Goenezen et al. were able to

correctly classify nine out of ten tumors as benign or malignant from the

non-linear parameter alone [96].

Richards et al. developed a method for 3-D QUSE using a 2-D linear

US array [97]. A sample was confined by plates in contact with its top

and bottom surfaces. The top plate had a section removed to serve as an

acoustic window. 3-D RF echo data was acquired by scanning the US probe

along the elevational direction within this window. A small compressive load

was applied by moving the bottom plate toward to the top, after which a

new 3-D RF data set was acquired. The authors minimized an objective

function similar to (1.12) except they used only the U1 term, the sample was

assumed to be linear-elastic, and they introduced a new regularization term

based on the assumption of incompressibility. Even though they were able to

reconstruct accurate relative shear modulus volumes, they were still unable

to estimate modulus magnitudes.

Finally, methods to characterize the viscoelastic properties of tissues typ-

ically adopt a linear-viscoelastic model [54, 51, 24]. For example, Bayat et

al. [54] created an automated method using a ramp-and-hold force to monitor

the creep behavior of tissue. Using a standard linear model, they found that

contrast in the instantaneous and long-term modulus values between benign

and malignant tumors was insignificant, but the retardation time was sig-

nificantly smaller for cancerous lesions. Interestingly, their system measures

the force applied and thus they were able to quantify the modulus values.

However, like with the non-linear parameter estimated by Oberai et al., the

results are subject to modeling errors. In particular, the sample is assumed

to be under uniaxial stress with a precise loading curve and fully described by

the three parameters of a standard linear model. Any discrepancy between

model and measurement introduces errors into the parameter estimates.
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1.3 The Innovation and Outline of Dissertation

The common theme with the inverse methods is that a lack of information in-

hibits accurate estimation on material parameters. Quantitative shear mod-

ulus estimates require prior knowledge of 1) the shear modulus somewhere

in the body, 2) the spatial distribution of stress, or 3) compressive forces

applied at the boundary. There are currently no methods to estimate stress,

so many model-based methods introduce regularization terms or a priori in-

formation to reduce sensitivity to noise or improve resolution, but as Lanczos

said, “A lack of information cannot be remedied by any mathematical trick-

ery” [98]. Even for parameters not dependent on the stress distribution (e.g.,

non-linear parameter or retardation constant) or cases when sufficient infor-

mation is available to estimate material parameters exactly, modeling errors

are unavoidable unless the assumed constitutive model perfectly describes

the tissue. Fundamentally, model-based methods provide no means for dis-

covering new diagnostically-relevant mechanical properties or for exploring

ranges of known model parameters for relevance in a given situation.

The goal of this dissertation is to develop the foundation for a quantita-

tive, data-driven QUSE method by replacing the classic mathematically de-

fined constitutive model with a neural network constitutive model (NNCM).

Contrary to model-based inverse methods, NNCMs learn a non-parametric

mapping of strain to stress from force-displacement measurements using the

Autoprogressive method (AutoP). As we will describe in the next chap-

ter, NNCMs are deeply intertwined with FEA, ensuring these data-driven

models not only characterize the mechanical behavior encoded in the force-

displacement measurements, but also obey fundamental physical laws.

Perhaps the most notable advancement of NNCMs to QUSE is the ability

to reconstruct maps of all strains and stresses from noisy force-displacement

measurements with no a priori constitutive model assumption. Access to

full-field stresses and strains allows one to estimate material parameters from

any mechanical model after information is extracted from measurement data.

Thus, we believe NNCMs may eventually allow for discovery of material

parameters most relevant for aiding in the differential diagnosis of disease.

NNCMs and AutoP have been used in many civil and geotechnical en-

gineering applications to develop soft-computational model of linear, non-

linear, viscoelastic, and rate-dependent materials using only boundary force-
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displacement measurements and known object geometry [99, 100, 101, 102,

103, 104, 105, 106, 107]. In this dissertation, we lay the foundation for data-

driven QUSE and therefore limit the investigation to linear-elastic materials.

The accomplishments of this dissertation are

� The first adaptation of NNCMs and AutoP for QUSE (Chapter 3),

� Developed a new NNCM architecture to learn both material property

and geometric information in 2-D (Chapters 4–5),

� Extended NNCMs to 3-D imaging (Chapter 6),

� Began investigations into the feasibility of free-hand QUSE (Chapter 6).

Chapter 2 is a brief introduction to artificial neural networks, finite ele-

ment analysis, and the Autoprogressive method. Later chapters (and earlier

works on AutoP) describe the steps in AutoP, but do not effectively explain

why NNCMs learn stress-stress behavior from force-displacement data in Au-

toP. The goal of this chapter is to better illustrate how ANNs and FEA come

together to build data-driven material models.

The first application of NNCMs and AutoP for elasticity imaging is de-

scribed in Chapter 3. We demonstrate the ability of NNCMs to learn the

linear-elastic material properties of gelatin phantoms under quasi-static load-

ing with a very sparse sampling of displacement data when the interior ge-

ometry is known. Chapter 3 is a modified version of our paper published in

Biomechanics and Modeling in Mechanobiology [108].

Cartesian neural network constitutive models (CaNNCMs) are introduced

in Chapter 4. Unlike NNCMs discussed in Chapter 3, CaNNCMs learn both

material property and geometric information. Chapter 4 develops the theory

of CaNNCMs and describes how spatial information is extracted from stress-

strain data to train these networks. Chapter 4 is a modified version of our

technical report submitted to arXiv [109].

The implementation of CaNNCMs in AutoP is covered in Chapter 5.

Force-displacement measurements acquired from simulated phantoms, simu-

lated RF echo frames, and experimentally on gelatin phantoms are used to

test the ability of CaNNCMs to learn the spatially varying Young’s mod-

ulus distribution of different models. Chapter 5 is a modified version of
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the manuscript titled Data-driven Elasticity Imaging Using Cartesian Neu-

ral Network Constitutive Models and the Autoprogressive Method submitted

for review to IEEE Transactions on Medical Imaging.

Chapter 6 extends the capabilities of CaNNCMs to 3-D imaging. We first

explore the abilities of 3-D CaNNCMs to reconstruct the Young’s modulus

within a volume based on the number of planes in which displacement data is

available. Then, we describe a modification to accommodate objects under

large deformation and begin investigations into the feasibility of free-hand

3-D QUSE.
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Chapter 2

A Primer on the Autoprogressive Method

Neural network constitutive models and the Autoprogressive method are a

fundamentally different approach to the inverse problem in elastography.

While some of the intuition obtained from model-based inverse methods has

analogues in this data-driven approach, a high-level understanding of the

tools used in AutoP can help reveal where the differences reside. The purpose

of this chapter is to introduce neural network constitutive models, present a

high-level view of FEA, and begin to explore the way in which AutoP com-

bines the two in order to build data-driven models from force-displacement

measurement data. A more detailed description of the steps taken in AutoP

is given in Chapter 3 and is further expanded upon in Chapter 5 after the

introduction of Cartesian NNCMs.

2.1 Artificial Neural Networks

Artificial neural networks are an information-based machine learning tech-

nique often used to solve complex problems. Loosely based on biological

neural networks, ANNs consist of a network of “neurons”, or nodes, inter-

connected to exchange information and compute an output based on a given

input stimulus. Several characteristics inherent to ANNs make them de-

sirable as a problem-solving technique, including their massive parallelism,

ability to learn and generalize, inherent nonlinearity, adaptability, robust-

ness, and ability to handle noisy data [110, 111]. Because of these properties,

ANNs are able to accurately model complex behaviors and relationships even

when provided with noisy data. Perhaps the most important ability of ANNs

for the subject of informational modeling is their ability to model phenom-

ena only understood through measurement or observation. In fact, ANNs

are “universal approximators” and can represent any function [112]. From
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Figure 2.1: Example of a simple two-layer, feed-forward ANN. Output from nodes are weighted and
summed to form the input to a node in the succeeding layer. The input signal is passed to an activation
function, the output of which becomes the output of the node.

a set of noisy measurements, ANNs can generalize and learn the underlying

relationships between chosen inputs and outputs.

Many different types of neural network topologies exist; for the purpose of

data-driven elasticity imaging, our interest lies only in feed-forward networks.

Figure 2.1 contains an example of a simple feed-forward, two-layer ANN.

Nodes in the first layer compute outputs ψi that feed the nodes in the second

layer. Connection weights wji multiply the output of node i in layer N − 1

before it reaches node j in layer N . Input to a node, referred to as the input

signal fj, is computed by summing the output of all feeding nodes multiplied

by the corresponding connection weights. Node output is found by supplying

the input signal to an activation function φ(fj) defined for the jth node.

ANNs “learn” by adjusting the connection weights between nodes to min-

imize the error between the output computed by the ANN and the target

output specified by training data. Input-output relationships described by

ANNs are the result of the connectivity of the network, node activation func-

tions, and connection weights. The first two are typically static, meaning
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the connection weights must change for the ANN to adjust its response. The

type of learning used for NNCMs is a form of supervised learning where a

known output is given for every training input. Many supervised learning

techniques are based on the backpropagation algorithm, a form of gradient

descent optimization, to adjust the connection weights based on the error

between ANN output and expected response [113, 114]. Specific training

algorithms and parameters are described in later chapters as they pertain to

the networks in question.

2.1.1 Neural Network Constitutive Models

Constitutive models of materials relate stresses in a body to deformation

through a kinematic description and material parameters. For example,

we previously defined a linear-elastic, isotropic material by the constitutive

model

fε : ε→ σ

fε(ε) = 2µε+ λ tr(ε)I. (2.1)

The terms ε and tr(ε) are the kinematic description whereas µ and λ are

material parameters. These parameters provide a convenient way of sum-

marizing mechanical behavior such as stiffness (e.g., Young’s modulus), non-

linearity, time-dependence, and rate-dependence. Hence, material parame-

ters are estimated in QUSE to reconstruct images summarizing tissue me-

chanical properties.

A NNCM is a “soft computational” description of material properties.

Like conventional constitutive models, a NNCM accepts strain at the input

and returns stress at the output:

NNCM : ε→ σ. (2.2)

There is no explicit kinematic description — aside from the form of strain at

the input — nor material parameters. Instead, NNCMs exploit the “universal

approximation” capabilities of ANNs to learn a mapping from strain to stress.

A NNCM can therefore be trained to represent the mechanical properties of

any material without prior knowledge of the underlying constitutive model.
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A full expression for computing stress is given by (2.3) after introducing the

NNCM architecture.

Figs. 2.2a and 2.2b illustrate two different NNCMs that will be encoun-

tered in the following chapters. Each network is comprised of an input

layer, two hidden layers, and an output layer. On the left is the NNCM

architecture used for 2-D materials1 and the network on the right is ca-

pable of characterizing 3-D materials. Strains input to the 2-D network

are first scaled by the strain scaling vector Sε = [Sε11 Sε22 Sε12 ] (for 3-D,

Sε = [Sε11 Sε22 Sε33 Sε12 Sε13 Sε23 ]). Similarly, stresses returned by the

network are scaled by the stress scaling vector Sσ.

(a) (b)

(c)

(d)

Figure 2.2: (a) 2-D NNCM (b) 3-D NNCM (c) Hyperbolic tangent activation function (d) Logistic acti-
vation function

Output stress is computed by providing a strain vector at the input and

propagating the signal forward through the network:

σi = Sσiφi

( Nh2∑
c=1

wicφc

( Nh1∑
b=1

wcbφb

( Ni∑
a=1

wbaφj(
εj
Sεj

)

)))
, (2.3)

where σi is the value computed by the ith output node. The values fi, fc,

1The 2-D networks approximate plane-stress conditions and thus only accept/return
the lateral, axial, and shear components of stress/strain.
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and fb are the activations of nodes in the output layer, second hidden layer,

and first hidden layer, respectively. Nh2 is the number of nodes in the second

hidden layer, Nh1 is the number of nodes in the first hidden layer, and Ni

specifies the number of nodes in the input layer. Weights from node p in

layer N − 1 to node q in layer N are denoted as wqp.

The NNCMs shown in Fig. 2.2 use a hyperbolic tangent as the activation

function of the nodes (φ(·) , tanh(·)). A new NNCM architecture introduced

in Chapter 4 utilizes the logistic activation function for a portion of the

network. Both of these activation functions are shown in Figs. 2.2c-2.2d.

There are two important characteristics of these functions to be noted.

Both 1) have bounded outputs and 2) drastically lose sensitivity as the input

extends beyond ±1. With respect to the first point, no output node can

produce a value ≥ ±1. Therefore, if the NNCM is to learn values of stress

outside of this range, they must first be scaled, hence the output scaling val-

ues Sσ11–Sσ23 . In regard to the second point, even though there is no bound

on the range of inputs to the network, dividing the input values with Sε11–

Sε23 to keep the strains with ±1 helps ensure the NNCM remains sensitive

to changes at the input.

Scaling the input and output vectors can do more than keeping the values

within given bounds; scaling can also increase the range of values closer to

the bounds. Strains induced during QUSE are usually contained within a

fairly small range. For instance, if all the strains were < 0.01, all of the input

data would be packed into a small range. If the goal is to maintain sensitivity

to changes at the input, then it would be logical to scale the strains so that

they range closer to ±1. Similarly, for the case where the stresses are all

small and tightly bound, it could be beneficial to scale the output values

closer to ±1.

While NNCMs are capable of characterizing the material properties of

any object given appropriate inputs and outputs, the necessary training data

must be available. Measurements acquired in QUSE are forces and displace-

ments whereas NNCMs learn a stress-strain relationship. We therefore need a

method to convert force-displacement measurements to stresses and strains.

Finite element analysis is used for this purpose. However, the solution of

a FEA requires knowledge of the underlying material property distribution,

which is the problem trying to be solved with NNCMs. FEA is briefly re-

viewed in the next section followed by an overview of AutoP describing how
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the combination of NNCMs and FEA can be used to learn material properties

from force-displacement data.

2.2 Finite Element Analysis

Many texts rigorously cover FEA procedures (e.g., [115, 84]) and form the

basis for this section. A detailed description of FEA is not necessary to

understand AutoP. Rather, we aim to provide a high-level view and point

out where NNCMs may enter into the formulation.

The governing equation for an elastic continuum (under small strain) in

static equilibrium relating internal stresses σ to forces f given boundary

conditions (BCs) û and t̂ is

∇ · σ + f = 0 (2.4)

u = û on Γg (2.5)

σ · n = t̂ on Γh, (2.6)

where û are displacements imposed on the boundary Γg and t̂ are surface

tractions applied along the boundary Γh. Typically, û are imposed on the

surface but can include internal displacements. Note that Γg and Γh comprise

the full boundary (Γtotal = Γg + Γh) and do not overlap (Γg + Γh = ∅).

Consider the simple model in Fig. 2.3 that is a simplification of the exper-

imental phantom measurements described in the next chapter. The bottom

surface of the phantom is “pinned” and cannot move. A series of Np concen-

trated force loads p̂i,n are applied to the top surface, where the superscripts

i and n indicate node number and load increment. Experimentally, we ap-

ply the surface forces and measure some of the resulting displacements ûi,n.

Only surface displacement measurements are shown in Fig. 2.3, but internal

displacements can also be measured (e.g., at nodes 4, 5, and/or 6).

In a FEA, BCs are applied and displacements for all nodes in the mesh

are computed. Deformation of the body results an in internal resisting force

vector In. Surface tractions, concentrated force loads, and body forces f

comprise the vector P n of forces acting on the body. The goal of the FEA
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Figure 2.3: Example FE model.

is to find the displacement of the nodes that balance In and P n:

P n = In. (2.7)

Suppose the phantom exhibits non-linear mechanical properties N(u) il-

lustrated by the red curve in Fig. 2.4a. One method of solving the non-linear

FEA is through a Taylor expansion of (2.7) and Newton-Raphson (N-R) it-

erations. P n remains constant while the tangent stiffness matrix Kn
i and

vector of internal resisting forces are updated at the end of each N-R iter-

ation. The following set of equations details the solution procedure for the
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ith N-R iteration. Fig. 2.4a diagrams the process.

P n = Ini+1 (2.8)

Ini+1 = Ini +Kn
i ∆Un

i+1 (2.9)

Kn
i ∆Un

i+1 = P n − Ini (2.10)

Kn
i =

Ne∑
e=1

∫
Ωe

BT
eD

nBedΩe (2.11)

Ini =
Ne∑
e=1

∫
Ωe

BT
e σ

n
i dΩe (2.12)

Equation 2.10 is derived by replacing the internal force term in (2.8) with

(2.9). The tangent stiffness matrix in (2.11) is assembled from all Ne elements

in the mesh. BT
e is the strain-displacement matrix defined for each element

and is determined by the mesh. A constitutive model is used to compute the

stiffness matrix Dn and element stress vector σni .2

(a)
(b)

Figure 2.4: (a) Diagram of the N-R iterations to solve a FEA. (b) Points in the force-displacement domain
map to points in the stress-strain domain.

Equations (2.11) and (2.12) are the entry point for a NNCM in a FEA.

We have already defined how to compute stress from a NNCM in (2.3).

The stiffness matrix can also be computed from the connection weights and

activations of the network. Appendix D contains the derivation of Dn. Con-

2Integrals in eqs. 2.11 and 2.12 are computed numerically with Gauss quadrature.
Each integral is calculated by evaluating it at a predetermined number of integration
points (or Gauss points) and summing the results. Different element types have different
numbers of integration points. Furthermore, stresses and strains are evaluated at the
integration points. The number of stress-strain data pairs discussed in later chapters is
thus determined by the quantity and type of elements in the mesh.

23



sequently, the classic constitutive model can be replaced by a NNCM in

FEA.

Returning to the object in Fig. 2.3, applying force loads P̂ 1–P̂ 3 and

solving (2.10) results in a mesh displacements u1–u3. Similarly, ûi,n can be

applied in the FEA (without applying the surface forces) to compute the

displacements of the remaining nodes. No matter how the object is being

loaded, mesh deformations computed in a FEA must satisfy stress equilibrium

defined in (2.4) relating stresses to forces and compatibility requirements

relating displacements to strains. One simple definition of compatibility is

that elements in the mesh cannot separate or overlap. As will be explained

in the next section, AutoP takes advantage of these requirements to train

NNCMs.

Stresses and strains can be computed from the solution of a FEA. Strains

can be calculated from displacements through kinematic relationships like

that defined in (1.3). Then, using a constitutive model (or NNCM), stresses

are computed from the strains. Thus, the points in the force-displacement

domain (Fig. 2.4b, left) correspond to points in the stress-strain domain

(Fig. 2.4b, right). In other words, stresses and strains (the data we want

to train NNCMs) can be computed from mesh deformations caused by force

and/or displacement loads (the data we measure).

2.3 Overview of the Autoprogressive Method

Measurement data are in the form of forces and displacements, FEA can con-

vert force-displacement measurements to stresses and strains, and NNCMs

learn stress-strain behavior. AutoP exploits these facts to build data-driven

models that gradually learn the stress-strain behavior encoded in the force-

displacement measurements. This section is intended to explain why Au-

toP works and differentiate our data-driven method from model-based ap-

proaches.

Recall that Fig. 2.3 is the scenario where forces p̂i,n were applied and

the displacements at the same nodes were measured. Let the true material

properties of the phantom be described by N(u) in Fig. 2.5a. Applying the

measured forces to the FE model and using N(u) to solve (2.11) and (2.12)

will return the measured displacements ûi,n (along with the displacements
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of nodes 4–6). However, because the material properties are unknown, we

start with an initial guess N̂(u). Solving the FEA with N̂(u) after applying

force BCs would result in the displacements un. The difference between the

measured displacements and those computed with the initial guess of material

properties is ∆un. The goal of AutoP is to adjust N̂(u) to minimize ∆un

(i.e., minimize the objective function in (1.9)). Simply put, change N̂(u) so

that it matches N(u).

(a)
(b)

Figure 2.5: (a) Measured displacements ûn and displacements computed in a FEA un resulting from an

applied force will differ when the material properties N̂(u) defined by an NNCM do not match the true
material properties N(u) of the object. (b) During training in AutoP, the NNCM gradually learns the
true material properties. Blue points representative stress-strain data used to train the NNCM.

Notice the force and displacement measurements in Fig. 2.3 are along the

same boundary. Generally speaking, there will be some overlap in boundaries

Γg and Γh for the measurement data. The FEA formulation forbids force and

displacement BCs to be defined simultaneously on the same boundary. We

therefore apply the measurements in separate FEAs to compute mesh de-

formation in response to each set of BCs. Define FEAσ as the FEA where

measured forces are applied to the mesh and FEAε as the FEA where mea-

sured displacements are imposed. Displacement BCs for the fixed bottom

boundary are applied in both FEAσ and FEAε.

Let NN0 in Fig. 2.5 be the stress-strain relationship described by a pre-

trained NNCM3 and N̂0(u) be the corresponding force-displacement relation-

ship. In the first AutoP iteration, measured forces P̂ n are applied in FEAσ

and displacements un1 (subscripts indicate AutoP iteration) are computed

3NNCMs are pretrained with stress-strain data generated from the linear-elastic model
in (2.1). Meaning, the initial “guess” is a linear-elastic material with a specified Young’s
modulus and Poisson’s ratio. Elastic pretraining is described in further detail in the next
chapter.
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using NN0 in the solution of the FEA. These displacements correspond to

strains which in turn can be used to compute stresses σn1 throughout the

object with NN0. Given that equilibrium requirements relate stresses to

forces, stresses computed in FEAσ are assumed to be physically consistent

with “true” stresses that we are trying to estimate. Thus, from measured

forces we obtain an estimate of stress.

In FEAε, we apply the corresponding displacement measurements ûn

and again solve the FEA using NN0 as the material model. This time, the

displacements in the mesh are used to compute strains ε̂n.4 σn1 are paired

with ε̂n and are used to retrain the NNCM: NN0 → NN1. Mechanical

behavior characterized by NN1 more closely resembles the true properties of

the material than NN0.

The diagram in Fig. 2.5b helps explain what is happening in each AutoP

iteration that causes the NNCM to converge to the true material properties.

If N̂0(u) does not match N(u), pairing stresses from FEAσ and strains from

FEAε creates a point (blue dot) that does not reside on the curve created

by NN0 (black dot). In this example, the NNCM must “become stiffer”

in order to reconcile the stresses and strains computed in FEAσ and FEAε,

respectively. Through repeated AutoP iterations, the blue and black dots in

Fig. 2.5b eventually overlap, at which point N̂(u) = N(u) and consequently

minimize ∆un

The important aspects of AutoP are 1) the training data comes from the

solution of FEAs so the material properties learned by the network must obey

physical laws, 2) the NNCM participates in generating its own training data

and therefore must reconcile stresses and strains resulting from the force-

displacement measurements, and 3) NNCMs are flexible enough to learn any

stress-strain behavior.

Fig. 2.6a highlights point (3). Measurements (black dots) are governed

by the material properties of an object. Model-based methods adopt a con-

stitutive model to describe the measurements. For example, assuming the

material properties are linear-elastic (red line) or non-linear (green dashed

line or blue dash-dotted line). Different models can capture various aspects

4The diagram suggests that applying measured displacements to the FEA will always
result in the same strain. Unless displacement BCs are given for every node in mesh, ε̂n

will also change. However, for the homogeneous model considered in this example where
displacements are applied along the entire top boundary, the strains compute in FEAε

will change very little.
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(a) (b)

Figure 2.6: (a) Model-based methods may discard important information pertaining to tissue material
properties if an inappropriate mechanical model is selected. On the other hand, NNCMs are theoretically
flexible enough to characterize any type of mechanical behavior. (b) Our data-driven approach does not
directly estimate material parameters from measurement data, as it done in model-based inverse methods.
Instead, material parameters from any constitutive model can be estimated from NNCMs after AutoP
training. This ability may allow for discovery of parameters most useful for diagnostic imaging.

of the material behavior. When solving the inverse problem, the form of the

model is fixed and the parameters are adjusted to minimize ∆un. Unfortu-

nately, adopting the incorrect model will result is modeling errors, as stated

back in Sec. 1.3, and may discard potentially relevant clinical information.

E.g., a linear-elastic model cannot describe any non-linear properties.

On the other hand, NNCMs (orange dotted line) have the ability to learn

material properties without discarding any information. We do not adjust

parameters to minimize ∆un; rather, we adjust the function itself. Fig. 2.6a

summarizes the fundamental difference between model-based inverse meth-

ods and our data-driven approach. The former directly estimates parameters

of a pre-selected constitutive model whereas NNCMs learn a non-parametric

description of the stress-strain relationship governing the data. A NNCM

can then be tested against any number of constitutive models to estimate

the relevant parameters, creating a way to discover which parameters best

describe the material properties inherent to the data and are most clinically

relevant.
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Chapter 3

Neural Network Constitutive Models of
Gelatin Phantoms

3.1 Introduction

Medical elasticity imaging encompasses a broad range of techniques for imag-

ing mechanical properties of biological tissues. Standard approaches to pa-

tient imaging begin by tracking displacements resulting from a weak mechan-

ical stimulus applied to the tissue being imaged. Combining time-varying

displacement information with measurements of or assumptions about the

associated forces into a collection of linear equations, the elements of a con-

stitutive matrix are estimated.

Elasticity imaging reveals how tissue stiffness and/or viscosity vary with

position, time, and applied force. These basic mechanical properties can

indicate regions of inflammation, edema, hypertrophy, and fibrosis that ac-

company the presence of disease processes [116]. Conventional approaches

show great promise for cancer imaging in particular. However, simplifying

assumptions, which enter the analysis as tissue models, can miss informa-

tion about the structural complexity of most tissues. These assumptions are

necessary to formulate a properly constrained inverse problem for mechani-

cal parameter estimation. Violating the assumptions of a tissue model can

distort the description of the mechanical environment needed for diagnos-

tic decision making. Unjustified assumptions also limit the vast possibilities

for learning more about the role of mechanobiology in revealing disease pro-

cesses. Furthermore, simple models in common use generally discard some

of the information gathered during an imaging exam.

This report describes a different approach to elasticity imaging that re-

The majority of this chapter is reproduced from [108]. Reprinted by permission from
Springer Nature: Biomechanics and Modeling in Mechanobiology. ”An information-based
machine learning approach to elasticity imaging”, Cameron Hoerig, Jamshid Ghaboussi,
and Michael F. Insana,©2018
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quires no assumptions about tissue mechanical properties, including linearity

and isotropy. Our initial focus is on quasi-static methods that generate full

stress and strain maps from just a few force-displacement measurements and

knowledge of object shape. Estimation of constituent-matrix elements for

elasticity imaging occurs retrospectively, once the stress and strain fields

have been accurately estimated.

The technique accepts a time-series of surface force-displacement mea-

surements made while pressing a rigid ultrasound transducer into the medium

surface. Simultaneously, the transducer records radiofrequency echo data

used to estimate a time series of displacements at select points in the medium.

These force-displacement data are input into the Autoprogressive (AutoP)

method [117] that employs two finite-element analyses (FEAs) to exploit (a)

equilibrium conditions relating forces and stresses and (b) compatibility re-

quirements relating displacements and strains. We will show how these FEA

processes occur simultaneously and iteratively by relating them to each other

through one or more artificial neural networks (ANNs) that learn and record

material properties. The ANNs take the place of the constitutive matrix,

relieving us of the need for simplifying assumptions. The material prop-

erties learned by the ANNs during training with AutoP are stored in the

distributed connection weights. Later, and without further measurements,

the informational model can be probed to find imaging parameters in the

range of mechanical stimuli that were used to train the model.

An important part of quasi-static deformation analysis is that a mechan-

ical stimulus applied to the medium may be sensed at every contiguous lo-

cation in that medium. Consequently, a few well-positioned measurements

made during quasi-static deformation can result in a complete mechanical de-

scription, even for large deformations in nonlinear media. Combining FEA

and ANNs in AutoP allows the material properties to be extracted from a

sparse sampling of force-displacement measurements.

For the first time, complete and accurate images of all stress and strain

fields throughout an object resulting from an applied force can be described

from experimental measurements. The advancement to the art is in com-

bining a few strategically-placed measurements with mechanical principles

and information-based machine learning tools to solve the inverse problem

without making any initial assumptions of the underlying constitutive model.

Furthermore, the trained ANNs are not used to classify or interpret images;
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instead, they are used to construct images of material properties. Our infor-

mational models usher in a new approach to implementing ANNs for medical

imaging applications.

Despite some similarities with previous reconstruction methods in elas-

ticity imaging that use FEA to iteratively solve the inverse problem[92, 89],

we do not apply mathematical inverse methods to directly estimate a consti-

tutive matrix. Existing iterative schemes still require the assumptions of a

constitutive model with a compact feature set. The ANNs in AutoP replace

the constitutive matrix, eliminating the need for assumptions about material

properties and boundary values.

In this introductory report, we consider relatively simple physical phan-

toms with known properties to demonstrate the method. Heterogeneous

phantoms composed of linear-elastic gelatin gels with known shapes and stiff-

nesses were built to develop and validate these methods. An ultrasonic linear

array is used to compress phantoms under plane-stress conditions. We ex-

pand upon our previous reports [118, 119] and show that all stress and strain

fields for 2-D and 3-D measurement geometries, along with the spatially

varying Young’s modulus, can be accurately reconstructed even for locations

outside the region sampled ultrasonically.

3.2 Methods

A constitutive model relates output stress to input strain (or vice-versa)

through mathematical equations based on known physical principles and ex-

perimentally observed behavior. For systems too complex to have a complete

reductionist description, informational models can describe input-output re-

lationships via machine learning techniques and training involving repeated

exposure to high-quality experimental data. In the following section, we

describe AutoP as applied to data from tissue-like gelatin phantoms.

3.2.1 Force-displacement Measurements

The same phantom manufacture and experimental measurement techniques

were used in this study and those described in the next two chapters. Imag-

ing phantoms were constructed using a simple gelatin formulation of water,
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gelatin powder, and corn starch that acts as a scattering agent [120]. In this

study, each phantom was a 50x50x50 mm3 cube of a soft gel (≈9 kPa) with

one or three embedded stiff cylindrical inclusions (≈22-26 kPa), 10 mm in

diameter and 50 mm long. Dimensions of the phantoms and placement of

the inclusions were tightly controlled via machined molds. By pouring the

gelatin mixture for the inclusions after the background material solidified,

we were able to create a tightly coupled bond between the background and

inclusions. Macro-indentation methods [121], described in the next section,

were applied to independently estimate the Young’s modulus of each gelatin

material. The long axis of each inclusion was oriented along the x3 axis (out

of plane of Fig. 3.1). Each phantom component is a linear-elastic, incom-

pressible material with a gelatin powder concentration that determines the

gel stiffness.

The basic measurement technique involves pressing an ultrasound linear-

array transducer into the phantom surface in a series of discrete steps (Fig. 3.1).

The US probe face was positioned flush with the top surface of the phantom

in the (x1, x3) plane that are, respectively, the lateral and elevational axes

of the transducer. A plastic housing used for positioning encased the US

probe, creating a phantom contact area of 43x50 mm2. A 6-axis force-torque

transducer (ATI Industrial Automation, Apex, NC) coupled the ultrasound

probe housing to a motion controller capable of positioning the probe with

sub-millimeter accuracy (not shown). The bottom surface of the phantom

was fixed to a rigid base so it did not slip as the probe compressed the top

phantom surface. Coupling gel was applied to the top surface and provided

free-slip contact between the probe and phantom. The remaining four sur-

faces of the phantom were unconstrained during loading.

In this study, only a downward compressive force was slowly applied along

the axis of the ultrasound beam (x2 axis). A radiofrequency (RF) echo-

signal frame was acquired after each load increment using a Siemens Sonoline

Antares ultrasound system (Siemens Healthcare USA, Mountainview, CA)

with a VF10-5 linear-array probe at 8 MHz center frequency. At the same

time, the axial surface force generated by the US probe was measured by

the force-torque transducer and the probe position recorded via the motion

controller. Application of a speckle-tracking algorithm [41] provided an es-

timate of internal displacements within the RF frames (see Appendix B for

an evaluation of the accuracy of the speckle-tracking algorithm). One series
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𝑥2

𝑥1
𝑥3

Figure 3.1: Diagram of the experimental setup using a single-inclusion gelatin phantom scanned along
the cross section of the inclusion. A centrally-positioned ultrasound probe coupled to a force/torque
transducer (not shown) is maneuvered by a 3-D positioning system. The phantom is placed on a fixed
non-slip base and is compressed from above with surface force p as an RF echo frame (dashed line region)
is acquired. Speckle-tracking applied to echo signals measures displacements within the RF echo frame.
Locations marked ‘×’ indicate positions where displacements were applied in FEAε for training. These
displacements are also used for convergence testing. Locations marked ‘◦’ are examples of locations where
additional displacement data can be used for FEAε and/or convergence testing.

of load increments provided a set of surface forces and probe displacements

that were measured directly and a corresponding set of displacements within

the phantoms which required speckle tracking to estimate. These data were

then used as inputs to AutoP to build informational models of the gelatin

phantoms. Information regarding the geometry of the phantoms was also

necessary to develop finite-element meshes used in AutoP. External bound-

aries were known, but the shape and location of internal structures must be

assumed or estimated. In Sections 3.2.5 and 3.2.6, we investigate cases where

the inclusion boundaries were modeled exactly or were estimated via manual

segmentation.

3.2.2 Macroindentation Measurements

A small amount of each gelatin material was poured into a separate cylin-

drical mold while manufacturing the phantom to undergo macroindentation

testing. All indentation measurements in this dissertation were performed

using a TA.XTplus Texture Analyzer (Stable Micro Systems Ltd., Surrey,
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U.K) with a 1 kg load cell and a 2.5 mm radius stainless steel spherical

indenter tip. A force-displacement curve was generated by slowly pressing

the spherical probe into the surface of the gelatin at a rate of 0.05 mm/s,

up to 1.5mm total. Space was left at the top of the cylindrical mold and

filled with water before the indentation test began to remove static electric

forces between the probe and the gelatin. Without the water, the surface of

the gelatin may “jump” up to the probe before contact is made, resulting

in a negative force reading. Adhesion between the probe and gelatin was

limited with the use of a lubricant (Pol-Ease 2300 Release Agent, Polytek

Development Corp., Easton, PA).

Under the assumption of no adhesion and elastic bodies, a Hertzian con-

tact model between a sphere and a half-space was used to estimate the

Young’s modulus of the gelatin, as was done in [121]:

F =
4

3
E∗
√
R
√
d3 (3.1)

and E∗ is defined as

1

E∗
=

1− ν2
sphere

Esphere
+

1− ν2
gelatin

Egelatin
(3.2)

In (3.1), R and d correspond to the radius and displacement of the in-

denter, respectively, and F is the measured force. E∗ is a function of the

Young’s and Poisson’s ratio of the spherical indenter (Esphere and νsphere, re-

spectively) and of the gelatin (Egelatin and νgelatin). The large value of the

Young’s modulus for the spherical indenter allows the corresponding term in

(3.2) to be neglected. Then, putting 3.2 into 3.1, the contact model reduces

to

F =
16

9
E2
gelatin

√
R
√
d3 (3.3)

An example of the force-displacement curve generated during indentation

tests on the gelatin materials comprising Phantom 1 can be seen in Figure 3.2.

The curve for the soft background is plotted in Fig. 3.2a whereas Fig. 3.2b

is a plot of the curve for a stiff inclusion. Fitting each measured curve

(solid black line) to the contact model in (3.3) produced a Young’s modulus

estimate for the material. Estimated modulus values could then be used to

create estimated force-displacement curves for the indentation (dotted red
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line).

(a) (b)

Figure 3.2: Examples of the force-displacement curve generated during a spherical indentation test. The
solid black line in each figure is the measured result whereas the red dotted line is the data fit to the
Hertzian contact model described in (3.3). Both measurements are from indentation tests on the gelatin
materials that compose Phantom 1 of this study. (a) Spherical indentation on soft background gelatin,
E = 9.16 kPa. (b) Spherical indentation on stiff inclusion gelatin, E = 22.9 kPa.

3.2.3 Autoprogressive Method

Overview

At the core of our approach to create empirical models of mechanical behav-

ior is the Autoprogressive Method developed by [117]. The power of AutoP

lies in its ability to generate stress-strain information from force-displacement

measurements. AutoP makes use of standard FEA methods (ABAQUS 6.13

finite-element software) to iteratively generate stress and strain data as arti-

ficial neural networks learn material properties.

A finite-element (FE) mesh is constructed that models the data acqui-

sition process. For our measurements described in later sections, the FE

mesh comprised a rigid, rectangular model of the US probe in contact with

a square (or cube for 3-D) mesh of a phantom. Then, measured forces and

displacements are split and applied to the FE model to solve two different

FEAs: FEAσ and FEAε. Solving FEAσ allows us to estimate the stresses

throughout the model in response to an applied force. Similarly, solving FEAε

provides an estimate of the strains resulting from an applied displacement.

Because forces and displacements are both measured for each experiment,
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the strains provided by FEAε should be consistent with the stresses found in

FEAσ when the ANNs that relate the two FEAs correctly represent material

properties. Iteratively solving FEAσ and FEAε while adjusting ANN weights

produces increasingly accurate estimates of the stress and strain existing in

the medium at the time forces and displacements were measured. Through

the course of AutoP, the ANNs learn the material properties based on the

stress-strain behavior estimated by the FEAs.

ANNs are selected as the machine learning component of AutoP because

of their inherent nonlinearity, robustness, and ability to learn complex be-

haviors [110, 122]. Their highly parallel structure accumulates information as

it becomes available experimentally. A general concern when using ANNs is

determining the size of the network to be used. ANNs with too many nodes

in each layer have a capacity exceeding that necessary to learn mechanical

behavior and can generate overfitting errors. On the other hand, if there are

too few nodes per layer, the ANN does not have enough capacity to store

the necessary information. We implemented nested adaptive neural networks

[110] to minimize these issues.

Creating Finite-element Meshes

Training with AutoP begins with the development of a FE model of the data

acquisition process. In the FE model, probe-phantom contact and external

boundary conditions are set to mimic the experimental setup; for compres-

sions of the gelatin phantoms, the bottom edge of the phantom is fixed, the

contact surface between the ultrasound probe and phantom is assumed fric-

tionless, and the remaining sides are free. In this initial technique, one ANN

is used for each region that could have distinct material properties. Here,

only two ANNs were used: NNsoft, which describes the material properties

of the soft background gelatin material, and NNstiff , which characterizes the

stiff inclusion(s). Only one ANN is needed for the inclusions in the three-

inclusion model because each is composed of the same gelatin mixture. If a

different material was used for each inclusion, three different ANNs would be

required, bringing the total to four. Shape estimation is required for meshing

and to determine the number of ANNs applied.
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Elastic Pre-training

Once the FE mesh is created and the ANNs are assigned to the mesh ele-

ments, each ANN material model is pre-trained with stress-strain data gen-

erated using linear-elastic equations. This phase is for ANN initialization

only to avoid non-physical behavior that emerges from random connection

weights. Note that the model selected for pre-training is not important.

During the course of training with AutoP, the linear-elastic behavior learned

during pre-training is “overwritten” as the ANNs learn the mechanical be-

havior of a specific object. We will show that the ANNs can be pre-trained

using data generated with an incorrect assumption of the Young’s modu-

lus (i.e., different than the value estimated from macro-indentation measure-

ments) but will learn the stress-strain behavior governing the measured force-

displacement data, allowing us to accurately estimate the Young’s modulus

after training with AutoP.

Pass → Load Step → Iteration → FEAσ & FEAε

𝑝 → 𝜎𝑖 𝜀𝑖 ← 𝑢

Measured
Forces

Measured
Displacements𝑁𝑁 𝑖

𝑁𝑁 𝑖+1

FEAσ FEAε

Calculated
Stress

Calculated
Strain

Current ANN

Updated ANN

 𝑢𝑖

Convergence Test Δ𝑢𝑖

Next
Iteration

Figure 3.3: Flow diagram of the Autoprogressive method. Measured forces and displacements from one
load increment are supplied to finite element analyses FEAσand FEAε. In the ith iteration, current version
of the ANNs, [NN ]i, are used as the element material models to solve the FEAs, producing estimates of
the stress (σi) and strain (εi) vectors throughout the model. Stress-strain pairs are collected and used
to update the connection weights of the ANNs, producing the updated network [NN ]i+1. This process
iterates, and each time displacement estimates ûi from FEAσ are compared with measured displacements
ui to compute error vectors ∆ui. If displacement errors are above set thresholds, the training iterations
continue using the same force-displacement data. Once errors fall below the thresholds, training for the
ith iteration has converged. This training process is performed for all force-displacement data sets to
complete the first pass and may be repeated for the same or new data in a second pass.
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Figure 3.4: Example of the evolution of the mechanical behavior described by an ANN during training
with AutoP. After pretraining ( ), the stress-strain response of the ANN is significantly different than
the true mechanical behavior ( ). Performing training iterations using force-displacement data from the
first load increment (Load Step 1) gradually moves the stress-strain curve produced by the ANN toward
the true solution. After completing training iterations using the data from the first load increment, the
ANN accurately describes the mechanics only over the strain range produced for the first step ( ). The
valid range of the ANN is increased by continuing training through load step 2 ( ).

AutoP Training Iterations

AutoP training iterations, diagrammed in Fig. 3.3, begin after the pre-

training phase. Force-displacement data acquired during the first load step

(first compression of the gelatin phantom) are applied to the FE model to

solve FEAσ and FEAε. Measured forces are applied in FEAσ and the FEA

is solved using the current state of the ANNs ([NN ]i) as the element ma-

terial models. In the solution of the FEA, equilibrium conditions - which

relate forces and stresses - are satisfied, producing an estimate of the stresses

throughout the model of the phantom. In the second analysis, FEAε, mea-

sured displacements are applied and the FEA solved once again using the

current state of the ANNs as the element material models. Compatibility

conditions, which relate displacements to strains, are satisfied in FEAε, pro-

ducing an estimate of the strains throughout the phantom model. After

solving both FEAs, stress vectors computed in FEAσ are paired with their

corresponding strain vectors computed in FEAε to create a set of stress-
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strain training pairs used to update the connections weights of the ANNs

([NN ]i → [NN ]i+1).

Training iterations are performed using the same force-displacement data

from the first load step until a predefined maximum number of iterations

is reached or the ANNs converge. Convergence of the ANN material mod-

els is checked by using the computed displacements from FEAσ (ûi) and

the measured displacements provided in FEAε (ui) to calculate a vector of

displacement errors using Eq. (3.4).

∆ui = |ui − ûi| (3.4)

Note that the total number of computed displacement errors matches the

number of displacements provided in FEAε. In Section 3.3.1, we discuss

the effect of including additional displacements not used in FEAε. These

displacement errors are used to calculate two values:

cmax =
max(∆ui)

|max(ui)|
(3.5)

cµ =
mean(∆ui)

|max(ui)|
(3.6)

If cmax < Cn
max and cµ < Cn

µ , where Cn
max and Cn

µ are predefined criteria

for the nth load step, convergence has been achieved for the first load step.

AutoP iterations are repeated in the same manner using each set of force-

displacement data for all load steps. This constitutes one pass of AutoP.

Multiple passes may be performed using the same or new data.

The stress-strain response of an ANN during the course of training is

visualized in Fig. 3.4. In this example, the true linear-elastic behavior of an

imaginary 1-D material ( ) is to be learned by an ANN that has been pre-

trained ( ). Force-displacement data from the first load step (Load Step 1)

are used in AutoP iterations, causing the stress-strain response of the ANN

to gradually move toward the true behavior. Convergence is achieved after

several iterations, implying the mechanical behavior described by the ANN

matches the true behavior over the stress-strain range produced in the first

load step ( ). Outside of this range, the ANN response becomes nonlinear

and diverges from the true response. Performing additional AutoP itera-

tions with force-displacement measurements from other load steps extends
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the range over which the ANN and the true behavior match ( ). Note

that if the true mechanical behavior was nonlinear, the inherent nonlinear

behavior of ANNs would allow this method to learn those responses from the

data.

Mechanical Parameter Estimation

The output of AutoP is one or more trained ANNs that accurately describe

the mechanical behavior of every material in the target object over the stress-

strain range resulting from the applied loads (e.g., compressions by the US

probe). A fully trained ANN essentially replaces the constitutive matrix to

compute an output stress vector from an input strain vector as illustrated in

Fig. 3.5. We can then conduct numerical experiments where we apply any

force (or displacement) within the training range to estimate all components

of stress and strain. This data may be applied to a constitutive model, e.g.,

Kelvin-Voigt, and estimate an elastic modulus or other mechanical parameter

that compose the image. This is a profound step away from current elastog-

raphy methods that require a model to be assumed at the beginning in order

to derive a properly constrained inverse problem. With our method, we can

explore the parameter space and determine which parameter best fits the

mechanical behavior after the stress-strain behavior is learned by the ANNs.

In section 3.3.1, we will show a method of interrogating a trained ANN ma-

terial model to determine an appropriate constitutive model for parameter

estimation.

3.2.4 Experimental Design

Testing of this new method of modeling the mechanical properties of mate-

rials was performed on gelatin phantoms using the data acquisition scheme

described in Section 3.2.1. A total of four phantoms were created having

background gelatin materials of nominally the same stiffness and one or three

stiffer inclusions. Phantoms 1 and 4 contained a single inclusion centered in

the (x1, x2) plane. Phantom 2 contained a single non-centrally positioned

inclusion, and Phantom 3 embeds three inclusions. Example B-mode images

of the four phantoms are provided in Fig. 3.6.
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Figure 3.5: After training with AutoP, an ANN material model is able to compute an output stress
vector in response to an input strain, essentially replacing the constitutive matrix. The same information
described by the components of the constitutive matrix is contained non-parametrically in the connection
weights of the ANN. Using the ANN in a computational experimental like a FEA allows the full stress
and strain vectors to be estimated throughout an entire material in response to an externally applied
force. Access to estimates of all components of stress and strain allows mechanical parameters from any
constitutive model to be estimated.

In the following sections, we will describe specific details regarding data

acquisition and AutoP training for models under measurement geometries.

Regardless of the model, AutoP was used to train feed-forward, fully con-

nected ANNs with hyperbolic tangent activation functions. Each ANN con-

tained two hidden layers and resilient propagation [123] was chosen as the

method to update ANN connection weights. The adaptive ANN architec-

ture helped alleviate issues of ANN size. The beginning and ending sizes of

the hidden layers in the ANNs varied and will be specified in the following

sections.

A total of 30 compressions (load increments) were performed on each

phantom. Total probe displacement was 1.5 mm for Phantoms 1-3 (3% of the

50mm phantom height) and 2.5 mm for Phantom 4 (5% of phantom height).

Axial forces measured between 12-29 N. The total phantom deformation was

kept small in these preliminary studies to ensure linear-elastic response of

the phantoms. In future studies, we will show this restriction can be lifted.

We trained ANNs with AutoP using 10 nearly equally spaced load steps that

spanned the entire range of the applied load, including the first and last load

increments. This means force-displacement data from load increments 1, 4, 7,

. . . , 26, 30 were used in AutoP. Small load increments were used to minimize

artifacts caused by decorrelation and out-of-plane motion when applying the

speckle-tracking algorithm for internal displacement estimation. In FEAσ,

40



measured forces were applied as concentrated loads to the top nodes of US

probe in the FE meshes. Measured probe displacements were applied to the

top nodes of probe (same nodes forces were applied) and estimated internal

displacements were given at three points within each inclusion in FEAε. For

example, the highlighted points in Fig. 3.6 indicate the specific locations

where interior displacements were applied.

In the elastic pre-training phase, a set of random stress-strain vectors were

generated using the plane-stress approximation (for 2-D models) or the con-

stitutive matrix for a Hookean solid (for 3-D models). Young’s moduli that

differed by at least 30% from the values estimated during macro-indentation

were chosen to create the pre-training pairs. For example, the Young’s mod-

ulus of the background gelatin material in Phantom 1 was estimated to be

9.16 kPa from indentation testing whereas a value of 4 kPa was chosen for

pre-training NNsoft. We chose values of Young’s moduli that significantly

differed from true values to show that our informational models are capable

of producing accurate estimates of material properties when initialized to an

incorrect state.

After gathering the stress-strain training pairs in an iteration of AutoP,

we adjusted the data in two ways. First, the mean and standard deviation

of each strain component was computed. We then removed any training

pairs with a strain component falling outside of the mean ± one standard

deviation range. Preliminary tests indicated that limiting the variation of

new information to be learned by the ANNs improved their ability to learn

by reducing the impact of outlier data during the weight update stage.

Second, frame invariance (i.e., objectivity) was enforced. Frame invari-

ance means the stress-strain response learned by the ANNs is independent

of the chosen axes; that is, if the coordinate system was rotated π
2

(observed

from a different perspective), the resulting stress and strain distributions are

unchanged. Objectivity is a fundamental concept in mechanics and requires

no assumption of the underlying constitutive behavior. By swapping the

normal stress and strain components in each training pair, the ANNs learn

frame invariance. Enforcing frame invariance doubled (or tripled in the case

of 3-D) the training data obtained in each iteration of AutoP. We must stress

that frame invariance is built into the training data to ensure the ANNs learn

the fundamental principle, not to increase the total amount of training data.

Furthermore, the stress-strain vectors could be rotated by any arbitrary an-
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gle in range 0 − 2π; the angle π
2

was chosen because it did not require any

matrix multiplications, therefore reducing the computational load.

A forward FEA, identified as FEAn
NN , was performed at the end of each

training step. This was effectively FEAσ with the exception that all 10 force

measurements were applied. Results from FEAn
NN allowed us to retrospec-

tively analyze the state of the ANNs during AutoP. Stresses and strains

computed in FEA10
NN - performed upon the completion of AutoP - are of

particular interest as they are produced by the fully trained ANNs and will

be referenced in Section 3.3.

3.2.5 2-D Models with Known Internal Geometry

Informational models were first developed for 2-D models of Phantoms 1-3

under the assumption that the internal geometry was known. For this, the

FE meshes modeled the size and locations of the inclusions determined by

the phantom molds, as illustrated in Figs. 3.6a-3.6c. Each FE mesh aligns

with the B-mode image within 1mm error, verified by comparing the bound-

ary of the inclusions in the B-mode and mesh. A plane-stress approximation

was used in these 2-D models of the phantoms. Therefore, axial, lateral, and

shear strains and stresses were used as the input and output of the ANNs, re-

spectively. Four-node, quadrilateral, generalized plane-stress elements (CPS4

in ABAQUS 6.13) were used to create the FE meshes of the phantoms. The

US probe was meshed using the same element type, although it was modeled

as a rigid body.

Additional data were acquired on Phantoms 2 and 3 by rotating the

phantoms about the x3 axis and applying compressive loads in the same

way. New FE meshes were created to model the rotated versions of the

phantoms. These meshes were virtually the same as those in Figs. 3.6b and

3.6c, albeit rotated 270◦ or 90◦, respectively.

AutoP training was performed over two passes at ten load steps each.

Up to three training iterations were performed in load steps 1-3 and up

to five iterations in the remaining steps. Convergence criteria (described

in Section 3.2.3) were set as Cn
max = 0.5 and Cn

µ = 0.1 for all load steps.

Displacement errors (∆ui) were computed only for those nodes provided dis-

placement information in FEAε (i.e., only for the nodes highlighted with dots
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(a) (b) (c)

𝑥1

𝑥3

𝑥2

(d)

Figure 3.6: FE meshes overlayed on B-mode images of (a) Phantom 1, (b) Phantom 2, and (c) Phantom 3.
The highlighted nodes in (a)-(c) indicate locations where displacement information was provided during
training with AutoP. (d) Orientations of the B-mode images in the 3-D model. For developing 3-D ANN
material models, we once again used only three internal displacements. Displacements were provided
along the line of intersection of the two B-mode images and given at the same points for both US probe
orientations.

in Fig. 3.6).

ANNs were initialized to have three nodes in each hidden layer. Elastic

pre-training was performed by generating 100 random stress-strain vectors

for an incompressible material (Poisson’s ratio ν = 0.5) as described in Sec-

tion 3.2.3. As AutoP progressed, one node was added to each hidden layer

during the second training iteration in load steps 4 and 5 in the first pass,

resulting in ANNs that had five nodes per hidden layer at the completion of

training.

Two important aspects of our new method are that informational models

are 1) better able to learn mechanical behavior when provided with diverse

training data and 2) able to update their knowledge as new information

becomes available. In AutoP, one way to produce a richer set of training data

is to apply a variety of spatial load distributions to the same phantom. For

Phantom 1, we acquired data with the US probe centrally positioned in the

(x1, x2) plane (data set 1, previously described) and with the probe located

4 mm off-center along the x1 axis (data set 2). Data set 2 was acquired in

the same manner as data set 1. From these two data sets on Phantom 1,

we explored four training scenarios described as cases in Table 3.1. Cases

(a) and (b) compared with cases (c) and (d) explores 1) how the diversity

of training data affects modulus estimation accuracy as compared to macro-

indentation testing and 2) the ability of ANN material models to incorporate

new information and its affect on modulus estimates.
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Table 3.1: Six different training scenarios for AutoP. These are the cases referred to in Table 3.2 for
Phantoms 1 and 3 (Fig. 3.6). Data set 1 are measurements for a centrally-located US probe (Fig. 3.1).
Data set 2 are measurements for an off-center US probe location.

Cases for Phantom 1, Known Geometry

Case (a) training using data set 1 only
Case (b) training using data set 2 only
Case (c) training using data set 1 and then retraining on set 2
Case (d) training using both sets simultaneously

Cases for Phantoms 1 and 3, Estimated Geometry
Case (e) Good segmentation - boundaries closely followed
Case (f) Poor segmentation - large errors in boundary estimation

3.2.6 2-D Models with Coarsely Estimated Internal Geometry

Imaging in a clinical setting precludes prior knowledge of the exact internal

geometry. Instead, images obtained during data acquisition must be seg-

mented to determine boundaries of each unique material in the object. We

tested the ability of our informational models to learn the mechanical prop-

erties of the gelatin materials when geometry errors are present in the FE

models.

B-mode images of Phantoms 1 and 3 were manually segmented to create

the FE meshes used for training. Two cases of segmentation were performed

and are described in Table 3.1. In case (e), the boundaries of the inclusion

were closely followed, producing a FE mesh with internal boundaries very

similar to the meshes in Fig. 3.6. Conversely, case (f) is a segmentation

producing large errors in estimating the edge of the inclusion. We note

that while the shape of the inclusion was a poor representation of the true

geometry in case (f), the general location of the inclusion was accurate.

Training cases (e) and (f) were performed for Phantom 1, while only case

(e) was performed for Phantom 3. This latter case poses an interesting prob-

lem. The B-mode image does not contain enough information to determine

the full shape of all three inclusions. During the segmentation process, the

edges of the inclusions were accurate within the imaged region, but parts of

each inclusion were cut off and assumed to be part of the background mate-

rial. Meshes produced by manual segmentation are displayed in Fig. 3.7.

AutoP training was performed with the same data used for Phantoms 1

and 3 with known geometry. Cases (e) and (f) of Phantom 1 were trained

44



(a) (b) (c)

Figure 3.7: FE meshes produced by manually segmenting B-mode images. (a) Segmentation of Phantom
1 closely matching the internal geometry (case (e)). The RMS error between the true inclusion boundary
and the estimated boundary was 0.29mm. (b) Poor segmentation of Phantom 1 where the inclusion
boundaries significantly differ from the true boundaries (case (f), RMSE = 0.76mm). The thick, black
line indicates the boundary of the inclusion in the mesh. (c) Segmentation of Phantom 3 (case (e), RMSE
= 0.76mm). The B-mode image does not capture the full shape of the inclusions. The boundaries of
the inclusion within the B-mode are accurately captured, but inclusion boundaries outside of the imaged
region are cut off.

in the same manner described in Section 3.2.5 with the exception of ANN

sizes and a slight adjustment to pre-training. ANNs began with five nodes

per hidden layer and a single node was added to each hidden layer in the

fourth load step. Pre-training was performed using 1000 random stress-strain

vectors instead of 100.

Case (e) of Phantom 3 required further adjustments to the ANN sizes

and convergence criteria. For this training scenario, we initialized the ANNs

with eight nodes per hidden layer and added a single node to each hidden

layer in the sixth load step. Convergence criteria were set as Cn
max = 0.5 and

Cn
µ = 0.15 for load steps 1-3 and Cn

max = 0.2 and Cn
µ = 0.08 for the remaining

training steps.

The aforementioned changes to AutoP training were found through pre-

liminary testing. With increased complexity in the stress and strain distri-

butions caused by more complex shapes, it is likely the ANNs with larger

hidden layers (i.e., larger capacity for information) were required to accu-

rately describe the stress-strain relationship.

3.2.7 3-D Models with Known Interior Geometry

Our informational modeling approach was extended to 3-D models. For these

tests, we returned to the assumption that the interior geometry was known.

Data acquired on Phantom 4 was used to train ANN material models relating
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a six-component output stress vector (three normal components, three shear)

to a six-component input strain vector.

Two data sets were acquired on Phantom 4. The first data set was ob-

tained using the measurement setup described above (Fig. 3.1). A second set

of compressions was performed where the US probe was rotated 90◦ about

the x2 axis. B-mode images from both data sets are displayed in Fig. 3.6d.

Rotating only the probe allowed us to use the same FE mesh for the gelatin

phantom and simply adjusting the orientation of the probe model. General

4-node, tetrahedral element (C3D4 in ABAQUS 6.13) were used to mesh the

phantom, whereas the probe comprised 8-node, cubic elements (C3D8) and

was modeled as a rigid body. Measured forces were applied as distributed

surface loads on the top surface of the probe in FEAσ.

We trained ANN material models in separate instances of AutoP with

the two different data sets. Once again, interior displacements were applied

at three locations within the inclusion in FEAε. These points resided along

the x2 axis centered on the (x1, x3) plane and are highlighted in Fig. 3.6d.

Displacements were applied to the same nodes for both data sets.

ANNs were pre-trained with 8000 random stress-strain vectors computed

using a model of a 3-D Hookean, nearly incompressible (ν = 0.49) solid.

Each ANN started with eight nodes per hidden layer that was increased to

nine in the sixth load step.

3.2.8 Rabbit Kidney Embedded in Gelatin Cube

A rabbit kidney was excised and suspended in the phantom mold, after which

a gelatin mixture and manufactured and poured into the mold following the

same process described in Sec. 3.2.1. Force-displacement data were acquired

in the same manner outlined for the gelatin phantoms. Constructing the

FE mesh for the 2-D model was done by segmenting a single B-mode image

plane that was acquired with the US probe centered on the phantom in both

the lateral and elevational axes. The resulting mesh is displayed in Fig. 3.8a.

Highlighted nodes indicate the locations where displacement data was applied

in FEAε.

Two different tests were performed with the 2-D model. In the first test,

a total of four ANNs were assigned to the segmented regions. Fig. 3.8b
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Figure 3.8: (a) 2-D FE mesh created by manually segmenting B-mode image of kidney. (b) Four ANNs
were assigned to the segmented regions. Numbers in each region identify the corresponding ANN. (c)
Annotated regions for model with seven ANNs. (d) 3-D model of the kidney generated by manually
segmenting B-mode images acquired in planes separated by 1 mm along the elevational (x3) axis.

specifies the number of the ANN characterizing each region. One network

was assigned to the background gelatin, one to the cortex of the kidney, one

to all four visible medullae, and one for the small area near the hylar region.

For the second test, four different ANNs were assigned to each meduallae, as

shown in Fig. 3.8c, for a total of seven ANNs. AutoP training parameters

matched those defined for the 2-D gelatin phantoms with estimated geometry.

A third test trained four ANNs to characterize a 3-D model of the kidney.

Constructing the FE mesh was more difficult and time consuming because

the internal geometry was not known a priori. To create the mesh, a series of

B-mode images were acquired in 1 mm increments along the elevational axis.

Each B-mode image was manually segmented. From this set of segmented

images, a full 3-d model was created, shown in Fig. 3.8d. Due to the more

complex geometry, 4-node tetrahedral elements were required for generating

the FE mesh instead of 8-node hexahedral elements used for the 3-D gelatin

phantom model. AutoP training parameters were the same as those defined

for the 3-D gelatin phantom.

ANNs were assigned to the regions in the same manner shown in Fig. 3.8b,

albeit the larger red region visible in Fig. 3.8d was also characterized by

ANN 2. Displacements from a single US scan plane were used in FEAε,

distributed in the plane in a similar manner shown in Fig. 3.8a.
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3.3 Results

3.3.1 2-D Phantoms with Known Geometry

Fig. 3.9 displays the reconstructed stress- and strain-vector maps for Phantom

1 case (d) computed in FEA10
NN . Images labeled axial, lateral, or shear strains

(top row) and stresses (bottom row) are relative to the orientation of the ul-

trasound beam along the vertical x2 axis. Again, the ANN material models

were trained with AutoP using only surface force and displacement measure-

ments and three internal displacement measurements within the inclusion.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.9: Stress and strain fields computed in FEA10
NN for Phantom 1, case (d). Trained ANNs were

used as the element material models to solve a forward FEA problem to produce estimates of the full stress
and strain vectors. The results displayed were interpolated to a uniform grid. (a) Lateral strain. (b) Axial
strain. (c) Shear strain. (d) Axial strain computed from speckle-tracking applied to the acquired RF
frames. (e) Lateral stress. (f) Axial stress. (g) Shear stress. (g) Young’s modulus distribution E(x1, x2)
computed using Equation 3.7.

Fig. 3.10 stress and strain images corresponding one to one with those in

Fig. 3.9. The material properties used to compute these results were obtained

from indentation measurements, so we refer to them as the FEAind results.

They were generated using conventional FEA forward modeling under the

same loading and boundary conditions as FEA10
NN for Phantom 1. The back-

ground and inclusion elements assume a linear-elastic material model with

Poisson’s ratio ν = 0.5 and Young’s modulus values E = 9.16 kPa and 22.9

kPa, respectively.

A direct comparison between strain estimates from conventional quasi-
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(a) (b) (c)

(d) (e) (f) (g)

Figure 3.10: FEAind estimates of the stress and strain fields for Phantom 1 under plane-stress (CPS4
elements in ABAQUS) using Young’s modulus values estimated from macro-indentation tests. A linear-
elastic material model replaced each ANN for the mesh in Fig. 3.9 to solve FEAind and produce these
baseline estimates. These are the forward FEA estimates that we use to compare with the AutoP trained
models shown in Fig. 3.9. (a) Lateral strain. (b) Axial strain. (c) Shear strain. (d) Lateral stress. (e)
Axial stress. (f) Shear stress. (g) Young’s modulus image E(x1, x2) computed using Equation 3.7.

static elasticity imaging modalities can be made with Figs. 3.9b and 3.9d.

The axial strain image shown in Fig. 3.9d was calculated using a least-squares

strain estimator on the displacements computed from the speckle-tracking

algorithm [41]. Conventional methods are limited to only the imaged region

and are prone to artifacts, like the darker region around the inclusion.

Results shown in Figs. 3.9 and 3.10 are the outputs from FE analyses.

The difference is that in Fig. 3.9 the element material properties were mod-

eled by ANNs trained with AutoP using force-displacement data acquired on

Phantom 1, whereas in Fig. 3.10 an ideal linear-elastic model was chosen us-

ing Young’s modulus values estimated from indentation testing of Phantom

1 materials. Imposing a nonslip condition at the base of the phantom and a

free-slip condition at the top surface, we were able to add stress and strain

features in the image plane that should not and did not appear in the mod-

ulus image given a uniform background material. For example, the large

variations in lateral strain (Fig. 3.9a) and stress (Fig. 3.9e) do not appear in

the Young’s modulus image. Note that the experimental conditions for the

data in Fig. 3.9 are not exactly the same as the ideal conditions assumed

in the modeled results of Fig. 3.10. Therefore, we expect the corresponding

pairs of stress-strain maps to be similar but not an exact match.
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Figs. 3.11 and 3.12 provide the same comparison of stresses and strains,

but for those computed by ANNs trained with data from Phantom 3, case (a)

and the corresponding ideal linear-elastic model. The Young’s modulus re-

constructed by the stress-strain maps in Fig. 3.11 is displayed in Fig. 3.13b.

Given that only axial forces and displacements were provided in FEAσ and

FEAε, it is not surprising that the axial stresses and strains estimated by the

ANNs closely resemble those computed in the forward FEA using an ideal

linear-elastic model. Estimates of the lateral and shear components are not

as accurate, the potential reason for this mismatch is discussed later.

(a) (b) (c)

(d) (e) (f)

Figure 3.11: Images of the stress and strain fields computed in a forward FEA using ANNs trained with
measurement data from Phantom 3. (a) Lateral stress (b) Axial stress (c) shear stress (d) Lateral strain
(e) Axial strain (f) shear strain

An essential test for trained ANN material models is their ability to ac-

curately estimate stresses and strains in an object in response to an applied

load. Comparing Figs. 3.9 and 3.10 we see modest differences between mea-

sured and modeled normal stresses σ11, σ22 and normal strains ε11, ε22. Close

agreement suggests that measuring axial forces and displacements at the sur-

face and at a few points within the inclusions enabled ANNs trained with

AutoP to learn to reliably predict normal stress and strains throughout a

5 × 5 cm2 area of a linear-elastic material with a spatial resolution on par

with conventional FE modeling. To the best of our knowledge, this is the first

time that all relevant stress fields have been measured with this degree of accu-

racy and resolution without assuming the underlying mechanical properties,
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(a) (b) (c)

(d) (e) (f)

Figure 3.12: Images of the stress and strain fields computed during a forward FEA with a linear-elastic
material model. Young’s modulus values were the same as those estimated via macro-indentation mea-
surements on gelatin material comprising Phantom 3. (a) Lateral stress (b) Axial stress (c) shear stress
(d) Lateral strain (e) Axial strain (f) shear strain

even for this relatively simple object.

Table 3.2: Young’s modulus values and displacement errors for the four phantoms studied. Estimated
values were calculated from modulus images. Indentation measurements were made on samples for com-
parison. Cases refer to training scenarios described in Table 3.1. For Phantoms 1-3, rotation angles refer
to the orientation of the phantoms illustrated in Fig. 3.6. Rotation angle for Phantom 4 refers to the
rotation of the US probe about the x2 axis away from the (x1, x2) plane. Displacement errors are the
mean of cµ (Eq. 3.6) computed from FEA10

NN over all ten load increments for displacements at all nodes
in the imaged region.

Young’s Modulus Measurements of Phantom Components Displacement
Errors
cµ/cmax

{Phan. #} (Case) [Rot. Angle]
ANN Estimated (kPa) Indentation Meas. (kPa)

Background Inclusion Back. Inc.
2-D Models, Known Geometry

{1} (a) [0 deg] 8.01 ± .5599 19.35 ± .2022

9.16 22.9

0.17 ± 0.13 / 0.58
{1} (b) [0 deg] 11.01 ± .1189 27.71 ± .5141 0.12 ± 0.10 / 0.48
{1} (c) [0 deg] 10.18 ± .3408 22.15 ± .3711 0.16 ± 0.11 / 0.55
{1} (d) [0 deg] 9.06 ± .1433 22.39 ± .3883 0.19 ± 0.14 / 0.65
{2} (a) [0 deg] 8.57 ± .5596 28.84 ± .1770

8.95 26.87
0.17 ± 0.10 / 0.42

{2} (a) [270 deg] 9.04 ± .0561 26.19 ± .1315 0.12 ± 0.11 / 0.45
{3} (a) [0 deg] 7.99 ± .2755 26.65 ± .2105

8.00 24.58
0.19 ± 0.07 / 0.35

{3} (a) [90 deg] 9.62 ± .1132 25.58 ± .3166 0.11 ± 0.12 / 0.68
2-D Models, Estimated Geometry

{1} (e) [0 deg] 9.01 ± 0.10 26.65 ± 0.21
9.16 22.9

0.17 ± 0.13 / 0.70
{1} (f) [0 deg] 9.18 ± 0.10 22.42 ± 2.28 0.16 ± 0.11 / 0.63
{3} (e) [0 deg] 10.98 ± 0.47 24.24 ± 0.38 8.00 24.58 0.22 ± 0.17 / 0.81

3-D Models, Known Geometry
{4} (a) [0 deg] 11.02 ± 0.01 25.22 ± 0.05

11.37 23.25
0.10 ± 0.10 / 0.51

{4} (a) [90 deg] 11.02 ± 0.01 25.23 ± 0.06 0.14 ± 0.12 / 0.46

To compute the Young’s modulus for these 2-D models, we used the
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incompressible result ν = 0.5 and the equation

E(x1, x2) =
(1− ν2)σ22(x1, x2)

νε11(x1, x2) + ε22(x1, x2)
(3.7)

at each integration point the FE mesh, providing point-wise estimate of

the Young’s modulus, E(x1, x2). In Eq. (3.7), σ22(x1, x2), ε11(x1, x2), and

ε22(x1, x2) are the axial stress, lateral strain, and axial strain, respectively,

at location (x1, x2).This resulted in the modulus images labeled (h) Fig. 3.9

and (g) in Fig. 3.10. Because we supplied axial forces and displacements to

AutoP during training and have incompressible materials, the axial and lat-

eral stress and strain estimates are expected to be more accurate than shear

estimates. Consequently, the second row of the plane-stress equation, which

relates axial stresses to axial and lateral strains, was selected to estimate

E(x1, x2).

Table 3.2 lists the estimated values (from AutoP) and predicted values

(from indentation) of Young’s modulus for the four phantoms. The same

table contains results where AutoP was trained using different orientations

of the phantoms and different data sets for the known geometry cases. Addi-

tionally, Young’s modulus estimates for 2-D models with estimated internal

geometry and 3-D models with known geometry are included. Mean values

measured from modulus images for Phantom 1-3 agreed with indentation es-

timates of the moduli within 20%. Fig. 3.13 are the Young’s modulus images

for Phantoms 2 and 3 computed using their respective stress and strain esti-

mates produced in FEA10
NN . Described later is another method for Young’s

modulus estimation from trained ANNs that was used for the 3-D models.

In addition to evaluating the accuracy of the Young’s modulus estimated

from trained ANNs, we also wanted to ensure the deformations predicted by

the ANNs in FEA10
NN were comparable to the measured displacements. Axial

displacements at all nodes in the imaged region were compared those esti-

mated via speckle-tracking. Errors reported in the last column of Table 3.2

are cµ ± one standard deviation (Eq. 3.6) and cmax (Eq. 3.5) over all ten

load increments. That is, displacements were estimated in FEA10
NN and cµ

and cmax were computed using all N nodes in the imaged region. A total of

ten displacements were computed for each node and both errors were calcu-

lated using the 10 ∗N values. The large standard deviation is attributed to

larger displacement errors occurring during the first load increments where
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displacements are small. For example, in Phantom 1 case (a), cµ calculated

for FEA10
NN is 0.49 ± 0.04 using data from the first load increment only but

decreases to 0.11± 0.05 when data from only the last load increment is con-

sidered. Similary, cmax decreased from 0.58 in the first load increment to 0.22

at in the final increment.

(a) (b)

Figure 3.13: Young’s modulus images computed using Equation 3.7 with stresses and strains estimated in
FEA10

NN for (a) Phantom 2 and (b) Phantom 3.

Comparing Stress Response of Informational Models to a Constitutive
Matrix

We previously discussed and illustrated in Fig. 3.5 how an informational

model essentially replaces the constitutive matrix to relate stresses and strains.

The linear-elastic, isotropic material properties and geometry of the phan-

toms allow us to use the plane-stress approximation for the 2-D models. This

means the response of the informational models developed for Phantoms 1-3

should describe the same behavior as the constitutive matrix in the plane-

stress model.

NNsoft for Phantom 1, case (d) was interrogated to obtain the stress

response of the background material to various strains. The isolated strain

vector [ε11 0 0] was used as input to NNsoft. Values for ε11 spanned the

±0.05 range. After each vector was input the ANN, the full stress response

vector [σ11 σ22 σ12] was recorded. The same strain vectors were used in

the plane-stress equation at the top of Fig. 3.14 to obtain the “ideal” stress

response. In the plane-stress equation, the Young’s modulus was set to the

value measured from macro-indentation (9.16 kPa) and ν = 0.5. This process

was repeated for isolated strain vectors [0 ε22 0] and [0 0 ε12].

53



Stress responses computed from NNsoft and the plane-stress model were

plotted and arranged in Fig. 3.14 to mimic the 2-D constitutive matrix. In the

plots, the dotted curves are the behavior described by NNsoft and the solid

curves are the response predicted by the plane-stress approximation. Perfect

mechanical characterization by NNsoft would result in the black curves falling

on top of the red curves. We find agreement between the informational and

constitutive models except for the shear plots of σ12 versus ε12, also evident

when we compare Figs. 3.9c and 3.9g to Figs. 3.10c and 3.10f. We will return

to this point later to discover how the shear response can be better learned

by the informational models.

𝜎11
𝜎22
𝜎12

=
𝐸

1 − 𝜈2

1 𝜈 0
𝜈 1 0
0 0 1 − 𝜈

𝜀11
𝜀22
𝜀12

[𝜀11 0 0]

[𝜎11 𝜎22 𝜎12]

[0 𝜀22 0]

[𝜎11 𝜎22 𝜎12]

[0 0 𝜀12]

[𝜎11 𝜎22 𝜎12]

Figure 3.14: Stress response of a trained NNsoft material model to the strain probes [ε11 0 0], [0 ε22 0],
and [0 0 ε12]. For each vector, the value of the strain component swept the ±0.05 range and the full
stress vector was recorded. Slopes of the stress-strain curves should match the corresponding component
of the constitutive matrix for a plane-stress model having a Young’s modulus of 9.16 kPa (estimated from
macro-indentation) and assumed Poisson’s ratio of 0.5. Dotted curves correspond to the stress response
of the ANN whereas the solid curves were computed by applying the strain vectors to the plane-stress
model.
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Varying the Amount and Uses of Training Data

Fig. 3.15 illustrates the influence of additional training data that convey

material property information on ANN material model accuracy. All three

plots show the axial-stress response σ22 to isolated lateral strains ε11 that are

input to different versions of NNsoft for Phantom 1. Plot (a) are the response

of NNsoft trained with data from single set, case (a) in Table 3.1. The large

disagreement between the solid- and dotted-curve data in Fig. 3.15a suggests

not enough information was supplied during AutoP for NNsoft to learn the

relationship between axial stress and lateral strain. Adding independent

training data from another view (cases (c) and (d) in Table 3.1) greatly

improve the ability of NNsoft to characterize mechanical responses. Results

of these AutoP trained models are shown in Figs. 3.15b and 3.15c.

We saw from the data in Figs. 3.9 and 3.14 that it is difficult to capture

the shear stress response to shear strain by applying a uniaxial load and

only measuring forces and displacements along the load axis. Although we

do not apply a shearing stimulus, the phantom heterogeneity and external

boundary conditions produce a small amount of shear, evidenced by the

images of Figs. 3.10c and 3.10f.

(a) (b) (c)

Figure 3.15: Comparison of the σ22 response to an isolated lateral strain (ε11) input. The dotted curves
are the recorded response of the ANN modeling the background gelatin material for Phantom 1 (a) case
(a); (b) case(c); and (c) case (d). As with Figure 3.14, the solid curves were computed using a plane-stress
approximation.

Several versions of AutoP training were performed to evaluate their effects

on the ability of NNsoft to learn the shear response. These were: 1) training

using axial force and displacement information (case (a) in Table 3.1); 2) pro-

viding both axial and lateral displacements during training; 3) imposing an

assumption that the Jacobian matrix, [∂σ
∂ε

], is symmetric during FE analysis;

and 4) checking displacement errors at points not included in FEAε during

convergence testing. With the additional points in the displacement error
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calculation, a total of 65 points sampled uniformly across the imaged region

were included in the convergence check for case (4).

While none of these techniques led to NNsoft agreeing with the plane-

stress model predictions, each of the adjusted training versions (2)-(4) im-

proved the shear response compared to standard version (1). The greatest

improvement occurred for version (4) when additional displacement data were

included in the test for convergence. A comparison of the full shear stress

field is shown in Fig. 3.16. Shown are the estimated shear stress distribution

with no training adjustment (version(1)), enforcing stricter convergence test-

ing (version (2)), and the behavior predicted by FEAind (Fig. 3.16c). The

increased accuracy in Fig. 3.16b over Fig. 3.16a suggests there is merit in

including displacement errors from points not supplied displacement data

during FEAε when performing the convergence check.

(a) (b) (c)

Figure 3.16: Shear stress fields (σ12) computed in FEAANN after training versions (1) and (4) for Phantom
1. (a) Training version (1) corresponds to Phantom 1, case (a) in Table 3.1. (b) Training version (4)
where displacement convergence was required for additional nodes not provided in FEAε; (c) Shear stress
computed for an ideal linear-elastic plane-stress model using a Poisson’s ratio of 0.5 and Young’s moduli
estimated from macro-indentation.

3.3.2 2-D Phantoms with Coarsely Estimated Geometry

Images of the Young’s modulus distribution for cases (e) and (f) of Phantom

1 and case (e) of Phantom 3 are shown in Figs. 3.17a-3.17c, respectively.

These images were computed in the same manner described before: the stress

and strain fields computed in FEA10
NN were used in Eq.(3.7) to calculate the

Young’s modulus. Estimates of the Young’s modulus of the background and

inclusion materials for these three cases are included in Table 3.2.

Errors are present in the Young’s modulus distributions because of ge-

ometry errors resulting from segmentation; however, the errors did not seem

to propagate through training. That is, the informational models were still
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able to accurately characterize the gelatin materials even though geometry

errors were present, evidenced by the close match in Young’s moduli com-

puted from the ANN material models and compared to those estimated from

macro-indentation.

(a) (b) (c) (d)

Figure 3.17: Young’s modulus images computed after training on (a)-(c) 2-D models where segmentation
was used to identify internal boundaries and (d) a 3-D model. (a) Good segmentation of the internal
structure of Phantom 1. (b) Poor segmentation of the internal structure of Phantom 1. (c) Segmented
version of Phantom 3. (d) Two planes of the Young’s modulus distribution calculated from FEA10

NNof
Phantom 4 case (a).

3.3.3 3-D Phantoms

Returning to the case where the interior geometry is known, the Young’s mod-

ulus distribution in Phantom 4 with 0◦ probe rotation is shown in Fig. 3.17d.

The modulus was computed throughout the entire 50 x 50 x 50 mm3 region;

however, only two planes are shown for display purposes. All six components

of stress and strain distributions were computed in FEA10
NNand used in the

following inversion based on the second row of the constitutive equation for

a 3-D Hookean material:

E(x1, x2, x3) =
σ22(1 + ν)(1− 2ν)

ν(ε11 − ε22 + ε33) + ε22

(3.8)

where σ22 is the axial stress, ν = 0.495, and ε11, ε22, and ε33 are the lateral,

axial and elevational strains, respectively. For brevity in Eq.(3.8) the location

(x1, x2, x3) for the stress and strain components is implied.

Young’s modulus values for Phantom 4 are reported in Table 3.2. Here,

the reported Young’s moduli were not computed as the mean of the regions

in Fig. 3.17d. Instead, the ANN material models were probed directly to

demonstrate alternative methods of estimating the mechanical parameters.

Random values were chosen for all six strain components in the ±0.01 range
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and used as input to the ANN material models. Strain values were random-

ized in order to avoid probing the ANNs with data used during training and

the ±0.01 range ensured all randomly generated strain vectors were within

the bounds of the training data. The corresponding stress was computed

and Eq.(3.8) solved to estimate the Young’s modulus. A total of 300 ran-

dom strain probes were input to each trained ANN to produce ten different

estimates of the Young’s modulus. The mean of these 300 values was taken

as the estimate of the Young’s modulus and included in Table 3.2.

3.3.4 Kidney Phantoms

Young’s modulus images for the three tests corresponding to the kidney

phantom are displayed in Fig. 3.18. Modulus estimates from these ANNs are

compiled in Table 3.3. There are a couple of particularly interesting obser-

vations to note of these images. First, for the 2-D tests, allowing each region

to be controlled by a unique ANN reveals what appears to be anisotropy in

the kidney. Medullary regions whose fibers are oriented more orthogonal to

the loading direction (regions 2 and 5 in Fig. 3.8c) appear stiffer than those

whose fiber are more parallel to the applied load (regions 3 and 4). Com-

parison to Young’s modulus values estimated via shear wave methods [124]

shows good agreement.

Figure 3.18: 2-D Young’s modulus reconstructions after training (a) four or (b) seven NNCMs with the
same force-displacement data. (c) 3-D Young’s modulus estimation.

Comparing the modulus values estimated in 2-D and 3-D, there is a con-

trast inversion between the cortex and medullary regions. The estimated

modulus of the background gelatin and cortex is fairly consistent across all

three tests. However, in 3-D, the estimates increase significantly for both

the medullae (region 2) and region 4. It is not yet clear if this issue is due
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to modeling errors caused during parameter estimation, limitations of the

current architecture of the ANNs, or improper sampling in space and time.

Table 3.3: Young’s modulus values estimated from the ANN trained with force-displacement measurements
acquired on kidney phantom. Regions are identified in Fig. 3.8

4 ANN Kidney Model 7 ANN Kidney Model (3-D) 4 ANN Kidney Model
Region Young’s Modulus (kPa) Region Young’s Modulus (kPa) Region Young’s Modulus (kPa)

1 8.62± 0.32 1 6.77± 0.19 1 8.73± 2.85

2 7.32± 0.17

2 7.88± 0.74

2 12.20± 4.15
3 5.86± 0.07
4 6.37± 0.06
5 7.27± 0.05

3 3.2± 0.04 5 5.36± 0.22 3 9.61± 1.41
4 5.71± 0.26 7 5.58± 0.11 4 5.51± 0.99

3.4 Discussion

We have demonstrated the ability of informational models trained using the

Autoprogressive method to learn the mechanical behavior of quasi-statically

loaded, heterogeneous, linear-elastic, isotropic materials using a sparse sam-

pling of force and displacement measurements. The results for the 2-D and

3-D phantom experiments show that all relevant stress and strain fields can be

estimated with reasonable accuracy at a spatial resolution dictated by the FE

mesh. The innovation in this approach is to replace the constitutive matrix

normally used to solve the mathematical inverse problem with ANNs trained

using the Autoprogressive method. The combination of finite-element meth-

ods and ANNs allows us to build models of mechanical properties without

the need for simplifying assumptions.

Tests described in the Results section summarize our initial investigations

at selecting measurement points for elasticity imaging. The procedure is to

select as few points as possible to avoid the negative effects of noise in dis-

placement estimation. We found that supplying displacement information

at three points within each heterogeneity during FEAε gave satisfactory re-

sults. Appendix C investigates the reason why only a few displacements are

preferable when noise is present. These are combined with measurements of

force and displacement at the surface where the ultrasound probe contacts

the object. Such sparse sampling works well for quasi-static loading, where

the applied force has time to propagate throughout the medium. In that
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case the displacement at each point carries information about all points in

the medium.

One ANN was trained for each material with distinct mechanical prop-

erties in the object, resulting in two informational models being developed

for each phantom: NNstiff that characterized the inclusion(s) and NNsoft

for the background gelatin material. We found that incremental loading and

diversification of the scanning views while measuring displacements at the

same object locations improves informational model accuracy. Also, diversi-

fying the locations of displacements estimated in the object for convergence

testing allowed the ANN material models to learn the full range of stress

and strain information more accurately. Interestingly, the training technique

that worked well for Phantoms 1 and 2 having a single inclusion and meshed

assuming the interior geometry was known, worked equally well on Phantom

3 with three inclusions, the 2-D models where geometry was estimated by

manual segmentation, and the 3-D model of Phantom 4, albeit with minor

adjustments to ANN sizes. Furthermore, errors in estimating the inclusion

boundaries did not inhibit the ability of the informational models to learn

the correct mechanical properties. Therefore it appears that greater object

heterogeneity and geometry errors do not significantly increase the training

burden. We will learn more about these types of issues in future studies in-

volving objects with complex spatial heterogeneities and materials behaving

in non-linear, path- and time-dependent manners.

One particularly exciting aspect of our technique is the ability to update

existing informational models when new measurements are made. Coupling

the ability of ANNs to learn new information with measurements taken at

different times under different loading geometries, we can update an exist-

ing ANN with the new data instead of building a new model. Case (c) of

Phantom 1 was an example of “retraining” previously developed informa-

tional models after new data was gathered. We found that providing new

information to an existing informational model increased the accuracy of

stress, strain, and Young’s modulus estimates. This capability allows for

resampling of a material after the initial measurements if it is found that

the informational models are not converging or to initiate training of mod-

els for new materials under investigation. However, care must be taken to

ensure that the ANNs do not “forget” previously learned behaviors. Case

(c) for Phantom 1 supplied a second set of force-displacement data for ANN
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retraining that was very similar to the first set of data. As such, there was

not much risk of NNsoft and NNstiff discarding the mechanical properties al-

ready learned. Potential problems associated with ANN retraining are most

likely to occur when the new information is acquired under different loading

situations or when the mechanical behaviors become complex. Fortunately,

such issues were circumvented by interspersing previously learned data with

the new data so that the ANN retain old information while learning new

properties.

3.4.1 Effects of Limited Information

Stress and strain vectors produced during uniaxial compression of cubic phan-

toms mostly span the axial and lateral spaces. Limited shearing occurs,

resulting in less information available for training the ANNs on the shear

behavior. However, we showed it was possible for the ANNs to better learn

the shear response by making adjustments to the training process. The most

successful adjustment was including more displacements in the error check for

convergence. Forcing the ANNs to more accurately predict displacements not

given during training creates a more challenging convergence criteria, which

in turns increases the number of training iterations performed. It is true that

this same scenario can be created by adjusting Cn
max and Cn

µ , but we then

run the risk of overtraining the ANNs. Instead of forcing the ANNs to very

accurately predict displacements at a few points, we relax the constraints

and force the ANNs to approximate the displacements at many points.

3.4.2 Training Data Selection

There is much to be learned about what constitutes sufficient information

to successfully build an informational model. The drawback of providing

too much information when the measurement data are noisy was discussed

previously. More interesting is that changing the nodes on which the model

trains greatly affects the outcome of the informational modeling process.

Three different cases illustrate this point, and in each case the only force

measurements are those applied at the ultrasound probe-phantom interface.

Consider situations where displacements are given 1) at the probe only,
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2) along a vertical line through the inclusion, and 3) along a horizontal line

through the inclusion of Phantom 1. In all three cases, Young’s modulus es-

timates of the background material were near the expected values; however,

only in case (2) did we get accurate estimates for the Young’s modulus of the

inclusion. The result of case (1) is not completely unexpected since the back-

ground comprises the bulk of the phantom and will have the greatest effect

on the force-displacement relationship measured by the US probe. Results

of (2) and (3) start to reveal what type of information needs to be supplied

for training.

It is evident that displacement information must be given for each region

in the material with distinct mechanical properties. For the models in this

study, probe displacements would be enough to characterize the axial stress-

strain relationship of the gelatin comprising the background of the phantoms.

Case (1) indicates that displacements must be provided for the inclusion. The

same number of nodes were given displacement data in cases (2) and (3), the

only difference lies in the orientation of the nodes compared to the loading

direction. In (2), the given information lies along a line parallel to the load

axis whereas in (3) the nodes given displacement data spanned a line perpen-

dicular to the loading direction. Because only axial displacement data was

given, the movement of the nodes in (3) reveals very little information about

how the points move relative to each other after loading - indeed, if the given

displacements contained no noise, all of the nodes would have very similar

(or identical) axial motion. However, in (2), the nodes compress relative to

each other, producing more information about the material properties of the

inclusion.

We empirically find the best sampling strategy for these linear-elastic,

isotropic materials is to measure displacements at nodes that vary signif-

icantly along the applied force gradient. For example, axial compression

means the force gradient lies mostly along the x2 axis. Therefore, we select

nodes along the x2 axis in which displacements vary to the greatest extent.

It is important to note this sampling strategy may be insufficient for materi-

als exhibiting more complex behavior, like a rabbit kidney. Future research

of this method will include investigations into the minimum requirements of

force-displacement measurements to build informational models of materials

that have nonlinear, path-dependent, time-dependent, and/or anisotropic

mechanical properties.
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3.4.3 Choice of Convergence Criteria

The choice of Cn
µ and Cn

max largely affect the number of iterations performed

in each training step of AutoP. Enforcing very strict convergence criteria

increases the risk of overtraining the ANNs, especially if the displacement

data involved in the displacement error calculation contains high levels of

noise. Conversely, relaxing the convergence criteria too much may decrease

the accuracy of the ANN material models. At this point in time, the choice

of convergence criteria is largely heuristic. But, the same criteria were used

for all phantoms when the geometry was known, which may imply the choice

for convergence criteria can be based on the complexity of the object. Case

(e) of Phantom 3 - where the internal geometry was estimated via manual

segmentation - was the only case where the convergence criteria changed. At

the start, Cn
µ and Cn

max were relaxed, allowing for larger displacement errors.

After training the ANNs over a few load increments, the both values were

decreased, making convergence more difficult to achieve.

Gradually restricting the convergence criteria follows the idea that the

ANNs more accurately model the mechanical behavior as training progresses.

More iterations of AutoP means the ANNs are provided with an increasing

amount of information. And, because the stress-strain estimates in FEAσ

and FEAε become more accurate, it is natural to enforce stricter require-

ments for convergence as the training data becomes higher quality. In the

case of Phantom 3, case (e), the estimated internal geometry produced more

complex stress and strain distributions that required several iterations of Au-

toP for the ANNs to learn. But, as the ANNs better learned the mechanical

properties, stronger requirements for convergence could be put in place.

Moving forward, the choice of Cn
µ and Cn

max likely depend on the geometric

and material complexity of the object and hence will be determined empir-

ically. Using AutoP on models of many different geometries and material

property distributions may allow us to identify a trend.

3.4.4 Computational Load Considerations

With AutoP, most of the computation time is spent performing FEAσ and

FEAε. For two passes of ten load steps, a minimum of 60 FEAs are per-

formed, up to 220 in the worst-case where the maximum number of itera-
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tions is reached during training for each load step. This assumes a minimum

of one and a maximum of five training iterations per load step. Our cur-

rent implementation of AutoP in Matlab 2013b required 51± 7 minutes to

perform one pass of ten load steps in AutoP to create informational models

of Phantoms 1-3 cases (a)-(d). However, after a few optimizations, AutoP

was able to train 2-D models in ≈ 30 minutes. Conversely, developing 3-D

models required ≈ 65 minutes. Note that these analyses were ran on a PC

containing a quad-core processor operating at 3.4 GHz. To give an example

of the time required to complete the FEAs, FEAind for Phantoms 1-3 was

solved in ≈ 4 seconds whereas the solution time for Phantom 4 increased to

≈ 30 seconds.

There are many ways to reduce the run time of AutoP, including the

use of dedicated hardware and software and through optimized sampling

and training strategies. Of particular interest is offloading computation to a

GPU, which could provide up to 100x increase in speed. Other groups have

been successful in developing real-time FEA solvers for biomedical applica-

tions ([125]) and structural analysis ([126]) with the use of a GPU. It is our

belief that it will be possible to develop informational models in real-time

during imaging. Methods to decrease the training time with AutoP will be

investigated after we make significant progress in the basic research of this

method.

3.5 Conclusions

Informational models based on AutoP have an ability to learn quasi-static

mechanical behavior from measurements of surface forces and sparse surface

and internal displacement information. This approach has distinct advan-

tages when the mechanical properties of the medium are not well charac-

terized, which is the situation in medical elasticity imaging. We trade the

conventional parametric inverse problem approach involving numerous as-

sumptions for a nonparametric machine-learning technique. This technique

learns to model stress and strain fields from which imaging parameters are

found.

The ability of informational models to accurately predict mechanical be-

havior is limited by the type and amount of force-displacement information
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provided. Model accuracy can be improved by adding data from different

spatial views and carefully distributing measurement data for FEA training

and convergence testing. An advantage that AutoP offers in studying simi-

lar objects is its ability to accumulate knowledge, which minimizes training

time in ways we are just beginning to understand. We believe this novel

computational approach has much to offer for imaging mechanical properties

of biological media.
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Chapter 4

Cartesian Neural Network Constitutive Models

4.1 Introduction

Elasticity imaging methods reconstruct a map of mechanical properties by

observing tissue motion in response to a weak mechanical stimulus. For

quasi-static ultrasonic elastography, measurement data are forces and dis-

placements as an ultrasound (US) probe is slowly pressed into the tissue

surface. Recorded displacements may include both probe motion and in-

ternal tissue deformation, the latter being estimated via speckle-tracking

algorithms operating on pre- and post-deformation echo data (e.g.,[127, 38]).

These time-varying force-displacement measurements are governed by the

geometric and mechanical properties of the tissue and can provide diagnostic

data relevant to cancer detection in the breast [128], liver [129, 130], and

prostate [131], identifying atherosclerotic plaques [132], or treatment moni-

toring during high-intensity focused ultrasound or RF ablation [133, 134].

Estimating mechanical properties from measurement data constitutes the

inverse problem in elastography. The goal for quasi-static elastography can

be stated simply: given a set of force-displacement estimates and overall

object shape, reconstruct the spatial distribution of mechanical properties.

Current solutions take a model-based (or knowledge-driven) approach, where

the mechanical properties of tissues are defined by parameters of a consti-

tutive model relating stresses and strains. This problem is ill-posed in part

due to the presence of measurement noise and limited force-displacement

sampling from which stress-strain behavior is determined. Some strain in-

formation can be computed as spatial derivatives of the displacements, but

stresses cannot be calculated from force data without knowing the object

geometry, boundary conditions, and material properties.

Simplifying assumptions are adopted in model-based techniques to help
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overcome the ill-posed nature of the inverse problem. Most often the tissue

is assumed to be linear-elastic, isotropic, (nearly) incompressible, and under

small strain, limiting the parameter space to only the Young’s modulus (or

shear modulus). However, biological tissues are bi-phasic media exhibiting

nonlinear and viscoelastic properties not summarized by a single linear pa-

rameter. Recent work in imaging nonlinear [96, 135] and viscoelastic [136, 54]

material properties are promising, but still rely on initial constitutive model

assumptions. And while a chosen model may be appropriate for certain tis-

sue types, it may be incorrect for other tissues in the same field of view. The

problem is that the constitutive model sets the parameters to be estimated

and if an inappropriate model is chosen, parametric errors are made, cor-

rupting the final elastogram. Also, the most diagnostic model parameters

for each disease state have yet to be determined.

Our solution was to implement a data-driven approach using artificial

neural networks (NNs) in place of a pre-defined constitutive model [108].

These neural network constitutive models (NNCMs) learn stress-strain be-

havior from force-displacement measurements without any initial assump-

tions of mechanical behavior. The benefit is that after training, NNCMs can

be used to compute all relevant stresses and strains, from which material

parameters from any constitutive model can be estimated. A block diagram

of our method is shown in Fig. 4.1. After acquiring force-displacement mea-

surements, we create a finite element (FE) mesh that conforms to both the

internal and external geometries of the object from prior knowledge or man-

ual segmentation of the US images. The mesh and measurement data are

used in the Autoprogressive Method (AutoP) to train NNCMs for each region

exhibiting unique material properties.

We demonstrated that our method could train NNCMs to accurately

characterize the linear-elastic properties of gelatin phantoms in 2-D and 3-D,

and obtain Young’s modulus estimates of rabbit kidneys similar to those re-

ported in the literature [137]. However, prior knowledge of object geometry

will not be available in a clinical setting, nor can it be assumed that tissue

boundaries observed in a US image correspond to actual material property

boundaries, precluding the use of segmentation for defining internal struc-

tures. Furthermore, the NNCMs could only capture discrete material prop-

erty distributions. A limitation of the NNCMs is their inability to account

for geometric information; segmentation defined the spatial distribution of
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Figure 4.1: An US probe is slowly pressed into an object with force p while pre- and post-deformation
RF frames are acquired. Speckle-tracking methods applied to the RF frames estimate displacements u
within the image. The axial strain computed along the direction of US beam propagation is often used
to reconstruct a stiffness image, although current model-based methods are far more sophisticated and
can provide more quantitative Young’s modulus estimates. Our machine learning method (black dash-dot
box) originally relied on a FE mesh conforming to the object geometry and a different NNCM for each
region exhibiting unique material properties. The new CaNNCMs shown learn both material property
and geometric information, allowing a single network structure to be used with an arbitrary mesh. AutoP
is the method whereby force-displacement measurements are transformed into the stress-strain training
data for NNCMs/CaNNCMs (black dotted box). In this report, we focus only on training CaNNCMs (red
dashed box) and assume the spatially varying stresses σ(x) and strains ε(x) are known.

material properties at the time of FE mesh creation. We can greatly enhance

the utility of NNCMs and AutoP for elastography by altering the network

architecture to incorporate learning of spatial information.

Cartesian neural network constitutive models (CaNNCMs) address this

issue. CaNNCMs accept Cartesian coordinate information as additional in-

puts to simultaneously learn material property and geometric information

independent of the internal structure represented by the FE mesh. In this

paper, we introduce CaNNCMs and describe how this novel architecture

learns spatial distributions of material properties from stresses and strains.

We leave the details of implementing CaNNCMs in AutoP to Chapter 5.

Here we use stress-strain data acquired from simulated phantoms to demon-

strate the ability of CaNNCMs to model material property distributions on

an arbitrary FE mesh without affecting the learned mechanical behavior.

Because CaNNCMs capture spatial information, we will show how an elas-

togram can be reconstructed directly from a trained model. Finally, we will

also demonstrate that, in the presence of noise or changes to the FE mesh,

CaNNCMs are able to accurately model linear-elastic mechanical behavior.
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4.2 Methods

4.2.1 Overview of the Autoprogressive Method

AutoP has been primarily developed and used in civil and geotechnical ap-

plications to model the mechanical properties of various materials and struc-

tures [99, 100, 101, 102, 103, 104, 106, 107]. The AutoP approach to con-

stitutive modeling is to apply force-displacement measurements to two finite

element analyses associated with a mesh of the imaged object. Forces and

displacements applied in separate finite element analyses (FEAs) are con-

nected through NNCMs. Training is to develop NNCMs that consistently

relate measured forces and displacements. Meaning, application of measured

forces in a FEA results in the measured displacements and vice-versa.

All examples of AutoP prior to our initial report of its use in elasticity

imaging have relied solely on surface measurements. The addition of ultra-

sonic imaging provides internal displacement estimates which are imposed in

AutoP along with surface displacements. We exploited the extra displace-

ment data to develop NNCMs that learned the linear-elastic behavior of

gelatin phantoms; however, because the FE mesh matched both the internal

and external phantom geometry, only a sparse sampling of the internal data

was necessary.

Internal displacements under a quasi-static load provide an enormous

amount of information regarding internal structure. Because the force stimu-

lus has time to propagate throughout the entire object before force-displacement

measurements are acquired, displacements at one location are affected by de-

formation at all other points in the object. Previously, the NNCMs ignored

the spatial aspects of measurements when relating stress to strain. We are

now changing the NNCM architecture to incorporate spatial information to

make it possible to relax the geometric constraints on the FE mesh. We

introduce Cartesian NNCMs that are capable of learning both material and

internal geometric properties for the task of forming elasticity images.

4.2.2 Cartesian Neural Network Constitutive Models

The NN structure should be designed to represent the input/output rela-

tionship and the intermediate computations that must be performed. For
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Figure 4.2: (a) Architecture of CaNNCMs. The material property network (left) accepts a scaled strain
input vector and computes a scaled output stress vector. Previously, the strain scaling vectors were
defined for the NNCM and were spatially invariant. Adding a spatial network (right) lets the strain
scaling vary with position and allows the pair of networks to learn geometric information. For CaNNCMs,
Sσ11 = Sσ22 = Sσ12 = Sσ and does not change with position. (b) Visualization of interaction between
MPN and SN. The MPN learns a reference material property (solid black line). Different spatial locations
in the object exhibit different material properties (blue-dashed and red-dashed-dot-dot lines). At each
location x, the scaling value Sεx output by the SN transforms the spatially varying material properties to
the reference material.

example, many previous implementations of AutoP constitutive modeling

relied on fully-connected networks to represent a linear stress-strain relation-

ship. Other NNCMs characterizing more complex behaviors, including non-

linearity and path-dependence, utilized a nested NN structure[110] to depict

the influence of previous stress and strain states on the current mechanical

behavior. In our prior work using AutoP for elastography, a simple feed-

forward, fully-connected architecture was sufficient (left side of Fig. 4.2a).

Here, NNCMs computed a stress vector output from a strain vector input.

We accounted for the possible positive and negative input/output values —

and the sign symmetry between stresses and strains — by using hyperbolic

tangent activation functions. The choice of hyperbolic tangent also ensures

that under zero strain, there is zero stress. To avoid saturating the input

nodes and keep the NNCMs sensitive to changes in the input strains, a scal-

ing vector Sε was selected to scale each component of the input strains within

the ±0.8 range. Similarly, the output is bounded to ±1.0 whereas stresses

can extend well beyond that range. As such, a different scaling vector Sσ

was selected to keep the output within ±0.8. The flow of data through the

NNCM was therefore ε → ε/Sε → NNCM → σ/Sσ → σ, where the

vector divisions are element-by-element operations. We refer to this type of
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NNCM as a material property network (MPN).

Creating a NNCM to learn internal structure required spatial information

be present somewhere in the flow of data through the network. Instead of

increasing the number of inputs to include spatial coordinates, scaling factors

are learned to alter the material properties characterized by the MPN. We

consider the stress-strain behavior represented by the MPN with Sεx = 1

to be the “reference” material property (i.e., Rm : ε → σ). For the case

of linear-elastic materials, the stress-strain diagram is a straight line with

a slope that is the Young’s modulus as determined by MPN. Stresses are

computed by simply multiplying a strain vector by the stiffness matrix C:

σ = Cε. Changing the strain scaling at a point (x, y) alters the slope of the

line, effectively changing the Young’s modulus at that location. CaNNCMs

accomplish this change by introducing a spatial network (SN) that computes

Sεx based on a coordinate input (right side of Fig. 4.2a). A SN is the function

Rs : x → Sεx. We also reduce the stress scaling vector to a single value:

Sσ11 = Sσ22 = Sσ12 = Sσ.

Details of how Sεx and Sσ are computed is covered in Sec. 4.2.3 where

we show that the spatial scaling values produce a map of relative stiffnesses

where larger Sεx tend to correspond to softer regions. To understand why,

consider the reference linear-elastic relationship learned by the MPN. Under

uniaxial loading, a heterogeneous material exhibits large strains and small

stresses in soft regions. In contrast, stiff regions produce large stresses for

small strains. Therefore, larger Sεx values in soft regions decrease the magni-

tude of the strain vector input to the MPN. Similarly, smaller scaling values

in stiff regions result in larger strains after scaling. In broad terms, Sεx

acts as a function transformation for the relationship learned by the MPN:

σ = f(ε/Sεx). In the more specific case of linear-elastic materials, the SN

acts as a spatially-varying matrix that operates on the strains before multi-

plying by the stiffness matrix: σ = CE(x, y)ε. The interaction between the

MPN and SN is illustrated in Fig. 4.2b. Together, the networks learn the

mapping Rm, Rs : ε(x)→ σ(x)

The SN also has a fully-connected, feed-forward architecture. Unlike the

MPN counterpart, spatial networks use a mix of logistic and hyperbolic tan-

gent activation functions. Considering that the output Sεx is always positive,

the logistic function is a natural choice for the output nodes. Conversely, the

input (x, y) can span the positive and negative range, but a vector of zeros
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at the input does not imply the output should also be zero. We thus use a

logistic activation function for the first layer as well. All intermediate layers

use a hyperbolic tangent. As with the MPN, care must be taken to bound

the spatial network inputs and outputs: input values outside the ±1.0 can

saturate the input nodes (and reduce sensitivity) while outputs not contained

within (0, 1) cannot be achieved by a logistic function. We therefore scale the

input (x, y) values to within ±1.0. Preliminary tests showed that setting the

coordinate origin to the center of the FE mesh produced the best results. A

similar shifting and scaling to the 0.1−0.8 range is performed for the output

Sεx values before training the spatial network.

Both the material property and scaling networks learn from the same set

of stress-strain data. These data would be estimated in AutoP after applying

force and displacement measurements in FEAs. Each network extracts dif-

ferent information from the same set of data. Splitting the material property

and geometry problems allows each network to learn a simpler input-output

relationship. Combining the two networks results in a cooperative CaNNCM

structure that captures both mechanical behavior and its geometric variation.

4.2.3 Calculating Spatial Values

Inputs to the SN — Cartesian coordinates x — are defined by the FE mesh

and thus known a priori. Given a trained MPN, spatially varying stresses

σ(x) strains ε(x) and coordinates, the task of determining the target output

of the SN remains.

In preliminary studies, many methods of computing the spatial scaling

values were evaluated. These methods all relied on calculating Sεx using a pre-

defined function of x, ε(x), and/or the stiffness matrix. Each method was

successful to some degree, with the caveat that chosen functions influenced

the material properties or geometry learned by the CaNNCM. For example,

a simple function we tested was computing the spatial scaling as the ratio of

stress and strain magnitudes: Sεx = ||σx||/||εx||. This method would likely

work for 1-D linear-elastic materials, but 2-D stress-strain distributions are

more complex and the magnitude of stress to strain changes, even for the

same material, based on applied load and location in the material.

More importantly, a pre-defined function does not directly account for
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errors between the stress vector output from the MPN and the “target”

stress. The MPN and SN are cooperative and therefore work together to

minimize this error. Gradient-descent methods are utilized for computing

Sεx based on the difference between stress estimated by the MPN in response

to a strain input and the target stress σt computed via FEA. Similar to the

backpropagation algorithm for updating ANN connection weights, the error

at the output of the material property network can be propagated back to

the spatial scaling values. For simplicity, consider the stress σt(x) and strain

ε(x) computed by FEA at a single location x. The current value of Sεx and

ε(x) can be used to compute σNN(x), the value of stress predicted by the

MPN: Rm : ε(x)→ σNN(x). The goal is to minimize the objective function

Sεx = argmin
Ŝεx∈R

fm(σt(x),σNN(x)). (4.1)

The function fm(·) is the L2 norm:

fm = E =
1

2

3∑
i=1

(σti(x)− σNNi (x))2 (4.2)

=
1

2

3∑
i=1

e2
i , (4.3)

where (dropping (x) for brevity)

σNNi = Sσσ
′,NN
i (4.4)

εj = Sεjxiε
′
j (4.5)

ei = σti − σNNi . (4.6)

We define σtk as the kth component1 of “target” stress at xi, σ
NN
k is the

corresponding stress component predicted by the MPN in response to ε, and

(i, j, k) have the range (1, 2, 3). Scaled input and outputs of the MPN are

denoted as ε′j and σ′,NNi , respectively. Calculating the partial derivate of the

error with respect to Sεkxi is straightforward:

1There are three components in the stress vector for 2-D models, ordered as
[σ11, σ22, σ12]. The same ordering is used for the strain vector.

73



∂E

∂Sεkx
=

∂

∂Sεkx

1

2

3∑
i=1

e2
i

=
3∑
i=1

ei

[
∂

∂Sεkx
(σti − σNNi )

]
. (4.7)

The partial derivative is distributed to the stress terms, noting that σti was

computed in a FEA and the partial derivative with respect to Sεkxi is zero.

For σNNi we invoke the chain rule:

=
3∑
i=1

ei

[
−

3∑
j=1

∂σNNi
∂εj

∂εj
∂Sεkx

]
. (4.8)

The term ∂σNNi /∂εj = Dij is the stiffness matrix relating stress to strain

and can be calculated via the weights of the material property network[138].

Computing the last factor in the braces:

∂εj
∂Sεkx

=
∂

∂Sεkx
(Sεjx ε

′
j)

= ε′jδkj, (4.9)

where δkj is the Kronecker delta function. Finally, we arrive at the final

expression for the error gradient:

∂E

∂Sεkx
= −

3∑
i=1

ei

3∑
j=1

Dijε
′
jδjk. (4.10)

The update increment for Sεxi is the negative of the gradient multiplied by

the value ηε to adjust the increment size:

∆Sεkx = ηε

3∑
i=1

ei
∑
j=k

Dijε
′
j. (4.11)

In Eq. 4.11, the inner sum is approximately equal to the stress computed
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by the MPN with all j 6= k components of the scaled input strain vector

set to zero. We call this stress vector σ̂′,NNi . While it is possible to cal-

culate Dij directly, we can greatly reduce the computational load with this

approximation, leading to a final equation for ∆Sεkx :

∆Sεkx ≈ ηε

3∑
i=1

eiσ̂
′,NN
i (4.12)

Computing ∆Sεkxi using Eq. 4.12 is not significantly different from Eq. 4.11

and is nearly two orders of magnitude faster. Controlling the increment size

with ηε is equivalent to applying a learning rate in backpropagation.

Eq. 4.1 attempts to minimize the stress error for a single stress-strain

pair. However, many stress-strain pairs may exist at x, meaning the stress

error should be minimized in an average sense for all stress-strain pairs at x.

We do this by invoking Eq. 4.12 for each data pair at x and computing the

mean of ∆Sεxi before adding to Sεx.

A single application of Eq. 4.12 is insufficient for updating Sεx. Alg. 1

details the iterative process for computing a new Sεx at location x. N cor-

responds to the number of gradient-descent iterations and Nε is the number

of stress-strain pairs at x.

Algorithm 1 Iterations for computing Sεx
1: Given: current Sεx, σi, εi at x
2: for n = 1, 2, ..., N do
3: for k = 1, 2, 3 do
4: ∆S = 0
5: for i = 1, 2, ..., Nε do
6: Compute σNNi and (vector) σ̂i

′,NN using εi
7: Compute ei = σti − σNNi
8: Compute ∆S = ∆S +

∑3
p=1 epσ̂

′,NN
p

9: end for
10: ∆Sεkx = ηε∆S/Nε

11: Sεkx = Sεkx + ∆Sεkx
12: end for
13: end for

Computing the stress scaling value Sσ is far simpler. It is chosen to ensure

all components of every stress vector falls within the ±0.8 range. Again, this

follows from upper and lower bounds of the hyperbolic tangent activation
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function being ±1.0. In this study, setting Sσ = 1.0 is sufficient because the

magnitude of every computed stress falls below 0.8.

(a) (b)

Figure 4.3: (left) Rectilinear FE mesh (Mesh 1) with 35 nodes per edge. This mesh was used to compute
stress and strain fields for all four models. (right) FE mesh that conforms to the geometry of the three
inclusion model (Mesh 2).

A Faster Algorithm

Algorithm 1, developed around the approximation in (4.12), is much faster

than the algorithm using the exact form in (4.11). Even though the decrease

in computation time makes training 2-D CaNNCMs in AutoP feasible, the

algorithm would take far too long in 3-D. Therefore, a much faster algorithm

was developed and is described in Appendix F. For the current CaNNCM

architecture, Algorithm 2 is used.

4.2.4 Simulated Phantoms

CaNNCMs learn material and geometric properties from stress-strain data.

Here, we turn to simulated data to evaluate CaNNCMs under the ideal cir-

cumstance of stresses and strains being known exactly, and hence this study

is confined to the dashed-line box in Fig. 4.1. Stress-strain data were gen-

erated by FEA (ABAQUS 6.13) with known Young’s modulus distributions.

A simple four-node, quadrilateral element rectilinear mesh with 35 nodes per

50 mm edge (Fig. 4.3a) was selected to demonstrate the independence of

CaNNCMs to the FE mesh. In the FEA, we used a plane-stress, incompress-

ible (Poisson’s ratio ν = 0.5) material model, the bottom surface of mesh

was pinned to create a fixed boundary condition (BC), and a US probe was

pressed into the top surface. The probe-phantom interface was modeled as
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frictionless to allow lateral motion of the top phantom surface during com-

pression. Four equal compressive loads were applied by the probe up to 13.57

mN, leading to a minimum probe displacement of 0.98 mm and a maximum

of 2.23 mm depending on the material property distribution.

Four different simulated phantom models, displayed in the top row of

Fig. 4.4, were selected to test different aspects of CaNNCMs. Model 1

(Fig. 4.4a) is a stiff, Gaussian-shaped inclusion embedded in a soft back-

ground. The peak Young’s modulus of the inclusion was 30 kPa and smoothly

transitioned into the 10 kPa background. We chose this model to demon-

strate the ability of CaNNCMs to capture smooth, continuous material prop-

erty distributions, a feat not achievable in our prior work with NNCMs de-

scribed in Chapter 3. Models 2 and 3 have abrupt transitions in the material

property distributions. Model 2 contains three stiff inclusions (15 kPa and 30

kPa) in a 8 kPa background. Model 3 represents a rabbit kidney embedded

in a block of gelatin. We previously performed this experiment and trained

seven NNCMs in AutoP with the force-displacement measurements [137].

The Young’s modulus values chosen for this simulated phantom correspond

to the moduli estimated from those seven NNCMs. Model 4 was selected

as an extreme case of complex spatial geometry. To generate this model,

the gray-scale values of an abdominal MRI scan were scaled to the 8-30 kPa

range of Young’s modulus values. Model 4 does not represent a real case

of elasticity imaging nor do we claim any translational use of CaNNCMs

to MRI. The image was only chosen for its geometric complexity while also

representing actual human physiological structure.

Two additional data sets were generated with Model 3 after adding noise

to the target Young’s modulus distribution. Uniformly distributed random

values up to ±10% and ±30% the local Young’s modulus value (≈ 27.2 dB

and ≈ 17.6 dB peak signal-to-noise ratio, respectively) were added to the

target distribution of Model 3. We generated two different corrupted target

distributions for each test, performing the FEA with the loads and BCs

previously specified, and compiled stresses from one analysis and strains from

the other.

Figures 4.5a and 4.5b are provided to clarify the experimental procedure.

When no noise was added to the target Young’s modulus distribution, stresses

and strains were both computed in a single FEA. Spatial scaling values were

then computed using Algorithm 2 and the pre-trained MPN. Conversely, two
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(i) (j) (k) (l)

Figure 4.4: (Top row) Target Young’s modulus distributions for the four 50x50 mm models. Model 4 was
created by converting the gray scale values from an abdominal MR image to Young’s modulus values. It
was included only as an extreme case of spatial complexity that represented actual human physiology and
is not a real case of elasticity imaging. (Middle row) Young’s modulus images reconstructed by CaNNCMs
after spatial scaling update and training using the stress-strain data generated by a forward FEA. Spatial
networks were trained using Test 1 parameters. (Bottomw row) Young’s modulus images from after SNs
trained with Test 2 parameters.

separate FEAs were solved to compute stresses and strains separately when

noise was present. Noise was added by sampling from a zero-mean uniform

distribution with maximum magnitude equal to either 10% or 30% of the

Young’s modulus at each x. For example, when 10% noise was added, the

target Young’s modulus at each point was E ′(x, y) = E(x, y) + E(x, y) ∗ p,
where p ∈ [−0.1∗E(x, y), 0.1∗E(x, y)]. Stresses and strains were computed

in separate FEAs to avoid correlating the noise (i.e., the same value p was

not used to compute E ′(x, y) at each location).

We created Mesh 2 (Fig. 4.3b) that conforms to the geometry of Model 2.

The same force loads and BCs described above were applied in a FEA of this

model to generate the stress-strain data. While CaNNCMs are independent

of the internal FE mesh structure, the learned distribution of stresses and

strains will be affected. For example, the inner inclusion of Model 2 fills
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(a)
(b)

Figure 4.5: Diagram of experimental method. (a) No noise added to target Young’s modulus distribution.
(b) Uniformly distributed noise added to target distribution.

four whole elements in Mesh 1 and partially fills twelve adjacent elements.

Conversely, 16 whole elements in Mesh 2 comprise the same nested inclusion.

Furthermore, there are 1156 total elements in Mesh 1 and 235 is Mesh 2. The

ratio of generated data from that one inclusion to all other points greatly

increases and more accurately captures the geometry.
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Before the spatial scaling values could be computed for each model, it was

necessary to pretrain a MPN. Without a trained MPN there is no reference for

updating Sεx. The material property network consisted of two hidden layers

with six nodes per layer. Weights were initialized by drawing from a uniform

distribution in the range [-0.2, 0.2]. We generated 5000 strain vectors, whose

components were also randomly generated uniformly in the range [-0.2, 0.2],

and computed the corresponding stress vectors using a plane-stress model

with a Young’s modulus value of 10 kPa and Poisson’s ratio ν = 0.5. Note

that the initialization range for the weights and the strain vectors do not have

to match. Previous results suggested this range performed well for the MPN.

As for the strains, we chose a range that extends beyond the magnitude of

the strain vectors generated for the aforementioned models. Before weight

update via the resilient backpropagation (RPROP) algorithm [123], frame

invariance of the stresses and strains was enforced by rotating the data 90◦

and appending the new rotated data to the original set, doubling the total

number of training pairs. This rotation was done by simply swapping the

axial and lateral components of the data and was implemented in our previous

study with AutoP (and detailed in Appendix A. Finally, we trained the MPN

over 50 epochs with Sεx = 1 and Sσ = 1.

After generating all data sets and pretraining the MPN, we used the

stress-strain data from all four load increments in each set to compute new

spatial scaling values using Alg. 1 (N = 150, NNε = 8 due to frame in-

variance, ηε = 2.5). Spatial networks were trained for each model using the

newly computed Sεx. Each network was comprised of five hidden layers with

25 nodes per hidden layer. Training was split into iterations to mimic what

occurs in AutoP. For example, instead of simply training the SN over 12000

epochs, we split training into iterations where fewer epochs were used. 10

iterations of 300 epochs were used in Test 1 whereas 30 iterations of 600

epochs were used in Test 2. These were equivalent to training for 3000 and

12000 epochs in a single iteration, respectively. Training for the SN was

implemented in TensorFlow using He initialization of the weights [139], the

Adam optimizer [140] with default settings, and a learning rate of 0.03.

The trained spatial network for each model was then paired with the pre-

trained material property network to form a CaNNCM and used to recon-

struct the Young’s modulus image. Reconstruction using only a CaNNCM is

done by setting a constant strain vector ε = [0.003 0.005 0.0001] and varying
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(x, y) over the domain of the mesh. At each (x, y), a corresponding stress

σ was computed. Axial and lateral components of the input strain vector

(ε11 and ε22, respectively) and the axial component of the computed stress

(σ22) were used to compute the spatially varying Young’s modulus E(x, y)

by inverting the plane-stress equation:

E(x, y) =
σ22(1− ν2)

νε11 + ε22

(4.13)

where ν = 0.5. The choice of strain vector is arbitrary so long as it resides

within the range of training data. Selecting small values for each component

ensured the strain was within said range.

4.3 Results

Fig. 4.6 contains the results of computing the spatial scaling values for all

seven cases in this study. Plots in the left-most column are the mean, mini-

mum, and maximum error in each iteration of Alg. 1. Errors are the RMS of

the difference between σt and σNNi over all stress-strain pairs for the model.

Columns 2, 3, and 4 are the maps of Sε1x , Sε2x , and Sε3x , respectively.

The error curves provide insight on the number of iterations required in

Alg. 1. When implemented in AutoP, the spatial scaling values will be recom-

puted many times, meaning there is a trade-off between computation speed

and error. From these curves, 50 iterations appears to be sufficient. Images

of the computed spatial scaling values, on the other hand, offer intuition on

what information is contained with Sεx. We observe the scaling values for the

axial and lateral strains are inversely proportional to the Young’s modulus.

In the case of linear-elastic materials, the spatial scaling values, and thus the

SN, contain information about distribution of the relative stiffness.

Young’s modulus images reconstructed with CaNNCMs trained for the

four models (no added noise and data generated on Mesh 1) are displayed

in the middle and bottom rows of Fig. 4.4. A comparison of the target

and CaNNCM-estimated Young’s modulus along cross-sections of these two

models are shown in Fig. 4.7. In the case of Model 1, there is no significant

difference between the Young’s modulus estimates between Test 1 and Test 2.

Similarly, there is only a marginal difference in the results for Model 2. The
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Figure 4.6: The left-most column contains the minimum, maximum, and mean RMS error curves from
Alg. 1 while computing the values of Sεx for each of the seven cases. Columns 2-4 are the resulting Sε1x ,
Sε2x , and Sε3x distributions, respectively.

effect of increased training iterations/epochs is far more pronounced for Mod-

els 3 and 4. In the case of the former, the boundaries of the regions become

sharper. For Model 4, the internal structures only become distinguishable
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under Test 2 training.

Images reconstructed by CaNNCMs are expected to improve when the

number of training epochs increases. That Fig. 4.4l better matches the target

distribution than Fig. 4.4h is no surprise. What these results do show is

that 1) CaNNCMs are capable of learning fairly complex material property

distributions and 2) in the absence of noise, the chosen training parameters

do not result in over-training the SN.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: (a-d) The white lines indicate the locations where Young’s modulus cross-section comparisons
occur. (e) Target and CaNNCM Young’s modulus along x = 0 for single inclusion model. (f) Young’s
modulus values along y = 0 for three inclusion model. Test 3 refers to the case where Mesh 2 and Test 1
parameters were used. (g) Target and CaNNCM modulus estimates for no added noise, 10% added noise,
and 30% added noise along y = −6.3 of the kidney model. (h) Young’s modulus value for abdominal MRI
model along the diagonal.

(a) (b) (c) (d)

Figure 4.8: Young’s modulus image after training CaNNCM with stress-strain data from kidney model
with added noise. (a,b) Test 1 and Test 2 training parameters for model with 10% added noise, respectively.
(c,d) Test 1 and Test 2 training parameters for model with 30% added noise, respectively.

Image reconstructions with CaNNCMs trained on data with 10% and 30%

additive noise are displayed in Fig. 4.8. Modulus values estimated along the

line indicated in Fig. 4.7c by these CaNNCMs (trained with Test 1 parame-

ters) are included in the curve comparison in Fig. 4.7g. Finally, the Young’s
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modulus values computed by the CaNNCM trained on Model 2, Mesh 2, and

Test 1 parameters along the line y = 0 are included in Fig. 4.7f.

Table 4.1 contains quantitative comparisons between trained CaNNCMs

and the target Young’s modulus images. Training times for the SN are also

included. For each point (x, y) in the mesh, the error between the target and

CaNNCM Young’s modulus estimate was computed using Eq. 4.14.

eE(x,y) =
|Etarget

(x,y) − ENN
(x,y)|

Etarget
(x,y)

(4.14)

where Etarget
(x,y) is the target Young’s modulus value at (x, y) and ENN

(x,y) is the

modulus estimated by the corresponding trained CaNNCM.

We observe that as the complexity of the model geometry increases and

training parameters remain the same, the mean error in the CaNNCM-

reconstructed Young’s modulus image also increases. As expected, increasing

the number training iterations and epochs in Test 2 generally reduced the

error between target and CaNNCM-estimated values. Our expectation was

not met for Model 2 and Model 3 with 30% added noise. The increase in

error for Model 2, Test 2 is likely a statistical artifact. Comparing the curves

in Fig. 4.7f reveals the CaNNCM trained with Test 2 parameters better ap-

proximates the target curve. Furthermore, the images were interpolated to

a new rectilinear grid before computing the error. It is possible that the

interpolation procedure led the the slightly increased error.

Over-training led to the increased error for Model 3 with 30% added

noise. Comparing Figs. 4.8c and 4.8d reveals the corruption caused by the

SN fitting the noise. Similarly, over-training may be also responsible for the

increased error in Model 2 when Mesh 2, Test 1 parameters were used. The

“Test 3” curve in Fig. 4.7f refers to this case and shows a slight bias in the

Young’s modulus estimate. A particularly large over-estimate occurs for the

small, stiff inclusion embedded in the softer inclusion.

Biased errors also occur for Model 3 where all the CaNNCM-estimated

Young’s modulus values in Fig. 4.7g lie above the line denoting target modu-

lus values. The same bias appears in all training cases for this model. While

not displayed, this bias can be removed by pretraining the MPN as a 5 kPa

linear-elastic material instead of 10 kPa. We do not expect this to be an issue
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when CaNNCMs are implemented in AutoP because the MPN may be re-

trained multiple times. Retraining the MPN with updated stress-strain data

should alleviate these types of issues by adjusting the “reference” material

to a form more suitable for the generated data.

Table 4.1: Young’s modulus errors and SN training times for the four models shown in Fig. 4.4. No
asterisk indicates Mesh 1, Test 1 parameters whereas single asterisk (∗) indicates Test 2 parameters. The
double asterisk (∗∗) specifies the use of Mesh 2, Test 1 parameters .

Model
Modulus Error Training

Time (s)Mean ± STD
1 0.0166± 0.0099 71
1∗ 0.0146± 0.0076 271
2 0.0131± 0.0172 71
2∗ 0.0140± 0.0190 271
2.∗∗ 0.0258± 0.0334 56
3 0.0504± 0.0142 72
3∗ 0.0493± 0.0131 272
3 (10% noise) 0.0534± 0.0198 71
3∗ (10% noise) 0.0487± 0.0230 272
3 (30% noise) 0.0418± 0.0252 71
3∗ (30% noise) 0.0549± 0.0399 271
4 0.0658± 0.0755 71
4∗ 0.0485± 0.0518 270

4.3.1 Effect of Incorrect Poisson’s Ratio

All of the results thus far have been achieved with a MPN which describes a

linear-elastic material with the same Poisson’s ratio as the stress-strain data

generated in forward FEAs of the four Models. We previously stated the

MPN was pretrained to characterize a linear-elastic material with a Young’s

modulus of 10 kPa and ν = 0.5. Models 1–4 had more complex Young’s

modulus distributions, but were also defined to be incompressible. What

happens if there is a mismatch between the Poisson’s ratio of the MPN and

the generated stress-strain data?

To test this, we pretrained a MPN with E = 10 kPa and ν = 0.3. The

same stress-strain data generated for the incompressible Models 1–4 were

again used to compute spatial values following the same procedure described

above. Results of this test are shown in Fig. 4.9. Plots in column 1 are the

mean and maximum error curves computed in Algorithm 2. Columns 2 and
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3 are maps of the axial strain scaling Sε22x and Young’s modulus, respectively.

The last column are curves of the Young’s modulus along the lines specified

in Fig. 4.7a–d for each respective Model.

Figure 4.9: Effect of the MPN pretrained with Poisson’s ratio not matching the stress-strain data. The left-
most column contains the minimum, maximum, and mean RMS error curves from Alg. 2 while computing
the values of Sεx for each of the seven cases. Columns 2-3 are the resulting Sε22x and Young’s modulus
distributions, respectively. Curves in column 4 are the target and reconstructed Young’s modulus values
along the white lines in Figs. 4.7a–d.

Comparing the error curves to Fig. 4.6, we observe that error values ap-

pears converge when the Poisson’s ratio of the MPN and stress-strain data

do not match to a larger value. The maps in columns 2 and 3, as well as

the Young’s modulus curves in column 4, reveal the reason: the resulting

Young’s modulus estimates are too low. It appears the full CaNNCM un-

derestimates the Young’s modulus everywhere. Furthermore, a large artifact

appears toward the bottom boundary of the phantom, where stresses tend

to increase because of the pinned boundary.

Fortunately, this should not be a problem in AutoP, regardless of whether
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the Poisson’s ratio of the pretrained MPN matches the data. The MPN is

repeatedly retrained with new stress-strain data throughout the course of

AutoP. We expect the MPN to learn the correct Poisson’s ratio as training

progresses.

4.4 Discussion

We have demonstrated the ability of CaNNCMs to learn both the mate-

rial properties and geometry of 2-D linear-elastic, isotropic materials under

plane-stress loading when the stress-strain data are known. CaNNCMs uti-

lize two cooperating NNs to minimize the error between known and predicted

stresses after a forward propagation of a strain vector and a (x, y) coordi-

nate. The material property network learns a general stress-strain relation

— here, the linear-elastic response of a 10 kPa homogeneous material —

whereas the spatial network learns a map of relative stiffness. Developing

the two-network cooperating architecture followed from attempts to simply

add two extra inputs to the material property network for (scaled) Cartesian

x- and y-coordinates. These early CaNNCMs performed poorly and were

unable to accurately learn geometric information regardless of the number of

hidden layers, nodes per layer, and/or training parameters. We believe the

failure was caused in large part by an incompatibility between the hyperbolic

tangent activation function and the geometry-material property relationship.

In short, a hyperbolic tangent is symmetric in sign so that a negative valued

input produces a negative valued output. Use of this function for the MPN

works because stresses and strains exhibit the same relationship. Further-

more, a zero-valued input vector should produce a zero-valued output vector

(i.e., zero strain means zero stress). But, the same does not hold for spatial

location and material property. Reformulating the problem as adjusting a

reference material property learned by the MPN with some auxiliary function

led to incorporating the spatial network.

Adding the spatial network required developing a method of computing

its outputs. We use a gradient-descent based approach by backpropagating

the output error all the way to the MPN inputs/spatial network outputs.

The spatial scaling values effectively encode stiffness relative to the reference

material property. For example, Sε2x calculated for Model 1 is ≈ 0.3657 at the
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30 kPa inclusion peak and ≈ 1.1 for the 10 kPa background, maintaining the

ratio 30/10 = 1/3 ≈ 1.1/0.3657. Similarly, Model 4 values span 8-30 kPa and

the resulting Sε2x are in the range [0.3891, 1.4014]. We must emphasize that

the spatial scaling values were not specifically computed to behave in this

manner; this property emerged from minimizing the error function defined

in Eq. 4.2.

From our previous study, we found only two hidden layers were necessary

for the material property network to learn a linear-elastic relationship for

2-D and 3-D materials. Spatial networks, though, require a larger network.

We chose to increase the number of hidden layers instead of vastly increasing

the number of nodes per layer. The spatial network must be larger because

the mapping from (x, y) to Sεx is more complicated than a linear stress-strain

relationship and thus requires a network with larger capacity. While there

is no strict rule for determining NN size, five hidden layers comprised of 25

nodes each was sufficient for all four models in this study. However, the larger

size of the SN increases the risk of over-training, as observed in Model 2 with

30% added noise.

Keeping the spatial network size constant, we could improve the Young’s

modulus reconstruction by changing the training parameters or the mesh.

In the former case, increasing the number of epochs and training iterations

produced better results by simply allowing more weight updates to occur.

But increasing training epochs is not the best choice if training time is to be

minimized. For the cases where Test 1 parameters were used, training time

was ≈ 71s on a quad-core CPU operating at 2.7 GHz. Test 2 parameters

increased the time to ≈ 271s on the same computer.

Conversely, changing from Mesh 1 to Mesh 2 and resorting back to Test

1 parameters only required ≈ 56s of training time. Changing the mesh re-

duced the total number of data points from 4624 to 940, in turn reducing the

training time. However, maintaining the same number of training epochs for

the reduced amount of training data did not improve the resulting Young’s

modulus estimates. There was arguably a qualitative improvement due to

changes in the data sampling distribution. With the rectilinear mesh, the

edges of the inclusions are coarsely sampled and the number of data points

pulled from said inclusions are small compared to the soft background mate-

rial. Changing the mesh altered this sampling distribution so that data are

better sampled around edges.
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Finally, while the addition of noise does not appear to significantly affect

the ability of CaNNCMs to learn material properties, the geometry is cor-

rupted. Unfortunately, it is difficult to extrapolate these results to AutoP

because the noise will appear in force-displacement measurements and then

propagate through the stress-strain calculations in non-straightforward ways.

Implementation in AutoP paper will reveal how robust CaNNCMs are to the

noise encountered in real measurement data.

4.5 Conclusions

Cartesian neural network constitutive models can simultaneously learn ma-

terial property and geometric information. Unlike previous machine-learning

methods, CaNNCMs are able to capture continuous material property distri-

butions. Furthermore, these networks can resolve fine structures with minor

adjustments to training or the finite element mesh, the latter of which changes

the distribution of available training data. CaNNCMs are fairly robust to

noise and can still produce accurate estimates of Young’s modulus for linear-

elastic materials at the cost geometric distortion. CaNNCMs are a novel NN

architecture that, once incorporated into the Autoprogressive Method, will

offer a machine-learning alternative to elasticity imaging.
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Chapter 5

Autoprogressive Training of CaNNCMs for
Linear-elastic Materials

5.1 Introduction

Quasi-static ultrasonic elastography (QUSE) is generally an ill-posed inverse

problem because we cannot normally acquire all of the data necessary to solve

for material properties exactly. Instead we impose assumptions by selecting,

for example, a plane-strain linear-elastic constitutive model that constrains

the problem to closely match the data that can be acquired. The data typ-

ically are acquired by slowly pressing the US probe into the tissue surface

while capturing RF echo frames. Speckle-tracking algorithms applied to RF

data estimate internal axial displacements (along the direction of US beam

propagation) resulting from the quasi-static loading. At most, each mea-

sured data set contains force applied by the US probe, motion of the probe,

and internal deformation of a tissue volume sampled within a finite plane.

Model-based inverse methods can be expressed as an objective function that

is minimized by seeking a pre-defined set of model parameters at position x,

θ̂(x),

θ(x) = argmin
θ̂(x) ∈ R

Np∑
n=1

Nd∑
k=1

fu(unk{θ̂(x)}, ûnk), (5.1)

where Np refers to the number of measured data sets, Nd is the number of

measured displacements in each of the Np sets, ûnk are the measured displace-

ment vectors, unk are displacements estimated via a forward problem (e.g.,

via finite element analysis (FEA)), and fu is often the L2 norm of their dif-

The majority of this chapter is reproduced from [141]. ©2018 IEEE. Reprinted, with
permission, from Cameron Hoerig, Jamshid Ghaboussi, and Michael F. Insana, ”Data-
driven Elasticity Imaging Using Cartesian Neural Network Constitutive Models and the
Autoprogressive Method”, IEEE Transactions on Medical Imaging, November 2018
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ference. If the total deformation is small and applied slowly, soft tissues are

often assumed to be linear-elastic, isotropic, and incompressible, leaving the

spatial distribution of the Young’s modulus to be estimated (θ(x) = E(x)).

That is, if θ(x) is a vector composed of nonzero elements from the consti-

tutive matrix, then this model assumes Young’s modulus E(x) is the only

unknown. With larger deformations applied quickly, tissues exhibit non-

linear [27, 52] and viscoelastic [142] material properties that require models

with more parameters and force-displacement measurements acquired over

time.

Accurately estimating material properties requires acquisition of more

force-displacement data than can be obtained using pulse-echo US imaging.

Barbone and Bamber proved that a single displacement measurement is in-

sufficient to uniquely estimate Young’s modulus [143]. Barbone et al. later

showed that the Young’s modulus distribution can be determined up to a mul-

tiplicative constant if multiple displacement measurements are available [90].

Instead of relying on multiple displacement measurements, other approaches

to the inverse problem include the use of a priori information [144] and/or

regularization [92, 145, 146]. More recently, Tyagi et al. [89] demonstrated

how measurements of the surface force applied by the US probe [24, 34]

can provide the additional information necessary to estimate the magnitude

of the Young’s modulus distribution, not just the relative values. Other

investigators have proposed a method using only surface information to re-

construct the interior modulus distribution [147, 148]. QUSE has also been

extended to the estimation of non-linear and viscoelastic properties of tis-

sues [96, 149, 150, 136, 151, 54, 152, 153], which provides more diagnostic

information than the Young’s modulus [154, 52]. For a comprehensive review

of model-based methods, see [86].

Model-based methods provide no means for discovering new diagnostically-

relevant mechanical properties or for exploring ranges of known model param-

eters for relevance in a given situation. Consequently, we adopt a data-driven

approach that first provides a nonparametric method for estimating stresses

and strains from force and displacement measurements. Then, from stresses

and strains, any and all models can be tested to find those parameters with

the most diagnostic potential.

We previously described the first steps in the development of our approach

using neural network constitutive models (NNCMs) and the Autoprogressive
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Method (AutoP) [108]. AutoP combines FEA and artificial neural networks

(NNs) to build data-driven constitutive models from force-displacement data

[117]. AutoP has been used in many civil and geotechnical engineering appli-

cations to model linear, nonlinear, path-dependent, and time-dependent ma-

terial properties [99, 100, 101, 102, 103, 104, 106, 107]. Force-displacement

measurement data are iteratively applied in two separate FEAs operating

on one mesh to estimate increasingly accurate distributions of stresses and

strains. From these data, NNCMs gradually learn material properties. This

is possible as the equilibrium and compatibility conditions imposed by the

FEAs are able to consistently convert force and displacements into stresses

and strains, which in turn are made consistent with the data through the

NNCM. The goal of AutoP is to reconcile the stress-strain distributions esti-

mated when force or displacement measurements are applied to a FE model

by training the NNCM. Unlike model-based methods, NNCMs are theoret-

ically flexible enough to approximate any physically realizable stress-strain

relationship without a prior assumption of the underlying material behavior.

5.2 Methods

All prior implementations of AutoP for mechanical modeling have used a

form of material property networks (MPN, left side of Fig. 5.1) that accept

a strain vector at the input and return a stress vector at the output (i.e.,

Rm : ε→ σ). MPNs characterizing viscoelastic or non-linear material prop-

erties must also include stress and strain history points at the input. Strain

values applied to the input of the MPN were scaled by a vector Sε whereas

the stresses at the output were scaled by the vector Sσ. However, MPNs are

mapped to specific homogeneous regions of the FE mesh and thus are only

effective when the internal geometry of the object is known. Without spatial

information at the input of the network, a MPN is unable to learn spatially-

varying material property distributions. Therefore, we invented Cartesian

NNCMs (CaNNCMs) that simultaneously learn material property and geo-

metric information.

The architecture of a CaNNCM is depicted in Fig. 5.1 and its core theory

of operation was described in Chapter 4. It is comprised of both a MPN

and spatial network (SN). The structure and function of the MPN is un-
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Scaled stresses

Material Property Network (MPN) Spatial Network (SN)

Spatially varying 
strain scaling 

Scaled strains

𝑅𝑚: 𝜺 → 𝝈 𝑅𝑠: 𝒙 → 𝑺𝒙
𝜺

Figure 5.1: Structure of the CaNNCM composed of a MPN and SN. The MPN learns a “reference”
material property whereas the SN learns spatial variation of the reference.

changed, but the addition of the SN allows this pair of cooperating networks

to learn spatially varying material properties. The MPN learns a “reference”

stress-strain relationship whereas the SN learns how the object deviates from

the reference as a function of position. Outputs from the SN are spatially

varying strain scaling vectors, Sε → Sεx, meaning the SN transforms the

strain vectors input to the MPN. The SN can be represented by the function

Rs : x→ Sεx.

While previous work with NNCMs and AutoP demonstrate the ability

to learn complex material properties [102, 103, 104, 106, 155], the initial

network architecture introduced in this report is limited to 2-D, linear-elastic,

isotropic materials. In this case, the MPN effectively learns a plane-stress

relationship with a constant Young’s modulus whereas the SN learns relative

stiffness. Results of prior work with AutoP leads us to believe that CaNNCMs

will be capable of capturing non-linear and viscoelastic behaviors in 3-D as

we further develop this method.

A CaNNCM replaces the constitutive model in (5.1) and the objective

function is minimized when the network learns the spatially-varying stress-

strain relationship described by the measured data:

Rm, Rs = argmin
Rθm ,Rθs∈R

Np∑
n=1

Nd∑
k=1

fu(unk{Rm, Rs}, ûnk), (5.2)
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where Rθm refers to the weights of the MPN and Rθs are the weights of the

SN. Here, fu(·) is the L1 norm of the difference between measured ûnk and

computed displacements. We use an L1 norm in this case rather than an

L2 norm to reduce the effects of extensive outliers. We describe in the next

section how the computed displacements arise in AutoP.

Equation (5.2) is useful as a description of the inverse problem but misses

the nuances of our data-driven approach. First, in model-based methods the

error computed by fu(·) would directly affect the choice of parameter val-

ues. Gradient-descent based schemes are typically employed to gradually

adjust parameters values based on error gradients. However, we will describe

in Sec. 5.2.1 how (5.2) is used to determine if the CaNNCM has learned

the material properties consistent with the data, but has no bearing on the

weight update procedure. That is, the error computed by fu(·) only indi-

rectly affect Rθm or Rθs . Second, weights of the MPN and SN do not map

directly to material parameters. There is no weight in either network that

represents Young’s modulus. The MPN and SN together define the function

Rm, Rs : ε(x) → σ(x). Image reconstruction occurs by relating the me-

chanical behavior learned by CaNNCMs to a chosen constitutive model after

training. Even though modeling errors are still possible, the benefit lies in

the potential for using a CaNNCM to estimate the parameters that might

apply to any constitutive model.

We will show in the following section how AutoP is used to minimize (5.2)

by reconciling stresses and strains estimated by the CaNNCM being trained.

Then, using force-displacement measurements acquired through simulation

and experimentally, we will 1) demonstrate the ability of CaNNCMs to learn

stress and strain maps and ultimately reconstruct accurate Young’s modulus

images and 2) explore how sampling affects the ability of CaNNCMs to learn

these properties. This last objective is part of our ongoing investigation

to determine how data should be sampled in time and space to accurately

estimate all stresses and strains.

5.2.1 The Autoprogressive Method

Training CaNNCMs requires an adjustment to the AutoP procedure de-

scribed in prior reports [117, 108]. AutoP uses FEA to compute stresses
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and strains in response to force and displacement load increments. Inter-

nal In and external P n forces are balanced for boundary conditions (BCs)

applied in the nth load increment in the solution of a FEA [84]:

P n = In (5.3)

In = In−1 +Kn∆Un (5.4)

Kn∆Un = P n − In−1 (5.5)

Kn =
Ne∑
e=1

∫
Ωe

BT
e

CaNNCM︷ ︸︸ ︷
Dn(x) BedΩe (5.6)

In−1 =
Ne∑
e=1

∫
Ωe

BT
e

CaNNCM︷ ︸︸ ︷
σn−1(x) dΩe (5.7)

whereKn is the tangent stiffness matrix computed in the nth load increment,

∆Un is the vector of displacement increments, P n is the vector of applied

surface forces, and In is the vector of internal resisting forces. In Eq. 5.5,

In is expressed as the sum over all Ne elements by multiplying the strain-

displacement matrix Be with the stress vector σn−1(x) and integrating over

the element domains Ωe. Force BCs reside in P n and displacement BCs

populate components of ∆Un.

A forward analysis consists of applying force and/or displacement BCs

to the FE model and solving the system of equations (5.5) for the unknown

displacement increments that that satisfy (5.3). During the analysis, the

stiffness matrix Dn(x) and stress vector are computed using a constitutive

model or, in our method, the CaNNCM being trained. To be clear, both

the stiffness matrix and stress vector in (5.6) are computed from the CaN-

NCM, not a pre-selected constitutive model as would be done in model-based

methods. The analytical expression for Dn(x) is provided in Appendix D.

FEA techniques are thus used to solve the forward problem for unk{Rm, Rs}
in (5.2).

AutoP is organized in a hierarchy of training passes, steps, and iterations

as shown in Fig. 5.2a. A single training iteration comprises several stages

utilizing force-displacement measurements from a single load increment. A

set of iterations performed with the same input measurement data is one

training step. Completing a series of training steps over all load increments

constitutes a pass. The following paragraphs track the six stages of AutoP

95



(a)

𝝈𝑛 𝒙𝑖 /𝑆
𝜎

𝜺𝑛 𝒙𝑖 /𝑺𝒙𝒊
𝜀

[4] Train spatial 
network

[2] Train material 
property network

[5] Convergence 
Check

Δ𝒖𝑛 = f(𝐮k
n, ෝ𝐮k

𝑛)
Exit upon 

convergence

No convergence

Measured Displacements
(ෝ𝒖𝒌

𝒏)

Solve 𝐹𝐸𝐴𝜀

𝜀11 𝜀22 𝜀12

𝜺𝑛 𝒙𝑖

Measured Forces
(𝒑𝑛)

Solve 𝐹𝐸𝐴𝜎 𝝈𝑛 𝒙𝑖

𝜎11 𝜎22𝜎12

[0] Pretrain

𝑥 𝑦

𝑺𝒙
𝜀

AutoP
Iteration

𝑐𝑚𝑎𝑥 < 𝐶𝑚𝑎𝑥
𝑛

𝑐𝜇 < 𝐶𝜇
𝑛

[1] Run FEAs

Next Load 
Increment?

Yes

Yes

No

[3] Spatial value 
calculation

(b)

Figure 5.2: (a) Hierarchy of training passes, steps, and iterations in AutoP. The training window deter-
mines the number of preceding training steps from which stress-strain data are included during stages 2–4
of the current step. (b) One AutoP training iteration using a CaNNCM is illustrated. Adding the spatial
network necessitates two extra stages where Sεx are updated and the SN is trained. Training of the MPN
and test for convergence follow the same procedure we describe in a previous report [108].

processing illustrated in Fig. 5.2b. Many AutoP iterations are performed

throughout training, during which the MPN and SN are repeatedly retrained.

We will consider the jth training iteration and introduce the superscripts j

and j + 1 to Rm and Rs to clarify which version of each network is active
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during each stage.

[0] Pretraining Before the first set of measurement data is input, the

CaNNCM is initialized using linear-elastic equations (stage [0]). For the 2-

D problems we describe, a Young’s modulus value and Poisson’s ratio are

chosen, a set of strain vectors are generated with randomly selected values

over a small range. The corresponding stress vectors are computed using

the plane-stress equation. Theoretically, any value of Young’s modulus and

Poisson’s ratio can be selected for pretraining, although, as one might expect,

accurate initializations result in faster convergence and avoids non-physical

behavior in early FEA iterations. The stress scaling value and all spatial

scaling vectors are set to one (Sσ = 1,Sεx = 1).

[1] Estimation of stresses and strains Stage [1] consists of estimat-

ing stresses and strains from measurement data. Forces for the nth load

increment are applied to the FE model in FEAσ. Referring back to (5.5),

force measurements are imposed as BCs in P n and total mesh deformation

is computed. Due to equilibrium conditions relating stresses to forces, all

stresses σn(x) computed throughout the model in FEAσ are assumed to be

physically consistent estimates of the true stress. Similarly, in FEAε US

probe and internal displacement measurements from the nth load increment

are input as components of ∆Un to compute displacements of the remain-

ing nodes. Due to compatibility requirements relating node displacements to

strains, the strains εn(x) computed in FEAε are assumed to be physically

consistent estimates of the true strains. Recall that Rj
m and Rj

s are invoked

by (5.6)–(5.7) to solve each FEA.

After estimating all stresses and strains, the stress scaling value Sσ is

checked to ensure all scaled stresses fall within ±0.8. That is, we check

for max(σn(x)/Sσ) > 0.8, where the division is performed element-wise. If

any component of σn(x) falls outside this range, Sσ is increased so that

max(σn(x)/Sσ) = 0.8.

[2] Training MPN A total of Nx stresses σn(xi) and strains εn(xi) are

computed in FEAσ and FEAε, respectively. Each strain can by scaled by

the corresponding Sεxi computed by Rj
s and input to Rj

m to compute a new

stress σ̂n(xi). The goal of stage [2] is to adjust the weights of the MPN to
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minimize the error between σn(x) and σ̂n(x):

Rj+1
m = (5.8)

argmin
Rθm∈R

Nx∑
i=1

Np∑
n=1

Nσ∑
l=1

fm(σnl (xi),

σ̂nl (xi)︷ ︸︸ ︷
Rj
m{εnl (xi), R

j
s(xi)}).

Rs(xi) is the output of the SN at xi and Nσ is the number of stress-strains

pairs at xi in the nth load increment. This value is greater than one when

frame-invariance is enforced or a training window is implemented, both of

which are described in Appendix 5.2.7. fm(·) is the L2 norm of the difference

between σn(x) and σ̂n(x); i.e., the MPN is trained via backpropagation.

Eq. (5.8) can not be minimized to zero for a heterogeneous material given

the current MPN architecture. As previously stated, the MPN accepts a sin-

gle strain vector as input and responds with a single stress vector as output.

There is a many-to-many mapping from εn(x) to σn(x) in heterogeneous

materials. For example, in the case where εn(xi) = εn(xj), it is not neces-

sarily true that σn(xi) = σn(xj) (i.e., Rm : ε → σ is not bijective). Thus,

the SN must supply additional information in the form of Sεx so that the

MPN can determine which stress should be returned for a given strain.

[3] Spatial scaling calculation The spatial values Sεx are computed in

stage [3]. While the coordinates input to the SN are given by the FE mesh,

the target spatial values must be determined based on Rj+1
m , σn(x), and

εn(x). The goal is to further minimize the error between σn(x) and σ̂n(x)

by altering the spatial values instead of the weights of the MPN:

Sεxi = argmin
Ŝεxi∈R

Np∑
n=1

Nσ∑
l=1

fm(σnl (xi), R
j+1
m {εnl (xi), Ŝ

ε
xi
}), (5.9)

where Rj+1
m is the output of the MPN retrained in (5.8).

[4] Training SN With a complete set of training data, the SN is trained

in stage [4] via backpropagation:

Rj+1
s = argmin

Rθs∈R

Np∑
n=1

Nx∑
i=1

fs(S
ε
xi
, Rj

s{xi}). (5.10)
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Details of solving (5.9) and (5.10) are covered in Appendix F.

[5] Convergence check Finally, a convergence check is performed in stage [5]

to determine if training iterations for the current step should continue. Node

displacements unk computed in FEAσ are compared to the measured displace-

ments ûnk using the L1 norm of their difference:

∆unk = |unk − ûnk | (5.11)

= fu(unk{Rθm , Rθs}, ûnk)

which is the objective function defined in (5.2). We only use axial displace-

ments in this study, although lateral and/or elevational displacements can

also be used if available.

Following previous implementations of AutoP to determine NNCM con-

vergence, displacement errors are used to compute two new values:

cnmax =
max(∆unk)

|max(unk)|
(5.12)

cnµ =
mean(∆unk)

|max(unk)|
. (5.13)

We define convergence criteria Cn
max and Cn

µ for the nth training step. If

both cmax < Cn
max and cµ < Cn

µ , convergence has been achieved and AutoP

training iterations stop for the current training step. Otherwise, iterations

consisting of stages [1]–[5] continue until the convergence criteria are met or a

maximum number of iterations are reached. Training steps continue for each

increment of force-displacement data in the set to complete a pass. Multiple

passes are typically needed to ensure the CaNNCM has fully learned the

material properties. A CaNNCM is not expected to accurately model the

material properties in the first few passes. We therefore begin AutoP with

relaxed convergence criteria (larger values of Cn
max and Cn

µ ) that gradually

become more restrictive.

5.2.2 Measurements from Linear-Elastic Phantoms

An imaging phantom was constructed from a mixture of deionized water,

gelatin powder, and cornstarch acting as a scattering agent. The phantom
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was comprised of a 50 × 50 × 50mm3 cube of a soft background gel (≈
7.15± 0.18 kPa, 8% gelatin by mass) with three stiff, cylindrical inclusions.

Each inclusion was 10 mm in diameter and 50 mm long. Mechanical contrast

was controlled by the ratio of gelatin to water and each inclusion was a

different stiffness (≈ 10.93±0.57, 14.15±0.71, or 20.51±0.84 kPa, 10%, 12%,

and 14% gelatin by mass, respectively). The phantom was manufactured in

the same manner described in a previous report [108] and separate samples of

each gelatin mixture were stored to independently estimate Young’s modulus

values via macro-indentation methods [121].

We used the same experimental setup described in [108]. Compressive

loads were applied to the phantom over four equal axial displacement in-

crements of the US probe. Total probe motion was 1.44 mm, 3% of the

pre-loaded phantom height. After applying each load increment, axial force

and probe position were measured and an RF echo frame was acquired. The

speckle-tracking algorithm GLUE [38] was applied to the echo data to esti-

mate axial displacements in the field of view. Axial forces, probe displace-

ments, and internal displacements over all four load increments constitute

one set of force-displacement data. Fig. 5.3 shows six different data sets col-

lected. Sets 1–3 were all acquired by compressing downward onto the top

surface but with different lateral placements of the US probe. Sets 4–6 were

acquired by keeping the probe centered laterally, but rotating the phantom

90◦, 180◦, and 270◦ around x3, respectively. Two additional data sets were

acquired where the imaged regions was centered on the x2 axis like Data Set

1, but the probe moved in elevation, along x3, by ±4mm. We refer to these

data sets as Data Set 1′ and 1′′, respectively. Total forces applied by the US

probe ranged from 17.95 to 21.22 mN.

5.2.3 Finite Element Model

A simple FE model was created for use in AutoP and to generate the noise-

free data sets described in the next section. The FE model FEM-1 is a

2-D, rectilinear FE mesh with 50 nodes per edge (Fig. 5.4) to represent the

phantom. The ultrasound probe was modeled as a rigid body in frictionless

contact with the top surface of the phantom model, approximating the con-

dition created by the US gel. The bottom nodes of the phantom mesh were
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Figure 5.3: The cubic phantom was imaged from four sides. Data sets 1–3 were obtained with the US
probe along the same surface but at different lateral positions. For sets 4, 5, and 6, the phantom was
rotated 90◦, 180◦ and 270◦ about x3, respectively, while keeping the probe laterally centered.

fixed to mimic contact between the gelatin phantom and rubber pad. The

full mesh was composed of 2516 nodes (5032 DOF) and 2401 plane-stress

elements (CPS4 in Abaqus 6.13). Given that 4-node quadrilateral elements

contain four integration points, a total of 9604 stress-strain pairs are com-

puted in each of two FEAs, labeled FEAσ and FEAε, which are described in

Sect. 5.2.1. Force loads, when applied as boundary conditions (BCs) in FEAσ

or in a forward problem, were defined as concentrated forces to the top of the

probe model. Similarly, probe displacements in FEAε were defined as BCs

for the entire probe model. Note that FEM-1 refers to the mesh and method

of applying BCs. All FEAs were solved with ABAQUS 6.13 commercial finite

element software.

5.2.4 Simulated Force-displacement Measurements

First, we tested AutoP employing CaNNCMs and noise-free force and dis-

placement data. Three different material property distributions (Figs. 5.5a-

c) were created to generate simulated measurements. Model 1 consists of a

stiff Gaussian-shaped inclusion with a peak stiffness of 30 kPa embedded in
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(a) (b) (c)

Figure 5.4: Rectilinear meshed used in FEM-1. Highlighted nodes indicate locations where displacement
data was provided in FEAε. (a) Displacements are given at every node in the ROI, (b) at nodes separated
by a minimum of 1.5mm, or (c) at nodes with a minimum 3mm separation.

the center of a 10 kPa background. Model 2 was a replicate of the gelatin

phantom described in Sect. 5.2.2. Young’s modulus values for the back-

ground and three inclusions were selected to be the same as those estimated

via macro-indentation for each gelatin material. Model 3 corresponded to a

rabbit kidney embedded in a block of gelatin with background Young’s mod-

ulus 5.61 kPa. Modulus values for the kidney were based on previous results

using AutoP and linear-elastic MPNs [137]. Models 1 and 3 were chosen to

enable comparison with results reported Chapter 4 where stress-strain data

were known.

Force-displacement data were generated by solving a forward FEA using

FEM-1 and the target Young’s modulus distributions of Models 1–3. The

same forces and loading geometry of Data Set 1 were applied to the model

and displacements were computed at all nodes. Each simulated data set

contained noise-free data over four load increments.

5.2.5 Simulated RF Images

Simulated RF echo frames were generated to test the capabilities CaNNCMs

in the presence of noise. A detailed description of the method used to gen-

erate these images is provided in Appendix E. The two simulated sets were

intended to emulate Data Set 1 with different SNR in the RF echo data: one

with 30dB SNR and one with 15dB SNR. We refer to the former as Data

Set 1† and the latter as Set 1††.
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5.2.6 AutoP Analyses

CaNNCMs were trained in AutoP using force-displacement data obtained in

three ways. First, forward FE modeling simulated noise-free displacements

at each node in the FE mesh. Second, the same simulated displacements

were entered into an RF echo simulator to simulate noisy experimental data.

Both data sets have exactly-known displacements and material properties.

Third, RF echo signals were recorded experimentally from phantoms. All

tests used the same training parameters described in the next section. Any

differences in how CaNNCMs were trained lie in how the force-displacement

data were sampled. We will show in Sect. 3.3 that changes to the input data

do not imply a need to alter training parameters.

Several different training cases were used that differed in the number of

axial displacements applied in FEAε. Table 5.1 summarizes these four cases.

For case 1, displacements are given at every node in the mesh. Cases 2–4

only used displacements in the ROI. The ROI is the region corresponding to

the size of the displacement image after speckle-tracking was applied to the

RF frames. Case 2 (Fig. 5.4a) indicates all nodes in the ROI were assigned

displacements. For Cases 3 and 4 (Figs. 5.4b and c, respectively), axial

displacements were only given at nodes with a minimum separation of 1.5 mm

and 3 mm, respectively. These are the variable sampling settings selected to

explore the role of displacement sampling in AutoP convergence.

Table 5.1: Four cases for applying axial displacements in AutoP.
Cases 2–4 are illustrated in Fig. 5.4.

case 1 All nodes in mesh
case 2 All nodes in ROI < mesh size
case 3 Nodes in ROI, 1.5mm minimum separation
case 4 Nodes in ROI, 3mm minimum separation

Upon completion of AutoP, each CaNNCM was used to reconstruct a map

of the Young’s modulus distribution. Image reconstruction was performed

by setting a constant strain vector ε = [0.003 0.005 0.0001] and computing

the stiffness matrix D̂ij using (D.2) in Appendix D. The Young’s modulus

distribution E(x) was then estimated by varying x in the domain of the

mesh and evaluating the function

E(x) =
Sσ

Sε2x
D̂22(1− ν2), (5.14)
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where ν = 0.5 and Sε2x is the axial component of the spatial scaling vector

at xi. The choice of constant strain vector is not important so long as it

resides within the range of training data. We chose small values for each

component to ensure the strain was within range, and we emphasized the

axial strain and used D22 in the modulus estimate because the models were

axially compressed.

Young’s modulus distributions estimated by the CaNNCMs were com-

pared to the target maps shown in the top row of Fig. 5.5. Errors were

computed as

eEx =
|Etarget
x − ENN

x |
Etarget
x

(5.15)

where Etarget
x is the target Young’s modulus distribution and ENN

x is the

CaNNCM estimate. Because displacements are only provided in the field of

view for Cases 2–3, we do not expect the CaNNCM to accurately estimate

Young’s modulus values outside of the ROI where no displacement measure-

ments are acquired. We therefore compute eEx only within the ROI for all

cases.

The following describes each of the CaNNCMs trained.

Simulated Force-Displacement Data A total of six CaNNCMs were

trained in AutoP using noise-free force-displacement data generated from

the three simulated models. One network was trained for each model using

Case 1 and Case 2 displacement sampling. The results from training these

networks demonstrate the ability of CaNNCMs to learn material properties

when the sampling space is reduced.

Simulated RF Echo Data Another six CaNNCMs were trained using

force-displacement data gathered from the simulated RF echo frames with

varying amounts of echo noise. Three CaNNCMs for Data Set 1† and three for

Set 1†† using Cases 2–4 sampling distributions. Results from these analyses

demonstrate how reducing the number of sampling points affects the ability

of CaNNCMs to learn material properties and geometry in the presence of

noise.
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Gelatin Phantom We trained 12 CaNNCMs with experimentally mea-

surement force-displacement data. The first three were trained with Data

Set 1 and sampling Cases 2–4. Results obtained from these CaNNCMs and

those trained with data acquired via the simulated RF data guided the choice

of sampling for the remaining CaNNCMs. Using Case 3 sampling, one CaN-

NCM was trained with each of Data Sets 2–6, 1′, and 1′′, one with Sets 1–3

simultaneously, and one with Sets 1, 1′, and 1′′ simultaneously. Results from

these CaNNCMs demonstrate the ability of CaNNCMs to learn material

properties under different loading scenarios, how the inclusion of multiple in-

dependent data sets affects the Young’s modulus estimates, and how sparser

sampling influences the learned material and geometric properties.

5.2.7 AutoP Training Parameters

Each CaNNCM was trained over 10 passes for each data set based on expe-

rience. A Young’s modulus value of 5 kPa and a strain range of ±0.01 was

selected for linear-elastic pre-training. FEAσ and FEAε were computed by

applying loads to FEM-1 as described in Sect. II-C.

A four-load training “window” was also incorporated which includes stress-

strain data from prior training steps in stages [2]–[4] of the current AutoP

iteration. Fig. 2a illustrates the example where training step 3 of pass 3

would also include stresses and strains from training steps 1 and 2 of pass 3

and training steps 3 and 4 of pass 2.

Furthermore, frame invariance was enforced by rotating the stress-strain

data 90◦ and appending the rotated pairs to the original set, effectively dou-

bling the number of stress-strain pairs. Any rotation angle could be used, but

we chose 90◦ because it is easily implemented by swapping the normal compo-

nents of the data, as we described in our initial report of AutoP [108]. Build-

ing frame invariance into the training data means the material properties

learned by the CaNNCM are independent of the chosen coordinate system.

With the given training window and enforcement of frame invariance, a total

of 19208 stress-strain pairs are used to train the MPN (Nx×Np×Nσ = 19208

in (6) starting in the second pass.

Spatial scaling values were computed using Algorithm 2 described in Ap-

pendix F (mnalg = 50, Nε = 8 due to frame invariance and training window,
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spatial scaling update rate ηε = 0.5). The MPN had two hidden layers of six

nodes each, whereas the SN had five hidden layers with ten nodes each. The

MPN was trained using the resilient propagation (RPROP) algorithm [123]

over 15 epochs. Conversely, the SN training was implemented in TensorFlow

using the ADAM optimizer [140] (with default parameter settings) and a

learning rate of 0.03.

Convergence criteria changed as training progressed. Convergence criteria

were initialized as (0.65, 0.5), using the notation (Cn
max, C

n
µ ). These reduced

to (0.4, 0.3), (0.3, 0.2), and (0.2, 0.01) at the beginning of passes 2, 3, and 4,

respectively. The last set of criteria were also used in passes 5–10. We chose

to set a limit of two AutoP iterations per training step, regardless of whether

convergence criteria were satisfied. An upper limit ensures that iterations do

not continue indefinitely. We chose a maximum of two based on preliminary

results.

5.3 Results

Young’s modulus images reconstructed by CaNNCMs trained with noise-free

force-displacement data are displayed in Fig. 5.5. Errors in the modulus

estimates computed with (5.15) are compiled in Table 5.2 for all CaNNCMs.

Also included in the table are the processing times and total number of AutoP

training iterations performed. For all three Models, reconstruction error

increased slightly when the displacement sampling was reduced to the ROI

only (i.e., from Case 1 to Case 2). CaNNCMs trained for Model 1 required

the most number of AutoP iterations and were unable to capture the peak

stiffness of the inclusion. We observed this type of behavior in Chapter 4

for the same Model. It could be corrected by increasing the number of

iterations performed when solving (5.9). For example, increasing the number

of spatial scaling update iterations from 50 to 150 for Model 1, Case 2, the

peak stiffness estimated by the CaNNCM is ≈ 25 kPa (actual is 30 kPa)

and the modulus reconstruction error decreases to 0.1291±0.0753. However,

preliminary results showed that in the presence of noise, using a large number

of iterations could result in overfitting thus magnifying the influence of noise

in the Young’s modulus reconstruction. It is possible that the addition of

a regularization term in (5.9) could reduce the sensitivity to the number of
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iterations and noise at the cost of increased computational complexity.

Figure 5.5: (Top Row) Target Young’s modulus distributions for Models 1–3. Young’s modulus recon-
structions from CaNNCMs trained with noise-free simulated displacements for Case 1 (Middle row) and
Case 2 (Bottom row). The white box indicates the boundaries of the ROI. Color scales at the top of the
figure apply to all images within the column.

Fig. 5.6 displays the Young’s modulus images reconstructed by CaNNCMs

trained with force-displacement data from Data Sets 1, 1†, and 1††. Across the

columns left to right, the images correspond to Cases 2, 3, and 4, respectively.

We observe that the smallest error occurs for Set 1††, Case 3, albeit said

CaNNCM required the largest number of AutoP training iterations. We also

note that, for the CaNNCMs trained with Set 1, there is a trade-off between

reconstruction error and artifacts in the images. For example, Fig. 5.6g

displays the Young’s modulus image with the smallest error for the row,

corresponding to Case 2. The error slightly increases for Case 3 (Fig. 5.6h),

but fewer noise artifacts are present. Generally, the trend appears to be that
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Table 5.2: Young’s modulus reconstruction errors and AutoP run time. Models are illustrated in Figs. 5.5a-
c. Sets are illustrated in Fig. 5.3. Cases are described in Table 5.1. A superscript indicates subfigure in
Fig. 5.8. The last column indicates the figure number of the corresponding Young’s modulus image.

(Model #){Set}[case]
Modulus Error Time

Iters. Fig.
Mean ± STD (min.)

Simulated Force-Displacement
(1){1}[1] 0.1055± 0.0545 151 74 5d
(1){1}[2] 0.1349± 0.0670 153 75 5g
(2){1}[1] 0.0621± 0.0730 88 42 5e
(2){1}[2] 0.0643± 0.0690 82 46 5h
(3){1}[1] 0.0306± 0.0188 83 40 5f
(3){1}[2] 0.0370± 0.0211 80 40 5i

Simulated RF
(2){1†}[2] 0.0961± 0.1240 80 40 6a
(2){1†}[3] 0.1325± 0.1294 79 40 6b
(2){1†}[4] 0.0970± 0.1126 82 42 6c
(2){1††}[2] 0.0914± 0.1336 80 40 6d
(2){1††}[3](a) 0.0899± 0.1111 110 56 6e
(2){1††}[4] 0.1386± 0.1313 90 46 6f

Gelatin Phantom
(2){1}[2] 0.2136± 0.1264 139 69 6g
(2){1}[3](b) 0.2736± 0.1563 136 69 6h
(2){1}[4] 0.3168± 0.1784 136 69 6i
(2){1′}[3] 0.2604± 0.1576 139 69 7a
(2){1′′}[3] 0.2522± 0.1480 138 69 7b
(2){2}[3] 0.1828± 0.1175 138 69 7d
(2){3}[3] 0.3415± 0.1606 137 69 7e
(2){4}[3](d) 0.2549± 0.1645 138 69 7g
(2){5}[3] 0.3208± 0.1905 127 64 7h
(2){6}[3] 0.2887± 0.1767 137 69 7i
(2){1,1′,1′′}[3] 0.4380± 0.2163 393 69 7c
(2){1,2,3}[3](c) 0.3228± 0.1713 393 69 7f

Gelatin Phantom, ν = 0.3 Pretraining
(2){1}[3] 0.2546± 0.1486 147 40
(2){4}[3] 0.1975± 0.1479 146 70
(2){5}[3] 0.2862± 0.1810 131 64
(2){6}[3] 0.2388± 0.1582 140 69

the effect of noise increases as the displacement sampling density increases.

The influence of noise can be decreased by reducing sampling density at the

cost of resolution and reconstruction accuracy. Note that this applies to the

case where only a single data set is used during training. For these reasons,

we chose Case 3 sampling for training the remainder of the CaNNCMs with
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the experimental measurement data.

Interestingly, a stiffening artifact appears between the top of the ROI and

phantom surface in the images reconstructed by CaNNCMs trained with ex-

perimentally measured force-displacement data (Figs.5.6g–i), but not when

trained with Data Sets 1† or 1†† (Figs. 5.6a–f). It is likely due to noise oc-

curring in both the force and displacement measurements. Displacements

estimated from the simulated RF frames contain noise, but the force mea-

surements are exact. Furthermore, displacements imposed when generating

the simulated RF data were obtained from a 2-D FEA whereas the experi-

mental measurements are a 2-D approximation of a 3-D object.

Figure 5.6: Comparisons of Young’s modulus image reconstructions from RF echo signals for three levels
of noise and different displacement sampling densities. Force-displacement measurements from rows 1 and
2 are from simulated echo data at 30 and 15 dB SNR. Row 3 is from experimental phantom measurements
with echo SNR in the same range using Data Set 1.

Young’s modulus reconstructions by CaNNCMs trained with experimen-

tal measurement data are shown in Fig. 5.7. We indicate in the bottom-right
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of each image the Data Set(s) used for training in AutoP. As expected, the

Young’s modulus estimates are most accurate within the ROI. Reducing the

size of the ROI (Figs. 5.7d,e) did not inhibit the ability of the CaNNCM to

learn the correct material properties. The exception is the inclusion at the

bottom of the ROI in Fig. 5.7d, where said inclusion is only partially within

view. Material properties estimated by each CaNNCM are consistent, bar-

ring Figs. 5.7g and 5.7i. These correspond to Data Sets 4 and 6, where the

phantom was rotated by 90◦ and 270◦, respectively, before data acquisition.

Both CaNNCMs learned the correct locations of all three inclusions, but the

estimated Young’s modulus of the two stiffest inclusions are inaccurate.

It is difficult to identify the source of the error. To determine if the issue

was caused by the relative locations of the inclusions within the ROI, we

created a simulated RF data set (using the same methods described previ-

ously) to mimic Data Set 4. A CaNNCM trained with these data (not shown)

was able to accurately estimate modulus values for all three inclusions. Fur-

thermore, if we compare displacement errors computed by (5.12) and (5.13)

for CaNNCMs corresponding to Figs. 5.7a and 5.7g, there is no significant

difference (cnmax = 0.0796 , cnµ = 0.0694 compared to 0.0812 and 0.0692,

respectively). Meaning, the CaNNCMs are estimating material properties

consistent with the data.

From a qualitative standpoint, including multiple data sets during train-

ing (Figs. 5.7c, f) improves the appearance of the reconstructed image. Con-

trary to our expectation, the reconstruction error increases when multiple

data sets are used. To explore why this occurred, we generated images of

the Young’s modulus error by computing the difference between the target

and reconstructed Young’s modulus images. Error maps are displayed in

Fig. 5.8 and the CaNNCMs are indicated in Table 4.1 by a superscript. The

largest errors occur at the boundaries of the inclusions; most notably, for the

stiffest inclusion located at the bottom of the ROI. These maps suggest the

largest errors are due to CaNNCMs learning the incorrect geometry. Specif-

ically, the stiffest inclusion appears too small, particularly for CaNNCMs

trained with experimental data. Neglecting geometric errors, we observe

that when multiple experimentally measured data sets are used in training

(Fig. 5.8d), the CaNNCM more accurately estimates the Young’s modulus of

the inclusions. The increased error reported in Table 4.1 is mostly attributed

to over-estimating the Young’s modulus of the background gelatin, by up to
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Figure 5.7: Young’s modulus image reconstruction by CaNNCMs trained from experimental measure-
ments. Bracketed numbers in the lower-right corner of each image indicates the Data Set(s) used to train
the CaNNCM. The dotted frame indicates the region over which displacements were estimated.

Figure 5.8: Maps of Young’s modulus error for the four tests indicated in Table 4.1. The error is the
difference between the target distribution and that computed by the CaNNCM. Red/green indicates the
CaNNCM-estimated Young’s modulus was too large/small.

5 kPa in the most extreme cases and mostly toward the boundary of the ROI.

It is unclear at this time if errors are larger near the boundary because of

artifacts introduced through speckle-tracking, the distance between the ROI

111



and phantom boundaries, or because we are limited to a 2-D approximation

of a 3-D problem.

A point hinted at in the preceding results is the ability of CaNNCMs to

not only estimate material parameters, but also estimate the spatial distri-

bution of all stresses and strains without assuming a constitutive model. In

Fig. 5.9, maps of the lateral, axial, and shear stresses and strains estimated

by CaNNCMs after pretraining (top box) and training in AutoP (bottom

box) are shown. The maps were estimated by applying solving appling a

4.6 mN force load to the US probe in FEM-1 and solving the FEA using

the corresponding CaNNCM as the constitutive model in (5.6) and (5.7).

To the best of our knowledge, this is the first time the spatial distribution

of all stresses and strains have been estimated from force-displacement data

without assuming the underlying constitutive model.

(a) (b)

Figure 5.9: The top box in each figure are maps of the stresses and strains estimated by a CaNNCM
pretrained as a 5 kPa, incompressible, linear-elastic material. Conversely, the bottom boxes are the stress
and strain maps after CaNNCMs were trained in AutoP using (a) noise-free force-displacement data from
Model 2 and (b) Data Set 1.

5.3.1 Pretraining with Incorrect Poisson’s Ratio

Back in Section 4.3.1 of Chapter 4, the question was raised of what happens

when the Poisson’s ratio used for pretraining the MPN does not match the

Poisson’s ratio expressed by the stress-strain data. It was not surprising
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that the spatial values computed via Algorithm 2 contained artefacts and

the resulting Young’s modulus images were biased toward underestimating

the true value. This is important because the MPN is pretrained at the

beginning of AutoP, during which time a value for the Poisson’s ratio must

be chosen. I made the claim that it should not matter because the MPN is

retrained in every AutoP iterations and thus should learn the Poisson’s ratio

encoded in the force-displacement data. That hypothesis is tested here.

Four CaNNCMs were trained with Data Sets 1, 4, 5, and 6. All AutoP

training parameters were the same as described in Sec. 5.2.7, except a Pois-

son’s ratio of 0.3 was selected for pretraining and the number of training

epochs for the MPN was increased from 15 to 25. The rationale for the in-

crease in training epochs being that the MPN has to “forget” the pretraining

Poisson’s ratio. Young’s modulus images reconstructed by these CaNNCMs

(using ν = 0.5 in Eq. 5.14) are displayed in the top row of Fig. 5.10 and

the corresponding error images are in the bottom row. Modulus estimation

errors are also included in Table 5.2.

Figure 5.10: (a–d) Young’s modulus images reconstructed by CaNNCMs pre-trained with ν = 0.3. (e–h)
Maps of the difference between target and estimated Young’s modulus. Green indicates the CaNNCM
underestimated the Young’s modulus whereas red indicates overestimation.

From a qualitative standpoint, the Young’s modulus images in Fig. 5.10

are comparable to their counterparts in Fig. 5.7. Similarly, the error images

in Fig. 5.10 show similar characteristics to those in Fig. 5.8: the CaNNCMs

most accurately estimate the Young’s moduli of the background gelatin ma-

terial and two softer inclusions. The largest errors occur for the stiffest

inclusion at the bottom of th ROI. Interestingly, the modulus estimates are,
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on average, more accurate for the CaNNCMs pretrained as a compressible

material. Increased accuracy in the modulus estimates is more likely due to

the increased training epochs rather than the Poisson’s ratio used for pre-

training. Even so, these results suggest the CaNNCMs are not sensitive to

this particular pretraining parameter.

5.3.2 Rabbit Kidney Embedded in Gelatin Cube

Following the above tests, we created another rabbit kidney phantom similar

to that in Sec. 3.2.8. To recap, a rabbit kidney was suspended by sutures in

the cubic mold while gelatin material was poured to fill the remaining space,

resulting in the kidney embedded in a 50 × 50 × 50 mm3 block of gelatin.

Force-displacement measurements were acquired on this phantom following

the same procedure described in Sec. 5.2.2. We obtained three different data

sets in the same manner as Sets 1, 1′, and 1′′ for the three-inclusion phantom.

That is, the US probe was laterally centered, but was at x3 = 0, x3 = −4,

and x3 = +4 mm for each of the data sets, respectively. B-mode images are

displayed in Figs. 5.11a–c. Corresponding axial strain maps computed from

GLUE are shown in Figs. 5.11d–f. Even though strain is only a qualitative

measure of stiffness, these images imply the renal cortex is stiffer than the

medulla, which in turn is stiffer than the background gelatin material.

Three different CaNNCMs were trained with the aforementioned Data

Sets using Case 3 displacement sampling the AutoP parameters specified

in Sec. 5.2.7. Young’s modulus images reconstructed by these CaNNCMs

are exhibited in Figs. 5.11g–i. Macro-indentation was performed on the

background gelatin material only and suggests the Young’s modulus to be

7.4931± 0.1234 kPa. Each Young’s modulus image was manually segmented

to obtain modulus estimates for the background gelatin, renal cortex, and

medulla, all of which are compiled in Table 5.3. Included in the table are

Young’s modulus values estimated for the cortex and medulla via shear-wave

elasticity imaging of healthy human volunteers [156].

Results in Table 5.3 indicate the CaNNCMs accurately learned the ma-

terial properties of the background gelatin and produced Young’s modulus

estimates of the renal cortex and medulla in good agreement with those re-

ported by other investigators, albeit we acquired data on rabbit kidney tissue,
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Figure 5.11: (a–c) B-mode images from Data Sets 1, 1′, and 1′′ acquired on the rabbit kidney phantom,
respectively. (d–f) Axial strain maps computed by the GLUE speckle-tracking algorithm. (g–i) Young’s
modulus images reconstructed by CaNNCMs.

Table 5.3: Young’s modulus values estimated from the CaNNCMs trained with force-displacement mea-
surements acquired on the kidney phantom. Also included are the modulus estimates of the renal cortex
and medulla of humans in vivo reported by [156]. All values are in units of kPa.

Region
Data Set

Reported by [156]
1 1′ 1′′

Gelatin 7.1555± 1.3035 7.2778± 1.3560 7.6918± 0.9818 N/A
Cortex 19.7188± 4.0332 18.8844± 3.9255 16.3383± 2.1846 15.4± 2.5
Medulla 9.5340± 2.0592 8.3723± 1.8858 10.1893± 1.2774 10.8± 2.7

not humans. The images in Figs. 5.11g–i reveal much more interesting infor-

mation about the Young’s modulus distribution. As was expected based on

the strain images, the renal cortex is stiffer than the medulla which is stiffer

than the background gelatin. What is more, the top and bottom edges of the

cortex appear stiffer than the rest, a feature present in both Figs. 5.11g–h.

Such spatial variations in the stiffness could be an indicator of anisotropy.

Similarly, the renal cortex in Fig. 5.11i exhibits a Young’s modulus similar to
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that observed in Figs. 5.11g–i on the left and right edges. Once again, given

the orientation of the kidney and where the image planes reside, this could be

another indicator of anisotropy. Nevertheless, we observe consistent Young’s

modulus estimates for all three regions amongst the three CaNNCMs.

5.4 Discussion

We have implemented CaNNCMs in AutoP to build data-driven constitu-

tive models that learn stress and strain profiles of linear-elastic materials

from force-displacement data. Adjusting the NN architecture to learn both

material property and geometric information expands the abilities of Au-

toP by removing any prior assumptions of material property distributions.

Additionally, a single CaNNCM can model heterogeneous materials where

previously multiple NNCMs would be necessary. Unlike networks used in

prior work, CaNNCMs are able to model both discrete and continuous ma-

terial property distributions regardless of the chosen mesh geometry. This is

a critical step toward the use of AutoP in clinical imaging where accurately

segmenting images is not always feasible nor possible.

QUSE acquisitions are well suited to data-driven modeling due to the

enormous information content in each force-displacement data sample. Quasi-

static loading gives the force stimulus time to propagate throughout the en-

tire object before measurements are acquired. Each displacement therefore

carries information of not only local material properties, but of the whole

contiguous object. AutoP exploits this fact by using FEA to propagate

a sparse sampling of force-displacement measurements throughout an entire

object model for estimating stresses and strains. Several model-based inverse

approaches also rely on FEA to compare computed and measured displace-

ments while estimating the material parameter distribution that best fits the

data (e.g., [86, 151, 157]). However, CaNNCMs trained with AutoP learn

stress-strain behavior consistent with the measurement data without prior

assumptions of material properties.

A trained CaNNCM can be related back to a known constitutive model

to estimate material parameters after learning stress and strain profiles. We

chose to estimate Young’s modulus distribution via the stiffness matrix to

demonstrate a capability of CaNNCMs not possible with model-based meth-
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ods. When computing D22 in (5.14), there is still no assumption of the

constitutive model. We effectively recovered the stiffness matrix from the

data. Further development of CaNNCMs for non-linear and viscoelasticity

imaging can make use of this ability to uncover the fundamental mechani-

cal behavior governing the data, which may allow for discovery of the most

relevant material parameters.

The additional task of learning the geometric shape of the medium re-

quires a higher displacement sampling density compared to our previous re-

port [108]. Our choice of simulated and experimental measurement data

combined with the four displacement sampling Cases was intended to pro-

vide insight on the trade-off between sampling density, resolution, and mod-

ulus estimation accuracy. Results from CaNNCMs trained with noise-free

force-displacement data suggest that restricting sampling to the ROI has

a slight negative affect on the accuracy of reconstructed Young’s modulus

images. Data acquired from simulated RF frames and Data Set 1 of the

experimental measurements better illustrate the trade-off in Fig. 5.6. In the

presence of noise, dense sampling resulted in more accurate Young’s modulus

estimates, but artifacts due to noise become more apparent. Conversely, as

sampling becomes increasingly sparse, noise artifacts are reduced at the cost

of decreased resolution and accuracy of material parameter estimates. We

observed this same behavior in several cases, although we provide only one

example of Case 2 sampling with experimental measurements (Fig. 5.6g).

That said, a cubic phantom with three parallel cylindrical inclusions limits

the conclusions that can be drawn. Comparing Figs. 5.6g–h, the noise arti-

facts do not obstruct any of the inclusions and are thus not detrimental to

the final image. However, it is possible that fine structures could be hidden in

more complex media. Further investigation into the best sampling strategy

will require data acquisition on an object with more complex geometry.

We expected CaNNCMs trained with multiple data sets to provide more

accurate Young’s modulus estimates. This was not the case. The argument

can be made that qualitatively, Figs. 5.7c and 5.7f are improvements over

training with any one data set: the inclusions are better resolved and fluctu-

ations due to noise are reduced. It is unlikely that increasing the number of

passes in AutoP would improve the results considering displacement errors

(cnmax and cnµ) computed for the convergence check do not continue to decrease

by the end of pass 10. Some of the error can be attributed to the 2-D ap-
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proximation of 3-D problem, which helps explain why Figs. 5.6a–f are much

more accurate than Figs. 5.6g–i. Extending CaNNCMs to learn volumetric

material properties will help us better understand how noise affects the ma-

terial properties and geometry learned by the networks. We find the quality

of Young’s modulus images depends on the coupled effects of spatial sam-

pling and noise, which are not the same as those seen in other applications

of QUSE.

AutoP required a minimum of 79 minutes to complete on a quad-core

CPU operating at 3.4 GHz. As we expand this method to model more

complex behaviors in 2-D and 3-D, the run time will only increase. The two

major bottle necks are the use of Abaqus as the FEA solver and training the

SN. Abaqus is able to solve the FEAs in seconds, but requires much longer to

perform a license check and pre-processing step. We can greatly increase the

speed in this regard by creating a custom finite element solver that natively

supports CaNNCMs. Other groups have shown the potential for enormous

increases in FEA solution times using GPUs [126, 158, 159, 160]. We believe

AutoP run time can be significantly decreased using custom software running

on a single GPU, but that work is ongoing.

AutoP and CaNNCMs are a major departure from current model-based

approaches to elasticity imaging. The latter assume the underlying con-

stitutive model is constant but the associated mechanical parameters vary

with position. In contrast, CaNNCMs trained in AutoP make no a pri-

ori assumptions of constitutive model. They are data-driven and therefore

learn the spatial distribution of material behaviors that best fit the data. The

current CaNNCM architecture is limited to linear-elastic materials, but prior

implementations of AutoP suggest CaNNCMs can be developed that are able

to model the heterogeneous distribution of linear, nonlinear, and viscoelastic

behaviors, thus allowing for the exploration of diagnostically relevant imaging

parameters.

5.5 Conclusion

Cartesian neural network constitutive models trained in the Autoprogressive

method can learn spatially-varying linear-elastic material properties from

force-displacement measurements. Young’s modulus images can be recon-
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structed by relating the stress-strain behavior learned by CaNNCMs to a

chosen constitutive model after training. CaNNCMs are robust to measure-

ment noise and can model the internal structure of both discrete and continu-

ous material property distributions. Further development of this method will

offer a data-driven approach to imaging nonlinear and viscoelastic properties

of soft tissues in 3-D.
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Chapter 6

3-D CaNNCMs

6.1 Introduction

Chapters 4 and 5 demonstrated the capabilities of CaNNCMs for imaging the

linear-elastic properties of tissues in two dimensions. The clinical utility of

these networks may be limited because they do not reveal the full 3-D geome-

try of internal structures. For example, the circular inclusions in Model 2 are

known to be cylindrical, but the cross-section does not preclude the possibil-

ity that one or more of the inclusions are spherical (or any geometry that has

a circular cross-section). Extending elasticity imaging to three spatial dimen-

sions will allow for estimating the material properties throughout a volume,

eliminating the need for a sonographer to mentally “stitch” together elastic-

ity images to form a 3-D representation as well as allowing for more accurate

estimates of lesion volume [161]. Even if the goal is to only estimate material

properties within a plane, the force-displacement measurements are acquired

on a 3-D object. Imposing a 2-D plane-stress approximation to solve FEAσ

and FEAε may introduce errors in the computed stress and strain fields.

Eliminating the plane-stress assumption and solving full 3-D analyses may

reduce some of the errors observed in Chapter 5.

Lindop et al. proposed a 3-D QUSE method using a linear US array [162].

RF echo frames were recorded as the US probe was swept over the tissue sur-

face by a human operator. The frame-rate was set so that there was signifi-

cant overlap between successive echo frames, reducing the decorrelation due

to the elevational motion. Speckle-tracking methods operating on successive

RF frames provided estimates of axial displacements, from which axial strain

is easily computed. Axial strains through the volume are thus computed by

estimating strain in multiple parallel planes and then stacking the 2-D strain

images to generate a 3-D data set.
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Speckle-tracking algorithms operating on data sets produced by more so-

phisticated 3-D QUSE methods — which acquire volumetric RF echo frames

— are used to estimate three-dimensional displacements. Treece et al. [163]

and Housden et al. [164] used a mechanically swept US probe to acquire

pre- and post-compression RF volumes. Others have investigated the use

of automated breast volume scanners (ABVS) for data collection [165, 166].

Richards et al. [97] gathered RF volumes in a similar manner by scanning a

robotically controlled linear array across a sample compressed by two plates

(first discussed in Sec. 1.2). Others used the 3-D imaging capabilities of 2-D

US arrays to volumetric RF data [167]. Regardless of the data acquisition

method, the results are full 3-D displacement estimates within a section of

a body. These data can be used to compute strains or input to an inverse

problem to estimate material parameters.

In this chapter, we introduce 3-D CaNNCMs and present the first imple-

mentation of these networks in AutoP. Our primary goal is to investigate the

spatial sampling requirements to accurately reconstruct the Young’s mod-

ulus within a volume. We present results of CaNNCMs trained with both

simulated and experimentally acquired force-displacement measurements on

several linear-elastic gelatin phantoms. Furthermore, be begin investigations

into the feasibility of free-hand QUSE with CaNNCMs and AutoP by re-

formulating the problem to account for large deforming forces and unknown

surface geometry.

6.2 Methods

The CaNNCM architecture must be modified to incorporate 3-D information.

First, the number of components in the stress and strain vectors increases

from three (in plane-stress) to six: σ = [σ11 σ22 σ33 σ12 σ13 σ23]T (similarly

for ε and Sεx). Therefore, the MPN must have six nodes at the input and

output, and the SN must have six outputs. Second, the SN must have three

input nodes to accommodate the three spatial dimensions. Fig. 6.1 illustrates

the 3-D CaNNCM architecture.

Although the number of spatial dimensions has increased and the CaN-

NCM has been modified, no changes need be made to the stages of AutoP

as described in Sec. 5.2.1. Nor do any modifications need to be made to
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Figure 6.1: Architecture of 3-D CaNNCM.

Algorithm 2 for computing new Sεx. A relatively minor change is covered in

Sec. 6.2.5 to account for objects under large deformation, but that change

affects the stresses and strains, not the stages of AutoP.

The nature of US imaging with a linear-array probe limits internal dis-

placement measurements to a finite plane. Due to this limitation, several

force-displacement measurements must be acquired throughout a volume in

order for a CaNNCM to learn the 3-D Young’s modulus distribution. Rather

than the sampling issue we encountered in the last chapter, where the concern

was reducing the effect of noise while preserving the ability of a CaNNCM to

learn geometric information, we must investigate spatial sampling strategies

to accurately and efficiently reconstruct the distribution of material proper-

ties throughout a volume.

Typically, 3-D QUSE techniques using a linear-array (like the examples

provided in Sec. 6.1) solve a series of 2-D problems and stack the result to

estimate volumetric material properties or sweep the probe (or use a 2-D

array) to acquire a 3-D data set. Our approach does neither; instead, we use

a combination of planar data and 3-D FE models. We discussed in Sec. 5.4

that a quasi-statically applied load has time to propagate through a volume
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before tissue motion is measured. Displacements at each point therefore con-

tain some information about the material properties of the whole contiguous

region. As a consequence, displacements applied in FEAε, even when con-

fined to nodes only within the measurement plane, propagate through the

mesh. We can exploit this fact to develop sampling strategies that minimizes

redundancy in the measurement data — there is no need to scan the tissue

in 1 mm increments when 4 mm increments will suffice. What is unknown

at this time is the distance effects of locally applied displacements are dis-

tributed. As we will later show, simply including more force-displacement

data from many image planes does not necessarily lead to CaNNCMs that

reconstruct Young’s modulus distributions with the smallest error, but will

always result in increased computation time. Moreover, the best sampling

strategy may not be one where displacements are measured in multiple par-

allel planes. Rotating the US probe to acquire 3-D data sets may be more

efficient and produce comparable results.

6.2.1 Phantom Models

We began our investigation using the three Models shown in Fig. 6.2a–c.

Model 2 (Fig. 6.2a) is the same from Chapter 5. It is a 50 × 50 × 50 mm3

cube comprised of a soft background material (7.15 kPa) and three inclusions,

each with a different Young’s modulus (10.93, 14.1, and 20.51 kPa). These

modulus values are the same measured via macro-indentation methods for

the gelatin phantom described in Sec. 5.2.2. Model 4 (Fig. 6.2b) is another

cubic phantom with the same outer dimensions as Model 2. It contains two

20 kPa inclusions, one spherical centered at (0,−10, 0) and one cylindrical

centered at (0, 10, x3) (both having a 5 mm radius), embedded in a 7 kPa

background. Model 5 (Fig. 6.2c) is a truncated hemisphere. It was created

by generating a hemisphere with 59 mm radius and performing a plane-cut

to reduce its height (along x2-axis) to 50 mm. We chose these dimensions to

approximate the geometry of preliminary gelatin phantoms with this shape.

The background material is 7 kPa and the two spherical inclusions are cen-

tered at (0, 0, 0) and (0, 0,−20) with Young’s modulus values 20 kPa and

15 kPa, respectively.

To visualize the 3-D Young’s modulus distribution, we chose to display
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Figure 6.2: (a-c) Simulated phantom models. (a) Model 2 is the same three-inclusion phantom from
Chapters 4 and 5. (b) Model 3 is a soft cubic phantom with two inclusions, one spherical and the other
cylindrical. (c) Model 5 is a truncated hemisphere with two stiff spherical inclusions. (d–f) Young’s
modulus distributions for the three Models. Planes 1, 2, and 3 show three slices through the volume and
are indicated by the blue planes to the left.

the modulus within the three planes illustrated to the left of Figs. 6.2d–f.

Plane 3 is the x1−x2 plane at x3 = 0. Plane 2 is the x1−x3 plane at x2 = 0

and Plane 1 resides at x1 = 0. Numbers denoting the Planes correspond

to the axis in which the normal vector to the plane points; e.g., the normal

vector to Plane 3 points in the x3 direction. Figs. 6.2d–f show the Young’s

modulus distribution of Models 1–3 within these planes.

6.2.2 Finite Element Meshes

The FE meshes are comprised of 10-node tetrahedral elements (C3D10 in

Abaqus 6.13). These elements are not as “stiff” as their 4-node counter-

parts, but do increase the computational load when solving a FEA. We chose

tetrahedral over hexahedral (or “brick”) elements because the former can be
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used to mesh any arbitrary geometry. It is possible that brick elements could

mesh Model 3 (and Model 6 that will be introduced in a following section),

but doing so would require smaller and thus many more elements, leading

to increased FEA computation time. For these reasons, we chose 10-node

tetrahedral elements.

Furthermore, unlike the rectilinear FE meshes used in AutoP for 2-D

CaNNCMs, we do not use a consistent mesh for all models. Nor are all

meshes necessarily the same for each model across all AutoP analyses. Sev-

eral aspects do remain consistent amongst all FE models, though, and are the

same as specified in Sec. 5.2.3. The US probe was modeled as a rigid body

in frictionless contact with the top surface of the phantom model, approxi-

mating the condition created by the US gel at the contact surface. Nodes

on the bottom surface of the phantom mesh were fixed (or “pinned”) to

represent the no-slip contact between the phantom and rubber pad during

experimental data acquisition. Force loads applied in FEAσ were imposed

as a concentrated force to top of the US probe, whereas the corresponding

displacements applied in FEAε were defined as BCs for all probe nodes. All

FEAs were solved with ABAQUS 6.13 commercial finite element software.

6.2.3 Simulated Force-displacement Data

3-D CaNNCMs were first tested by training in AutoP with noise-free force-

displacement data. FE meshes were generated for the three Models in Fig. 6.2a–

c. Note that the meshes only conformed to the surface geometry, not the

internal structure. Using defined Young’s modulus distributions, a force load

up to 848 mN was applied by the probe over six load increments to compute

the mesh deformation, resulting in six force-displacement data sets for each

FEA.

For a 3-D, linear-elastic material, the constitutive relationship can be
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expressed as

σ11

σ22

σ33

σ12

σ13

σ23


= E

(1+ν)(1−2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1− 2ν 0 0

0 0 0 0 1− 2ν 0

0 0 0 0 0 1− 2ν





ε11

ε22

ε33

ε12

ε13

ε23


.

(6.1)

Note the (1 − 2ν) term in the denominator. Clearly, setting ν = 0.5 would

result in a singularity. Even a Poisson’s ratio close to incompressible would

result in exceptionally large stresses for very small strains. An incompressible

material can be modeled in FEA using additional constraint equations, but

(6.1) is the equation used to generate stress-strain pairs for CaNNCM pre-

training in AutoP. Therefore, most of the simulated data sets we generated

used ν = 0.3 so that a matching Poisson’s ratio could be used for pretraining.

We will later show that the Poisson’s ratio does not have to match.

Several force-displacement data sets were generated for each model by

moving the location of the US probe. Fig. 6.3 depicts the image region of

the probe for each set, referred to as the ROI. The probe was positioned at

five different locations for Models 2 and 4, as shown in Figs. 6.3a–b. ROI

1 arises from the probe centered both laterally and elevationally along the

top surface of the phantom. Moving the probe +4 mm and -4 mm in the x3

direction gives ROIs 2 and 3, respectively. Similarly, ROIs 4 and 5 are the

result of advancing the probe +8 mm and -8 mm along the x3 axis.

ROIs for Model 5 were chosen to investigate a more efficient sampling

strategy. Relative placement of the ROIs for Models 2 and 4 may be effective,

yet not the most efficient because we require many data sets to learn 3-D

information. Instead of acquiring data in parallel planes, we may be able

to obtain volumetric information more efficiently by altering the relative

position of the data planes. We tested this hypothesis with Model 5 by

defining only three ROIs. The first two are orthogonal and bisect the central

spherical inclusion. ROI 3 is parallel to ROI 1 and passes through the smaller

inclusion. We expect ROIs 1 and 2 to provide enough information for the

CaNNCM to learn the spherical shape of the inclusion. Given the size of

the smaller inclusion sampled by ROI 3, a single plane my be adequate for a

CaNNCM to learn its 3-D structure.
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(a)

(b)

(c)

Figure 6.3: Planes indicating the ROI of the US probe where internal displacement measurements are
acquired. (a–b) Displacements are sampled in five parallel planes/ROIs for Models 2 and 4. (c) Data are
acquired in only three planes for Model 5.

We tested the ability of 3-D CaNNCMs to learn the Young’s modulus

distribution of the three Models before turning to AutoP. A MPN was pre-

trained as a 5 kPa homogeneous material with Sεx = 1 and ν = 0.3. A total

of 10000 strain vectors were generated whose components were randomly

distributed in the ±0.3 range. Corresponding stress vectors were computed

with (6.1) along with the aforementioned Young’s modulus and Poisson’s

ratio. The MPN was trained using the RPROP algorithm. Stresses and

strains were then compiled for all three Models from the forward FEAs used

to generated force-displacement data for ROI 1. Stress-strain data sets and

the pre-trained MPN and entered into Algorithm 2 (Nε = 300, ηε = 1.5) to
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compute Sεx for the three Models.

Fig. 6.4a–c are maps of each component of Sεx computed for the three

Models. Scaling values of the normal strain components (Sε11x , Sε22x , Sε33x ) for

Models 2 and 4 show the background material to be uniform. Interestingly,

the same cannot be said of the corresponding maps for Model 5. Recall that

softer regions are indicated by larger scaling values. Based on the maps in

Fig. 6.4c, the regions of the background material not directly under the probe

are stiffer. This result is particularly intriguing because it is the first model

tested with CaNNCMs that is not under uniaxial compression. Sections of

the phantom not under the probe are under increased lateral and shear strains

(the latter evidenced by maps of the shear strain scaling values) rather than

compressive strain.

Three different SNs were trained with the computed spatial values over

ten iterations each consisting of 800 epochs (the same procedure used in

Sec. 4.2.4). Each SN was comprised of five hidden layers each with 20 nodes.

Training was implemented in TensorFlow using the Adam optimizer (with

default parameter settings) and a learning rate of 0.03. Pairing each SN

with the MPN, the Young’s modulus distribution E(x) was computed from

the resulting CaNNCM using ν = 0.3, the strain vector ε = [0.0035 −
0.01 0.0035 0.001 0.001 0.001]T, and stiffness matrix D̂ (see Appendix D):

E(x) = (
D̂11

Sε11x
− D̂12

Sε12x
)(1 + ν). (6.2)

Fig. 6.5 are the Young’s modulus distributions resulting from the CaNNCMs

trained with the spatial scaling values in Fig. 6.4. The networks trained

with data from Models 2 and 4 (Figs. 6.5a–b) are nearly identical to their

counterparts in Fig. 6.2, as expected. However, the CaNNCM trained for

Model 5 is only accurate in the region directly under the US probe. As we

indicated for the spatial values in Fig. 6.4c, the regions of the phantom not

under direct compression appear stiffer than expected. Changing the US

probe position to apply compressive loads to these regions may reduce these

stiffening artifacts.1

1We will return to this point in Sec. 6.4. It may be be due in part to the constant value
of Sσ.
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(a)

(b)

(c)

(d)

Figure 6.4: Spatial values for the three models computed with Algorithm 2. (a) Model 2 (b) Model 4 (c)
Model 5. (d) Maximum, minimum, and mean error curves over the 300 iterations used to compute Sεx.
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Figure 6.5: Young’s modulus reconstructions after training a 3-D CaNNCM with the spatial values dis-
played in Fig. 6.4. (a-c) Models 2, 4, and 5, respectively.

6.2.4 Measurements on Gelatin Phantoms

The same imaging phantom and data acquisition methods detailed in Sec. 5.2.2

were used to test 3-D CaNNCMs. In fact, several of the same Data Sets were

re-used, albeit we utilized six load increment instead of four and denote them

differently here. Data Sets 1–5 correspond to ROIs 1–5 (Sets 1–3 are the same

as 1, 1′, and 1′′ defined in Sec. 5.2.2, respectively). Three additional data sets

were acquired by rotating the phantom in 90◦ increments around the x3 axis.

Aligning the probe to ROI 1, Data Sets 6–8 were obtained by rotating the

phantom 90◦, 180◦, and 270◦, respectively (these are the same as Data Sets

4-6 depicted in Fig. 5.3). One primary difference is the magnitude of the

force measured during compression. Only the in-plane force was applied in

FEAσ for 2-D CaNNCMs, calculated by dividing the total measured force

by the contact width in the elevational direction (43 mm in this case). Con-

versely, the full contact surface is accounted for in 3-D, meaning the total

applied force ranged from 779.68–853.13 mN as opposed to 17.95–21.22 mN.

An additional set of force-displacement measurements was acquired in the

same manner as Data Set 1, but 1330.06 mN of compressive force was ap-

plied to produce 5% strain in the phantom, not 3%. We refer to this as Data

Set 1′.

130



Phantom with Estimated External Geometry

Data acquisition in a clinical setting will preclude prior knowledge of the

tissue geometry. Unlike the gelatin phantom, real biological tissues are not

well-defined cubes and manufactured in a tightly controlled setting. There-

fore, we will require a method to measure the external shape of the object.

A detailed explanation of using a Microsoft Kinect v2 for this purpose is pro-

vided in Appendix G. We tested this method on a different gelatin phantom

whose external geometry is similar to Model 5 and contains only one spheri-

cal inclusion with a radius of 7.5 mm. We refer to this phantom as Model 7.

Figure 6.6: (a) Geometry of Model 6. (b) Young’s modulus distribution estimated from B-mode images
and macro-indentation. (c) Example B-mode image of the phantom.

To make this phantom, we first manufactured the spherical inclusion

(≈ 17.91 ± 0.45 kPa, 12% gelatin by mass). Then, using a glass bowl as

the phantom mold, the spherical inclusion was suspended by thread while

the background gelatin material (≈ 7.39 ± 0.14, 8% gelatin by mass) was

poured. The intent was to center the inclusion along all three axes. Given

the imprecision involved, the actual location of the spherical inclusion was

estimated from US B-mode images. Figs. 6.6a–b display the approximate

phantom geometry and Young’s modulus distribution, where the modulus

values were estimated via macro-indentation methods. An example B-mode

image of the phantom is provided in Fig. 6.6c.

Two data sets were measured on this phantom using the same experi-

mental technique in Sec. 5.2.2. Data Set 9 corresponds to ROI 1 for Model 5

(Fig. 6.3c) and Data Set 10 matches ROI 2. To be clear, the image planes for

Data Sets 9 and 10 are orthogonal. The US probe compressed the phantom
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1.87 mm, resulting in 5% strain and total applied force ranging from 2937.5–

3167.19 mN.

6.2.5 Linear-Elastic Materials Under Large Deformation

We have thus far only considered quasi-static loads that produce very little

deformation and approximate the strain as infinitesimal. For a 48 mm tall

phantom, the probe is only displacing ≈ 1.5 mm which results in ≈ 3% strain.

Characterizing the hyperelastic and/or non-linear properties of soft tissues

will require larger loads resulting in finite deformation. At this point non-

linear geometric effects are no longer negligible and the previous definition

of strain in (1.3) no longer applies.

We provide here a brief review of some fundamental concepts of the kine-

matics of non-linear deformation. Index notation will be used in several

equations where summation is assumed over repeated indices, as was done

back in (1.4). A material point X in the reference configuration displaces

to a new spatial location x in the current (or updated) configuration.The

deformation gradient tensor F can then defined as

F = FiJ =
∂xi
∂XJ

(6.3)

(6.4)

where lower-case subscripts are used for tensors in the updated configura-

tion and upper-case subscripts are for tensors in the reference configuration.

Infinitesimal deformation, or a small-strain assumption, means the local dis-

placement is negligible. More precisely, limF → I and strain is defined by

(1.3). Objects undergoing finite deformation can have stresses and strains

defined for the reference or current configuration (or a mix of both). Here,

we consider Green-Lagrange strain E and Almansi strain e:

E =
1

2
(F TF − I), (6.5)

e =
1

2
(I − F−TF−1). (6.6)

E is a description of strain in the reference configuration whereas e describes

strain in the deformed state. To more directly compare ε and E, both
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definitions of strain can be rewritten as gradients of displacement u:

εij =
1

2
(
∂ui
∂Xj

+
∂uj
∂Xi

)

Eij =
1

2
(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

). (6.7)

The last term in (6.7) is the non-linear geometric effect of large deformations.

Like strain, many different definitions of stress exist. We will only consider

the 2nd Piola-Kirchoff (P-K) stress S and Cauchy (true) stress σ. S is related

to E through the stiffness tensor C and σ is related to e through c:

S = SIJ = CIJKLEKL (6.8)

σ = σij = cijklekl (6.9)

The definition of stress and strain used will affect the material properties

learned by a NNCM because generally C 6= c. Even more important is the

fact that certain stress-strain pairs are energetic conjugates. Green-Lagrange

strain is the energetic conjugate of 2nd P-K stress while Almansi strain pairs

with Cauchy stress. One cannot simply pair Almansi strain with 2nd P-

K stress or Green-Lagrange strain with Cauchy stress. However, one pair

can be transformed into the other through the deformation gradient. First,

expressing Cauchy stress in terms of 2nd P-K stress:

σ =
1

|F |
FSF T =

1

|F |
FiISIJFjJ . (6.10)

where |F | is the determinant of the deformation gradient. Putting (6.8) into

(6.10),

σij =
1

|F |
FiICIJKLEKLFjJ . (6.11)

Green-Lagrange strain can be transformed to Almansi strain and then sub-

stituted into (6.11):

E = F TeF = FkKeklFlL (6.12)

σ =
1

|F |
FiICIJKLFkKeklFlLFjJ , (6.13)
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and rearranging to end with an expression defining Cauchy stress in terms

of the deformation gradient and elasticity tensor C,

σij =
1

|F |
FiIFjJFkKFlLCIJKLekl. (6.14)

This equation can be further simplified by defining c in terms of C,

cijkl =
1

|F |
FiIFjJFkKFlLCIJKL. (6.15)

The expression for c in (6.15) can be substituted in (6.14) to return to the

original expression for Cauchy stress in (6.9).

The FEA formulation for a system under finite deformation is beyond

the scope of this thesis. What is important is the fact that Abaqus uses an

Updated Lagrangian formulation, which means X is updated to x after each

load increment (the updated configuration becomes the reference for the next

load increment) and the stresses and strains are expressed as σ and e. Yet the

current CaNNCM architecture is unable to account for a changing reference

configuration. CaNNCMs must therefore learn the relationship between E

and S.

Implementing this in AutoP is straight-forward. Cauchy stress and Al-

mansi strain are computed in FEAσ and FEAε, respectively. Strains e are

converted to E via (6.12) and σ to S through the relation

S = |F |F−1σF−T . (6.16)

Green-Lagrange strain and 2nd P-K stress are then used to compute the

spatial values and train the MPN. When computing D(x)n (which is can be

computed from C [84]) and σn−1 in (5.6) and (5.7), the conversions must be

made in (6.15) and (6.10).

Another simulated phantom was created to test 3-D CaNNCMs with

objects under finite deformation. Model 6 is a hemispherical phantom com-

prised of a soft background (7 kPa) with two stiff, spherical inclusions. One

inclusion is centered at (0, 0, 0), has a radius of 7.5 mm, and has a Young’s

modulus of 20 kPa. The second inclusion is centered at (−20, 0, 0) with a

5 mm radius Young’s modulus of 15 kPa.

Force-displacement data were acquired on Model 6 for the ROIs in Fig. 6.7.
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ROIs 1 and 2 are the same as those for Model 5. Given the phantom shape,

simply translating the probe is not effective for sampling the volume. ROI 3

is then obtained by first rotating the probe 90◦ around the x2-axis, followed

by a rotation of atan(4/5) around x3. The lower diagram in the figure depicts

the angle between ROIs 1 and 3. This final ROI was chosen to bisect the

smaller inclusion because it does not reside within ROI 1 or 2. A compres-

sive force of 1377.19 mN was applied over six load increments resulting in

≈ 14% maximum strain. We arrived at this force load from experimental

measurements on a gelatin phantom with geometry and material properties

similar to Model 6. Data from said phantom are not included in this disserta-

tion because the US probe was not in full contact with the phantom surface

when compressive loads were first applied, meaning many of the elements in

the linear array recorded strong reverberations. Thus, the speckle-tracking

algorithm was unable to reliably estimate internal displacements.

Figure 6.7: ROIs where displacement data are acquired for Model 6. The lower diagram illustrates the
angle between ROIs 2 and 3.

Fig. 6.8 displays the geometry of Model 6, its Young’s modulus distri-

bution within Planes 1–3 (red-dotted box), and the spatial values computed

with simulated stress-strain data. Curves of the minimum, maximum, and

mean error calculated in Algorithm 2 are plotted left of the Sεx maps. Algo-

rithm 2 was tested with the simulated stress-strain data to ensure compatibil-

ity with geometrically non-linear analyses. Similar to preliminary results in

Sec. 6.2.3, the error curves provide a guideline for implementation in AutoP.

6.2.6 AutoP Parameters

Most of the training parameters are identical for the AutoP analyses de-

scribed in this chapter. Parameters that differed for each test are listed in

Table 6.1. Each CaNNCM was trained over at least five passes, with each
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Figure 6.8: Model 6 is a hemispherical object with two spherical inclusions. The red-dotted box displays
the Young’s modulus distribution. Also included are the spatial scaling values calculated after computing
stresses and strains from a forward FEA. The plot on the left are the mean, minimum, and maximum
error from Algorithm 2.

pass comprised of six load increments. We also implemented a four-load

“training window” and retained the convergence criteria Cn
max, Cn

µ defined

for 2-D CaNNCMs (both described in Sec. 5.2.7). To recapitulate, conver-

gence criteria were initialized as (0.65, 0.5), using the notation (Cn
max, C

n
µ ),

and reduced to (0.4, 0.3), (0.3, 0.2), and (0.2, 0.01) at the beginning of passes

2, 3, and 4, respectively. The last set of criteria were carried through the

remaining passes. The upper limit of AutoP iterations per training step was

set to three — which was shown to be sufficient in preliminary tests — in

order to avoid iterations do that continue indefinitely.

Case 2 sampling (Table 5.1) was used for all CaNNCMs trained with

simulated, noise-free force-displacement data. When experimental measure-

ments were entered into AutoP, Case 3 sampling was employed. Recall that

Case 2 means displacements were given at all nodes in the ROI for FEAε. On

the other hand, displacements are only imposed for nodes with a minimum

1.5 mm separation in Case 3 sampling.

A Young’s modulus value of 5 kPa and strain range of ±0.3 was se-

lected for linear-elastic pretraining. Following the same reasoning provided

in Sec. 6.2.3, ν = 0.5 is incompatible with (6.1), so we selected ν = 0.3. We

demonstrated in Chapter 5 that the choice of Poisson’s ratio for pretraining

did not have a significant impact on the material properties learned by the

CaNNCM within the field of view. The same will be shown for 3-D.

The MPN had two hidden layers of ten nodes each whereas the SN had

five hidden layers with 15 nodes each. Backpropagation-based training of
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the MPN was implemented with the RPROP algorithm [123] over 50 epochs.

Training of the SN was again implemented in TensorFlow using the Adam

optimizer (with default parameter settings) and a learning rate of 0.03 over

700 epochs. Frame invariance was also enforced, although the data had to

be rotated through three axes instead of one which quadruples the amount

of data. However, note that only the original stress-strain data computed in

FEAσ and FEAε are rotated. That is, after rotating 90◦ around the x1 axis,

the newly generated data is not then rotated around the x2 and x3 axes.

Spatial scaling values Sεx were computed in Algorithm 2. Depending on the

AutoP analysis, the number of iterations Nε and update value ηε varied,

but were within the ranges 150 ≤ Nε ≤ 500 and 0.25 ≤ ηε ≤ 1.5 (listed in

Table 6.1).

One of the major differences between 2-D and 3-D analyses is the amount

of data generated in FEAσ and FEAε. For example, one of the 3-D meshes

contains 7747 10-node, tetrahedral elements. A total of four stress-strain

pairs are computed within each element. Coupled with the four-load training

window and frame invariance, 7747× 4× 4× 4 = 495808 training pairs com-

prise the data set in each AutoP iteration. We have found this is too much

for training the MPN, although all pairs are used to compute Sεx. The MPN

is trained with a subset of the generated data by first randomly selecting a

number of elements. Then, all of the training data from this small set of ele-

ments is used for training. We keep all the data from the selected elements to

ensure the original stress-strain pairs and the corresponding frame-invariant

pairs are all included during training. If we had instead randomly selected

a subset of training pairs, it is likely all frame-invariant versions of a data-

pair would be included. The number of elements chosen varies based on the

AutoP analysis, but we used a maximum of 400 (400 × 4 × 4 × 4 = 25600

training pairs).

Once training completed, Young’s modulus distributions E(x) were com-

puted by each CaNNCM in the same manner described in Sec. 6.2.3. We

defined the strain vector ε = [0.0035 − 0.01 0.0035 0.001 0.001 0.001]T and

computed the stiffness matrix D̂ from the MPN (Appendix D). x was varied

over the domain of the mesh and input to the SN to compute Sεx. Both D̂

and Sεx were then input to (6.2).

Young’s modulus distributions estimated by the CaNNCMs were com-

pared to target maps, shown in Figs. 6.2,6.6, and 6.8. Errors were computed
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as

eEx =
|Etarget
x − ENN

x |
Etarget
x

, (6.17)

where Etarget
x is the target Young’s modulus distribution and ENN

x is com-

puted by the CaNNCM. However, the error was not calculated over the entire

domain of the mesh. Displacements are only provided within the ROIs during

AutoP training. Consequently, we expect the CaNNCMs to learn accurate

material properties in the regions where displacement data was supplied.

For this reason the error in (6.17) is only computed within the ROIs used for

training.

6.3 Results

Young’s modulus distributions reconstruction by CaNNCMs-1–3 trained with

simulated force-displacement from Model 2 are shown in Fig. 6.9. Modu-

lus errors computed via (6.17) are provided in Table 6.2. The number of

AutoP iterations performed during training and computation time are also

included in the table. When only data from ROI 1 was input during training

(Fig. 6.9a), CaNNCM-1 was able to learn the material properties within the

plane, but was unable to accurately reconstruct the geometry along the x3

axis. We do observe, though, that CaNNCM-1 has learned the inclusions

extend ≈ ±2 mm in the elevational direction. Hence our decision to separate

the ROIs by 4 mm. Using data from all five ROIs provided enough infor-

mation for CaNNCM-2 to learn the 3-D geometry, albeit only within the

region spanned by the ROIs (Fig. 6.9b). We show in Fig. 6.9c the result of

pre-training with ν = 0.3 when the force-displacement data were generated

with ν = 0.495. Similar to the 2-D results in Sec. 5.3.1, CaNNCM-3 learns

the correct material properties in the ROI even though a stiffening artifact

appears below image region.

Figs. 6.9d–e are 3-D renders of the inclusions from Figs. 6.9a–b. These

were created in ParaView by computing the Young’s modulus throughout

the volume and setting a minimum threshold for display. Therefore, only

modulus values above a given stiffness — here, set to 10 kPa — are shown.

Parts of the inclusions captured by the CaNNCMs are superimposed on the
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Table 6.1: AutoP training parameters specific to each trained CaNNCM. # Elem. refers to the number
of elements from which stress-strain data are collected for training the MPN. mnalg and ηε are the
parameters for Algorithm 2.

Alg. 2
CaNNCM-# Passes # Elem. Nε ηε
CaNNCM-1 5 400 150 0.5
CaNNCM-2 10 400 300 1.0
CaNNCM-3 5 400 300 1.0
CaNNCM-4 5 400 150 0.5
CaNNCM-5 7 400 300 1.0
CaNNCM-6 7 400 300 1.0
CaNNCM-7 10 400 300 1.0
CaNNCM-8 10 400 300 1.0
CaNNCM-9 10 400 300 1.0
CaNNCM-10 5 400 200 0.5
CaNNCM-11 7 400 300 1.0
CaNNCM-12 10 400 300 1.0
CaNNCM-13 5 400 300 0.5
CaNNCM-14 5 400 300 0.5
CaNNCM-15 5 400 300 0.5
CaNNCM-16 5 400 300 0.5
CaNNCM-17 13 75 500 1.5
CaNNCM-18 5 400 200 0.5
CaNNCM-19 5 400 200 0.5
CaNNCM-20 5 400 200 0.5
CaNNCM-21 5 100 200 0.25
CaNNCM-22 5 100 200 0.25
CaNNCM-23 7 100 200 0.25
CaNNCM-24 5 100 200 0.25
CaNNCM-25 5 400 200 0.5
CaNNCM-26 5 200 200 0.5
CaNNCM-27 15 100 400 1.0

target geometry to better visualize the effect additional ROIs have on recon-

structing material properties within a volume.

Fig. 6.10 contains the Young’s modulus reconstructions by CaNNCMs

trained with noise-free data from Model 4. Once again, including data from

only a single ROI (CaNNCM-4, 6.10a) does not provide the network with

enough information to learn volumetric properties. Adding data from ROIs 2

and 3, as was done for CaNNCM-5 (Fig. 6.10b), reveals the shape of the

spherical inclusion and the cylindrical shape of the other. Conversely, train-

ing CaNNCM-6 with data from ROIs 1, 4, and 5 (Fig. 6.10c) more clearly
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Figure 6.9: Young’s modulus reconstructions for Model 2 by CaNNCMs trained with simulated data from
ROIs (a) 1, (b) 1–5, and (c) 1 (data generated with ν = 0.495). The Planes are those specified in Fig. 6.2.
(d–e) Volumetric reconstruction of the inclusions from (a) and (b).

shows the size of the cylindrical inclusion while missing the 3-D structure of

the spherical inclusion. This is likely due to the fact that ROIs 4 and 5 do

not intersect the spherical inclusion and thus provide no directly meaningful

information about its material properties or shape. However, training with

all five ROIs (Fig. 6.10d) was sufficient for CaNNCM-7 to learn the geometry
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Table 6.2: Young’s modulus reconstruction errors and AutoP run time. Models are illustrated in Figs. 6.2
and 6.8. A ∗ indicates an increased force load to induce 5% strain and † denotes a geometrically non-linear
analysis. The last column indicates the figure number of the corresponding Young’s modulus image.

Case 2 sampling was used for all AutoP analyses with simulated data as inpute. A ‡ indicates data
generated with ν = 0.495 in the forward FEA.

Simulated Models

CaNNCM-# (Model #)[ROI]
Modulus Error

Iters.
Time

Fig.
Mean ± STD (min.)

CaNNCM-1 (1)[1] 0.0872± 0.1105 54 474 6.9a
CaNNCM-18 (1)[1]∗† 0.0864± 0.0895 36 396 6.9c
CaNNCM-2 (1)[1,2,3,4,5] 0.0913± 0.1062 96 3956 6.9b
CaNNCM-3 (1)[1]‡ 0.1326± 0.1664 36 318 6.15a
CaNNCM-4 (4)[1] 0.0782± 0.0743 54 471 6.10a
CaNNCM-5 (4)[1,2,3] 0.0844± 0.0793 60 1454 6.10b
CaNNCM-6 (4)[1,4,5] 0.0942± 0.0721 60 1481 6.10c
CaNNCM-7 (4)[1,2,3,4,5] 0.0886± 0.0699 96 3922 6.10d
CaNNCM-8 (4)[1,6,8] 0.1198± 0.0938 96 1428 6.11b
CaNNCM-9 (4)[1,6,7,8] 0.0974± 0.0650 42 824 6.11c
CaNNCM-10 (5)[1] 0.0955± 0.1030 36 179 6.12a
CaNNCM-11 (5)[1,2] 0.0890± 0.0896 60 606 6.12b
CaNNCM-12 (5)[1,2,3] 0.0762± 0.0787 96 1729 6.12b
CaNNCM-21 (6)[1] 0.2203± 0.1480 36 324 6.12a
CaNNCM-22 (6)[1]† 0.1631± 0.1280 36 470 6.12b
CaNNCM-23 (6)[1,2]† 0.1368± 0.0956 36 877 6.12c
CaNNCM-24 (6)[1,2,3]† 0.1316± 0.1375 30 992 6.12d

Data Sets are described in Sec. 6.2.4 and correspond to those defined in Chapter 4, Fig. 5.3, ableit with
different labels. Case 3 sampling (Table 5.1) was selected for all analyses.

Gelatin Phantom

CaNNCM-# (Model #)[Set]
Modulus Error, Mean ± STD

Iters.
Time

Fig.
3-D 2-D (min.)

CaNNCM-13 (2)[1] 0.2805± 0.2049 0.2136± 0.1264 45 260 6.13a
CaNNCM-19 (2)[1′]∗ 0.2406± 0.1702 0.2136± 0.1264 40 282 6.15b
CaNNCM-20 (2)[1′]∗† 0.2036± 0.1412 0.2136± 0.1264 40 141 6.15c
CaNNCM-14 (2)[6] 0.2811± 0.2182 0.2549± 0.1645 40 229 6.13b
CaNNCM-15 (2)[7] 0.3181± 0.2535 0.3208± 0.1905 40 229 6.13c
CaNNCM-16 (2)[8] 0.2963± 0.2268 0.2887± 0.1767 40 323 6.13d
CaNNCM-17 (2)[1,2,3,4,5] 0.3670± 0.2785 N/A 108 2313 6.13e
CaNNCM-25 (7)[9] 0.3045± 0.3263 N/A 37 286 6.17a
CaNNCM-26 (7)[9,10] 0.2270± 0.1964 N/A 43 1032 6.17b

of both inclusions. Volumetric renderings for Figs. 6.10a,d are displayed in

Figs. 6.10e–f.

Notice that the CaNNCMs are slightly underestimating the Young’s mod-

ulus of the inclusions as more data sets are input to AutoP. The difference
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Figure 6.10: Young’s modulus reconstructions by CaNNCMs trained on simulated data from Model 4.
Using ROIs (a) 1, (b) 1–3, (c) 1, 4, 5, and (c) 1–5. (e–f) Volumetric reconstruction of the inclusions from
(a) and (d).

is slight and the modulus errors reported in Table 6.2 increase marginally.

Interestingly, the spherical inclusion appears to be more affected. We hypoth-

esized it was because all five ROIs passed through the cylindrical inclusion,

but only ROIs 1–3 intersected the spherical one. To test this, we defined

ROIs 6–8 shown in Fig. 6.11a. ROI 7 is just ROI 1 rotated 90◦ around the

x2 axis. Moving this plane +10 mm and −10 mm along the x1 axis produces

ROIs 6 and 8, respectively.

We first trained CaNNCM-8 with simulated data from ROIs 1, 6, and
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(a)

Figure 6.11: (a) Additional ROIs for training CaNNCMs. Young’s modulus reconstructions by CaNNCMs
trained with data from ROIs (b) 1, 6, 8 and (c) 1, 6, 7, 8.

8. Two of the three ROIs pass through each inclusion. Fig. 6.11b is the

Young’s modulus reconstruction by CaNNCM-8. We note that with only

three planes, the shape of both inclusions is apparent and they exhibit ap-

proximately the same Young’s modulus. It is also clear the CaNNCM did

not quite correctly learn the mechanical properties of the background mate-

rial between the inclusions as they appear connected, hence the significant

error increase in Table 6.2. The inclusions are clearly separated within the

plane x3 = 0, though, the same plane in which ROI 1 resides. However,

including ROI 7 during training (ROIs 1, 6, 7 and 8 total) adds the extra

information necessary for CaNNCM-9 to learn the two inclusions are indeed

separate. Also note that both inclusions exhibit approximately the same

material properties, as expected.

Continuing the pattern observed with Models 2 and 4, CaNNCM-10

trained with only ROI 1 for Model 5 learns the material properties only within

143



Figure 6.12: Young’s modulus reconstructions by CaNNCMs trained with simulated data from Model 5,
ROIs (a) 1, (b) 1–2, and (c) 1–3. (d–e) Axial strain scaling values Sε22x from the corresponding SN in
(a–c). (g–i) Volumetric modulus reconstructions of the inclusions.
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the plane, as shown in Fig. 6.12a. Including data from ROI 2 (CaNNCM-

11, Fig. 6.12b) or training with data from all three ROIs (CaNNCM-12,

Fig. 6.12) provides the CaNNCM additional information necessary to learn

the 3-D Young’s modulus distribution of the inclusions, albeit the smaller

spherical inclusion becomes properly visible only when ROI 3 is included.

Given the previous results, this is expected because ROI 3 is the only data

set that fully intersects said inclusion. Figs. 6.12g–i better illustrate the effect

of ROIs on learning the inclusion shapes.

Figs. 6.12d–e show the axial strain scaling value Sε22x output from the SN

once AutoP training completed. Increased strain appears above and below

the large central inclusion and propagates through to the scaling values.

Even though it is not as apparent in Figs. 6.12a–c, the Young’s modulus

estimate in these regions is less than the expected value. Not only do the

inclusion shapes become more visible as additional ROIs are input to AutoP,

the “softening” artifact is reduced. These results provide some evidence that

proper sampling is not only important for estimating internal structure, but

for learning the correct material properties.

CaNNCMs-13–17 were trained with experimentally acquired force-displacement

measurements on Model 2 and the corresponding Young’s modulus recon-

structions are shown in Fig. 6.13. The first four were each trained with a

single data set (ROI 1) measured from the four sides of the phantom. As such,

they only capture the material properties within a single plane. CaNNCM-17

was trained with Data Sets -1–5 (i.e., ROIs 1–5) and was therefore able to

characterize more of the phantom volume at the cost of a significant increase

in computation time, according to Table 6.2.

In general, the modulus error was larger for the 3-D CaNNCMs compared

to their 2-D counterparts, the latter are included in Table 6.2 for direct

comparison. It is not clear why this occurred. From a qualitative perspective,

the 3-D Young’s modulus reconstructions are similar to the 2-D images for

CaNNCMs trained with the same Data Sets. In fact, for some cases the 3-D

version appears to better characterize the materials. This is best exemplified

by the results of CaNNCMs trained with Data Sets 6 and 8 (Data Sets

4 and 6 in chapter 5). The 2-D CaNNCMs did not correctly characterize

the lower inclusion as being the stiffest of the three. CaNNCMs-14 and 16

did accurately represent the relative modulus values. Nevertheless, the 3-D

CaNNCMs were able to estimate the Young’s modulus of the phantom within
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Figure 6.13: Maps of Young’s modulus by CaNNCMs trained with experimental force-displacement mea-
surements acquired on the gelatin phantom. Data Sets entered into AutoP: (a) 1, (b) 6, (c) 7, (d) 8, and
(e) 1–5.

the ROI with reasonable accuracy.

The caveat to the above is that the Young’s modulus distributions dis-

played in Fig. 6.13 were estimated with ν = 0.3 — the Poisson’s ratio used for

pretraining — instead of ν = 0.5. Adopting a Poisson’s ratio for an incom-

pressible material resulted in significantly over-estimated Young’s modulus

values. However, the modulus distributions in Fig. 6.9c were estimated with

ν0.495, which matches the Poisson’s ratio of the forward model. We do not

yet understand why the CaNNCMs trained with experimentally acquired

force-displacement data did not correctly capture the incompressible nature

of the gelatin phantom, but the CaNNCM trained with simulated data did.

If we compute the modulus error values in Table 6.2 by comparing the shear

modulus µ instead of Young’s modulus, we obtain the same values. Meaning,

the CaNNCMs appear to be learning the shear modulus, but data available

during training is insufficient for learning the Poisson’s ratio and thus the

Young’s modulus.

CaNNCM-27 was trained with the force-displacement measurements ac-

146



quired on the rabbit kidney phantom described in Sec. 5.3.2. For the 2-D

case, three different networks were trained with data from ROIs 1–3 as de-

fined for Model 2. Here, a single CaNNCM was trained with the same three

data sets, plus two more corresponding to ROIs 4 and 5, although the former

was positioned at x3 = 6 mm.2

Figure 6.14: (a) Young’s modulus reconstruction by CaNNCM trained with data acquired on rabbit kidney
phantom. (b) US B-mode images in the corresponding planes. (c) 3-D renderings of the renal cortex.

Fig. 6.14a displays the Young’s modulus reconstruction by CaNNCM-27.

The B-mode images in Fig. 6.14b were acquired in approximately the same

planes as the Young’s modulus images. Unlike the 2-D CaNNCMs, we do not

observe significant stiffening of the renal cortex in Plane 3 at the proximal

and distal edges. Nor is there evidence of the cortex appearing softer as the

probe moves in the elevational direction. In short, what appeared as possible

anisotropy of the renal cortex in 2-D does not appear for the 3-D CaNNCM.

2To be clear, the ROIs were positioned at x3 = 0, ±4 mm, +6 mm, and −8 mm. The
image plane resulting from aligning the probe at x3 = 8 mm did not intersect the kidney.
We did not know sampling requirements at the time of data acquisition and thus moved
the probe so the kidney was in view. If this experiment was performed again, we would
stick with the ROIs defined for Model 2.
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While this is insufficient to make a definitive conclusion, these results do

suggest 3-D modeling does reduce some of the artifacts and errors that occur

in a 2-D approximation.

Materials Under Large Deformation

Three different CaNNCMs were trained with data from Model 2 under large

deformation. All were trained with data from ROI 1 only. Fig. 6.15 is the

Young’s modulus distributed estimated by CaNNCM-18 trained with simu-

lated data and accounting for geometrically non-linear effects. It is nearly

indistinguishable from its linear counterpart (Fig. 6.9a). Two different CaN-

NCMs were trained with experimental measured data and the results are

shown in Figs. 6.15b–c. The first was trained under small-strain assumption

(CaNNCM-19, Fig. 6.15b) whereas the second accounted for geometric non-

linearity (CaNNCM-20, Fig. 6.15c). To be clear, both networks were trained

with the same force-displacement data, the difference resides in the FEA for-

mulation (small or large deformation) and the corresponding definitions of

stress and strain.

There are two particularly interesting aspects of these results. First, the

modulus errors listed in Table 6.2 are smaller compared to their geometrically

linear counterparts. Second, in regards to the CaNNCMs trained with ex-

perimental measurement data, CaNNCM-20 (trained under a large deforma-

tion assumption) resulted in a smaller modulus error compared CaNNCM-19,

even smaller than the results obtained with a 2-D CaNNCM. While certainly

inconclusive, these results suggest the magnitude of the applied force load

may effect the ability of CaNNCMs to learn material properties. We will

return to this idea in later work when CaNNCMs are further developed to

characterize the non-linear and viscoelastic properties of materials.

CaNNCMs-21–24 were trained with noise-free data from Model 6. Fig. 6.16

contains the modulus estimates by these networks. All AutoP analyses used

a geometrically non-linear FEA formulation. CaNNCM-21 and 22 were both

trained with data from ROI 1 only, but the MPN of the former learned the

relationship between Cauchy stress and Almansi strain whereas the latter

mapped Green strain to 2nd P-K stress. We performed these tests to il-

lustrate the importance of choosing an appropriate definition for stress and

strain. This is particularly important for a situation like Model 6 where the
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Figure 6.15: Young’s modulus reconstructions by CaNNCMs on objects under large deformation. (a)
Force-displacement data simulated for Model 2. (b–c) Experimental measurements on gelatin phantom,
but (b) not accounting for large deformation and (c) incorporating geometric non-linearity in AutoP.

displacements become fairly large. Figs. 6.16 are the modulus estimates by

CaNNCMs-21 and 22, respectively. There are larger artifacts produced by

CaNNCM-21 compared to CaNNCM-22 and the latter resulted in a lower

modulus error (Table 6.2).

Figs. 6.16 display the Young’s modulus distributions reconstructed by

CaNNCM-23 (trained with ROIs 1–2) and CaNNCM-24 (trained with ROIs 1–

3). Volumetric representations of the inclusions for Figs. 6.16b–d are shown

in Figs. 6.16e–g. Following the pattern observed in the previous results,

multiple ROIs are necessary to reveal the 3-D structure of the inclusions.

Young’s modulus distributions reconstructed by CaNNCMs-25–26, trained

with force-displacement data measured experimentally on Model 7, are pre-

sented in Fig. 6.17. The same observations hold here as for previous results:

the spherical shape of the inclusion only becomes apparent when multiple

data sets are used for training. More importantly, the external shape of the

phantom was estimated using a Microsoft Kinect. We did not expect the
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Figure 6.16: Young’s modulus reconstructions by CaNNCMs trained with simulated force-displacement
data from Model 6. Displacements input to AutoP from ROIs (a) 1, but not accounting for geometric
non-linearity, (b) 1, (c) 1–2, and (d) 1–3. (e–f) Volumetric reconstruction of the inclusions, corresponding
to (b–d).

results of these two tests to reveal new insights into the sampling require-

ments for 3-D CaNNCM training. Rather, they suggest the networks are

robust to geometric modeling errors, providing evidence for the feasibility of

translating this technology to a clinical setting.

6.4 Discussion

This chapter introduced the development and first implementation of 3-D

CaNNCMs in AutoP. Using only measurements of axial force applied by the

probe and axial displacements within finite planes, 3-D CaNNCMs are able

to learn the spatial distribution of linear-elastic material throughout a vol-

ume and reveal the structure of internal objects. Unlike prior approaches to

150



Figure 6.17: Young’s modulus reconstruction by CaNNCMs trained with experimental force-displacement
measurements on Model 7, using Data Sets (a) 9 and (b) 9–10.

3-D QUSE, our method does not “stack” a sequence of planar Young’s mod-

ulus reconstructions nor require full 3-D displacement data within a volume.

AutoP exploits to information content of quasi-statically applied loads and

finite element analysis to recover material properties from a small number of

strategically selected force-displacement measurements.

Including displacements within a single plane during training provides

enough information for the CaNNCM to learn the material properties within

the plane, but very little is learned about the 3-D structure. For Model 2,

we demonstrated that training with five parallel planes separated by 4 mm is

sufficient to reconstruct the Young’s modulus within the 16 mm elevational

span of the data. Separation of the planes was determined through prelim-

inary testing. In Fig. 6.9a, where CaNNCM-1 was trained with data from

ROI 1, the network learns some of the 3-D shape of the inclusions. More

specifically, the Young’s modulus extends ≈ ±2 mm in the x3 direction.

Assuming the same holds for a network trained with any one data set, the

reconstructed volumes “connect” if the data planes are separated by 4 mm.

Hence, ROIs 1–5 for Models 2 and 4 are separated by 4 mm.

Results from Model 4 revealed some of the more interesting effects of

spatial sampling. Training with ROIs 1–3 was sufficient for CaNNCM-5 to

learn the full shape of the spherical inclusion and ≈ 10 mm length of the

cylindrical one. Increasing the distance between the planes of data to 8 mm

and training CaNNCM-6 with ROIs 1, 6, and 8 resulted in the network re-
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constructing more of the cylindrical inclusion volume while capturing very

little of spherical inclusion structure. These results suggest that an effec-

tive sampling strategy is one where planes of data 1) intersect objects of

interest and 2) are sufficiently close to interact with each other. With this

hypothesis, we defined ROIs 6–8 for Model 4. Training CaNNCM-8 with

data from ROIs 1, 6, and 8, resulted in a Young’s modulus reconstruction

where the shapes of both inclusions are mostly apparent, but the network

learned incorrect mechanical properties of the background material between

the inclusions. Notice, though, that CaNNCM-8 did capture the correct

Young’s modulus between the inclusions at x3 = 0, the same plane of ROI 1.

The inclusions connect at ≈ x3 = ±8 mm, suggesting the distributed effects

of displacements applied at ROIs 1, 6, and 8 in FEAε do not reach these

regions. Following our prior reasoning, including displacement data within a

plane between the inclusions should be sufficient for the network to learn the

correct material property distribution. This hypothesis was corroborated by

training CaNNCM-9 with ROIs 1, 6–8. Displacements within ROI 7 provided

the additional information necessary for the network to more accurately learn

the Young’s modulus distribution of the model.

The choice of ROIs for Model 5 was informed by the results from Models 2

and 4. With only three well-placed data planes for training, CaNNCM-12

was able to learn the shape and material properties of both spherical inclu-

sions. ROIs 1 and 2 for this Model were orthogonal and thus maximize the

information content while minimizing redundancy. For example, if ROI 2

was only rotated 10◦ around the x2 axis instead of 90◦, the amount of new

information about the shape of the central inclusion in the x3 direction com-

pared to ROI 1 would be minimal. Given the symmetry of spheres, two

orthogonal ROIs appear to be sufficient for a CaNNCM to learn their shape.

More complex structures would likely require several more data sets, either

acquired in parallel planes,through several rotation angles, or a mix of both.

It is reasonable to believe that CaNNCM-12 could have achieved the same

results if multiple parallel ROIs were input to AutoP in lieu of orthogonal

planes of data, but several more data sets would have been required to fully

sample both inclusions. This is not an issue from a sampling perspective;

rather, more data sets means more FEAs must be solved, causing a signifi-

cant increase in training time. The best sampling strategy will likely depend

on the task. If the goal is to accurately reconstruct the 3-D material prop-
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erty distribution of a particular structure, several ROIs should be acquired by

rotating the probe, effectively acquiring a cylinder of force-displacement mea-

surements encompassing said structure. More exploratory imaging where the

goal is to reconstruct the material properties of a large volume would benefit

more from acquiring data in several parallel ROIs.

CaNNCMs trained with data from Models 4 and 5 in particular begin to

touch on the idea of a sufficient training data set. As we discussed, CaNNCM-

8 (Fig. 6.11b) was unable to learn that the two inclusions were discrete struc-

tures. Only after ROI 7 was included to train CaNNCM-9 (Fig. 6.11c) did

the network learn the correct inclusion geometries. This implies that data

planes which do not directly intersect structures of interest can be important

to clearly delineate internal boundaries. On the other hand, maps of Sε22x in

Figs. 6.12d–f illustrate the importance of sampling for learning the correct

material properties. However, the artifacts surrounding the central inclu-

sion that propagate through to the Young’s modulus reconstruction could

potentially be mitigated by allowing Sσ to vary spatially. The source of this

artifact is particularly difficult to trace because it does not appear when Sε is

computed with known stresses and strains (e.g., Figs. 6.4a–c). Future work

will involve investigations into reformulating Algorithm 2 to simultaneously

compute Sεx and a spatially varying Sσ.

Young’s modulus reconstructions by CaNNCMs-1, 6, 7, 8, and 17 were

comparable to their 2-D counterparts, but raise the issue of how to prop-

erly estimate material parameters from a trained network. Recall that the

modulus distributions were estimated with ν = 0.3, the same Poisson’s ra-

tio selected for pre-training, instead of the expected ν = 0.5. Conversely,

the Young’s modulus was estimated by CaNNCM-3 using ν = 0.495, match-

ing the Poisson’s ratio used for generating the simulated data, not the pre-

training value. It appears noise in the force-displacement measurements af-

fected the ability of the CaNNCMs to learn the correct Poisson’s ratio. How-

ever, the networks learn accurate values of the shear modulus, which does

not depend on Poisson’s ratio.

The same issue occurs for CaNNCMs-19 and 20 that were trained with

experimentally acquired force-displacement data where the latter accounted

for non-linear geometric effects in the FEA formulation. Interestingly, this

CaNNCM provided the most accurate Young’s modulus estimate, even better

than the 2-D CaNNCMs. We have trained other CaNNCMs on simulated
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data from Model 2 under very small deforming forces where the total strain

was ≤ 0.005. The results are not shown, but the networks were unable to

learn the correct material properties of the inclusions. While inconclusive, the

results of CaNNCMs trained with data under large and very small deforming

forces suggest the importance of applying a sufficiently large load to properly

probe the material properties. Increasing the force load effectively increases

the SNR of the force-displacement measurements.

Model 6 was intended as a more extreme case of a material undergoing

large deformation. As we expected, a CaNNCM trained using the Cauchy

stress - Almansi strain relationship introduced more errors into the Young’s

modulus reconstruction than a CaNNCM learning the relationship between

2nd P-K stress and Green strain. Even though both relationships describe

the same material, the current CaNNCM architecture is unable to account for

a changing reference configuration. That said, more complex materials may

be better described by relating stress and strain rates, in which case Cauchy

stress is the better choice. Previous investigation with NNCMs and AutoP

have described non-linear and time-dependent materials [102, 103, 104, 106,

155], some in terms of stress-strain rates, hence we believe the CaNNCM

architecture can be adapted to accommodate different types of stress-strain

relationships.

We introduced a method to estimate external geometry with Model 7.

To the best of our knowledge, all previous investigations involving AutoP

assumed the surface shape was known. Imaging of an unconfined breast

precludes knowledge of the tissue shape and therefore requires a method to

estimate surface geometry. A Microsoft Kinect v2 was chosen due to its low

cost and the available software development tools. The shape of Model 7

(and Model 5) was chosen because it loosely resembles the shape a of breast

under gravity loading. At this time, we have not evaluated the ability of

the Kinect to capture sharp edges and corners (e.g., Model 2) because it is

unlikely for breast tissue to conform to such shapes.

Finally, the values listed in Table 6.1 provide some insight into how the

AutoP training parameters should be selected. Increasing the number of

passes as the number of data sets increases is fairly intuitive: more AutoP it-

erations are required to reconcile the stresses and strains generated in FEAσ

and FEAε of a larger force-displacement data set. The number of elements

from which stress-strain data were used for training the MPN is generally
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inversely proportional to the number of data sets. We selected the of this

subset to keep the number of stress-strain pairs relatively constant. For ex-

ample, only one data set was used to train CaNNCM-13, so the number of

stress-strain pairs used for training the MPN was 400 × 4 × 4 × 4 = 25600.

We decreased the number of elements for CaNNCM-17 to 75, reducing the

training data set to 75 × 5 × 4 × 4 × 4 = 24000. Nε and ηε were similarly

adjusted based on the number of force-displacement data sets. With more

data, Algorithm 2 requires more iterations to converge, but more iterations

increases the computation time. Increasing ηε can also increase the rate of

convergence. The caveat is that selecting a large value of ηε can cause the

algorithm to become unstable, which is why we chose ηε = 0.25 for Model 6.

Therefore, both Nε and ηε are slightly increased as more force-displacement

data sets are input to AutoP to decrease the computation required for Algo-

rithm 2.

6.5 Conclusion

3-D Cartesian neural network constitutive models trained in the Autoprogres-

sive method can learn linear-elastic material properties throughout a volume

from force-displacement measurements acquired in planes. The ability of

CaNNCMs to learn full 3-D structure is dependent upon the number and lo-

cation of measured data sets. Noise in the force-displacement measurements

not only causes geometric errors, but appears also to reduce the ability of a

3-D CaNNCM to learn the correct Poisson’s ratio even though it correctly

identifies the shear modulus. Current limitations of the method as applied

to linear-elastic media suggest a need for more efficient FEA computation to

further develop this method to non-linear and viscoelasticity imaging.
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Chapter 7

Concluding Remarks

Elasticity imaging provides a means to probe and map the mechanical prop-

erties of tissues to visualize a source of contrast not captured by other med-

ical imaging modalities. Quasi-static ultrasonic elasticity imaging is a well-

defined method to reconstruct images of axial strain, but quantifying material

properties remains a challenge. Much effort over the last couple of decades

has been spent on model-based approaches to the inverse problem in QUSE.

These methods take advantage of mechanical principles and physical laws to

extract information from measurement data and estimate material parame-

ters associated with a pre-selected constitutive model. However, model-based

methods may discard important information about mechanical properties en-

coded in the data. The mismatch between assumed constitutive model and

true material properties governing the measurements results in modeling er-

rors. Not only can such errors introduce artifacts in to the final elastograms

and make their interpretation more difficult, it is not always obvious when

a modeling error occurs. Model-based inverse methods are limited in their

ability to explore and discover material properties most relevant to clinical

imaging.

Our solution is to use a data-driven approach to the inverse problem.

Replacing the classic constitutive model with a neural network constitutive

model provides the flexibility to characterize virtually any material behavior

expressed by measured data. In QUSE, these measurements are in the form

of compressive forces applied by the US probe along with a sparse sampling of

surface and internal displacements. Measured data are input to the Autopro-

gresssive method to train NNCMs on the stress-strain behavior governing the

force-displacement measurements. Only after training in AutoP are NNCMs

interrogated to estimated material parameters. At this time, we are limited

to estimating Young’s modulus (or shear modulus) due to the architecture

of NNCMs used for QUSE.
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We first adapted NNCMs and AutoP for elasticity imaging in Chapter 3.

When the internal structure of the object is known, we demonstrated that

displacement estimates at a few well-chosen locations are sufficient for train-

ing NNCMs on the linear-elastic stress-strain behavior. The fully trained

networks were then used to reconstruct maps of all stresses and strains. To

the best of or knowledge, this is the first time accurate estimates of all stresses

and strains were measured from force-displacement measurements without a

constitutive model assumption. Maps of these fields were then used recon-

struct accurate estimate of the Young’s modulus for gelatin phantoms. We

also presented results of imaging a rabbit kidney embedded in a gelatin cube

in both 2-D and 3-D. Young’s modulus estimates of the kidney structures

were in agreement with reports by other investigators.

Imaging in a clinical setting precludes prior knowledge of internal struc-

tures. Interfaces between regions exhibiting unique material properties will

not necessarily match boundaries observed in B-mode imaging. Nor are the

transitions between regions always discrete. The NNCMs in Chapter 3 are

thus not suitable for clinical breast imaging because they 1) rely on a FE

mesh conforming to both internal and external geometry and 2) only capture

discrete material property distributions. We created Cartesian NNCMs to

overcome these limitations (Chapter 4). Splitting the CaNNCM architecture

into a material property and spatial network was not an obvious solution. We

tested a multitude of network structures before discovering a pair of cooperat-

ing networks was an appropriate choice for data-driven QUSE. We emphasize

the cooperative nature of the MPN and SN because generative adversarial

networks are currently of major interest and operate on very different prin-

ciples. Using a pair of ANNs allows the overall problem to be split into two

smaller tasks: the MPN learns a “reference” material property while the SN

learns spatial variations of this reference. In case of linear-elastic materials,

the SN effectively maps the relative stiffness.

Given that CaNNCMs are tasked with learning both material property

and geometric information, it was necessary to increase the sampling density

of displacements input to AutoP. In Chapter 5, we investigated the effects of

sampling density on Young’s modulus reconstruction. The negative effective

of noise in the displacement measurements can be reduced by using fewer

samples, with the caveat that decreasing the sampling density reduces the

resolution of the final Young’s modulus image. For the phantom geometries
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explored, we concluded that imposing displacements at points separated by

1.5 mm maintained accurate Young’s modulus estimates without significantly

losing resolution. This separation may have some dependency on the FE

mesh. A more refined mesh (i.e., one comprised of smaller elements) may

permit a higher sampling density to better resolve fine structures. Conversely,

a coarser mesh may require even sparser sampling to mitigate the effects of

noise.

Extending CaNNCMs to 3-D imaging (Chapter 6) created a new challenge

in terms of sampling. We investigated strategies to effectively and efficiently

acquire force-displacement measurements for accurately reconstructing the

Young’s modulus distribution within a volume. The most straight-forward

method is to scan the US probe in the elevational direction to collect a series

of measurements in parallel planes, thus filling a volume. But, given the way

in which quasi-static loads propagate through a body, the distance between

data planes need not be on the order of elevational width of the ultrasound

beam. And while this method of scanning might be effective, it may not

be the most efficient. If the task is to estimate the material properties and

geometry of a particular structure, a more efficient sampling strategy may

be to rotate the probe to acquire force-displacement measurements within

a cylindrical volume. These insights could be particularly important for

imaging in a clinical setting. First, a raster scan to coarsely estimate material

properties and geometry, followed by a finer sampling of suspicious lesions.

7.1 Future Directions

7.1.1 Human Imaging

Training CaNNCMs requires knowledge of external object shape along with

measurements of the force applied by the US probe and its displacement as

compressive loads are applied. We described a method to estimate surface

shape using a Microsoft Kinect v2 in Appendix G. Measuring forces applied

by the US probe has been done by other researchers (e.g., [168, 24, 34]). The

more difficult problem is measuring probe displacement and orientation in

relation to the tissue. At this time, we do not know how errors in probe

displacement estimates will affect the ability of CaNNCMs to learn material
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property distributions. For more precise free-hand QUSE, we can adapt a

co-robotic system (e.g., [169]). We have also developed a preliminary method

to track the US probe using RGB imaged captured by the Kinect, although

it introduces more uncertainty than a robotic arm. Future investigation will

involve evaluating the trade-off between equipment cost and imprecision.

7.1.2 Estimating Non-linear and Viscoelastic Parameters

CaNNCMs are currently only capable of characterizing linear-elastic material

properties. We introduced in Sec. 6.3 a method to accommodate materials

under large deformation which may be sufficient for estimating hyperelastic

material parameters, although this is untested. Given prior studies involving

AutoP to characterize non-linear, time-dependent, and rate-dependent ma-

terials [99, 100, 101, 102, 103, 104, 106, 107], we are reasonably certain the

CaNNCM architecture can be modified to learn more complex mechanical

behaviors. Investigators in the previous studies typically introduced history

points at the input of the NNCM to provide the additional information nec-

essary for the network to learn such properties. If a similar approach is to

be used for CaNNCMs we must determine if history points are input to the

MPN, SN, or both, and the merits of each option.

In addition to determining an appropriate CaNNCM architecture, char-

acterizing non-linear and viscoelastic material properties will likely require

new sampling strategies. Increased force load to cause larger deformation

will presumably be necessary to probe non-linear mechanical behaviors. We

provided an example in Chapter 1 of other investigators estimating the lin-

ear and non-linear parameters of the Veronda-Westmann model constitutive

model. The objective function defined by Oberai et al. [50] in (1.12) required

two displacement fields: one under small deformation the other induced by a

larger deforming force. We expect similar principles to apply for CaNNCMs.

Viscoelasticity imaging will necessitate sampling through time as well as

space. Current model-based approaches to quasi-static viscoelasticity imag-

ing rely on tightly controlled force-loading (usually a step or ramp force) and

observation of tissue creep or relaxation [51, 24, 53, 54]. Strict adherence to

load application and measurements of tissue motion is required by the chosen

viscoelastic model. Given the flexibility of CaNNCMs it is unclear how these
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sampling requirements will translate to CaNNCMs.

7.1.3 Decreasing AutoP Training Time

The most important drawback to using CaNNCMs and AutoP for QUSE is

arguably the amount of time required for training. Clinical use of this method

will require a dramatic reduction in computation time. Ideally, CaNNCMs

will be trained in real-time to allow feedback during the imaging exam. To

achieve this goal, we have identified the processes in AutoP that must accel-

erated: 1) FEAσ and FEAε, 2) computing Sεx, and 3) training the SN.

We first brought attention to the computational load for solving FEAs

in Sec. 3.4.4. As we discussed, there is effort by other groups to implement

FEA methods on GPUs, reducing the solve time to seconds (e.g., [125, 126]).

We hope to achieve similar speeds with a custom FEA solver specifically

suited for CaNNCMs and AutoP. Similarly, computing Sεx for 3-D CaNNCMs

can take minutes, depending on the size of the FE mesh, number of force-

displacement measurements input to AutoP, the size of the training window,

and Nε. Algorithm 2 increases the computation speed by orders of magnitude

on a CPU compared to Algorithm 1 and made 3-D imaging feasible. This

speed was obtained by re-casting the algorithm as a series of matrix-matrix

and matrix-vector multiplications, operations that are well-suited for GPUs.

Therefore, it is reasonable to believe we can further increase the speed of

Algorithm 2 to real-time.

Reducing training time for the SN is trickier. The TensorFlow implemen-

tation of training used for the SN is GPU-enabled but is not fast enough for

real-time imaging. The primary cause of the sheer number of training pairs.

For example, a mesh comprised of 10000 10-node tetrahedral elements will

generate 40000 values of Sεx distributed throughout the volume. That is an

average distance of 0.25 mm between points in the body for a 50×50×50 mm3

cube. Unless the goal is to resolve structures with very small features, there

is no need to training with all available data. A straight-forward way to

achieve a speed increase is to reduce the number of training pairs by select-

ing a subset of all Sεx. The difficulty arises in determining an appropriate

subset to simultaneously reduce training time and preserve resolution. One

simple idea is to sparsely sample Sεx in homogeneous regions and increase
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sampling density within and around finer structures. Of course, such a het-

erogeneous sampling density cannot be defined before training because the

internal geometry is unknown. An adaptive strategy could be implemented

based on the spatial distribution of displacement errors computed in (5.11).

7.1.4 Heterogeneous Constitutive Modeling

Model-based inverse methods for QUSE assume the same constitutive model

for all tissues in the image region. As we further develop CaNNCMs, it may

be possible to estimate different material parameters based on the mechanical

properties learned by the network. For example, a lesion could exhibit strain-

stiffening behavior whereas the surrounding tissue expresses strain-softening

properties. A model-based approach would assume all tissues either stiffen or

soften under an increasing compressive load and therefore discard important

information about the distribution of material properties. Conversely, the

CaNNCM architecture could potentially be adapted to learn such a hetero-

geneous distribution of mechanical behaviors, further adding to their capa-

bilities for discovering material parameters most relevant to clinical imaging.
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Appendix A

Enforcing Frame Invariance

Stresses and strains generated in FEAσ and FEAε are with respect to one

coordinate system. Much information about the material properties are em-

bedded within these data, but the concept of frame invariance (or objectivity)

is not captured. Stated simply, frame invariance means the description of the

material properties is unchanged for different reference frames (e.g., for dif-

ferent coordinate systems) [170, 84]. The structure of the NNCMs does not

inherently encode this behavior. Therefore, the training data can altered

to express frame invariance, allowing the network to learn this fundamental

property. One simple method is to express the stress and strain tensors with

respect to a new coordinate system and add the rotated data back to the

original set.

Consider the stress tensor σ. It can be expressed with respect to a new

coordinate system by through a rotation defined by R (where RTR = I).

Given that σ is a 2nd order tensor, the rotation is performed as a similarity

transform:

σ′ = RσRT . (A.1)

Matrices Rx1 , Rx2 , and Rx3 rotate the tensors about x1, x2, and x3,

respectively. NNCMs do not require the stress-strain data to be rotated

through many angles. The computational burden can be significantly reduced

by rotating the data π
2

around each axis. Each rotation matrix is thus defined
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as

Rx1 =

 1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)

 θ=π
2−−→

 1 0 0

0 0 −1

0 1 0

 (A.2)

Rx2 =

 cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 θ=π
2−−→

 0 0 −1

0 1 0

1 0 0

 (A.3)

Rx3 =

 cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 θ=π
2−−→

 0 −1 0

1 0 0

0 0 1

 . (A.4)

Carrying out the similarity transform in (A.1) using the rotation matrix

Rx1 , the stress tensor becomes

σ′ = Rx1σR
T
x1

=

 σ11 −σ13 σ12

−σ13 σ33 −σ23

σ12 −σ23 σ22

→



σ11

σ33

σ22

−2σ13

2σ12

−2σ23


. (A.5)

The vector form of the second order stress tensor is used for FEA and as the

NNCM output. By choosing an angle of π
2
, rotation is performed by simply

swapping components of the stress vector (and multiplying by −1 for some

shear components). Following the same procedure, the rotated stress tensors

found by application of Rx2 and Rx3 are

Rx2 :



σ33

σ22

σ11

−2σ23

−2σ13

2σ12


, (A.6) Rx3 :



σ22

σ11

σ33

−2σ12

−2σ23

2σ13


. (A.7)

The above apply to 3-D NNCMs. Stresses and strains in 2-D plane-stress

analyses — the approximation for 2-D NNCMs — are only rotated about the
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x3 axis:  σ11

σ22

2σ12

 Rx3−−→

 σ22

σ11

−2σ12

 (A.8)

Rotations have only been shown for stresses, but the same methods are

also applied to strain ε. Thus, for 2-D analyses, the number of stress-strain

pairs are doubled about enforcing frame invariance to the data. For 3-D, the

number quadruples.
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Appendix B

Accuracy of Displacement Estimates

Building accurate informational models depends on acquiring accurate force

and displacement measurements. We were interested in evaluating the dis-

placement errors introduced through speckle-tracking and how those errors

propagated through the load increments. Because displacement estimates

were made between consecutive RF frames, estimates for the later load in-

crements are the sum of many displacement maps. Quantifying displacement

errors and tracking how they changed with successive load increments allowed

us to ensure the effects of displacement errors on ANN training with AutoP

would be minimal.

A 50x50x50mm3 homogeneous phantom was constructed and imaged in

the same manner described in Section 3.2.1. After creating the FE model

(here, a rectilinear mesh was used for the phantom), a version of FEAε was

solved for the model where only probe displacements were applied. A total of

10 load increments were applied to compress the phantom 1.5mm. Because

the phantom was homogeneous and the FEA was displacement controlled,

the displacements computed at the nodes are the same regardless of the

stiffness of the phantom.

Axial node displacements estimated from the US images were compared

to those computed in the FEA using the equation

eni =
|uni − ûni |
max(|uni |)

(B.1)

where i indexes the nodes, n indexes the load increment, eni is the displace-

ment error, uni is the displacement computed in the FEA, and ûni is the

displacement estimated via speckle tracking. This is the same error compu-

tation for convergence described in Section 3.2.3. A histogram of the axial

displacement errors for all 399 nodes in the imaged region across the ten

load increments is plotted in Fig. B.1a. To compare these errors to the con-
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(a) (b)

Figure B.1: (a) Histogram of displacement errors. (b) Both cnµ and cnmax, where n is the load increment,
increase approximately linearly, suggesting the speckle-tracking produces a consistent, biased error.

vergence criteria specified in Sections 3.2.5 and 3.2.7, cµ = 0.000022 and

cmax = 0.0001. These values are several orders of magnitude smaller than

the chosen convergence criteria, suggesting that the test for convergence in

each iteration of AutoP will be mostly affected by the material properties

learned by the ANNs, not errors caused by speckle-tracking.

Tracking cµ and cmax through the load increments, it was found that both

increased monotonically and approximately linearly, as shown in Fig. B.1b.

A monotonically increasing error implies that the displacement errors are

biased and the linearity suggests the error in displacement estimates between

RF frames is consistent. But, as just mentioned, the errors are well below

the set convergence criteria and should not have a significant impact on the

displacement error calculation. It is a point to consider, though, if applied

loads produce large deformations over many increments.
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Appendix C

The Effect of Noise on Stress-strain Training
Data

Classic mathematical inverse methods typically require many samples of data

to reduce the effect of noise on the solution. It seems counter-intuitive, then,

when we claim that using a smaller number of displacements in FEAε enables

the ANNs to more reliably learn the underlying mechanical properties. Our

new method of elasticity imaging represents a paradigm shift that appears

to not follow the same rules as classical inverse methods.

Current elastographic modalities formulate inverse problems that involve

first or second order derivatives that are highly sensitive to noise. To combat

noise amplification, those methods use sums or averages over many sam-

ples. We, however, are not directly solving the inverse problem. The sparse

measurements of force and displacements are distributed across the entire

mesh of the two FEA elements in AutoP and iteratively reconciled through

the ANNs. Since AutoP model building occurs after several load steps and

passes, the influence of noise introduced by sparse measurements at each load

step is diminished through the process of FEA reconciliation. The effect of

noise in the pipeline can best be demonstrated with a small example.

Using measurements from Phantom 1, consider two situations: 1) axial

𝐹𝐸𝐴𝜀 𝐹𝐸𝐴𝜀

(a)

(b)

Figure C.1: Comparing the effects of using many noisy displacements to only a few. Using many noisy
displacements (a) causes large variance in the stress-strain training data (b) that have a negative impact
on the ability of the ANNs to learn the underlying mechanical properties.
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displacements are provided at every node in the imaged region (Fig. C.1a,

left) and 2) axial displacements are provided at three locations within the

inclusion (Fig. C.1a, right) in FEAε. The two axial strain images in the

center of Fig. C.1a visualize the effect of noise on the resulting strain. Note

that the color scales are different to help visualize the axial strain distribution

in both cases. Going one step further, the axial stress-strain data is plotted

in Fig. C.1b for NNsoft and NNstiff . These plot were obtained by pairing

stresses from FEAσ with strains from FEAε and pulling out only the axial

components.

It is the job of the ANNs to generalize the data in Fig. C.1b. Note that

the stress and strain vectors each have three components in 2-D (six in 3-D),

meaning the Fig. C.1b only provides a partial picture of the function being

approximated by the ANNs. However, the plots do provide a useful com-

parison. In the case of many displacements, the increased variance present

in the stress-strain data may cause the ANNs to learn mechanical behaviors

that are non-physical or incorrect. Using fewer displacements causes some

variance that influences changes in the ANN connection weights during train-

ing. As AutoP iterations progress, the smaller variations caused by using few

displacements in FEAε allow the ANNs to gradually learn the correct ma-

terial properties instead of attempting to force large changes in the learned

behavior at once.
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Appendix D

Calculating Stiffness Matrix from Material
Property Network

Constructing the global tangent stiffness matrix in the solution of a FEA

requires the stiffness matrix D. Typically, D is known or computed from a

pre-selected material model (e.g., linear-elasticity). Hashash et al. [138] de-

rived an analytical expression for the stiffness matrix based on the connection

weights and node activations of a MPN for a given strain input.

Figure D.1

Fig. D.1 is an annotated diagram of a MPN with two hidden layers. This

notation is used in the following derivation of the expression to compute D.

First, the stresses σ̂ and strains ε̂ at the output and input of the MPN,
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respectively, are scaled versions of the actual stresses and strains:

σi = Sσiσ̂i

εj = Sεjx ε̂j,

where the subscripts i, j index the components of the vectors.

The stiffness matrix is then found by computing the partial derivative of

each component of stress with respect to each component of strain:

Dij =
∂σi
∂εj

=
∂Sσiσ̂i
∂S

εj
x ε̂j

(D.1)

=
Sσi

S
εj
x

D̂ij︷︸︸︷
∂σ̂i
∂ε̂j

. (D.2)

Define the activation fn and output ψn of node n in a layer as

fn =
M∑
m=1

wnmψm

ψn = tanh(βfn).

Note that β is included for generality but is set to 1 for all applications

described in this thesis.

The stiffness matrix D̂ in equation (D.2) is then found through repeated

application of the chain-rule:

D̂ij =

1︷︸︸︷
∂σ̂i
∂fi
·

2︷︸︸︷
∂fi
∂ψc
·

3︷︸︸︷
∂ψc
∂fc
·

4︷︸︸︷
∂fc
∂ψb
·

5︷︸︸︷
∂ψb
∂fb
·

6︷︸︸︷
∂fb
∂ψj
·

7︷︸︸︷
∂ψj
∂ε̂j

. (D.3)

Each term in (D.3) is easily found from the definition of the node activa-
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tion and output:

1)
∂σ̂i
∂fi

=
∂ψi
∂fi

= β(1− tanh(βfi)
2

2)
∂fi
∂ψc

=
∂

∂ψc

C∑
c=1

wicψc =
C∑
c=1

wic

3)
∂ψc
∂fc

= β(1− tanh(βfc)
2)

4)
∂fc
∂ψb

=
B∑
b=1

wcb

5)
∂ψb
∂fb

= β(1− tanh(βfb)
2)

6)
∂fb
∂ψj

=
J∑
k=1

wbk

7)
∂ψj
∂ε̂j

= β(1− tanh(βε̂j)
2).

Combining all these terms and placing back into (D.3), the full expression

for D̂ becomes

D̂ij = (1− tanh(fi)
2)

C∑
c=1

[
wic(1− tanh(fc)

2)× (D.4)

B∑
b=1

{
wcb(1− tanh(fb)

2)
J∑
k=1

(
wbk(1− tanh(ε̂j)

2)

)}]
.
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Appendix E

Simulating RF Echo Frames of Phantom
Under Compression

We generated simulated RF echo data sets to investigate the effect of noise

on CaNNCMs trained in AutoP. The goal was to emulate the experimental

force-displacement data acquisition process. RF frames were generated us-

ing a linear systems approach, where each frame g(x, y) was computed by

convolving an US pulse H(x, y) with field of scatterers f(x, y) and adding

Gaussian white noise: g(x, y) = [H ∗ f ](x, y) + n(x, y). Two sets of RF

frames were generated with echo SNR values of 30 and 15 dB. Each data

set contained a total of five RF frames: a pre-deformation frame and four

post-deformation frames with increasing compression.

Creating the pre-deformation RF frame required four steps: 1) generate

the US pulse, 2) create the field of scatterers, 3) perform the convolution

and add Gaussian white noise to obtain a specified SNR. Simulated post-

compression frames followed steps (2)–(3), albeit in step (2) the existing

field of scatterers was deformed, not recreated. We will describe in the last

section how we implement the deformation.

[1] Creating US Pulse H Our goal was to roughly approximate images

acquired by a VF10-5 linear array probe and a Siemens Antares scanner.

The sampling frequency for constructing H(x, y) and f(x, y) was set as Fs =

120 MHz. However, we will later describe how we modified the convolution

to obtain an echo sampling rate F e
s = 40 MHz. We chose a high sampling

frequency to avoid aliasing effects in the modified convolution.

The US pulse was modeled as a Gabor pulse:

H(x, y) = e
(y−y0)

2

2σ2a

(x−x0)
2

w2
b sin(

2πy

λ
) (E.1)

wb = λfN , (E.2)

where σa = 0.14mm was chosen to create a two-cycle pulse for ≈ 50%
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(a) (b)

Figure E.1: (a) US pulse with a center frequency of 8 MHz created in a 1.5×1.5 mm field. (b) Cross-section
of the US pulse along the line x = 0.75.

fractional pulse bandwidth, fN = 2 is the f-number, and wb is the beam

width parameter. The pulse was created over a 1.5× 1.5 mm field, therefore

x0 = y0 = 0.75. Fig. E.1a shows the generated pulse and Fig. E.1b is the

cross-section of the pulse along the vertical line x = 0.75 mm.

[2] Scattering Field f The object f(x, y) was created to imitate Model 2

(i.e., the gelatin phantom). Five million point scatterers were generated and

randomly placed in the field. The coordinate of each was selected from a

uniform random distribution in the range (x, y) ∈ [−50, 50], which matches

the domain of Model 2. Scatterers residing within the inclusions had their

reflectivity reduced by half to produce hypoechoic regions.

Before the convolution with the US pulse, the field of scatterers had to

be discretized. One simple method is to simply round the coordinate of each

scatterer to the nearest corresponding location in the matrix f . However, we

found that this method produced significant discretization errors in the final

RF frames. Instead, we distributed the reflectivity of each scatterer to the

four nearest elements in the matrix.

Fig. E.2a illustrates a set of scatterers overlayed on a discrete grid. In-

tersections of the grid correspond to locations in f , the discretized form

of f(x, y). For each scatterer, we identify the four nearest locations in f

and define a local coordinate system as illustrated in Fig. E.2b. Note that

the lower-left corner is the local origin and corresponds to matrix location

f [m,n]. If the scatterer is at (xi, yi) (in the local coordinate system) and the

lateral and axial resolution of f is ∆x and ∆y, respectively, we can define

173



(a) (b)
(c)

Figure E.2: (a) The grid represents the discrete field of scatterers f . Intersections of the grid lines
correspond to locations in the matrix. Scatterers (red points) are placed continuously in the domain of
the phantom. (b) The amplitude of each scatter is divided among the four nearest entries of f to help
reduce discretization errors. (c) The matrix f after the reflectivity of the scatterers have been distributed.

the distances d1–d4 as

d1 = 1− d3 =
yi

∆y

d2 = 1− xi
∆x

d3 = 1− y

∆y

d4 = 1− d2 =
x

∆x
.

The reflectivity φi of the scatterer is divided to the four locations in f based

on distance:

f [m,n]
+
= d2 · d3 · φi (E.3)

f [m+ 1, n]
+
= d3 · d4 · φi (E.4)

f [m,n+ 1]
+
= d1 · d2 · φi (E.5)

f [m+ 1, n+ 1]
+
= d1 · d4 · φi. (E.6)

As a check, d2d3+d3dy+d1d2+d1d4 = 1, ensuring φi is completely distributed.

Fig. E.2c shows f after the reflectivity of all scatterers has been distributed.

[3] Modified Convolution The simplest way to compute g is via a straight-

forward discrete convolution:

g[m,n] =
∞∑

i=−∞

∞∑
j=−∞

H[m− i, n− j] · f [i, j]. (E.7)
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(a) (b) (c)

Figure E.3: (a)B-mode image from simulated RF echo frame of whole phantom. (b) A section of the whole
echo frame is saved whose dimensions match the image region acquired experimentally. (c) Example B-
mode image acquired on a gelatin phantom.

The resulting RF frame would be sampled at 120 MHz both axially and later-

ally whereas we want the vertical-axis sampling rate to be 40 MHz (0.02 mm)

and the lateral pitch of ≈ 0.15 mm. Furthermore, g measured experimentally

would not be square because of the difference in axial and lateral resolution.

We modified the convolution by introducing “skips” to achieve the desired

sampling both axially and laterally.

Define δx = b ND
NRF
c and δy = b Fs

F es
c. ND is the number of columns in f

whereas NRF is the number of RF lines we want the final image to have.

With the echo sampling intervals δx and δy, the convolution becomes

g[m,n] =
∞∑

i=−∞

∞∑
j=−∞

H[m− i+ (i− 1) · δy, n− j + (j − 1) · δx] · f [i, j]

(E.8)

After performing the convolution, additive acquisition noise was introduced

by sampling from standard Gaussian distribution and adjusting the variance

to achieve the desired echo SNR.

The dimensions of g resulting from (E.8) are reduced from ND ×ND —

the result from (E.7) — to ND
∆y
× ND

∆x
. An example B-mode imaged computed

from a RF echo frame generated from (E.8 is shown in Fig. E.3a. However,

RF images acquired experimentally do not encompass the entire object. We

thus cut out the portion of the simulated RF image to match what is acquired

experimentally. Fig. E.3b shows the B-mode of the reduced simulated RF

frame and Fig. E.3c is an example of a B-mode image acquired for the gelatin

phantom.
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Post-Compression RF Frames Creating post-deformation RF frames

required the scatterers to be moved before applying (E.8). Displacements

computed in the FEA of Model 2 — from which noise-free displacement

measurements were acquired for use in AutoP — were used to determine how

the scatterers should move. A total of four load increments were applied in

the FEA, meaning an additional four RF frames were generated (for a total

of five, including the pre-deformation frame). Displacements from each load

increment were used to move the scatterers. Steps (2)–(3) were repeated for

each increment. Note that f was re-computed in (E.3)–(E.6) for each of the

deformation images. In other words, f was initialized as a matrix of zeros

before the field of scatterers was discretized.
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Appendix F

Modified Algorithm to Compute Sε
x

Algorithm 1 is computationally expensive. Even though the modified ver-

sion of the algorithm using the stress vector σ̂′,NNi computed by the MPN

instead of the stiffness matrix D is orders of magnitude faster than Eq. 4.11,

calculating Sεx for every point in a fairly coarse 2-D mesh still requires sev-

eral minutes. The number of points increases exponentially in a 3-D mesh.

Training 3-D CaNNCMs is infeasible if Algorithm 1 requires hours to com-

plete. Note that Sεx are recalculated in every iteration of AutoP. Therefore,

development of 3-D CaNNCMs that are trained in a reasonable amount of

time in AutoP required a faster algorithm to be created.

The architecture of the MPN lends itself to learning only a linear-elastic

relationship. Meaning, the stress-strain behavior defined by the stiffness ma-

trix D calculated from the connection weights of the MPN (Appendix D) is

constant regardless of the input strain (within the training range). Further-

more, the scaling values at each of the Nx points in the mesh are independent

and can be computed concurrently. Thus, the new algorithm should take

advantage of the constant D and spatial independence of Sεx to calculate

updated spatial values at every x simultaneously.

I will describe the new algorithm in two steps. Recall that there are Nσ

stress-strain pairs at every location x. An increment value ∆Sεx must be

computed for each pair. The mean of these increments is calculated and

then added to Sεx to compute an updated value (lines 10-11 of Algorithm 1).

Therefore, I will first describe how the mean ∆Sεx can be computed over all

Nσ pairs simultaneously (i.e., compute lines 3-10 of Algorithm 1 through a

set of matrix multiplications) and then expand the process to solve for all

points at once.

First, the stiffness matrix D̂ is computed using the average of all Nσ strain

vectors at xi, ε
µ
i = (1/Nσ)

∑d
k=1 ε

k
i , where d is the number of stress/strain

components. Recall for 2-D plane-stress problems, d = 3. For 3-D problems,
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d = 6.

Next, scale each of the strain vectors by the corresponding Sεxi , ε(xi)
′ =

ε(xi)/S
ε
xi

. The last sum in Eq. 4.11 can be replaced by a matrix-matrix

multiplication to compute each σNNxi (dropping xi for brevity):
σNN1

σNN2
...

σNNNσ

 =


ε′1

ε′2
...

ε′Nσ

 D̂T → σ̄NN = ε′D̂T (F.1)

The resulting σ̄NN is a Nσ × d matrix, where each row corresponds to a

different stress vector.

Error vectors ei are computed as the difference between the “true” stress

σti (computed in FEAσ or resulting from enforcing frame invariance) and the

stress vector σNNi :

ei = σtk − σNNk , (F.2)

where ek is also a 1× d vector.

A few more matrices need to be defined. The error matrix eσ is a block

matrix of all the error vectors and DB is comprised of the stiffness matrix

D̂:

eσ =


e1 0 . . . 0

e2 . . . 0

symm.
. . .

...

eNσ

 (F.3)

DB =


D̂ 0 . . . 0

D̂ . . . 0

symm.
. . .

...

D̂

 . (F.4)

The block matrix eσ is Nσ × d ·Nσ and D̂B is d ·Nσ × d ·Nσ

Next, the matrix εisoi whose rows are the “isolated” strain vectors. For
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2-D, it is a 3× 3 matrix:

εisoi =

 εi11 0 0

0 εi22 0

0 0 εi12

 . (F.5)

Alternatively, in 3-D,

εisoi =



εi11 0 0 0 0 0

0 εi22 0 0 0 0

0 0 εi33 0 0 0

0 0 0 εi12 0 0

0 0 0 0 εi13 0

0 0 0 0 0 εi23


(F.6)

Create a new block matrix of all the isolated strain matrices for each of

the N stress-strain pairs at x

εiso =


εiso1

εiso2
...

εisoNσ

 (F.7)

Finally, to take the average over all Nσ pairs, take the dot-product with

a vector

vµ = 1/Nσ (F.8)

where 1 is 1× d.

With these newly defined matrices and vectors, the spatial scaling vector

for all d components computed as the mean error over all Nσ stress-strain

pairs can then be computed as
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1×d︷ ︸︸ ︷
∆Sεxi =

1×d︷︸︸︷
vµ ·

d×dN︷︸︸︷
eσ ·

dN×dN︷︸︸︷
DB ·

dN×d︷︸︸︷
εiso . (F.9)

Expanding (F.9) is straight-forward, but must take advantage of some

programmatic tricks to reduce memory requirements. For example, DB as

defined above would be of size Nσ · Nx · d × Nσ · Nx · d if constructed for

all stress-strain pairs for all Nx points. If there were 2000 points in a 2-D,

each with four stress-strain pairs, then DB would require ≈ 72 megabytes for

storage. A more extreme example is a 3-D problem with Nx = 64000 (which

occurs for a 20 × 20 × 20 element mesh) and Nσ = 16 (a four-load AutoP

training window with frame-invariance enforced). DB in this case requires

471 GB of storage. Clearly, (F.9) cannot be used as-is to compute all ∆Sεx

simultaneously.

I will begin by describing the new data structures and reshape(·) function,

followed by the new algorithm. MATLAB syntax will be used to aid the

explanation of some arrays and computations. Finally, a sample MATLAB

implementation of the new algorithm follows the description.

Let Ê be the Nx×d×Nσ array containing the complete set of strain data.

Define Êi as the Nx × d matrix at Nσ = i (Ê(:, :, i) in MATLAB syntax).

The same notation applies for Ŝ and Ŝi which contain the corresponding

stress data. Furthermore, let Sε be the Nx × d matrix comprised of all the

scaling vectors:

Sε =


Sεx1

Sεx2

...

SεxNx

 . (F.10)

The matrix D̂ is now computed from the MPN using the average of all

Nσ · Nx strain vectors. Similar adjustments are made for some of the other
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block matrices defined for (F.9). Consider the Nx stress-strain pairs in Êi:

eσ =


e1 0 . . . 0

e2 . . . 0

symm.
. . .

...

eNx

 (F.11)

εiso =


εiso1

εiso2
...

εisoNx

 (F.12)

Finally, it is necessary to define matrix reshaping. The function uses

column-major reordering. More information on this function can be found in

the MATLAB documentation for the function reshape. Per the documen-

tation, the syntax is reshape(A,sz1,...,szN), where A is the matrix to be

reshaped and each of the sz1,...,szN specify the size of each dimension.

As an example, suppose the matrix A2×2×2 is to be reshaped into a single

column vector or a 2× 4 matrix. The reshape syntax would be

Aijk
reshape(A,[ ],1)−−−−−−−−−−→



A111

A211

A121

A221

A112

A212

A122

A222


, or Aijk

reshape(A,2,4,1)−−−−−−−−−−→

[
A111 A121 A112 A122

A211 A221 A212 A222

]
.

(F.13)

Also note that the syntax A(:) is equivalent to reshape(A,[],1). Element-

by-element multiplication and division will follow MATLAB syntax: .∗ and

./, respectively. With these definitions, Algorithm 2 details the new, faster

method of computing updated values of Sεx.

The following MATLAB code is an implementation of Algorithm 2. Ê and

Ŝ are represented by strain data and stress data, respectively, whereas
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Algorithm 2 Faster algorithm for computing Sεx

1: Given: current Sε, Ŝ, Ê
2: for i = 1, 2, ..., Nε do
3: ∆S = 0N×D
4: for j = 1, 2, ..., Nσ do
5: Ê′ = Êj./S

ε

6: σNN = Ê′ ∗ (D̂T)
7: eσ = Sj − σNN
8: U = eσ ∗Dµ

9: U = reshape(UT, 1, [ ])
10: εiso = ET

j

11: εiso = reshape(εiso, [ ], 1)T

12: U = −U . ∗ εiso
13: ∆S = ∆S + reshape(U , D, [ ])T

14: end for
15: ∆S = ∆S./P
16: Sε = Sε + ηε ∗∆S
17: end for

Sσ is referred to as strain scale. D̂ is computed before this section of code

and is stored in D hat.

A comparison of Algorithms 1 and 2 is illustrated in Fig. F.1 (rows 2 and

3, respectively). Also included in row 1 are the results of computing Sεx with

(4.11). For all three, the maps of the spatial values are indistinguishable.

The most notable difference lies in the error curves. Equation 4.11 led to

the fastest convergence in terms of number of iterations, but that does not

account for time. Total running times for (4.11), Algorithm 1, and Algo-

rithm 2 were 1734 s, 759 s, and 0.4133 s. Even though the error curves do

not converge as fast with Algorithm 2, it is over 1000× faster to compute. It

is because of this drastic increase in speed that training 3-D CaNNCMs in

AutoP is feasible.
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1 f o r i i =1: g r a d i t e r

2 d e l t a s = ze ro s (N,D) ;

3 f o r j j =1:P

4 s pr ime = s t r a i n d a t a ( : , : ,mm) . / s t r a i n s c a l e

;

5 s t r e s s n n = s pr ime *( D hat ') ;

6 er ror mat = s t r e s s d a t a ( : , : ,mm) − s t r e s s n n

;

7 U = error mat * t h i s j a c ;

8 U = reshape (T' , 1 , [ ] ) ;

9 e p s i s o = s t r a i n d a t a ( : , : ,mm) ' ;

10 e p s i s o = e p s i s o ( : ) ' ;

11 U = −U.* e p s i s o ;

12 U = ( reshape (U, num comp , [ ] ) ) ' ;

13 d e l t a s = d e l t a s + U;

14 end

15 d e l t a s = d e l t a s . /P;

16 s t r a i n s c a l e = s t r a i n s c a l e + e t a v a l .*

d e l t a s ;

17 end

183



Figure F.1: Comparison of spatial values computed with three different methods. Rows 1–3 are the results
using Eq. 4.11, Algorithm 1, and Algorithm 2, respectively.
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Appendix G

Estimating Phantom Geometry with Microsoft
Kinect

CaNNCMs are able to learn internal geometry, but the external shape must

be known in order to create the finite element mesh used in AutoP. Unfortu-

nately, the human body is not a cube. We must devise a method to estimate

external geometry in order to translate our data-driven QUSE approach to a

clinical setting. Our current solution for estimating surface geometry makes

use of a Microsoft Kinect V2.

Esimating Surface Geometry

The Kinect is equipped with an IR camera capable of estimating object

depth. Furthermore, the Kinect SDK is packaged with a “Fusion” library to

reconstruct surfaces maps from depth images acquired by scanning a scene.

We utilize the Fusion functionality to estimate phantom geometry and create

a FE mesh for use in AutoP. Fig. G.1 illustrates the process.

Figure G.1: Process by which phantom geometry is estimated via Microsoft Kinect. [1] The depth camera
and Fusion library capture the surface geometry. [2] A point-cloud (or stereolithography file) is exported
and [3] used to create a FE mesh.
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Unfortunately, gelatin is nearly invisible to IR light, meaning the depth

images of the phantom cannot be captured. We remedy this issue by coating

the phantom in talcum powder prior to imaging (left, Fig. G.2a). We have

found that the phantom must be thoroughly coated (at least three powder

coats) in order to effectively image it with the IR camera. After applying

the powder coating, the phantom is placed on a raised platform next to an

object of known size (right, Fig. G.2a). The Kinect is pointed toward the

phantom (along the x2 axis) from an elevated location before data acquisition

begins. After starting depth image capture, the Kinect is slowly panned a

few centimeters in the x1 and x3 directions to ensure the full surface of the

phantom is imaged.

(a)

(b)

Figure G.2: (a) The phantom is coated in talcum powder and imaged with the Kinect’s depth camera.
(b) The phantom is isolated from the full scene, smoothed, and properly oriented with the world axis.

An example of the full scene capture in this manner is shown in Fig. G.2b.

Using MeshMixer (Autodesk, USA, San Rafael, CA), we first reduce the

scene to encompass the phantom and the object with known dimensions.
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The surface mesh is not set to the proper scale, therefore this object allows

one to correct the scale of objects in the scene. Furthermore, because the

additional object is flat and has uniform width, it can be used to adjust the

global coordinate system and correctly orient the phantom with the world

axis. After making these adjustments, the phantom is isolated and some

smoothing operations are performed to reduce fluctuations due to noise.

Once adjustments to the phantom geometry in MeshMixer are complete,

the model is exported as a STL file, which is then used in MATLAB with the

PDE Solver toolbox. With said toolbox, we create an initial FE mesh with

4-node tetrahedral elements (Fig. G.3a). However, at this stage there is no

way to precisely control the location of nodes in the mesh. In our case, this is

important because we require nodes in the US image planes in order to apply

displacement data in FEAε. Therefore, we use TetGen [171] to add nodes to

the mesh, as shown in Fig. G.3b. TetGen adds the new nodes, remeshes as

necessary to accommodate the additional points, and converts the elements

to 10-node tetrahedrons.

(a) (b)

Figure G.3: (a) Initial mesh created with PDE Solver toolbox in MATLAB from STL created in Fig. G.2b.
(b) Additional points are added to the US image planes and the mesh is reprocessed with TetGen.
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Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli et al.,
“Shear-wave elastography improves the specificity of breast US: the BE1
multinational study of 939 masses,” Radiology, vol. 262, no. 2, pp. 435–449,
2012.

[20] A. Evans, P. Whelehan, K. Thomson, D. McLean, K. Brauer, C. Purdie,
L. Jordan, L. Baker, and A. Thompson, “Quantitative shear wave ultra-

189



sound elastography: initial experience in solid breast masses,” Breast Cancer
Research, vol. 12, no. 6, p. R104, 2010.

[21] K. C. Siegmann, T. Xydeas, R. Sinkus, B. Kraemer, U. Vogel, and C. D.
Claussen, “Diagnostic value of MR elastography in addition to contrast-
enhanced MR imaging of the breastinitial clinical results,” European Radi-
ology, vol. 20, no. 2, pp. 318–325, 2010.

[22] R. Sinkus, M. Tanter, T. Xydeas, S. Catheline, J. Bercoff, and M. Fink,
“Viscoelastic shear properties of in vivo breast lesions measured by MR
elastography,” Magnetic Resonance Imaging, vol. 23, no. 2, pp. 159–165,
2005.

[23] M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Mon-
taldo, M. Muller, A. Tardivon, and M. Fink, “Quantitative assessment of
breast lesion viscoelasticity: initial clinical results using supersonic shear
imaging,” Ultrasound in Medicine & Biology, vol. 34, no. 9, pp. 1373–1386,
2008.

[24] Y. Qiu, M. Sridhar, J. K. Tsou, K. K. Lindfors, and M. F. Insana, “Ultrasonic
viscoelasticity imaging of nonpalpable breast tumors: preliminary results,”
Academic Radiology, vol. 15, no. 12, pp. 1526–1533, 2008.

[25] T. Xydeas, K. Siegmann, R. Sinkus, U. Krainick-Strobel, S. Miller, and
C. D. Claussen, “Magnetic resonance elastography of the breast: correlation
of signal intensity data with viscoelastic properties,” Investigative Radiology,
vol. 40, no. 7, pp. 412–420, 2005.

[26] A. Sayed, G. Layne, J. Abraham, and O. M. Mukdadi, “3-d visualization
and non-linear tissue classification of breast tumors using ultrasound elas-
tography in vivo,” Ultrasound in Medicine & Biology, vol. 40, no. 7, pp.
1490–1502, 2014.

[27] A. Samani and D. Plewes, “A method to measure the hyperelastic parame-
ters of ex vivo breast tissue samples,” Physics in Medicine & Biology, vol. 49,
no. 18, p. 4395, 2004.

[28] A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and patho-
logical human breast tissues: an inversion-technique-based investigation of
169 samples,” Physics in Medicine & Biology, vol. 52, no. 6, p. 1565, 2007.

[29] H. Mehrabian, G. Campbell, and A. Samani, “A constrained reconstruc-
tion technique of hyperelasticity parameters for breast cancer assessment,”
Physics in Medicine & Biology, vol. 55, no. 24, p. 7489, 2010.

[30] A. Itoh, E. Ueno, E. Tohno, H. Kamma, H. Takahashi, T. Shiina, M. Ya-
makawa, and T. Matsumura, “Breast disease: clinical application of US
elastography for diagnosis,” Radiology, vol. 239, no. 2, pp. 341–350, 2006.

[31] R. Isermann, S. Grunwald, G. Hatzung, D. Könsgen-Mustea, P.-O. Behrndt,
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[158] F. Mart́ınez-Mart́ınez, M. Rupérez-Moreno, M. Mart́ınez-Sober, J. Solves-
Llorens, D. Lorente, A. Serrano-López, S. Mart́ınez-Sanchis, C. Monserrat,
and J. Mart́ın-Guerrero, “A finite element-based machine learning approach
for modeling the mechanical behavior of the breast tissues under compression
in real-time,” Computers in Biology and Medicine, vol. 90, pp. 116–124, 2017.

[159] V. Strbac, J. Vander Sloten, and N. Famaey, “Analyzing the potential of
GPGPUs for real-time explicit finite element analysis of soft tissue deforma-
tion using CUDA,” Finite Elements in Analysis and Design, vol. 105, pp.
79–89, 2015.

201



[160] S. F. Johnsen, Z. A. Taylor, M. J. Clarkson, J. Hipwell, M. Modat, B. Eiben,
L. Han, Y. Hu, T. Mertzanidou, D. J. Hawkes et al., “Niftysim: A GPU-
based nonlinear finite element package for simulation of soft tissue biome-
chanics,” International Journal of Computer Assisted Radiology and Surgery,
vol. 10, no. 7, pp. 1077–1095, 2015.

[161] A. Fenster, D. B. Downey, and H. N. Cardinal, “Three-dimensional ultra-
sound imaging,” Physics in Medicine & Biology, vol. 46, no. 5, p. R67, 2001.

[162] J. E. Lindop, G. M. Treece, A. H. Gee, and R. W. Prager, “3d elastography
using freehand ultrasound,” Ultrasound in Medicine & Biology, vol. 32, no. 4,
pp. 529–545, 2006.

[163] G. M. Treece, J. E. Lindop, A. H. Gee, and R. W. Prager, “Freehand ultra-
sound elastography with a 3-d probe,” Ultrasound in Medicine & Biology,
vol. 34, no. 3, pp. 463–474, 2008.

[164] R. J. Housden, A. H. Gee, G. M. Treece, and R. W. Prager, “3-d ultrasonic
strain imaging using freehand scanning and a mechanically-swept probe-
correspondence,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-
quency Control, vol. 57, no. 2, 2010.

[165] G. A. Hendriks, B. Holländer, J. Menssen, A. Milkowski, H. H. Hansen, and
C. L. de Korte, “Automated 3d ultrasound elastography of the breast: a
phantom validation study,” Physics in Medicine & Biology, vol. 61, no. 7, p.
2665, 2016.

[166] Y. Wang, H. G. Nasief, S. Kohn, A. Milkowski, T. Clary, S. Barnes, P. E.
Barbone, and T. J. Hall, “Three-dimensional ultrasound elasticity imag-
ing on an automated breast volume scanning system,” Ultrasonic Imaging,
vol. 39, no. 6, pp. 369–392, 2017.

[167] C. Papadacci, E. A. Bunting, and E. E. Konofagou, “3d quasi-static ultra-
sound elastography with plane wave in vivo,” IEEE Transactions on Medical
Imaging, vol. 36, no. 2, pp. 357–365, 2017.

[168] M. W. Gilbertson and B. W. Anthony, “Force and position control system
for freehand ultrasound,” IEEE Transactions on Robotics, vol. 31, no. 4, pp.
835–849, 2015.

[169] T.-Y. Fang, H. K. Zhang, R. Finocchi, R. H. Taylor, and E. M. Boctor,
“Force-assisted ultrasound imaging system through dual force sensing and
admittance robot control,” International Journal of Computer Assisted Ra-
diology and Surgery, vol. 12, no. 6, pp. 983–991, 2017.

[170] M. Frewer, “More clarity on the concept of material frame-indifference in
classical continuum mechanics,” Acta Mechanica, vol. 202, no. 1-4, p. 213,
2009.

[171] H. Si, “TetGen, a delaunay-based quality tetrahedral mesh generator,” ACM
Transactions on Mathematical Software (TOMS), vol. 41, no. 2, p. 11, 2015.

202


