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ABSTRACT 

The quantification of mechanical properties of soft tissues has been of great interest for 

more than two decades because they have the potential of being used as biomarkers for disease 

diagnosis. Indentation techniques, the most recognized techniques for characterizing mechanical 

properties, are widely used for basic science investigations in research labs. The use of 

elastography techniques coupled with imaging technologies has been growing rapidly in recent 

years, which is promising for clinical applications. Each technique produces different mechanical 

behaviors due to the interaction of the stimuli and the structure of the tissue.  An appropriate model 

will parameterize these behaviors to reflect the corresponding tissue microscopic features with 

high fidelity. The objective of this thesis is to identify combinations of techniques and models that 

will yield mechanical parameters with diagnostic interpretations about tissue microenvironment. 

Three techniques for characterizing tissue viscoelastic properties were developed and 

validated; each offers strengths in a large variety of applications. Indentation based techniques 

measure low-frequency force-displacement curves under different loading profiles. Ultrasound-

based techniques and optical based techniques measure the dispersion behaviors of the propagating 

wave velocities at mid-to-high frequency ranges. When a material is linear, isotropic, and contains 

only elastic components, the “intrinsic” elastic modulus of the material can be obtained 

independently of the technique used when corrections are properly made to eliminate the bias from 

boundary effects. If the material includes time-dependent components, models must be included 

in the analysis to provide parametric estimates. Classical models for viscoelastic solids such as the 

Kelvin-Voigt model do not fully represent mechanical measurements in tissues because they are 

not material continua. Tissue properties are determined in part by fluid movement in the open- and 
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closed-cell compartments found within a viscoelastic collagen matrix that is actively maintained 

by the embedded cells to meet programmed needs. These biphasic (solid/fluid) media exhibit 

multifaceted deformation responses that are particularly difficult to model using a concise feature 

set.   

The Kelvin-Voigt fractional derivative (KVFD) model introduced in this study represents 

the measurement data of a broad range in both time and frequency domain with a small number of 

parameters, and it yields stable estimates for many types of phantoms and tissues. It is superior to 

the integer derivative models for the materials and techniques we used in this study. Moreover, the 

KVFD model provides a three-dimensional feature space of mechanical properties that properly 

characterizes the composition and structure of a material. This was validated through 

measurements on gelatin-cream emulsion samples exhibiting viscoelastic behavior, as well as ex 

vivo liver tissue samples. For the elastic property, KVFD parameter 𝐸0  mainly represents the 

elasticity of the solid matrix and is approximately equal to the shear modulus no matter which 

technique is used. For the viscous property, when combined with different measurement 

techniques, KVFD model parameter α  and 𝜏  represent different tissue components. The 

combination of these techniques and the KVFD model have the potential to be able to distinguish 

between healthy and pathological tissues described by the histological features. 
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CHAPTER 1: INTRODUCTION 

1.1  Biological background and clinical significance 

Palpation is one of the most common examinations used by physicians in diagnosing 

diseases such as liver fibrosis and various types of cancer. These mechanical property changes that 

physicians “feel” could facilitate their diagnosis and prognosis. In recent years, more and more 

studies have shown clear evidence that pathological changes in tissues are often accompanied by 

changes in the tissue extracellular matrix (ECM), which alter the mechanical properties of tissue 

[1,2,3]. For example, liver stiffness was found to predict the 5-year survival rate of patients 

chronically infected with hepatitis B virus [4]. Arterial stiffness was found to be positively 

correlated with several inflammatory markers in essential hypertension [7]. Invasive breast cancers 

are much stiffer compared to normal and benign tissues. Fibrocystic disease and low-grade 

malignant mammary tumors exhibit 3-6-fold stiffness increases, compared to the baseline elastic 

modulus values for normal fibro-glandular breast tissues. High-grade invasive ductal carcinomas 

can be 13 times stiffer on average [5, 6]. Recent studies have also confirmed the correlation of 

diseases and mechanical properties at cellular and molecular level, pointing out that many diseases 

are associated with modified expression profiles of ECM-related genes. For example, cancer is 

associated with a range of tissue ECM changes affecting the cellular mechano-environment that 

results in a disease-promoting reactive stroma. The density of the ECM collagen and the crosslinks 

of the collagen increase, as fluid pressure builds from lymphatic collapse in part from epithelial 

hyperplasia [8]. Different subclasses of tumors can have different ECM constituents in tumor 

micro-environment, and therefore exhibit different mechanical characteristics [9]. Since they show 

significant differences in tumor development, progression, and responses to therapy, imaging 

tumor mechanical properties can provide a sensitive indication of early pathological processes that 
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will improve patient diagnosis and prognosis, as well as assist with treatment plans and the 

evaluations of therapeutic responses. Also, accurately characterizing and interpreting the 

viscoelastic properties of tissue will have a profound influence on basic research of 

mechanobiology, an emerging field of science that focuses on understanding the role of 

mechanobiology in disease onset, progression, and responses to treatment [10]. 

      

 

1.2   Review of techniques in characterizing tissue mechanical property  

There are several techniques that facilitate assessing tissue mechanical properties. 

Indentation is a primary modality for characterizing the mechanical properties of a large variety of 

materials. It is often regarded as the “gold standard” for calibrating material mechanical properties, 

including elasticity and viscosity. Depending on the dimension and scale of loading, there are 

macro-indentation (can have test loads up to 1 kN), micro-indentation (allows forces of 2 N and 

produces displacement of about 50 μm) [12], and nano-indentation (typically used for very small 

samples or very stiff tissues) [11,13]. Three testing modes are most widely used for viscoelastic 

materials: force-displacement behavior during single or multiple load-unload cycle(s), creep 

behavior during the probes push and hold at peak load, and relaxation behavior during the probes 

push and hold at peak strain. The drawback of indentation techniques lies in that they are usually 

not fully compatible with in vivo measurements, and the contact between sample surfaces and 

indentation probe must be under strict controls for most indentation probes. 

A new class of imaging technologies called elastography is growing very fast in the past 

fifteen years which enables the measurements of tissue mechanical properties in vivo. It allows the 

physicians to evaluate changes during disease progression and disease treatment using the standard 

https://en.wikipedia.org/wiki/Newton_(unit)
https://en.wikipedia.org/wiki/Newton_(unit)
https://en.wikipedia.org/wiki/Micrometres
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imaging technologies. Elastography was proved both in research labs and in clinic applications to 

have the potential of accurately mapping the elastic modulus and potentially viscoelastic 

properties. It usually applies a mechanical loading, either by compressions or oscillatory forces, 

and then track the motions or deformation responses of the tissue using imaging modalities such 

as MRI, Ultrasound and Optical Coherence Tomography (OCT). By modeling this tissue motion, 

a map of the mechanical property can be provided. 

Depending on the way that the excitation force is applied and the inversion technique that 

is used to derive the mechanical parameters, elastography has three main categories. The first class 

is based on the static strain. The quasi-static strain responses are recorded before and after the force 

application, and a strain/stiffness contrast image will be displayed [14].  The second class is to 

apply a dynamic force and analyze the frequency responses or amplitude responses at the location 

where the perturbation is applied [15,16]. The third class is based on the propagating waves 

generated by an excitation source [17-20]. This category provides the most quantitative 

measurements among all three categories because the theory of mechanical waves can be applied. 

 

Figure 1.1.  Elastographic modalities characterized by their range of spatial coverage. 

 

The major technologies for imaging tissue deformations in response to mechanical forces 

are listed in Figure 1.1. They are different in spatial resolution, displacement sensitivity, and field-

of-view capability. For different application scopes, different imaging modalities are used.  MRE 

has the advantage of being able to image much larger volumes, and to assess the full three-
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dimensional displacement vector, allowing a more precise analysis of viscoelastic parameters [21]. 

Ultrasound elastography is an inexpensive and widely assessable technology so far. Various 

excitation and inversion methods were developed, and some have been commercialized. OCE is 

newly recognized as a promising complementary modality. It is most sensitive to nanometer-scaled 

displacements with a spatial resolution as low as 1 µm [22], therefore can measure the mechanical 

perturbations at high frequencies. It has the potential to interrogate tissue at micro-scale (ECM 

scale), which largely broadens the application scope for elastography to include those small 

heterogeneous samples. 

 In the following, several common elastographic methods involving ultrasonic and optical 

modalities will be listed. Each method has distinguishing features that influence the diagnostic 

information provided: the source, spatial extent, and frequency content of tissue force excitation; 

the dimensionality of the motion tracking; and the type of data reconstruction that yields strain or 

modulus images.  Despite differences, the goal of all elasticity imaging techniques is to describe 

some vital aspects of the cellular mechano-environment that enhance the clinical diagnosis or 

improve our understanding of the role mechanobiology plays in disease progression and treatment. 

Methods are classified based on whether they measure the instantaneous deformations or time-

dependent deformations.  

 Quasi-static imaging methods: When the position of tissue anatomy is recorded 

immediately before and after a slowly applied force, one can map the instantaneous 

stiffness using strain images. Strain images are computed from local gradients of tissue 

displacements [23]. If the force is broadly applied to the tissue, as in compression 

elastography where a roughly uniform stress is assumed, then the estimated strain can 

approximate stiffness of the material [24,25,26]. Additionally, if the force is applied for a 
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longer time to record a creep or time relaxation behavior, time-dependent properties such 

as viscosity can be estimated as well [27]. This would be an enhanced version of 

indentation using imaging techniques, with the strain measured at every pixel in the image. 

Because small forces (<10 N) are applied slowly (>1 s), there is enough time for the 

deformation to propagate throughout the tissue, and therefore the strain at each point in the 

image is influenced to some degree by the properties mechanically coupled throughout the 

tissue, which influences the spatial resolution in unpredictable ways. Alternatively, an 

acoustic radiation force can be applied locally and quickly so that the localized deformation 

describes local tissue stiffness [28]. In either case, stiffness contrast described by a strain 

image is capable of differentiating benign from malignant tumors in the breast [29,30], 

prostate [31] and thyroid [32, 33], and can be used for guiding interventional procedures 

near nerve bundles [28]. 

 

 Dynamic imaging methods: When the force applied to tissues is varied harmonically as 

deformations are sequentially recorded, one can form images of the viscoelastic (time-

dependent) tissue properties either from oscillatory amplitudes and frequencies [34, 35] or 

from the propagation patterns of perturbations inside the tissue which is known as shear 

wave imaging. One advantage of dynamic elasticity imaging over other approaches is the 

ability to provide information necessary to quantitatively estimate the complex modulus. 

From the time-series of reflected acoustical or optical waves, complex modulus is often 

estimated [36], where the real part represents the elastic modulus that can be closely related 

to tissue stiffness, as described above. The complex modulus also describes tissue viscosity, 

which is related to the rate of the deformation. Viscoelastic properties measured over a 
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broad range of the applied forces reveal detailed information about the role of 

mechanobiology in disease progression [37, 38, 39]. They also convey important 

diagnostic information about breast [30, 40, 41, 42, 43], liver [44, 45, 46], thyroid [47], 

and arterial [48] disease conditions.   

 

 Each technology has its own advantages and limitations in real applications. The choice of 

elastographic methods depends on the available experimental conditions, as well as the goal of the 

measurements. Moreover, different techniques might interrogate different components or 

phenomena of the tissue depending on the way of stimulating the mechanical behavior. 

Preliminary success which shows the mechanical contrast in tissues has been achieved in 

elastography applications as presented in the above reference papers. However, much has to be 

accomplished to make the mechanical images or estimated parameters more quantitative and more 

representative of relevant features. 

 

 

1.3   Quantifying tissue viscoelastic property using rheological models  

 Since tissues exhibit non-linear viscoelastic behaviors, most elastic models would fail to 

describe the behaviors of most tissue types. In order to quantify tissue viscoelastic behavior using 

a few number of parameters, the rheological constitutive equation is often used. The biggest 

challenge in seeking the right model comes from the fact that tissue is “too complex”. First, tissues 

can be highly heterogeneous, nonlinear and anisotropic with unpredictable behaviors under 

different loading profiles, which makes it difficult for one model to accurately describe the 

comprehensive mechanical responses. Second, the geometry of the tissue is often irregular. As 
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most mechanical testing methods are sensitive to boundary conditions, it is difficult to rule out the 

geometric effect when performing tissue testing. Last but not the least, tissue is not a material but 

a structure with multi-phasic components. At the microscopic level, tissues are composed of ECM 

proteins, polysaccharides (sugars), cells, freely flowing open body fluids in between ECM, and 

closed body fluids which are tightly bound to protein molecules that do not flow frequently. At the 

macroscopic level, they are heterogeneous solids (ECM) with closed (cells) and open (vasculature) 

fluid compartments. As a result of this complexity, tissues exhibit really complicated time-varying 

behaviors under mechanical testing, which results in tissues being modeled as viscoelastic solids 

or poroelastic media. Some research studies chose to ignore the time-dependent response of tissue 

and only focused on the elastic portion of the mechanical property. This simple elastic model 

behaves robustly and generates parameter that correlates well with tissue stiffness [49, 50].  

However, the drawback of adopting purely elastic model is that it fails to capture the information 

about the time-varying property of the tissue which is crucial to the understanding of the 

microenvironment and contains huge potential in promoting diagnosis. Also, if the time-varying 

responses are significant, biases will be introduced to the estimation of the elasticity if no time-

dependent parameter is in the model. For example, shear wave speed propagating in an elastic 

material is a constant for any driving frequency. However, in viscoelastic materials, shear wave 

speed is dispersive; i.e., the wave speed changes substantially with frequency. Dispersive behavior 

is determined by the constituents of the materials and their mechanical couplings.  

 Therefore, adopting a rheological model with only a few parameters is necessary to reliably 

capture the comprehensive properties of tissue. The model characterization is often torn between 

accurately representing the spatial distribution of mechanical properties of tissues, which could 

lead to rational diagnostic design, and identifying robust features that correlated well with disease 
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condition but may not represent the intrinsic property. In general, a perfect rheological model 

should have the following properties:  

1. The assumptions of the model must not be violated by the technique used. And the model 

must describe the time-varying behavior very well with as few parameters as possible. 

2. The model should be flexible enough to incorporate the mechanical behaviors under most 

if not all of the loading conditions. 

3. The model parameters should have some physical meaning, either related to some known 

physics quantities (i.e., Young’s modulus, loss of energy) or be sensitive to tissue 

properties that indicate the state of health.   

4. The model is preferred to have modality/method independent parameters for the purposes 

of method validation and comparison. 

 

 One common element of all these modeling approaches is to find a good balance between 

model simplicity and experimental fitting accuracy. Increasing the parametric dimension generally 

renders better fits, but increases the difficulty of translating model parameters into a concise set of 

intrinsic mechanical properties. Although some mathematical models such as Prony series are 

sometimes considered in polymer characterizations to model stress or strain behavior [51], the 

mechanics community prefers classical constitutive models. In standard rheological models, stress 

and strain are related by springs and dash-pots, which represent tissue components and structures. 

Examples of models with two or three parameters (each corresponding to a spring or a dashpot) 

are the Maxwell model [52, 53, 54], the Kelvin–Voigt model [55, 56, 57] and standard linear solid 

models [58, 59, 60]. Combinations of these elementary models have also been applied to form a 

more complicated model to improve model fits when estimating viscoelastic parameters [61, 62, 
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63]. However, the performance of these models is material specific, meaning that each model is 

suitable for only a fraction of the tissue types or certain loading conditions due to its limitations. 

The Fractional Derivative (FD) concept was introduced into the models by Sloninsky to account 

for the complicated time-dependent behavior of biological materials. It has been reported to fit 

very well to the time-varying responses of the tissue despite there being a small number of fit 

parameters [64]. 

 The time-varying response comes from a complex tissue composition and ECM network 

that tends to exhibit a coupled elastic and viscous behavior. The composition and ultrastructural 

arrangement of tissue as well as the interactions among tissue components will cause changes in 

mechanical responses, and a good rheological model should also be able to yield parameters that 

are descriptive of these changes, which will eventually benefit diagnosis [65]. By selecting the 

excitation frequencies and spatial distributions of the applied force, different components of the 

tissue structures are interrogated. Methods for characterizing mechanical properties can apply 

force frequencies as low as 0.1 Hz and as high as 10 kHz.  In quasi-static imaging methods, the 

contrast of stiffness arises primarily from the elastic compliance of the ECM. If the time-dependent 

behavior is also recorded during the experiment, additional information on the fluid part of the 

tissue may also be acquired. For dynamic imaging methods, the effect from the slow motion of the 

free fluid will be weakened compared to quasi-static methods, as perfusion or fluid flow happens 

at a much lower frequency. In contrast, some frequency-dependent viscous components and 

structures such as intramolecular crosslinks will appear [65]. Traditional rheological models are 

usually restricted to a narrow frequency bandwidth, which makes it difficult to fairly compare the 

results measured under different frequency ranges.  The goal is to find a model that can describe 

mechanical responses of a large frequency bandwidth while has the ability to extract properties of 
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tissue ECM (i.e. the solid matrix stiffness and viscosity, body fluid content), which can then be 

connected with tissue healthiness. 

 

 In summary, tissue is a multiphasic “structure” and not a classic “material” that exhibits 

time-varying responses under mechanical loading. A proper model will depict the multiphasic 

tissue properties using a few parameters, which should provide consistent parametric estimates 

corresponding to the intrinsic tissue features and properties. It is desired to have some consistency 

in the frequency-independent measurements when various quantification methods are used, and 

for the frequency-dependent components, it may or may not vary with measurement techniques 

and models. A good model will further extend the capability of using tissue mechanical property 

to understand tissue status, and thus reinforce diagnosis.  

 

 

 

1.4   Impact and objectives 

Although a collection of techniques including mechanical characterization and imaging 

techniques, and several rheological models are proposed for measuring tissue mechanical 

properties, it is still ambiguous on how to choose among different techniques and models that are 

available in order to extract disease-oriented tissue information. Figure 1.2 summarizes the relation 

of basic elements in the process of tissue mechanical characterization. If the mechanical 

parameters yielded by certain technique-model combination can be correlated with tissue 

compositions, then these parameters can be used to identify disease features with higher sensitivity 

and specificity. These additional characterizations can enhance conventional diagnoses. However, 

the complex nature of tissue brings difficulties to every element of this process, especially the 
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“interpretation” part where the measured tissue mechanical parameters are translated into the 

corresponding biological sources to facilitate diagnosis.  

 

 

 

Figure 1.3 illustrates in detail the importance of choosing the right technique and model 

combination for retrieving certain information about tissue. Tissue can be viewed as a multi-

dimensional feature space with each dimension to be a compositional or structural feature. 

Different mechanical characterization techniques will be sensitive to a subset of these dimensions, 

depending on the excitation methodology, scale, amplitude, and frequency. For example, 

Technique A applies the force in low-frequency range, thus the mechanical responses of this 

 

Figure 1.2.  Diagram of the relationship between pathological conditions, tissue ECM and measured 
parameters.  
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technique might be sensitive to the number of collagen crosslinks, the amount of fluid that can 

flow freely, and the amount of proteins (e.g. resilin and elastin). When two rheological models A 

and B are applied to the mechanical responses from the same technique, they could yield a 

significantly different parameter space. The imitated example given on the right-hand side shows 

that Model A generates a parameter that has high sensitivity to the amount of open fluid inside the 

tissue, thus can separate two different tissue status. Model B is not suitable for extracting the 

information of fluid from the mechanical response when Technique A is used. In this case, the 

parameter estimated from Technique A and Model A is preferred for representing the open fluid 

in tissue. It is almost impossible for one combination of technique and model to be sensitive to all 

other features of tissue. It is ideal that a certain combination of technique and model can be found 

to produce high contrast for each feature of the tissue. The main goal of this thesis is to discuss 

how to identify the appropriate measurement technique and rheological model that can be used for 

targeting certain aspects of tissue properties. 

 

The specific aims of this thesis are to 1) establish a platform for easy and reproducible 

measurements of the same material using three different modalities; 2) examine the relationship 

between technique and mechanical parameters by comparing the estimated mechanical properties 

measured from the three different techniques in elastic materials where the influence of rheological 

modeling is minimized; 3) examine the performance of different rheological models, and find a 

suitable model that can describe viscoelastic behaviors from different techniques; 4) find the 

relationship between the estimated parameters and the compositional and structural features of 

tissues and other viscoelastic materials. (also see Figure 1.4) 
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Figure 1.3.  The role technique and model play in translating tissue compositions into model parameters.  
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Figure 1.4.   Specific aim for discovering the connections between measurement techniques, estimated 
model parameters and tissue feature space, in order to reveal diagnostic information. 
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Once the connections between the estimated model parameters, measurement techniques, 

and tissue feature space are understood, we will have a better interpretation of model parameters 

in terms of tissue compositions and conditions. The evolution of this field has the potential to 

bridge molecular, cellular, and tissue biology, and lead to new approaches in the treatment of 

patients, linking these pathological changes to the exact mechanical behavior at a mesoscale tissue 

level larger than the cell but smaller than the organ. 

The outline for the remainder of this thesis is shown in Figure 1.5. Chapter 2 focuses on 

designing and advancing the indentation and shear wave imaging techniques, which facilitate 

quantitative estimations of mechanical material properties, both elastic and viscous. Three main 

techniques are presented, macro spherical indentation, ultrasonic shear wave imaging, and ARF-

OCE imaging. Details on the measurement steps and basic theories are discussed for each 

technique. Several studies conducted on tissue-mimicking phantoms and rodent breast tumors are 

included to show the ability of these techniques in reliably acquiring the mechanical behaviors and 

estimating model parameters. In Chapter 3, the influence of techniques and models on the 

estimated mechanical property parameters is examined. The three aforementioned techniques are 

applied first to pure gelatin samples. Elastic modulus is estimated under the assumption that the 

gelatin is purely elastic with no time-varying elements. Given that the elastic modulus of an elastic 

material is not affected by the force frequency, the estimated elastic modulus should only be related 

to gelatin concentration, and not dependent on techniques used when there is no violation of 

geometric assumptions. Different techniques have different geometric limitations, and correction 

methods are proposed and implemented for samples with limited size. With the correction, the 

estimated elastic modulus is consistent with the geometry-independent estimation. This 

corresponds to Aim 1. 
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 Then, I attempt to cross-validate the three techniques in viscoelastic materials such as 

tissues. However, there is no single model available for describing the mechanical responses for 

all three techniques in order for us to make a fair comparison. Instead, tissue measurement results 

showed that both technique and model will have influence on the measurement results to some 

extent. This motivates the identification of a model that can represent all three measurement 

techniques and also generate parameters that have diagnostic potentials. 

Chapter 4 and Chapter 5 focus on finding one fractional derivative model that can interpret 

the elastic and time-varying properties for tissue. A gelatin-cream mixture phantom is used to 

mimic the time-varying properties in soft biological tissues. Chapter 4 focuses on introducing the 

Kelvin-Voigt fractional derivative (KVFD) model for mechanical indentation, which has proved 

to have enough flexibility and accuracy in various phantoms. This corresponds to Aim 3. Chapter 

5 compares the KVFD model parameters yielded from both indentation and shear-wave imaging 

techniques, and explores the correlation of these parameters with compositions and structures of 

the materials. This part corresponds to Aim 4. Table 1.1 summarizes all the techniques and models 

mentioned throughout this dissertation.   

 

Table 1.1.  Summary of Techniques and Models 

modality  Indentation Ultrasound Optical 

On elastic 
material 

Technique Load-unload test  

(Chapter 3) 
Shear wave imaging 

(Chapter 3) 
Acoustic force 

(Chapter 3) 

Model 
Hertzian model 

Elastic tensor + 
Wave equation 

Elastic tensor + 
Wave equation 

On viscoelastic 
material 

Technique Force-relaxation test 

(Chapter 4, 5) 
Shear-wave dispersion 

(Chapter 2, 3, 5) 
KVFD model 

(Chapter 2, 3, 5) 
Model Prony Series, 

absorbed energy, 
KVFD model 

KV, Maxwell, Zener, 
KVFD model 

KV, KVFD model 
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Figure 1.5.   Flow chart for the content of each chapter 

Chapter 2 

The details of three techniques developed to 
obtain mechanical behaviors 

Chapter 3 

Using the three techniques and various models to 
measure the same material (both elastic and 

viscoelastic) to evaluate the consistence of current 
techniques and models 

Chapter 4 

Introducing fractional derivative model which 
yield stable estimation for a wide range of 

materials  

Chapter 5 

Exploring the correlation of KVFD model 
parameters with phantom compositions and 
physical quantities for different techniques 
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CHAPTER 2: INDENTATION AND SHEAR WAVE IMAGING 

TECHNOLOGIES FOR QUANTIFYING MECHANICAL PROPERTIES 

 

In this chapter, three techniques representative of low, median, and high frequency force 

ranges were developed to measure the mechanical property of tissue. They were calibrated using 

both numerical simulations and lab measurements on tissue-like phantoms. For the low frequency 

technique (up to 1 Hz), commercial indentation equipment with a spherical probe was used to 

record force behavior during compression and relaxation. Metrics such as Young’s modulus, 

relaxation time, and hysteresis loss were estimated from low-frequency indentation tests. The 

mechanical properties at higher frequencies can be obtained from the propagation of mechanical 

waves. Median frequency shear waves were generated inside the material by an oscillating needle. 

Ultrasound Doppler imaging was used to measure the amplitude and phase of the shear waves. 

The generation of high frequency perturbation was facilitated by acoustic radiation force (ARF), 

and the motions at the material surface were monitored by optical coherence tomography 

technology. The goal of this chapter is to 1) develop the experimental process of the three 

techniques that can independently characterize properties of a viscoelastic material; 2) to validate 

dynamic wave imaging methods using tissue and tissue-mimic phantoms. 

2.1  Indentation methods 

 

Indentation techniques are widely used for characterizing the mechanical properties of 

different kinds of materials. Mechanical characterization using indentation have received 

considerable attention during the last 20 years because of their simplicity and low cost. Some of 

the most used tests include load-unload test, relaxation, and creep test. From the stress-strain or 
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force-displacement curves measured by the indentation machine, information on elasticity, 

viscosity and other mechanical properties are obtained directly without mathematical modeling 

assumptions. 

However, when implementing indentation techniques to measure soft tissues and tissue-

like materials, many factors can cause substantial variations and biases to the stress and strain 

measurements. One possible influence comes from the adhesive force between the indentation 

probe and the sample surface, which will generate errors in the force measurement. Other factors 

such as roughness of the sample surface, the biphasic nature of tissue, and non-uniform geometries 

of samples are concerns in that they might violate the basic assumptions required by the analysis. 

Therefore, these challenges will need to be addressed before indentation techniques can be used 

reliably to study soft tissues. Because indentation techniques will be used throughout the thesis to 

compare with mechanical parameters estimated from dynamic imaging techniques, it is a necessary 

step to establish accurate and reproducible testing and analysis procedures for the application of 

indentation techniques in soft materials. 

         

2.1.1  Load-unload test 
 

a)  Young’s modulus measurements from load-unload experiments 

Load-unload test is a common indentation test for calibrating Young’s modulus. The 

indenter travels slowly to deform the sample surface at a constant speed, and if the applied 

displacement δ is within the linear region of the material, the measured force P can be expressed 

as [68]: 
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 0. .55 116
3
EP R        (2.1) 

where E is the Young’s modulus of the material, and R is the radius of the spherical indenter which 

is known precisely. A power-law fit of the initial loading portion of the force-displacement curve 

to Equation 2.1 will yield the solution for E. The experimental process of load-unload test is 

illustrated in Figure 2.1 [68]. This Hertzian contact model has assumed the following:  

i. The strains are small compared to the indenter size and the displacements are within 

the elastic limit. Also it is assumed that the sample surfaces are continuous.  

ii. The sample should be semi-infinite in size so that boundaries do not modify the force 

or displacement generated through the indentation. The material must behave as an 

elastic solid. 

iii. The indentation probe and the sample surface are in frictionless contact. There is no 

adhesion between the probe and the sample surface. 

In order to satisfy these three assumptions for the experimental conditions, some additional steps 

must be included. For example, when using spherical indentation technique to measure soft 

materials, adhesion between the surface of the sample and the probe will significantly affect the 

correctness of initial contact force. Samples were tested under conditions where indenter-sample 

adhesions were minimized by adding a layer of water to the gel sample. To exclude the minor 

effect from indenter-water interaction, water was added to fully submerge the spherical tip of the 

indenter.  Also, the probe surface was coated with a lubricant to further reduce the adhesion effect.  

Additionally, the shaft of the indenter probe was machined down to 1.5 mm diameter to reduce 

force-measurement bias from the water meniscus. It is verified that during the indentation process, 

the added water layer was not absorbed by our samples as the weight of the samples stayed 
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unchanged before water was added to the surface and after the water was totally removed after the 

measurement.  

 

 
(2.1.a) 

 

 
                                        (2.1.b)                                                                      (2.1.c)    

Figure 2.1.  (2.1.a) Photo of indentation machine (TAXTplus, Texture Technologies Corp) used for 
all indentation tests.  (2.1.b) The full loading and unloading portions of a force-displacement curve 
(gray line) when indenter-sample adhesions are eliminated by placing the contact surface under water.  
The sample for the data shown is 8% gelatin.  The inserts diagram the experiments at three time points: 
(a) initial contact, (b) deepest indentation, and (c) as the indenter leaves the sample surface.  Arrows 
indicate direction of the applied force.  The solid black line segment is the section of curve fit to the 
Hertzian equation, Equation 2.1.  (2.1.c) Indentation force-displacement curve is shown for the large-
size 8% gelatin (solid gray) along with the Hertzian-curve fit (dashed black).  Circles indicate force-
displacement points generated from FE simulation using the modulus value E obtained from the 
Hertzian curve fit. [68]  

 



 

21 
 

 

Apart from these special treatments to satisfy Hertzian model assumptions, others have 

relaxed these restrictions via introducing new physical models or adding terms into the model, 

such as JKR theory (samples with adhesions) and Dimetriatis correction (samples with finite depth) 

[68]. It will be useful in the applications of tissue characterization. 

 
b)  Loss-energy measurements from load-unload experiments 
 

When energy dissipation happens inside of the material due to internal friction and fluid 

flow, the force during the unloading phase is smaller than that applied during the loading phase, 

forming a hysteresis loop [69]. Hysteresis is a manifestation of time-dependent material properties, 

and is often used to characterize viscosity of the material. Figure 2.2 shows the hysteresis behavior 

of a typical viscoelastic material. The loss energy EA can be measured from the area between the 

loading and unloading force-displacement curves, 

 1 2
0

( ) ( )
rT

AE ds P s P s       ,                                                    (2.2)  

where 1( )P s  is the force on the probe measured during the loading phase of ramp indentation at 

constant speed and 2( )P s  is that during the unloading phase at the same speed. When adhesions 

between the probe and sample surfaces are negligible with the probe being lubricated and 

submerged in water, viscous losses may be assumed to be responsible for generating the curve 

hysteresis. EA can be used as a metric for time-dependent property of the material. 
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2.1.2  Ramp-relaxation test 
 

The value of energy loss EA depends heavily on many factors such as loading speed, load 

distance, and probe size.  Therefore, creep tests or stress-relaxation tests are most commonly used 

in quantifying time-dependent behavior. The creep test is conducted by applying a constant force 

onto the material and observing displacement changes. Stress relaxation, on the other hand, is 

conducted by applying a constant displacement onto the material and observing the time-varying 

force. The creep curve and stress-relaxation curve are then fitted to a mathematical model to reveal 

the intrinsic properties of a viscoelastic material [70, 71].   

A majority of stress-relaxation tests apply step compressions mainly for the analytical 

convenience of deriving a step-hold relaxation response solution. However, it is difficult to apply 

a near-step strain without creating oscillating transients that are more representative of the 

measurement device than the material. Unless the transients are accurately modeled, significant 

 
 

Figure 2.2.  Diagram for load-unload experiments. Hysteresis behavior in viscoelastic material. P is 
the measured force, s is the indentation depth, Tr is the ramp time over which the probe tip is displaced 
into the sample surface to reach a 1 mm depth, and EA is the loss-energy estimate found from the area 
between the load-unload curves once probe-sample adhesions are eliminated. 
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errors in model parameters are generated. In contrast, the ramp-hold relaxation experiment 

dramatically improves model-fit stability by not generating measurement artifacts [72-75]. Figure 

2.3 shows the force relaxation behavior in a lossy material. Given a ramp-hold displacement 

function with ramp duration rT  and constant probe velocity ν (Equation 2.3),  

                                                    
max

,            0
( )

,
r

r r

vt t T
s t

s vT t T
 

 
 

                                                 (2.3) 

the relaxation force ( )P t  can be predicted through the use of models.   

Analytical solutions for the ramp-hold experiment can be derived by combining the 

Boltzmann integral with the constitutive equation of a given model if a closed-form integral 

formula can be found. In cases where an analytical solution was not available for spherical-

indentation testing for a specific model, a correction factor was applied analogous to that of the 

ramp-hold applied stress solution for a creep experiment to correct fitted parameters from a step 

solution [74]. The analysis demonstrated the feasibility and advantages of using ramp-hold applied 

strains to perform stress-relaxation tests. 

 

 

Figure 2.3.  Diagram for ramp-hold relaxation. P is the measured force, s is the downward indentation 
depth, Tr is the ramp time over which the probe tip is displaced into the sample surface to reach a 1 
mm depth. 
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2.2  Shear wave based methods 

 

Compared to static compression or relaxation methods, in wave-based dynamic techniques, 

stress or strain is applied locally with adjustable frequency.  Thus, the concerns of estimation bias 

from unknown stress distributions and boundary conditions outside of the ROI are reduced. 

Ultrasound and other phase-sensitive imaging modalities (MRI, optical coherence tomography) 

have been available for capturing the complex wave motion thanks to their high sensitivity to sub-

millimeter-scale movements. Therefore, wave-based elastography techniques might have the 

potential to offer more accurate mechanical property information with high diagnostic value.   

 

2.2.1  Complex shear modulus estimation from wave propagation - Theory 
 

The theory of shear-wave propagation in viscoelastic media is well established [76, 77]. 

This section briefly summarizes the equations that describe local displacements associated with 

shear waves as a function of the spatially-varying complex shear modulus.   

The relationship between strain 𝜀 and stress 𝜎 tensors can be expressed by the expression 

when displacements in the medium are small 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 ,             𝑤ℎ𝑒𝑟𝑒  𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3 ,  (2.4) 

where 𝐶  is a fourth-rank tensor. For isotropic materials, 𝐶  reduces to just two independent 

variables, the Lamé constants 𝜆 and 𝜇, where 𝜇 is the shear modulus,  

𝜎𝑖𝑗 = 2𝜇𝜀𝑖𝑗 + 𝜆𝜀𝑛𝑛𝛿𝑖𝑗 .                                               (2.5) 
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For external source (applied force) 𝑓, the equation of wave motion is  

𝜌
𝜕2𝑢𝑖

𝜕𝑡2 =  ∇𝑗 ∙ 𝜎𝑖𝑗 +  𝑓𝑖   ,                   (2.6) 

which describes how stress influences the displacement-field vector u.  Usually stress is difficult 

to measure experimentally. Therefore, it is eliminated it by substituting Equation 2.5 into Equation 

2.6, using the definition1  𝜀𝑖𝑗 = (𝐮𝑖,𝑗 + 𝐮𝑗,𝑖)/2 as well as the assumption that the analysis wave 

field does not include an active source.  The result is  

𝜌
𝜕2𝐮

𝜕𝑡2 = 𝜇∇2𝐮 + (𝜆 + 𝜇)∇(∇ ∙ 𝐮) .                                (2.7) 

If we further assume that the contribution from longitudinal waves can be ignored, Equation 2.7 

simplifies to  

𝜌
𝜕2𝐮

𝜕𝑡2 = 𝜇∇2𝐮                                                         (2.8) 

because the divergence of the shear-wave component and the curl of the longitudinal-wave 

component are both zero. If longitudinal-wave energy is significant, Equation 2.8 can remain valid 

by applying the curl operation to the displacement vector (∇ × 𝐮) to remove its effects.  

Knowing the density of the medium 𝜌 and estimating field 𝐮, shear modulus 𝜇 can be 

directly computed as a function of position from Equation 2.8. This is the Helmholtz inversion 

technique. Normally, the Helmholtz inversion is performed in the frequency domain, combined 

with heavy filtering of the displacement vector to avoid amplifying errors from the Laplacian in 

Equation 2.8.  Finite element-based techniques have been developed to iteratively solve for 𝜇 in a 

                                                           

1 The partial derivative notation ,i j i ju x  u .   
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way that minimizes the error between simulated and experimentally acquired wave fields [78, 79]. 

The drawback of such techniques is a long computational time.   

Alternatively, 𝜇 may be estimated using a phase-gradient technique. For harmonic-wave 

motion, and assuming local homogeneity, Equation 2.8 reduces to  

𝜌𝜔2 = 𝜇𝑘𝑠
2 .                                                            (2.9) 

In linear-elastic media, both 𝜇  and 𝑘𝑠  are real numbers representing, respectively, the shear 

modulus and the wave number at each location.  In viscoelastic media, like most biological 

tissues,  𝑘𝑠 = 𝑘𝑟 − 𝑖𝛼  is complex with real part 𝑘𝑟 = 𝜔/𝑐𝑠  and imaginary part 𝛼(𝜔) , the 

frequency dependent attenuation coefficient for shear waves. Consequently, the shear modulus 

𝜇(𝜔)   = 𝜇𝑟(𝜔) + 𝑖𝜇𝑖(𝜔) is complex for viscoelastic media.   

To measure 𝜇𝑟 and 𝜇𝑖 independently, both wave speed and attenuation must be estimated. 

It is very challenging to estimate shear-wave attenuation unless the wave-front geometry is well 

known. However, attenuation estimation is not necessary if a mathematical model is adopted to 

describe the behavior of  𝜇𝑟 and 𝜇𝑖 as a function of frequency. With the appropriate model, the 

shear-wave speeds dispersion curve is a function of model parameters (Equation 2.10) that are 

determined through least square fitting of Equation 2.10 to the dispersion curve.    

𝑐𝑠(𝜔) =  √
2(𝜇𝑟

2+𝜇𝑖
2)

𝜌(𝜇𝑟+√𝜇𝑟
2+𝜇𝑖

2)
  .                                              (2.10) 

Shear-wave speed 𝑐𝑠 is estimated from the shear-wave phase gradient along the direction 

of wave propagation, where rheological model parameters are obtained as a function of position. 

The range over which phase gradients yield accurate wave-speed estimates depends on the 
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homogeneity of the medium. There is an inherent tradeoff between spatial resolution and phase-

estimation accuracy with this approach. 

2.2.2  Wave generation and propagation 
 

Mechanical-wave stimulation/excitation is usually the key aspect that determines the 

quality of elasticity imaging. Except for passive elastography, which utilizes waves generated by 

physiological motion such as breathing and cardiac activities, most wave-based elastography 

techniques introduce exogenous waves with a controllable geometry, amplitude, and frequency 

bandwidth. Bulk and surface waves may be generated when pulsed or harmonic sources are 

applied. An impulse stimulus or a single-cycle sinusoid induces a broadband pulse wave with a 

group velocity that is predictive of tissue elasticity. Harmonic-force stimulus, on the other hand, 

generates a narrowband force-wave burst that improves the SNR for estimating wave speed and 

attenuation at each excitation frequency. In this dissertation, discussion is restricted to exogenous 

harmonic-wave stimulation and its applications for imaging mechanical properties of elastic and 

viscoelastic media.  

Most readily accessible ultrasound machines only support two-dimensional echo 

acquisition. This restricts the direction of shear-wave propagation to be along the lateral direction 

of a 1-D array. Cylindrical waves and surface waves are widely used to mechanically excite tissues 

[80-85].  Other wave geometries, such as plane and Lamb waves, are used in some circumstance; 

for example, when imaging a vessel wall [84].   However, they are difficult to apply in media with 

amorphous structures like biological tissues. There are several advantages to use cylindrical or 

surface waves. Both wave geometries are easy to generate experimentally, for example, by 

vibrating a needle inserted into the medium [81], acoustic radiation force (ARF) [83], dual-focus 

http://www.ncbi.nlm.nih.gov/pubmed/20870346
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ultrasound transducer [85], or through a sequence of ARF pulses over a range of depths that 

generate a shock wave [22].  

Cylindrical waves provide radially-symmetric excitation fields about the vibrating needle, 

making it possible to image tissues at any depth. Figure 2.4 gives an example of a cylindrical wave 

propagating in homogeneous gelatin gels (an elastic medium at these frequencies). A biopsy needle 

vibrating at 200Hz along the z-axis generates harmonic shear waves that are imaged by a Doppler 

probe (7 MHz, PRF 12.5 kHz). In the direction of shear-wave propagation, the phase of the wave 

shifts linearly while its amplitude decreases exponentially.  Even if 0  , the phase remains linear 

near the source at depths as much as 40mm in the gelatin gel.  Ultrasonically-guided breast needle 

biopsy is an opportunity to excite tissues with harmonic cylindrical waves for shear-wave imaging 

without adding to patient risk.   

There are several non-invasive techniques for generating approximately cylindrical waves 

in tissues, e.g., ARF impulses are commonly applied.  Fink et al. [22] transmited a sequence of 

ARF push pulses that excited a Mach-cone-shaped shear wave, which was approximately 

cylindrical for large Mach numbers. This method takes advantage of the fact that the speed of the 

compressional-wave ARF pulses in tissues is about 1000 times faster than that of the shear waves 

they generate.   

http://www.ncbi.nlm.nih.gov/pubmed/20870346
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Rayleigh-type surface waves are generated when a forcing source is applied at or near a 

free surface of a solid sample [84], e.g., see Figure 2.5.  Rayleigh waves are a mixture of shear and 

longitudinal particle motions, and yet its phase velocity can be directly related to shear-wave 

velocity by a constant between 0.92 and 0.96 depending on Poisson’s ratio for the medium [87].  

Although the speeds of surface and bulk waves are about 5% different, the amplitudes of both 

waves decay according to the geometric factor 1/√𝑟 with distance r from a point source in elastic 

media. In more viscous media, the frequency-dependent shear-wave attenuation reduces the 

amplitude more rapidly.  Thus, similar estimation algorithms are able to be applied for imaging 

surface and bulk transverse waves.   

 

Figure 2.4.   A vibrating needle generates patterns of 200 Hz cylindrical shear waves inside a 
gelatin block that are imaged using standard ultrasonic Doppler techniques at angle . [81].  The 
elliptical shape of the wave field (lower left) is a consequence of .  Horizontal bars of white 
noise near the top of the displacement image are from sample surface interactions. Measurements 
of a linear phase shift with lateral position about the needle are shown (lower right).   
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Surface waves are easier to excite from noninvasive sources than cylindrical shear waves, 

because the impedance discontinuity at the surface acts to strongly couple the transfer of pulse 

momentum to the medium surface. Surface waves travel with some depth in the medium.  They 

propagate about one to two wavelengths in depth, so both optical and ultrasonic Doppler 

techniques can image this motion.  Ultrasound is sensitive to transverse-wave particle motion over 

many centimeters of depth, while optical coherence tomography (OCT) is more sensitive to the 

small displacement amplitudes of high-frequency transverse waves only near the surface, 

approximately 1-2 mm deep [88]. High-frequency surface waves enable measurement of 

mechanical properties at higher spatial frequencies and with higher spatial resolution, which is 

particularly beneficial for imaging heterogeneous tissues.   

One characteristic of surface waves is depth related velocity dispersion. The velocity of 

surface waves is a function of material property at each depth location that the wave penetrates.  

The wavelength of a surface wave and its penetration depth each decrease inversely proportionally 

to frequency.  If the mechanical property of the material varies with depth, it will be reflected in 

the dispersion curve of surface wave velocity. This curve can be used to resolve spatially varying 

mechanical information in layered media if the material is not too strongly dispersive [89, 90].   

Figure 2.5 illustrates images of surface waves in a homogeneous 8%-concentration gelatin 

gel using an ARF source applied from below.  A compressional wave pulse traveling upward is 

totally reflected at the sample-air surface, thus generating a transverse surface wave.  That surface 

wave travels horizontally with a cone-shaped geometry in the image plane near the source. In this 

example, 800 Hz waves are imaged using OCT to measure particle motion along the top surface 

of the sample [91]. The wave amplitude map for a 3 kHz source is also shown on the bottom left 
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of Fig 2.5. The top of the sample is located at depth z = 0, and the brightest spot at the center is the 

excitation source.     

Cylindrical shear waves and radial surface waves have each been successfully applied in 

elasticity imaging. The choice of wave excitation methods depends on specific experimental 

conditions, as well as sample size, shape, and degree of inhomogeneity. In practice, transverse 

wave propagation is distorted by sample heterogeneities and boundaries that can bias shear 

modulus estimates.  For example, distortion of the phase front will bias the shear-wave speed 

estimated using phase-gradient methods [92].  Most of these effects are minimized when the 

sample size is larger than two shear wavelengths. Internal wave reflections pose a significant 

challenge for 2-D ultrasonic phase measurements near tissue interfaces. In some cases, directional 

filters can help reduce the influence of reflected shear waves [93]. In highly attenuating media, 

reflections are less of a factor; instead, displacement SNR is the limiting factor for modulus 

estimation.   
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2.2.3  Rheological models 
 

The complex shear modulus 𝜇 = 𝜇𝑟 + 𝑖𝜇𝑖 as a function of frequency provides a model-

independent metric that characterizes the viscoelastic behavior of a material under dynamic 

loading. Rheological constitutive models are proposed as a way to connect physical and 

experimental parameters to the real and imaginary parts of the property 𝜇; for example, the Kelvin-

Voigt (KV) model implies 𝜇𝑟 is the elastic shear modulus E and 𝜇𝑖 is the viscous coefficient times 

the radial frequency, -.  That is, for    the KV model gives E i   .  Other models 

Figure 2.5.  Acoustic radiation force geometry (upper left) generates surface waves inside a gelatin 
block (upper right) over a region approximately 1 mm x 4 mm.  Lower left grayscale image shows 
optical coherence tomographic (OCT)-detected displacement amplitude for a 3 kHz ARF excitation.  
A plot of displacement amplitude at the depth indicated by the red horizontal line is shown on the 
lower right. [91]  
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have been proposed in attempts to summarize in just one or two imaging parameters values 

representing 𝜇 for very complicated materials. The basic problem with these simple models is that 

tissues are not the material continua assumed. Tissues are better described as multiphasic 

composites or sometimes as structures depending on the measurement scale.  No model fully 

captures the constitutive complexity of soft tissues, which prompts some investigators to avoid 

them altogether by adopting methods that estimate 𝜇 directly.  

When models are assumed, the simplest and most-often applied are the Kelvin-Voigt (KV) 

and Maxwell models summarized in Table 2.1. The K-V model describes solid materials while the 

Maxwell model describes viscoelastic fluids, and both offer two parameters that are frequently 

mapped into elasticity images. Since soft tissue is neither solid nor fluid, a combination – the Zener 

model – is somewhat more realistic. Other models proposed include the Jeffrey model, generalized 

Maxwell model, generalized KV model, most of which are higher order combinations of KV and 

Maxwell elements [94]. Figure 2.6 shows the dispersion behaviors predicted by the different 

models.   

 

Table 2.1.  Comparison between Kelvin-Voigt model and Maxwell model 

 Kelvin-Voigt Maxwell  

description  dE
dt


     
1 d d
E dt dt

  


   

𝜇 cos sinA iA E i      2 2 2

2 2 2 2 2 2

i E E Ei
E i E E
   

    
 

  
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Among all these rheological models, there is no single model that is suitable for all types 

of materials. Figure 2.7 shows different dispersive behaviors in two types of materials.  On the left 

is the dispersion curve of a viscous gel that is fitted to a Maxwell model, implying this gel has 

fluid-like properties. The model parameters are E = 5.58 kPa,   = 2.9 Paˑs.  On the right is the 

dispersion curve of ex vivo porcine liver fitted to a KV model, implying solid material behavior. 

The model parameters are E = 1.75 kPa,  = 0.4 Paˑs.  It is difficult to directly compare these 

modeling results of the materials because neither are a continuum. The viscous gel is an oil-based 

cream emulsified in gelatin (a composite material) and liver is a collagen polymer embedded in 

open- and closed-cell fluid compartments. New ways of representing complex mechanical 

structures are needed. Given that all models are limited in their ability to predict mechanical 

behaviors, we settle for those that yield physically-meaningful imaging parameters that are 

 

Figure 2.6.  Dispersion curves as predicted by four rheological models over the same frequency 
range. 
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sensitive to the presence of disease.  The best models offer parameters that are correlated with 

inflammation, hyper-cellularity, fibrosis and other classic pathological biomarkers.    

The solution is NOT to increase the number of parameters by adding coupled components 

to existing models. It is unlikely that more complicated models will enhance the diagnostic 

performance of elastography. Recently fractional derivative (FD) models are proving to be 

efficient in summarizing the dynamic behavior of viscoelastic materials over a wide frequency 

range with just 2-3 parameters. [64, 95]  There is new hope in these recent efforts to model tissue 

mechanics using fractional derivative models [96].  These models may help resolve the solid-fluid 

duality of soft biological tissues [97] by offering a compact feature space that is sensitive to disease 

states. 

  

 

 

2.3  Ultrasonic shear-wave imaging using vibrating-needle stimulation 

 

  

Figure 2.7.  (left) Dispersion curve of viscous gel measured by ultrasonic shear wave imaging 
technique, with Maxwell model fit. (Right) Dispersion curve of an ex vivo fresh porcine liver measured 
by optical surface wave imaging, with Kelvin Voigt mode fit. 
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  Ultrasonically-guided breast needle biopsy is commonly used. Needle insertion provides 

an opportunity to vibrate the needle and excite harmonic cylindrical waves for shear-wave imaging 

with a well-known shear-wave-field geometry (Figure 2.4). This section summarizes the 

implementation, validation and in vivo application of the biopsy needle based ultrasonic shear 

wave imaging technique. Phantom measurements demonstrate the feasibility and reproducibility 

of the measurement. Rodent mammary tumor studies examine the potential of this technique as a 

diagnostic test in clinical applications. In the end of this section, the influence from reflecting 

waves is studied using both simulations and experiments, and the directional filter is applied to 

minimize this effect in order to improve the accuracy of the measurements. 

Experiments are conducted on the SonixRP ultrasonic system (Ultrasonix Medical 

Corporation, Richmond, BC) using a BW-14/60 linear array probe. Pulsed Doppler techniques are 

applied to record the particle velocity field. Local shear wave speeds are then estimated from 

spatial-phase gradients. Spatially averaged estimates of shear-wave speed at different oscillatory 

frequencies form a dispersion curve, which can be fitted to prediction rheological models to 

estimate model parameters. Details of the acquisition, modeling, and signal processing are 

described in [81, 92]. 

 

2.3.1  Validation measurement in homogeneous gelatin phantom 
 

Six homogenous gelatin gel phantoms were prepared with gelatin concentrations of 4% 

and 8% (three samples per concentration for mean and standard deviation estimates).  The phantom 

size was 125×95×95 mm3 in volume. A needle was inserted near the center of the gel block and 

vibrated axially with a mechanical actuator driven by a single-frequency sinusoid.  Narrow-band 
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shear waves at frequencies between 50 and 450 Hz were generated and imaged using a Doppler 

probe.  The angle between the vibrating needle and the beam axis was set to 30° to allow imaging 

of the needle and surrounding regions. Figure 2.8 illustrates the experimental setup for the 

validation studies of biopsy needle based ultrasonic shear wave imaging technique.   

 

Shear wave speeds as a function of frequency were measured for each concentration and 

fitted to Kelvin-Voigt model (shown in Figure 2.9). The results from shear wave imaging are listed 

in Table 2.2, compared with rheometer results measured independently. Good agreement exists 

between the rheometer-estimated elastic shear modulus and the one estimated by the ultrasonic 

shear wave imaging. Therefore, it is feasible to obtain the shear modulus of a homogeneous 

material through cylindrical shear wave propagation. 

Figure 2.8.  Diagram of hardware for ultrasonic shear wave imaging experiment to measure viscoelastic 
properties of gelatin samples. The mechanical actuator is driving a stainless steel needle oscillating at a 
single frequency. Momentum of the needle displacement is transferred to the medium as attenuated 
cylindrical shear waves. A linear array Doppler probe tracks the induced transverse motion of scatterers 
as shear waves propagate. 
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2.3.2  Validation measurement in inhomogeneous gelatin phantom 
 

Biopsy needle based ultrasonic imaging technique is further validated through an 

inhomogeneous gelatin phantom. In this study, 3D shear wave field was captured using 2D 

 
Figure 2.9.  Dispersion curves for two homogenous gelatin phantoms of 4% and 8% concentration.  
Solid lines represent least-square fit to Kelvin-Voigt model. 

Table 2.2.  Measurement results of homogeneous gelatin phantoms 

Gelatin 

concentration 

RHEOMETER [PA] μ [Pa] η [Pa·s] 

4% 571±67 571±105 0.21±0.06 

    

8% 2286±315 3068±321 0.84±0.45 
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ultrasound transducer.  Inhomogeneous gelatin gel phantoms were prepared as follows. First, an 

8% gelatin gel was formed in the acrylic phantom mold that contained a 15mm-diameter cylinder. 

After congealing 24 hours, the cylinder was removed and the hole was refilled with 4% gelatin 

and allowed to congeal for another 24 hours.  To image shear waves in the 3D volume surrounding 

the vibrating needle, pulsed Doppler velocity data were acquired by scanning parallel scan planes 

separated in elevation by 1 mm increments. In these experiments, the angle between the needle 

and beam axis was 0°. Meanwhile, a numerical simulation developed by our group to simulate 

shear wave propagation in viscoelastic media [98] has been used for two purposes: First, 

simulations provide the 3D velocity data comparable to the phantom measurements that enabled 

the verification of the accuracy of the solver. Second, this activity helped understand how wave 

reflections and refractions in inhomogeneous media affect the estimation of viscoelastic properties. 

In the simulation, FDTD (Finite-Difference Time-domain) method is used to solve the 

wave equation in solid media.  It is known to be more robust and less computationally expensive 

when compared with FEM (Finite Element Methods).  To minimize computation time, only shear 

wave propagation is simulated.  Longitudinal waves travel much faster and thus require smaller 

time steps. Since they do not interfere with shear waves, they can be ignored with little effect.  An 

absorption layer was added to boundaries. Values of complex shear modulus set in the simulation 

were compared to those measured in gel samples. The soft inclusion, which has a 4% gelatin 

concentration, was assigned an elastic shear modulus of 1100 Pa and a viscous constant of 0.1 

Pa·s.  The 8% gel background was assigned an elastic shear modulus of 4000 kPa and a viscous 

constant of 0.5 Pa·s. 

 In both experiments, a needle was vibrated axially with pure sinusoid at 100Hz frequency. 

3D estimates of the z-axis (parallel to the axis of needle vibration) velocity component, uz, were 
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obtained in time sequence (Figure 2.10). I matched the spatial region in the simulation to that 

recorded experimentally. In Figure 2.11, the comparison of shear wave particle velocity field 

between simulated and experimental data is illustrated for simulation time tsim = 78ms.  Similar 

wave patterns are observed in both the experimental and simulation examples. The lateral line cut 

through the center of inclusion for both simulated and experimental data was also plotted.  The 

change in wavelength of the shear wave as it propagates through the soft inclusion can be observed 

in the region from 4mm to 19 mm which corresponds to the 15 mm diameter of the inclusion in 

both the simulation and the experiment. Small differences between simulated and experimental 

data are explained by the variability of the mechanical properties of gelatin samples of up to 20 % 

[67, 81].  

  

 
Figure 2.10. (a) Crosscut and vertical cut of 3D FTDT simulated velocity field (left). Experimental 
data collected by linear array transducer (right). 



 

41 
 

    

 

It is demonstrated that the developed 3D FDTD solver is an accurate tool for simulating 

shear wave propagation through soft viscoelastic biomaterials. Furthermore, the feasibility of using 

 

 
 

Figure 2.11. (Upper) Comparison between simulated and experimental data over lateral space. 
(Middle) Comparison of the spatial wave patterns for the lateral cut through the center of inclusion 
for the same time cut. Two are in good agreement in terms of the spatial wavelengths and attenuation. 
(Lower) 3-D shear modulus reconstruction of the cylindrical inclusion. 
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a 1D linear array to collect 3D volumetric velocity data is shown. The developed simulator is the 

first step in solving a 3D inverse problem for complex shear modulus reconstruction.  It provides 

a unique opportunity to conduct experiments in silico, and to study the effect of realistic 

viscoelastic biological material properties on contrasts observed in shear wave images.  

 

 

2.3.3  Shear modulus quantification of rodent mammary tumors 
 

This dynamic methodology for quantifying complex shear modulus was applied on rodent 

mammary tumors. The goal is to examine whether ECM properties and disease states can be 

translated into viscoelastic properties measured through waves propagating in tissues using the 

technique developed. Measurements were compared with histology and chemical analysis to 

determine tumor types and ECM components.   

Toward this goal, the properties of two types of rodent mammary tumors are measured: rat 

fibroadenoma and 4T1-implanted mouse carcinoma. Fibroadenoma is a benign, spontaneously-

occurring tumor characterized by a hyper-proliferation of normal type I stromal collagen. The 

collagen fibers in the ECM matrix are assembled with hydrogen bonds that will break and reform 

when stress is applied over a period of time. The concentration and architecture of collagen 

proteins in the ECM are responsible for many mechanical properties of mammary tissues [99]. In 

contrast, 4T1 cells are a metastatic late-stage mammary carcinoma line. Due to high MMP 

secretion and other properties, 4T1 cells generate tumors with very little ECM collagen. However, 

the fibers that are present are highly linearized compared to the winding shape in benign fibrous 

tumors [100].  
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Experimental setup and procedures 

Animal models:  Four Sprague-Dawley female rats (Harlan, Indianapolis, IN), aged from 

5 to 10 weeks, that had developed spontaneous mammary fibroadenomas of size 2 to 4 cm were 

used for evaluation. The tumors appeared grossly homogeneous in morphology and consisted of 

abundant fibrous connective tissue with a high collagen density.  Manual palpation revealed a 

variation in stiffness among these tumors and animals. For carcinoma tumors, syngeneic 

orthotopic xenograft mouse tumors were induced by a late-stage metastatic mouse mammary 

cancer cell line 4T1 (CRL-2539, ATCC, Manassas, VA). The tumors grew a relatively uniform 

morphology, characterized by a high density of cells and little ECM.  4T1 cells were stored, 

cultured and collected as the ATCC protocol recommended.  Tumors were implanted by 

subcutaneous injection of 104 4T1 cells suspended in 50 ml of cell media into the 4th and 9th 

mammary pad of a normal 8-16 week-old BALB/c mouse.  The injection site was monitored 

daily until the tumor reached 1 cm in size, when its mechanical properties were measured in 

vivo.  Injected cells initiated tumor growth in 80% of the animals. The tumor size grew rapidly at 

the injection site during the first 2-3 weeks, then growth slowed as the tumor mass stiffened. 

Although larger tumors are easier to manipulate, image, and analyze, large tumors often formed 

a necrotic core.  To minimize necrosis, tumors were scanned once they reached 1.0 cm in 

diameter. The experimental protocol was approved by campus Laboratory Animal Care Advisory 

Committee.  

Imaging procedures:  A SonixRP system (Ultrasonix Medical Corporation, Richmond, BC, 

Canada) was used for ultrasonic imaging.  All rodents were anesthetized with a combination of 

ketamine hydrochloride (87 mg/kg) and xylazine hydrochloride (13 mg/kg) under a protocol 

approved by the Institutional Animal Care and Use Committee at the University of Illinois. The 
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skin of each anesthetized animal was shaved in the region around the tumor before imaging. The 

animal was placed on an acrylic plate in a prone position and submerged in 37 °C degassed water 

bath with its head above of the water surface. The water provided an acoustic window for non-

contact ultrasonic scanning and thermal control during anesthesia.  B-mode imaging of the tumor 

was performed to select a Doppler imaging plane. Then a 17-gauge stainless-steel needle was 

inserted vertically into the tumor under ultrasonic guidance to select the needle depth and avoid 

damaging large vessels. A L14/38 linear-array Doppler probe scanned the tumor in a plane at a 

fixed scan angle of 30° relative to the needle axis.  The transmit focus of the ultrasound beam was 

set to the center of the measurement field of the tumor. Transmitting ultrasound center frequency 

is 7 MHz. A mechanical actuator vibrated the needle harmonically for 0.3s along its long axis (z-

axis). The acquisition sequence of the linear-array probe was synchronized to the actuator, with 

the pulse repetition frequency (PRF) set to 12500 Hz in Doppler mode with Doppler packet size 

to be 6. The actuator vibration frequency ranged from 50 Hz to 450 Hz in increments of 50 Hz. 

The peak-to-peak voltage of the actuator was set to a low level (2V) to avoid needle slippage and 

mechanical nonlinearities, but at some cost of velocity SNR. See Figure 2.12 for setup details. The 

actual tissue displacement at the center of needle is several micrometers (1-9 micrometers) 

depending on the excitation frequency and tissue stiffness. 

Histology:  After velocity acquisition, the tumor was excised immediately after the rat was 

euthanized. Three cylindrical samples were cut from each tumor for shear rheometer testing. Other 

parts of the tumor were fixed, stained (hematoxylin and eosin) and sliced for standard histological 

analysis that identified tumor types.  The histology results were examined by a doctor. The rat 

tumors were diagnosed as mammary fibroadenomas each with a different ECM content that 

correlated with tumor age. All mouse tumors were diagnosed with anaplastic mammary carcinoma. 
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Diagnostic reports from a professional pathologist showed minimal difference among these tumors. 

The tumors were densely cellular, infiltrative with a few interspersed ingrowing capillaries. Figure 

2.13 shows histopathologic slides of two representative mammary fibroadenomas and one 

representative mammary carcinoma. 

 

 

Figure 2.12. In vivo setup used for ultrasonic shear wave imaging experiments.  The z axis is aligned 
along the long-axis of the needle.  The x axis is normal to z and in the scan plan of the Doppler probe 
(red line in the top diagram). Lower left figure demonstrates the harmonic movement at three different 
locations on the tumor. Lower right figure shows the phase of the harmonic movement over the 
measured spatial locations at 400 Hz. 

 



 

46 
 

 

Collagen content:  Hydroxyproline assays were performed on three samples per tumor to 

measure the collagen-protein content following the assay protocol of Samuel [101].  

Hydroxyproline content can be used as an indicator to determine collagen content [102]. 

Result 

Figure 2.14 shows the shear-wave dispersion curves measured in vivo on four rat 

fibroadenoma tumors and five mice carcinoma tumors. The shear-wave speeds for each tumor 

were fit to a Kelvin-Voigt rheological model to estimate the complex modulus coefficients, μ and 

η (see Equation 2.10 and section 2.2.3 for modeling detail). Modeled curves were fit to measured 

data by selecting model parameters that minimized the reduced χ2 statistic, 

𝜒2 =
1

𝑁−𝑛−1
∑ (

𝑐�̂�(𝜔)−𝑐𝑖(𝜔)

𝜎𝑖(𝜔)
)2𝑁

𝑖=1                                                   (2.11) 

where N is the number of different frequency observations and n is the number of model 

parameters. 𝜒2  is an indicator for the goodness of fitting between model and the shear wave 

dispersion curve. The fitting modulus coefficients are listed in Table 2.3 and Table 2.4.  

   

Figure 2.13 Optical microscope images of H&E stained tumors.  On the left is an early-in-
development rat fibroadenoma tumor, and in the middle is a mature rat fibroadenoma tumor with 
densely packed collagen fibers (both images are at 40X). On the right is a sample from a mouse 
carcinoma (80X). 
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Histological analysis of these tumor tissues revealed that the fibroadenomas in rats 1 and 

2 were in the early stage of development (Figure 2.13 left, where the tissue is less fibrotic and the 

ducts retain a normal shape). Conversely, the lesions in rats 3 and 4 were at the latter stage of 

fibroadenoma development (Figure 2.13 middle, where there is denser fibrosis and the ducts have 

collapsed). Carcinoma tumors were of different sizes and necrosis stages. Histology revealed that 

tumors were composed almost entirely of cancer cells with minimum fibrotic changes. (Figure. 

2.13 right). 

 

 

 

  
Figure 2.14.  (left) Dispersion curves measured in four different rat fibroadenomas. ‘◦’ denotes the 
measured shear-wave speed of early stage fibroadenoma tissues and ‘△’ denotes that of the more 
mature fibroadenomas. Solid lines represent the best-fit K-V model curves. (left) Dispersion curves 
measured in five different mouse carcinomas. Solid lines represent the best-fit K-V model curves. 

Table 2.3.  Estimates of shear modulus coefficients for rat fibroadenomas 

fibroadenoma µ [Pa] η [Pa·s] χ2 

1 1832.2 0.9 0.86 

2 1485.6 1.16 4.52 

3 2728.6 3.46 9.55 

4 4420.4 3.54 2.71 
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The rat and mouse mammary tumors were vastly different in structure and composition. 

Since collagen is a cancer biomarker and the principal component of stroma responsible for tissue 

viscoelastic properties, the collagen content of each tumor is measured to compare with measured 

mechanical properties (see Figure 2.15). It is found that rat fibroadenomas are in the range of 85-

110 mg hydroxyproline/g dry tissue. This range overlaps values reported for human breast 

fibroadenoma [103, 104]. In contrast, the 4T1 mouse carcinoma model contains very little ECM 

collagen, generally in the range of 1-8 mg hydroxyproline/mg dry tissue. Note that hydroxyproline 

constitutes 15% of total collagen content [102], so the collagen concentrations are roughly seven 

times larger than the hydroxyproline concentration values reported in Figure 2.15. Hypothesis 

testing shows there is a good correlation between modulus parameters and collagen content in both 

rat fibroadenoma (correlation coefficient equals 0.95 for μ, 0.81 for η) and mouse carcinoma 

(correlation coefficient equals 0.93 for μ, 0.99 for η). These data yield strong evidence that the 

elastic shear modulus is highly correlated with collagen content. 

 

 

Table 2.4.  Estimates of shear modulus coefficients for mice carcinomas 

carcinoma µ [Pa] η [Pa·s] Tumor size [mm] Line color 

1 857.0 0.56 11.0 black 

2 894.4 0.95 11.4 blue 

3 926.9 1.78 10.5 magenta 

4 4464.6 2.5 16.5 green 

5 6343.1 2.4 14.1 red 
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Summary 

The measurements on two rodent tumors have provided insights into the mechanical 

behavior of collagen-rich fibrotic tumors (fibrosis) and cell-rich hyperplastic tumors (hyperplasia) 

respectively. In the frequency range of 50-450 Hz, both types of tumors display similar dispersion 

curves. Complex shear modulus is estimated using Kelvin-Voigt (KV) rheological model. 

Preliminary results demonstrate that the elastic coefficient μ reflects the same fibrotic stage 

of the tumor that observed histologically. The viscous coefficient estimated from the K-V could 

also reflect this change. Later collagen quantification reaffirmed the qualitative assessment from 

histology that the tumor stiffening was the consequence of the increase in collagen concentration. 

Dispersion curves and viscoelastic moduli of mouse carcinomas exhibit more variation and size 

 
Figure 2.15. The hydroxyproline concentrations measured for rat fibroadenomas are plotted on a log-
log scale as a function of the corresponding tissue elasticity measurements in the upper curve. The 
same quantities were measured for mouse carcinomas and plotted in the lower curve. Assuming there 
is a power-law relationship between these measurements of the form C = Aµn, we find n = 0.46 and A 
= 0.12 mg/g for the mouse carcinomas (lower curve) and n = 0.23 and A = 15.3 mg/g for the rat 
fibroadenomas. Error bars indicate one standard error. Also note that we can write µ = BCm, where B 
= (1/A)1/n and m = 1/n. 
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dependency mainly because it is heavily affected by boundary reflection, as Table 2.4 shows. In 

mouse carcinomas, shear wave speeds were underestimated to some degree due to that the tumor 

diameter is too small. 

 

2.4  Acoustic radiation force optical coherence elastography (ARF-OCE) 

 

Optical imaging can in principle provide higher resolution and improved sensitivity to 

tissue displacements than ultrasound, owing to the much shorter wavelength of light. Laser speckle 

imaging has been utilized to evaluate the mechanical properties of tissue phantoms and various 

biological samples, including cortical bone and arteries, as well as natural and engineered normal 

and cancerous skin tissues [105, 106, 107]. Recently, digital holographic techniques have been 

developed to provide wide-field imaging (over tens of millimeters) of surface acoustic waves, with 

the ability to reconstruct 3D depth-resolved mechanical properties from the frequency-dependent 

velocities (dispersion curve) of these waves [108, 109].   

In terms of wave excitation, needle excitation discussed in previous section provides 

cylindrical shear waves at frequencies less than 800 Hz. Acoustic radiation force can provide 

excitation frequencies as high as 10 kHz, which enables high-spatial-resolution imaging. The 

larger bandwidth results in much smaller shear-wave amplitudes that are too small for ultrasound 

detection, but perfectly matched to the detection and sensing capabilities of OCT.   

The radiation force generated from a focused acoustic beam on the medium is proportional 

to the absorption coefficient of the tissue and the time-average beam intensity [110]. Thus, the 

applied force is the largest at the beam focus within an attenuating medium. The magnitude of the 

force is related to the medium and the sound intensity:  
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𝐹 =
2𝛼𝐼

𝑐
                                                            (2.12) 

where α is the absorption coefficient, 𝐼 is the intensity of ultrasound, and c is the longitudinal wave 

speed in the medium. The acoustic radiation force can be used as the driven force for more 

localized excitation. Since the penetration of OCT in scattering samples is limited to about 1-2 

mm, the acoustic beam was focused on the top sample-air interface to generate shear waves that 

propagate near the surface of the sample. In the experiments, the high impedance discontinuity at 

the sample-air surface act like a drum membrane, which dominants the excited wave to be a 

Rayleigh wave or surface wave. The propagation speed of Rayleigh wave is 5% slower than the 

corresponding shear wave [113,114,115]. A circular, single-element 8 MHz, f/1 transducer is 

selected to deliver the acoustic radiation force. The small f-number keeps the force-excitation 

focused to an area about the size of the sound wavelength, in this case, 0.2 mm. The magnitude of 

the acoustic force was easily controlled by the transducer driving voltage. Harmonic-wave 

excitation was achieved by modulating the continuous-wave 8-MHz amplitude anywhere in the 

range of 100 to 10,000 Hz. Thanks to the high phase stability and SNR of OCT, movements as 

small as 10 nm can be readily measured. The low driving force of the transducer allowed forces to 

be applied continuously without heating. Acoustic radiation exerts forces in only one direction, 

thus harmonic oscillations generate a net displacement in tissue that depends on frequency and 

tissue properties. 

The reason for introducing ARF-based optical coherence elastography (OCE) is to allow 

low-amplitude, broad force frequency bandwidth shear waves imaging for assessing viscoelastic 

properties of tissues at high spatial resolution, which is needed in basic science investigations and 

some clinical scenarios. 
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This section will demonstrate the feasibility of using ARF-OCE to map the shear-wave 

speeds first in polymer materials for calibration and later the mammalian liver tissue samples 

during fixation. 

Shear wave modulation frequencies from 200 Hz to 5 kHz are easily achievable at A-scan 

rate of 65,000 A-lines per second. The shear waves with frequencies as high as 10 kHz have been 

imaged using this method. The analytic signal was computed from the raw optical data acquired 

in M-mode, and was used to calculate the phase difference between adjacent A-lines at each axial 

position as a function of time. As in ultrasound displacement detection, phase wrapping was 

avoided. Figure 2.16 illustrates spatial patterns of displacement when a harmonic acoustic force is 

applied at the top surface of the sample. The largest displacements appear at the ultrasound-beam 

focus. Both the magnitude and width of the displacement pattern depend on the carrier frequency 

of the sound waves.  
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2.4.1  US-OCT methodology 
 

US-OCT system setup 

The optical source on the SD-OCT system was a 26 mW superluminescent diode 

(Praevium Research) with a center wavelength of 1330 nm and a bandwidth of 105 nm. The 

spectrometer used in our system (Bayspec, OCTS-1255-1330-1405) included a 1024-pixel InGaAs 

lines can camera (Goodrich, LDH2), which was connected to a PC via a NI-IMAQ board (National 

Instruments, NI-PCIe 1427). Optical beam steering was achieved using an x-y galvanometer 

(SCANLAB, SCANcube 7) controlled by the PC via a multifunctional DAQ card (National 

 

Figure 2.16. (left) OCE displacement maps are shown at acoustically-generated shear-wave 
frequencies of 200 Hz (top row) and 3000 Hz (bottom row) for an 8% (stiff, elastic) gelatin gel 
phantom. The top of the sample is located at depth z = 0.  The brightest area (left) corresponds to the 
largest displacements (right) at the ultrasound focus.  The mechanical interaction length, indicated by 
the full-width-half-maximum (FWHM) values, affects the mechanical spatial resolution.   

 



 

54 
 

Instruments, NI-PCIe 6353). The OCT system was operating in M-mode with the scan rate of 47 

KHz. Details of the system setup can be found in Figure 2.17. This system has a low numerical 

aperture (NA=0.03) to image a large range of depth, resulting in a FWHM transverse resolution 

around 20 μm. The axial resolution, however, was about 5 μm.  

The ultrasound transducer (ValpeyFisher, Hopkinton MA, 8 MHz, 0.75-inch diameter, F-

1) was fixed from the bottom and the tissue sample was placed on a thin agarose standoff pad 

mounted on a 3-D movable stage. A power amplifier (3100LA, 55dB, 250 KHz – 150 MHz) drove 

the US transducer to transmit ultrasound amplitude-modulated bursts. Radiation force was 

generated at the sample-air surface where the acoustic impedance changes dramatically. This 

radiation force was applied along the axial (z-axis) direction where the force magnitude was 

proportional to the acoustic intensity over a small area at the sample surface. Real-time feedback 

of the tissue motion allowed us to locate the ultrasound focus precisely (see Figure 2.18(a)).  This 

ARF was amplitude modulated at a sinusoidal frequency which generated a harmonic surface force 

at a specific frequency. The velocity of the surface wave was calculated by estimating the spatial-

phase gradient of each shear wave over a range of transverse locations (Figure 2.18(b)).  Shear-

wave speed in the bulk media is approximately 1.05 times surface wave speed [111]. Dispersion 

(change in shear speed with frequency) measurements were fit to values predicted from rheological 

models to find estimate the complex modulus.  
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Figure 2.17.  The schematic of the system used for mechanical testing of soft tissue samples. 

            
 
               
Figure 2.18.  (left) A focused ultrasound transducer generated surface waves at the sample surface. 
(right) Example of the phase shift measured over transverse locations in homogeneous media. The 
phase gradient was calculated through linear regression applied to the phase plot.   
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Gelatin phantom tests 

Gelatin gel samples (bi-phasic hydropolymers) of 4 and 8 percent concentrations were used 

in this study. Each cylindrical sample was 1-inch in diameter and 1 cm in thickness. Titanium 

dioxide particles were added to increase the optical contrast inside the gel.  Details of phantom 

construction can be found in [5]. Three samples of each concentration were measured to test the 

repeatability of the technique. 

The OCT scan area was 6 x 6 mm containing 50 x 50 measurement points and the drive 

voltage of the ultrasound transducer was 16 V and 22 V for 4% and 8% gelatin sample, 

respectively.  Voltage accounts for different strain responses observed for the two gel 

concentrations. Modulation frequency ranged from 200 Hz to 4000 Hz. Above 4000 Hz, the 

surface wave attenuated too quickly, resulting in noisy spatial-phase-gradient measurements.    

   

Porcine liver experiment 

Two liver samples were cut using a circular punch on a freshly-excised porcine liver 

obtained from the Meat Lab, Department of Animal Science at University of Illinois. The liver 

was placed in iced saline (0.9% sodium chloride) immediately after harvesting and then 

transported to the lab for measurement. The diameter of samples was 1-inch and the thickness was 

approximately 1 cm.  Prepared liver samples were warmed in saline at 23 °C for one hour before 

mechanical testing. One liver sample was monitored during the formalin fixation process.  It was 

measured at four time points – 0 h, 20 min, 1 h, 2 h after soaking in 10% formalin in a 50 ml tube. 

The sample was washed in saline before making each measurement. A control sample was kept in 

saline between measurements made at 0 h, 40 min, 2 h.  

The OCT scan area was 4 x 4 mm containing 50 x 50 measurement points and the drive 

voltage of the ultrasound transducer was between 34 - 40 V, where high voltages were used as 
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samples stiffen during fixation. Modulation frequency ranged from 200 - 3500 Hz. Above 3500 

Hz, the surface wave attenuated too quickly, resulting in noisy spatial-phase gradient 

measurements.    

 

2.4.2  Validation results of phantom and tissue 
 

Shear modulus estimation of gelatin phantoms 

The shear-wave speeds estimated from six gelatin samples (three each at 8% and 4%) are 

shown in Figure 2.19. Assuming an elastic, non-dispersive medium and selecting the shear-wave 

speed at 300 Hz, the shear modulus was found to be 2984.6 ± 130.2 Pa for 8% gelatin and 835.8 

± 86.5 Pa for 4% gelatin. Acknowledging dispersion and adopting the Kelvin-Voigt viscoelastic 

model, the complex moduli estimated are presented in Table 2.5. Errors represent the standard 

deviation based on three measurements. 

 

Shear modulus change of fresh liver during fixation 

Figure 2.20 and Table 2.6 present the measurements of mechanical property changes of the 

ex vivo liver sample during fixation in 10% formalin using ARF-OCE. Both elastic modulus and 

viscous modulus increased about 10 times after 2 hours fixation.  Meanwhile, the control sample 

in saline showed little change over the 2 hour measurement time. This finding agrees with what 

has been found in literature [112] that the content of water, collagen, and the natural crosslinking 

do not change after formalin fixation, but the amount of methylene bridge (-CH2-) cross-linking 

increases during fixation. These crosslinks increase the elasticity of the tissue as well as the 

viscosity. 
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This study provided a new tool for studying mechanical properties of soft tissues over a 

broad force-frequency range. It is believed that as force frequency increases, the mechanical 

resolution (which is determined by the shear wavelength) also increases. Reliable measurements 

of shear-wave speeds up to 4000 Hz have been achieved. This could be increased further by using 

more focused ultrasound transducer and finer transverse sampling of the OCT scans. This 

technique shows great promise for investigating the force-frequency landscape of tissues and 

therefore providing a more complete understanding of the tissue microstructure. 

 

 

 

            

 
Figure 2.19.  Shear wave dispersion curves for three 8% and 4% gelatin gel samples.   
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Table 2.5. Viscoelastic parameters estimated by Kelvin-Voigt model 
 

      Gelatin  concentration    μ1 [Pa]                                                    η   [Pa s] 

       4% 889.7±105 0.1±0.06 

       8% 3524.3±108 0.3±0.08 
 

 

 

Figure 2.20.  Shear-wave dispersion curves in a control sample at three times (top) and a liver 
samples in formalin at three measurement times (bottom). 
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2.5  Summary 

    

The quantification of viscoelastic properties is important in the understanding of the tissue 

microenvironment and is expected to play an important role in disease diagnosis. In this section, I 

summarized three techniques for measuring mechanical properties at three different scales. 

Indentation is widely used in mechanical characterization, and is viewed as the “gold standard”. 

However, indentation methods are usually not fully compatible with in vivo measurements and the 

contact between sample surfaces and the indent probe must be strictly controlled. Utilizing 

dynamic-wave elastographic techniques for estimating mechanical properties of tissue offers 

several advantages. Firstly, among the many methods now available for visualizing tissue 

viscoelastic properties, wave based techniques are valued for their ability to quantitatively map 

complex shear modulus G. Secondly, imaging methods can provide much higher spatial resolution 

than indentation, especially optical methods. The high spatial resolution would enable the study of 

Table 2.6.  Estimation of liver viscoelastic properties during formalin fixation 

Time 
Liver 

0 min 20 min 40 min 1 h 
 

2 h 
 

 
1 

μ1 [Pa] 1139.6 - 1098.2 - 1064.8 

η [Pa s] 0.37 - 0.41 - 0.40 

 
2 

μ1 [Pa] 1150.8 3475.7 - 8214.0 12108.8 

η [Pa s] 0.37 0.85 - 1.79 2.93 
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small biological tissues and 3D tissue cultures. Thirdly, it makes in vivo measurement of tissue 

material property possible during conventional imaging examinations.   

 

The three techniques introduced in this chapter are different in mechanical excitation 

frequency. Indentation methods are suitable for catching mechanical behavior of less than 1 Hz. 

Needle excited shear waves are often within 50 and 500 Hz. The mechanical properties of tissues 

and polymers can be measured at force frequencies up to 4000 Hz using an ultrasonic radiation 

force excitation method with OCT particle motion tracking. Since different mechanical frequency 

ranges will render difference in the spatial resolution, field of view, displacement sensitivity, and 

SNR, each technique will have its own unique application areas. Moreover, measurements from 

different techniques are possible to emphasize different phenomena of the material which correlate 

with different ECM components. The combination of multiple techniques might be needed to fully 

understand the structure of the tissue. And applying the right model will help extract the 

underlining ECM properties from the measurement techniques. 
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CHAPTER 3: CORRELATION OF TECHNIQUES, MODELS AND 

ESTIMATED MECHANICAL PROPERTY 

 

The three techniques introduced in the previous chapter excite tissue using different 

mechanisms. Mechanical properties measured at different frequencies could arise from tissue 

structures that responding specifically to a particular force frequency. For example, fluid motion 

through the ECM is likely to vary with force frequency. Consequently, a description of tissue 

mechanical properties is more complicated than the information conveyed by modulus values.  The 

“intrinsic” properties of tissues also depend on the measurement techniques and analysis models 

applied. Models that are suitable for a particular experiment could assist in converting 

physiological information of tissue to parametric representations. In this process, both 

measurement techniques and model assumptions will affect the information obtained about tissue 

property. This chapter will evaluate the influence of techniques and models used to the measured 

mechanical parameters given the same sample. 

 

3.1  The consistency of all techniques on elastic material 

 

Among the three techniques investigated, indentation is relatively standard and widely used 

in material characterization field, and imaging techniques are new and promising for tissue 

applications. Both imaging techniques have been validated individually in Chapter 2. Each method 

has unique advantages and limitations. The critical questions are: which technique should be 

chosen, and would these techniques yield the same or different mechanical properties when testing 
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the same material. I attempt to answer the questions by measuring a well-understood gelatin 

phantom using all three techniques before applying them to tissues and viscous phantoms. For 

most techniques, gelatin phantom is a uniform hydrogel with incompressible linear-elastic 

mechanical properties when strain is less than 10% [65]. As a linear-elastic material, the elastic 

modulus of a gelatin gel does not significantly depend on load frequency. This material can simply 

be modeled as Hookean material which rules out the interference from using the inappropriate 

model to describe the frequency dependent responses of the material, thus allows direct 

comparisons of quasi-static indentation and dynamic imaging measurements.   

3.1.1  Measurement of gelatin samples 
 

The general challenge is to find combinations of samples and estimation techniques that 

yield direct comparisons of elastic moduli from different measurement approaches. These include 

the effects of different sample shapes required by different techniques.  My contribution is to 

provide a procedure for employing indentation measurements of elastic modulus that may be used 

to validate shear-wave imaging estimates. 

Phantom preparation 

The gelatin samples are constructed by mixing 250-bloom, Type-B, animal-hide gelatin 

powder (Rousselot Inc. Dubuque, IA) into the twice-deionized and degassed water. Gelatin powder 

is added to water at 21°±1°C in a glass beaker, mixed thoroughly, and placed in a heated water 

bath at 70°±2°C for 45 minutes. The mixture is gently stirred with a metal spoon for 1 minute after 

every 10 minutes of heating. The molten gelatin, now visibly clear of undissolved powder and air 

bubbles, is removed from the heat and allowed to cool at room temperature from 70°C to 45°C. 

Cornstarch (3% by weight) is added to the molten gelatin and thoroughly mixed to provide an 
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acoustic backscatter signal for shear-wave imaging. These particles did not significantly increase 

acoustic attenuation or modify the elastic modulus of the material. The gelatin suspension was then 

poured into one of three different-sized cylindrical containers, immediately sealed with plastic 

wrap, and allowed to quiescently congeal at room temperature for 24±2 hours.  Congealing time 

begins when molten gelatin is poured into a container and ends at the time of mechanical testing.  

The molten gelatin congeals upon cooling to form denatured collagen-molecule aggregates, where 

half of the cross-linking that generates the elastic properties occurs in the first 24 hours [66].  

However, sample preparation procedures must be precisely maintained to ensure reproducible 

mechanical properties. In particular, accelerated cooling of gelatin (ice bath, refrigerator) is ill 

advised, and chemical cross-linkers were not used. At the time of measurement, the plastic wrap 

was removed and samples were exposed to air or water as described below. For indentation 

technique and needle-based ultrasonic shear wave imaging technique, measurements were made 

at 23°C within the rigid container that surrounded all surfaces except the top. For ARF-OCE, 

samples were taken out of the modes and put onto the agarose standoff pad. 

Three different sample sizes (big, medium, and small), each at four different concentrations 

of gelatin powder, were studied: 2% 4%, 6%, and 8% gelatin by weight. Cylindrical samples 

labeled small, medium, and large in size based on their diameter compared to the radius of indenter. 

The large-size sample approached the semi-infinite geometry to serve as a baseline study, and the 

medium size is the size that would be used for most of the experiments. Indentation and ultrasonic 

technique were applied on samples of these two sizes. However, since ARF-OCE technique is not 

compatible with these two sizes, the small size which is often seen in tissue applications is added 

for optical technique.  Table 3.1 lists the dimension of the three sample size used in the experiments. 
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Measurement experiments 

In indentation tests, adhesions were minimized by covering the top sample surface with 

water and lubricating the indentation probe tip with Pol-Ease2300 (Polytek Development Corp, 

Easton, PA). Without adhesions, the Hertzian method for elastic modulus estimation was 

applicable.  It was verified that minimal water absorption or sample desiccation occurs during the 

experiments thus did not significantly bias modulus estimates.  All indentation experiments were 

performed using the TA.XTplus Texture Analyzer (Stable Micro Systems Ltd., Surrey, U.K.) with 

a 1-kg load cell (15.3 mg force resolution) and a 5-mm-diameter spherical stainless steel indenter 

tip (1 µm positioning resolution). Indenter speed was set to 0.01 mm/s to implement quasi-static 

compressions that minimized the weak porous and viscous effects.  The visual onset and cessation 

of sample contact corresponded with features of the force-displacement curve as described in 

Figure 2.1.  Initial contact was used to measure the height of a sample. More details can be found 

in Section 2.1. 

Table 3.1.  Cylindrical sample sizes in millimeters 
 

 Small Medium Large 

D 22 44 70 

H 6 18 32 

D/R 8.8 17.6 28 

H/R 2.4 7.2 12.6 

*D is the sample diameter, H is its minimum height, and R = 2.5 mm is the spherical indenter radius 
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For ultrasonic shear-wave imaging tests, diagrams of the experimental setups are shown in 

left side of Figure 3.1. A vibrating needle positioned in the center of the sample was used to induce 

shear waves that were imaged using pulsed-Doppler methods.  This technique was applied to 

medium and large-size samples. Narrow-band vibration generated radial shear waves at four 

different frequencies. To minimize shear wave reflections from sample boundaries and maintain 

sufficient wave amplitude for ultrasound detection, different vibration frequency ranges were 

applied to the samples having different gelatin concentrations. For 8% gelatin concentration, the 

applied vibration frequencies were 100, 200, 300, 400 Hz.  For 4% and 6% gelatin concentrations, 

the frequencies were 50, 100, 200, 300 Hz, and for 2% gelatin concentration, 25, 50, 100, 150 Hz 

vibrations were applied. A linear-array ultrasonic transducer was set for color-Doppler acquisition 

with 8 MHz, 4-cycle pulses. From particle velocity estimates, shear-wave speed 𝐶𝑠was estimated 

and averaged over the sample. Detailed information about these measurements, motion detection 

algorithms, and modulus estimation are found in Section 2.2 and 2.3.  Because gelatin is 

homogeneous, isotropic, incompressible, and only weakly dispersive, the shear-wave velocity 𝐶𝑠 

in the gels is approximately constant with position and needle-vibration frequency.  Therefore, 

values of 𝐶𝑠 at four vibration frequencies ωn were averaged and a single value for elastic modulus 

E was estimated using the equation  

 

 
24

116
3 s n

n

E c 


 
  

 
       (3.1) 

 

where ρ is sample mass density assumed to be 1.02 g/cm3 at 2% gelatin concentration, .04 g/cm3 

and 4%, 1.06 g/cm3 at 6% and 1.08 g/cm3 at 8%.   
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For optical surface-wave imaging tests, diagrams of the experimental setups are shown in 

the right-hand side of Figure 3.1. Optical coherence elastography (OCE) technique is applied to 

the small size samples. A single-element ultrasonic transducer applied a narrow-band acoustic 

radiation force to the top sample surface from below, while a paraxial OCT system scanned the 

sample from above to image shear-wave surface movements.2  The large impedance difference at 

the air-sample interface generates an oscillating mechanical force at the sample surface. Ultrasonic 

and OCT-based estimates of 𝐶𝑠  (and elastic modulus) were found to be equivalent once small 

differences between surface and bulk shear waves are compensated [91].  The greater motion 

sensitivity of OCE allowed us to reduce the applied vibration amplitude, which reduced but did 

not eliminate the reflected shear waves in the 8%-gelatin samples.    

For OCE measurements only, small-size gelatin samples were extracted from their rigid 

molds and placed atop a stiff 4% agar-gel pad that coupled samples to the transducer applying the 

acoustic force. 10 MHz compressional-wave bursts with a sinusoidal amplitude modulation 

applied a 200 Hz acoustic radiation force to the sample-air top surface.  As acoustic force was 

applied, the OCT system scanned that surface to image shear waves at a 1 mm depth.   

 

                                                           
2 OCE measures Rayleigh waves at the sample surface that are about 5% slower than shear waves generated in the 
volume using needle vibration [113, 115].  Rayleigh wave speed was adjusted according to  cs = 1.05cR to estimate 
elastic modulus values [91].  Also the 200 Hz radiation force used for these elastic materials minimized the bias that 
could have occurred from the Lamb waves generated in samples behaving as layered materials [114].   
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Results 

Gelatin gels exhibit isotropic elastic properties. In principle, the Young’s modulus 

estimated by indentation should be equal to that estimated using dynamic wave imaging techniques, 

although each measurement technique can bias modulus estimates differently depending on how 

it couples to sample boundaries. Sample boundaries that are strongly coupled to the measurement 

stimulus yield biased elastic modulus estimates. However, if the same estimates are obtained 

consistently for a sample concentration, we assumed any measurement artifacts are negligible.   

Figure 3.2 shows the comparison between Young’s modulus measured by indentation 

technique (Hertzian contact model) and needle-based ultrasonic shear wave imaging on large size 

samples. As shown in the figure, the measured Young’s moduli are the same for both methods (p- 

value for one-way ANOVA test is less than 0.05). Also, no significant differences were found for 

             

 

Figure 3.1.  The ultrasonic (left) and OCT (right) shear-wave imaging experiments are illustrated.  TX 
identifies the ultrasonic transducers for each experiment and 𝜃 is the Doppler angle between the beam 
and particle motion.  On the left, the central vertical axis of the sample is the location of the vibrating 
needle generating shear waves.  On the right, the central top surface coincides with the fixed beam focus.  
The gray-scale and color wave patterns are from actual measurements although the sizes are not to scale.    
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indentation measurements made on gelatin samples with and without cornstarch particles (results 

not shown). This result suggests that 1) Young’s modulus estimates provides a measurement-

independent property for gelatin material; 2) the models applied to each technique are suitable for 

the technique; 3) the large size is truly semi-infinite for both techniques and boundary interactions 

do not bias estimates within the modulus range of 300 Pa to 9000 Pa. 

 

 

Figure 3.3 provides results measured from the medium size samples for both indentation 

and ultrasonic shear wave imaging. Since the large size sample is already confirmed to have the 

 

Figure 3.2. Comparison of the measurement results of Young’s modulus between Hertzian contact 
model-based indentation technique and needle-based ultrasonic shear wave imaging on BIG size 
samples. Error bars represent the standard deviation of measurements from three samples made from 
the same gelatin batch. 
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correct modulus measurement, it is listed as a reference in Figure 3.3. As seen in the figure, 

indentation tests yield the same measurement values as the reference values, which means 

boundary influence is negligible for medium size material whose modulus is ranged from 300 Pa 

to 9000 Pa. For shear wave estimates, lower percentage measurements do not deviate from the 

reference values. However, sample with gelatin percentages greater than 5% indicates a 

measurement bias for limited sample size relative to the measurements of large-sample of the same 

material. Modulus estimated in medium size samples with 8% gelatin is significantly different (α= 

0.05) from the reference values. Because the shear-wave wavelength in 8% gelatin is much larger 

than the other percentages, shear-wave reflections in the 8% material are much stronger, which 

violates the semi-infinite assumption in deriving Equation 3.1. In summary, for medium size 

samples, the semi-infinite assumption is still valid for the indentation technique, while the 

ultrasonic shear wave imaging technique begins to experience the boundary influence at the high 

stiffness end. 
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Figure 3.4 provides results measured from the small size samples for both indentation and 

ARF-OCE surface wave imaging. Again, the reference point is shown in the figure. The figure 

shows that both indentation and dynamic wave imaging techniques are biased high to some extent. 

This is caused by two reasons. Firstly, the side and bottom boundaries will distort the stress-strain 

field, and thus violating the model assumptions. Secondly, the elastic modulus of gelatin is highly 

dependent on its thermal history. In small size samples, the temperature cools down much faster 

during congealing and the de-moisturization at the surface is more severe, therefore it is possible 

that the phantom is indeed a little stiffer.  

 

Figure 3.3. Comparison of the measurement results of Young’s modulus measured from Hertzian 
contact model-based indentation technique and needle-based ultrasonic shear wave imaging on 
MEDIUM size samples. Blue bars are a reference value from the BIG size sample measurement. Error 
bars represent the standard deviation of measurements from three samples made from the same gelatin 
batch. 
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3.1.2  Boundary-effect simulations and solutions 
 

As shown in Section 3.1.1, both quasi-static and dynamic techniques suffer from the 

limitation of sample size, and different techniques interact with the boundary differently and 

therefore the amount of bias (for fixed sample geometry) depends on the material stiffness and the 

measurement technique. The rule of thumb for indentation is that the radius of the indenter should 

be less than 10 times the diameter and the height of a cylindrical sample. The rule of thumb for 

shear wave imaging is that sample dimensions be larger than 2 shear wavelengths at the smallest 

frequency [92]. Both are met in the large sample scenarios. However, in real applications, it is 

difficult to control the size and boundary of the material. Therefore, new models or post-processing 

 
Figure 3.4.  Comparison of the measurement results of Young’s modulus measured from Hertzian 
contact model-based indentation technique and ARF-OCE surface wave imaging on SMALL size 
samples. Blue bars are a reference value from the BIG size sample measurement. Error bars represent 
the standard deviation of measurements from three samples made from the same gelatin batch. 
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methods must be proposed for limited boundary conditions in order to achieve bias-free modulus 

estimates. 

Correction method for indentation 

Stress-field from FEM simulation shows that in the small size samples, the bottom 

boundary is more likely to interact with the stress field during indentation (Figure 3.5).  And the 

influence from boundary distortion effect increases with the increased stiffness of the material. 

This challenges the correctness of using standard Hertzian contact models for mechanical 

measurements in small-size samples of soft biphasic materials [116, 117, 118]. Dimitriadis et al. 

applied a correction to the Hertzian contact model in order to estimate the Young’s modulus from 

force-displacement curves in thin-layer samples [118]. They derived Green’s function for an 

infinite thickness sample bounded to the substrate and used that to compute the approximate 

indentation. The new model for material with a finite thickness is given by  

 

F =
4E

3(1−ν2)
 R1/2δ3/2 [1 −

2α0

π
χ +

4α0

π2 χ2 −
8

π3 (α0 
3 + 

4π2

15
β0) χ3 +

16α0

π4 (α0 
3 +  

3π2

5
β0) χ4]             (3.2) 

 

where R  and δ are the same as Hertzian theory,  h  is the sample thickness,  χ = √R δ
h⁄ , and 

constant α0 and β0 are functions of the material Poisson’s ratio ν. Parameters α0 and β0 depend 

on ν, and when the sample is not bound to the substrate, they are given by  α0 = −0.347 
3−2ν

1−ν
 ,    

β0 = 0.056
5−2ν

1−ν
 . When the sample is bound to substrate, they are given by α0 =

−
1.2876−1.4678ν+1.3442ν2

1−ν
, β0 =

0.6387−1.0277ν+1.5164ν2

1−ν
. 
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It is clear that the term outside of the bracket is the Hertzian solution for indentation on 

semi-infinite surfaces. Inside is the correction that accounts for the thickness reduction. It 

converges to 1 as the thickness of the sample becomes larger and approaches semi-infinite space.  

This correction is valid for all ranges of force F, the indenter radius, and sample thicknesses. 

 

 

Data were re-processed using the Dimitriadis model instead of the Hertzian model for the 

small size samples for indentation. As shown in Figure 3.6, once the correction for thickness has 

been made, the biases on Young’s modulus estimates are removed. Some deviations might still 

exist because the surface of small size samples is not perfectly flat, but has a concave shape 

(meniscus). 

  

Figure 3.5.  (a) Finite-element simulation of stress fields during maximum indentation of 2% gelatin gels 
for the small sample size.  (b) The same simulation was repeated for 8% gelatin.  The nonzero stress 
extends deeper into the stiff 8% gel to interact with the lower boundary, thus appearing to stiffen the 
sample. [68]  
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Correction method for ultrasonic shear wave imaging 

The parameter reduction from wave propagation assumes a homogeneous continuum of 

semi-infinite extent.  Sample heterogeneity or boundaries generate reflected waves and spatially-

varying wave speeds that distort the linear-phase assumption and hence bias estimates of the 

complex shear modulus.  Because shear waves are highly attenuated at frequencies above 1 kHz, 

reflections in a finite lesion are of concern primarily at frequencies below 1 kHz where the 

measurements are made. Wave reflections and the related artifacts of shear-speed are easy to detect 

because, when they occur, the gradient of temporal shear-wave phase (Figure 3.7) is not constant.  

 

Figure 3.6.  Comparison of the measurement results of Young’s modulus measured from Hertzian 
contact model-based indentation technique and Dimitriadis model in small size sample. Results from 
big size samples are plotted as a reference. 
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The question addressed in this section is how much measurement bias is generated in the presence 

of a reflected wave, and how the effect from the wave reflection can be minimized if it is 

unavoidable. 

 

 

Let 𝑤𝑖 be an incident plane wave of unit amplitude traveling to the left direction. Then 𝑤𝑟 

is a reflected wave of amplitude 0 < A < 1 from a boundary located at x = R that is traveling to the 

right direction. At radial temporal ω and spatial 𝑘 frequencies,  

𝑤𝑖(𝑥, 𝑡) =  𝑒−𝛼𝑥cos (𝑡 − 𝑘𝑥)                                            (3.3) 

𝑤𝑟(𝑥, 𝑡) =  𝐴𝑒−𝛼(𝑅−𝑥)cos (𝜔𝑡 + 𝑘𝑥 + 𝜙)                                    (3.4) 

where A = 𝐴0𝑒−𝛼𝑅, 𝐴0 and 𝜙 are reflection coefficients, and k = 2π/λ¸ is the wave number at 

shear wavelength λ. Assuming 𝑤𝑖  is reflected only once before it dissipates, the net wave in steady 

state is the sum, 

  

Figure 3.7. Simulation of wave reflection in a material that has λ = 2 cm and  α = 0.5 cm−1  (the 
attenuation coefficient in tissue is around 0.8~2 cm−1 [119]). The left plot shows how shear-wave 
phase, 𝜃(𝑥), varies as a function of radial distance from a source ω/2π = 100 Hz) placed at x = 0. There 
is a strong reflector located at x = R = 60 mm from the source. The blue line is 𝜃(𝑥) in the presence of 
reflected waves and the red line (θ =  −2πx/λ) is the phase without reflections. Shear wave speed 
𝐶𝑠(𝜔) is estimated from the slope of 𝜃(𝑥) over 0<= x<= R. The plot on the right shows how shear-
wave speed estimates vary as the distance between the source and reflecting boundary increases. R is 
normalized by the shear wavelength λ. 
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𝑤 =  𝑤𝑖 + 𝑤𝑟 =  cos (𝜔𝑡 +
𝜙

2
+ 𝜃(𝑥))                                    (3.5) 

where the spatial phase is 𝜃(𝑥) = arctan (
1−𝐴0𝑒

−2𝛼𝑅(1−
𝑥
𝑅

)

1+𝐴0𝑒
−2𝛼𝑅(1−

𝑥
𝑅

)
)tan (−𝑘𝑥 − 𝜙/2) and 0 ≤

x

R
, 𝐴0 ≤ 1. 

When A0 = 0, there is no reflection from the boundary. Therefore w = 𝑤𝑖 , and phase is a linear 

function of position from the source: 𝜃(𝑥) =  −𝑘𝑥 − 𝜙/2 and dθ

dx
=  −𝜔/𝐶𝑠. At the other extreme, 

when A0 = 1 and α = 0, then θ(x) = 0 and a standing wave is generated. 

In Equation 3.5, it is proved that the spatial phase shift is distorted by the reflected wave wr. 

To further study the relationship of the measured modulus and the true modulus in the presence of 

reflected waves in arbitrary geometry, a numerical simulator is employed to generate shear wave 

data so the phase bias resulting from reflections can be measured. In one situation, the finite-

difference time-domain (FDTD) solver [98] was used to simulate 1-D shear waves that propagate 

in time along the x-axis, while measuring the z-axis component of particle velocity along x. The 

simulated medium was a homogeneous viscoelastic solid with elastic modulus μ= 4 kPa and 

viscous coefficient η = 4.5 Pa s. A source, located at the origin, vibrated harmonically at either 

150 Hz or 250 Hz. Shear waves were computed numerically at all values of x every Δt = 6 μs 

during a 0.3 s experiment time, then down-sampled in time as needed to match data acquired during 

experiments. The phase-gradient method described above is applied to estimate shear-wave speed. 

In each plot below, the vibration plane source is at the origin and there is a perfectly reflecting 

boundary located at x = R. 

In the second situation, the FDTD solver was reconfigured to generate 3-D cylindrical 

waves from a needle-like source vibrating at 150 Hz and placed in the center of a cylindrical 

sample. Boundaries are set to be fixed boundary conditions with a very stiff material with several 

hundred mega Pascal. Shear waves radiating from the linear source were reflected at the side 
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boundaries. The medium inside the numerical sample was homogeneous and similar to 4% gelatin 

with elastic modulus coefficient μ  = 700 Pa and viscous coefficient η  = 0.1 Pa s. All other 

simulation parameters were the same as the 1-D FDTD simulations. Figure 3.8 shows the distortion 

of wave field at a single time point in the simulation. 

 

Simulation results show that wave reflections generate stair-step patterns in the phase as a 

function of distance from the source (top row of Figure 3.9). Depending on the lateral extent to 

which phase data are used to calculate a slope for shear-wave speed estimation, Figure 3.9 shows 

there are different amounts of bias introduced. For example, computing the phase gradient over 40 

mm of phase measurements using 1-D wave simulations results in very little measurement error 

compared with estimates taken over 4 mm of data. Notice for the 1-D data (bottom row of Figure 

3.9) that the bias error within an 18-mm-radius sphere is larger than it is in a 44-mm-diameter 

sphere. Reflected-wave attenuation increases as the sphere diameter increases. The results of the 

data analysis applied to these 3-D wave-simulation data are summarized in Table 3.2. Since only 

 

Figure 3.8.  A cross-section of 3-D FDTD simulation of shear wave propagation in cylindrical sample. 
The black rectangular demonstrates the sample boundaries. The white line in the center represents the 
vibrating needle. Axis ticks are labeled in pixels with each pixel equals to 0.5mm. 
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one frequency was simulated, an elastic medium is assumed when estimating the modulus values 

shown. 

Finally, gelatin phantoms are constructed to verify experimentally the simulation results. 

Gelatin hydrogel cylinders were constructed using 8% gelatin with different diameters. Shear-

wave speeds measured at 150 Hz were examined for all gelatin phantoms. A needle was inserted 

along the long axis of the cylinder and vibrated while shear waves were measured using Doppler 

ultrasound. The results of ultrasound measurements in gelatin phantoms is shown in Table 3.3, 

where the vibration source was located along the long axis of the gelatin phantom while shear 

waves radiating along the axis normal to the vibration. 

Measurements based on 3-D simulations and phantom experiments both show that 

reflections generated in the sample with the smallest size produced the largest biases in shear-wave 

speed measurements. As the inclusion size increases, the modulus bias became less than 10% 

provided the inclusion diameter was greater than two shear wavelengths. These findings provide 

some guidance on estimating measurement bias for different size inclusions or lesions based on 

the shear wavelength. Of course, by increasing the vibration frequency, the shear wavelength 

decreases and the attenuation coefficient increases, and thus the bias is reduced while the random 

errors will be increasing as the echo SNR falls. Also using pulsed stimulation rather than harmonic-

force stimulation reduces reflections at the cost of reduced SNR for particle velocity estimates. 

There are several factors that need to be considered in assessing measurement errors. 
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Figure 3.9. Numerical simulations of shear-wave spatial phases in the presence of reflections and 
𝐶𝑠 measurements. Plots in the top row are shear-wave phase simulated as a function of distance from a 
vibrating source. There is a reflector positioned at R mm from the source placed at the origin for the 1-D 
wave geometry where R=18 mm and 44 mm. In the bottom row, estimates of shear-wave speed are 
plotted as a function of source-reflector distance. R = 18 mm in the dotted lines and R = 44 mm in the 
solid lines. Each value in a wave-speed plot is found by applying linear regression to phase data from the 
origin up to the corresponding abscissa value shown. Plot columns from left to right are the 1-D FDTD 
simulation at 150 Hz and at 250 Hz. The dotted red lines in the sound-speed plots represent the shear-
wave speed input to the simulation. In all situations, speed estimates obtained from the simulated wave 
data converge to the values input to the simulator. 
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If harmonic shear wave imaging is applied when the sample size is less than two 

wavelengths of the shear wave, reflected waves from boundaries can be removed by applying 

directional filters under some circumstances [120]. The superposition of the incident wave that 

propagates to the right and the reflected wave that propagates to the left (attenuation is omitted) 

are given by 

𝑤(𝑥, 𝑡) =  𝑤𝑖(𝑥, 𝑡)+𝑤𝑟(𝑥, 𝑡) =  cos(𝑘𝑥 − 𝜔𝑡) + 𝐴cos (𝑘𝑥 + 𝜔𝑡 + 𝜙)          (3.6) 

The wave 𝑤(𝑥, 𝑡) in complex plan can be expressed as  

𝑤(𝑥, 𝑡) =  
1

2
(ei(𝑘𝑥−𝜔𝑡) + ei(𝜔𝑡−𝑘𝑥) + 𝐴𝑒𝑖𝜙𝑒𝑖(𝜔𝑡+𝑘𝑥) + 𝐴𝑒−𝑖𝜙𝑒𝑖(−𝑖𝜔𝑡−𝑖𝑘𝑥) )                 (3.7) 

Table 3.2. The bias of estimates for numerical samples with different diameters (at 50 Hz) 

Radius 
(mm) 

Number of 
wavelength 

𝐶𝑠 (m/s) 
before filter 

μ (Pa) 
before 
filter 

Bias of 
μ 

𝐶𝑠 (m/s) 
after filter 

μ (Pa)  
after filter 

Bias of 
μ 

∞ ∞ 0.837 700.569 0.081% 0.834 695.556 -0.63% 

45 3 0.901 811.801 15.97% 0.842 708.964 1.28% 

30 1.88 0.998 996.004 42.28% 0.834 695.556 -0.63% 

27 1.35 0.945 893.025 27.57% 0.844 712.336 1.76% 

25 1.35 1.277 1630.729 132.9% 0.831 690.561 -1.34% 

21 1.35 1.1651 1357.45801 93.9% 0.817 667.489 -4.64% 

18 0.9 1.294 1674.436 139.2% 0.761 579.121 -17.2% 

 

Table 3.3. The bias of estimates for 8% gelatin samples with different diameters (at 150 Hz) 

Radius 
(mm) 

Number of 
wavelength 

𝐶𝑠 (m/s) 
before filter 

μ (Pa) 
before 
filter 

Bias of 
μ 

𝐶𝑠 (m/s) 
after filter 

μ (Pa)  
after filter 

Bias of 
μ 

74.8 7 1.61 2592.1 0% 1.61 2592.1 0% 

31.3 2.93 1.61 2592.1 0% 1.61 2592.1 0% 

20.2 1.88 1.46 2131.6 17.77% 1.6 2560 -1.23% 

12.7 1.18 1.38 1904.4 26.53% 1.59 2528.1 -2.46% 

15.7 1.46 1.26 1587.6 38.75% 1.62 2560 1.24% 

10.5 0.98 1.01 1020.1 61.42% 1.55 2402.5 -7.31% 
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Hilbert transformation of 𝑤(𝑥, 𝑡) will eliminate conjugate exponents, 

𝐻𝑖𝑙𝑏𝑒𝑟𝑡[𝑤(𝑥, 𝑡)] =  
1

2
(ei(𝑘𝑥−𝜔𝑡) + 𝐴𝑒𝑖𝜙𝑒𝑖(𝜔𝑡+𝑘𝑥))                                (3.8) 

where the first term represents the incident wave and the second term represents the reflected wave. 

Spatial-temporal filters can be applied in frequency domain to eliminate the waves propagating in 

specific directions. The filtering is performed in the frequency domain (Figure 3.10). Since the 

filtering is a linear operation, the model used to estimate the modulus is still valid.   

Figure 3.11 further examines the applicability of the directional filter in materials that have 

spatially changing mechanical properties (using 3-D FDTD simulation). As seen in the left image, 

due to the inhomogeneity of the mechanical property, the wave number k has more than one peak 

in frequency domain. The same directional filter was applied to the corrupted waves, and the pre-

defined spatial variation of shear wave speed was perfectly recovered. 

Gelatin phantoms were made to verify the applicability of directional filter in real 

applications. A frequency range between 30 Hz to 100 Hz is tested, as higher frequencies will not 

have significant boundary reflections. Because gelatin is almost elastic, the shear wave speeds 

measured in this frequency range should not be dispersive. In Figure 3.12, blue dots represent the 

measured shear wave speeds, and the red dots represent those after the directional filter was applied. 

The benefit of directional filter correction is obvious. However, the two lowest frequencies, 30 Hz 

and 35 Hz, still have some bias assuming the shear wave speeds do not change with frequency. 

This might be due to the interference of second and third reflections from the side as well as from 

the top and bottom of the sample. The directional filter was applied to the simulation data and the 

gelatin phantom data with various diameters. The corrections to shear wave speed estimations are 

appended to Table 3.2 and Table 3.3. The true values for shear wave speed are restored 

successfully using directional filter, as long as the size of the phantom is larger than 1 wavelength. 



 

83 
 

For samples that are smaller than 1 wavelength in dimension, multiple reflected waves could be 

present. Wave fields in 3D must be obtained in order to filter out those reflected waves from 

different directions. 

 

 

 

Figure 3.10.  Directional filter of homogeneous sample. This set of pictures shows the mechanism 
of directional filter. In the left, top figure, the complex wave field is transformed into spatial-
temporal domain using 2D Fourier Transformation. The amplitude of the reflected wave is about 
15%~20% of the incident wave. The top, right figure is the 2D Gaussian filter that is applied to 
remove the reflected waves, which results in the bottom, left spectrum. The new wave field after 
filtering has a linear phase as expected. The bottom, right figure show the comparison of shear wave 
phase shift before and after the directional filter is applied. 
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  The directional filter was proven to eliminate the reflected waves that propagate in the 

opposite direction. It could be used when the size of the sample is limited, or the sample has an 

internal inclusion which also generates reflected waves. Figure 3.3 shows that 8% gelatin sample 

with medium size yields different Young’s modulus values when using indentation and shear 

waves techniques. This bias comes from boundary reflections and can be corrected using a 

 

Figure 3.11.  Application of directional filter to inhomogeneous samples. Image on the left shows 
the 2D spectrum of the complex wave field. Image on the right shows the correction of shear-wave 
phase shift. 

 

Figure 3.12.  Application of directional filter in gelatin phantom. The excitation was at a very low 
frequency. Cylindrical sample was made from 5% gelatin with the diameter of 44 mm (R = 22 mm). 
Needle-based ultrasonic imaging method was used to obtain the shear wave speeds. 
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directional filter, as shown in Table 3.4. Once the correction of geometry has been made, the 

Young’s modulus values estimated by indentation and shear wave are statistically identical. Both 

Figure 3.6 and Table 3.4 suggest that different measurement techniques can produce the same 

estimation as long as the correct model is used for the technique.  

 

 

 

Correction method for ARF-OCE 

In the ARF-OCE technique, the Rayleigh wave propagation speed is approximated to be 

the same as the shear wave speed (only a small factor of 1.05 slower) at each frequency, assuming 

the waves are propagating in a semi-infinite medium without any interference from the reflected 

waves [87]. However, some of the samples used for ARF-OCE technique are quite limited in both 

diameter and thickness. Therefore, the reflections or wave interference may come from both the 

side boundaries and the bottom of the sample. As the preliminary phantom experiments data shown 

in Figure 2.19, measurements on the samples with the same geometry are consistent. But when the 

same imaging procedure was applied on samples with the same material property but different 

geometry, repeatability is not guaranteed. To study this, I constructed phantoms of different 

geometries using 8% gelatin because 8% has the strictest boundary constraints among all of the 

Table 3.4. Medium size 8% gelatin before and after directional filter 

 Before filter After filter 
Ultrasonic shear-wave (Medium size) 11185.57±193.686 9244.276±160.07 * 

Hertzian indentaiton (Big size) 8990.333±284.04 * 
 

*The two-tailed P value equals 0.22. By conventional criteria, this difference is considered to be not 
statistically significant. 
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samples used. In order to make sure these samples have the same material property, they were cut 

from the same sample gelatin sample using punches and blades. Figure 3.13 (top) shows the 

findings on how the diameter of the sample and thickness of the sample affect the wave dispersion 

curves. The dispersion curve of the smaller size sample almost overlaps with the normal size one, 

indicating that the side boundary has little reflection effect because the frequencies used (200 Hz 

~ 3500 Hz) are high enough to meet the “2-wavelength” criteria. On the other hand, the thin sample 

shows slight disagreement in the low frequency range, which is also observed in literature [114]. 

The overestimation of shear speed at low frequency for thin samples is probably caused by the 

occurrence of the first order symmetric Lamb waves (S0) due to the limited height of the sample 

(Figure 3.13 (bottom)). Lamb waves exist when surface waves reach the bottom of the sample 

before dying out, which generates reflective energy in the axial direction. In the experimental 

setup, the bottom of the sample can be considered as a fixed boundary, thus the symmetric Lamb 

wave is the dominant one [121]. When the thickness 𝑑 is larger than one wavelength λ, the value 

of 𝜔𝑑/𝑉𝑠 is larger than 6.28, and then the estimated wave speed will converge to the true shear 

wave speed  𝑉𝑠 . As a result, the effect from the Lamb-Rayleigh wave does not affect the 

measurement unless the thickness of the sample is less than 1 wavelength of the wave. Since most 

of the samples are thick enough and satisfy this requirement, the bias caused by Lamb waves can 

be avoided. If some of the samples do not meet this constraint, the measurements in the low 

frequency range may be dropped. In the case of an ultra-thin material such as vessel wall and 

cornea, modifications to the experimental setup and physical model are needed to take advantage 

of the Lamb wave instead of Rayleigh wave. 
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After boundary condition corrections are applied for both shear-wave and surface-wave 

measurements, their measurements were compared for 4% gelatin-concentration samples in Figure 

3.14. Although each measurement has its own frequency ranges, there is an overlap range around 

  

 

 

Figure 3.13.  (top) Shear-wave dispersion curve measured on 8% gelatin sample of different 
geometries. Normal size sample is 34 mm in diameter and 8mm in thickness. Small size sample is 24 
mm in diameter and 8 mm in thickness. Thin sample is 34 mm in diameter and 4.5 mm in thickness. 
(bottom) Dispersions curves of free Lamb waves (symmetric S, asymmetric A) for two 
different Poisson's ratios. 
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300 Hz where it shows good agreement between these estimates. This is the first time that anybody 

has shown consistent results for two different dynamic techniques. The Young’s modulus values 

(calculated from the average of 𝐶𝑠 estimates over all frequencies) were 1.76 ± 0.04 kPa for the 

shear wave ultrasonic technique and 2.18 ± 0.14 kPa for the surface wave ARF-OCE technique. 

The Young’s modulus measured using quasi-static Hertzian indentation estimated was 1.77 ± 0.08 

kPa for the same sample (Figure 3.2). These similarities provide confidence that the wave-based 

elasticity imaging can reliably yield moduli that compare well with standard materials 

measurements. Since the viscosity of gelatin is ignored during estimation, the observed differences 

in modulus values can be expected, especially at high frequency. This is one of the reasons that 

the modulus estimations from ARF-OCT are slightly higher than the US technique. Another 

possible reason could be that when pouring the hot gelatin fluid into molds of different sizes, the 

congealing rate will be substantially different; therefore the stiffness might be affected.   

 

 

 

 

Figure 3.14.  Comparison of wave dispersion curves measured on 4% gelatin sample using shear wave 
imaging technique and surface wave imaging technique. Shear wave and surface wave were tracked 
by ultrasound and optical coherence tomography, respectively. 
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3.2  The effect of rheological models on measurements 
 

Gelatin samples are well suited for cross-modality comparison between elastic imaging 

techniques and other material characterization techniques such as mechanical indentation. It 

provides methodological validation for different measurement approaches without too much 

interference from the choice of rhetorical models. In previous sections, the consistency of Young’s 

modulus measurements among all three techniques has been achieved when the assumptions of 

the physical model are not violated. However, pure gelatin phantoms do not accurately model the 

time-dependent behavior of many soft tissues. For viscoelastic or time-dependent material, 

comparing different techniques is not easy. It has been proved in the previous section (Figure 3.15) 

and also by others [122] that all of the techniques have a good agreement in the overlapped 

frequencies, but it is not guaranteed that the same rheological model can have a good fit for all the 

techniques and produce the same model parameter estimations. There might not be a final solution 

for this problem, but rather some rules that could be followed from case-by-case studies. Chapter 

2.2.3 preliminarily concludes that model choice will influence the final results. This chapter will 

focus on learning this influence through ultrasonic shear wave imaging studies. 
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The rodent tumors that were examined in Section 2.3.3 have presented viscoelastic 

properties in the shear wave dispersion curves in Figure 2.14, where the Kelvin-Voigt model was 

used because it is a prevalent model in the field of soft tissue mechanics and usually yields 

reasonable measurements of the elastic modulus and viscosity modulus estimates. Table 3.5 lists 

some other rheological models to compare with the Kelvin-Voigt model for fibroadenomas. Figure 

3.16 shows the details of the fitting, and the goodness of fitting metric − reduced χ2 statistic is 

summarized in Figure 3.17. The K-V model gives larger fitting residuals for fibroadenomas 

compared with the Maxwell and Zener models. However, all three models fit the data from 

carcinomas equally well. From the shear wave dispersion curve and χ2 values, it is not obvious 

which model is more appropriate. Although shear wave attenuation is not required for the 

technique, it could provide some insights on model choices. A simulation was first performed on 

the model predicted curves. Figure 3.18 shows the dispersion of shear velocities and attenuation 

coefficients from 0 Hz to 1000 Hz for both models and are plotted at selected values.  In the figure, 

the dispersive behaviors vary for both models, especially in low and high frequency ranges. For 

shear wave velocity dispersion curve, note that Maxwell requires larger E value to approach the 

 

Figure 3.15.   Shear wave dispersion curves measured on viscoelastic sample by ultrasonic shear wave 
imaging and ARF-OCE. 
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K-V model in the frequency region of the measurements, which is consistent with the fitting results 

shown in Table 3.5.  

Figure 3.19 illustrates the shear wave attenuation dispersion curves from both types of 

rodent tumors. Due to the dissimilarity of tissue constitutes (rat tumor contains more collagen and 

mouse tumor contains mainly cells), attenuation dispersion curves behave quite differently. Mouse 

carcinoma tumors have higher attenuation coefficients than rat tumors at lower frequencies and 

reach a plateau earlier. This behavior is similar to the Maxwell model where the convergence of  

Cs  and α is shown at higher frequencies. On the other hand, rat fibroadenoma tumors have 

constantly increasing attenuation coefficients, which is closer to what Kelvin-Voigt would predict. 

Thus, attenuation dispersion curves are correlated with tumor type, more precisely tissue 

components and structure, which suggests that Maxwell model is more appropriate in describing 

fluid-rich and cellular structures, and Kelvin-Voigt is more appropriate in describing the solid 

protein and muscle structures.  

However, the reality might be more complicated than a “first-order” rheological model 

with only two elements in the model. Every tissue has both fluidic portion and solid portion in its 

mechanical behaviors, and different techniques will have certain emphasis on these behaviors 

according to the excitation method and frequency ranges. Therefore, for biphasic material like 

tissue, models should contain both fluid (Maxwell) and solid (Kelvin-Voigt) components [94, 

122], especially for techniques like ARF-OCE which cover a wide frequency band. Combinations 

of the two simplest models (Kelvin-Voigt and Maxwell) include the Jeffrey model, Zener model, 

and higher order models such as the Generalized Maxwell model, etc. These models will be 

suitable for a larger variety of tissue types and techniques than just Kelvin-Voigt or Maxwell model 
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alone, and in theory will provide more comprehensive information about tissue components and 

structures. 

                                                

 

 

 

Table 3.5  Estimates of viscoelastic parameters for rat fibroadenomas using different models 

 

MODEL

fibroadenoma µ [Pa] η [Pa·s] χ2 µ [Pa] η [Pa·s] χ2 µ1 [Pa] µ2 [Pa] η [Pa·s] χ2

1 1832.2 0.9 0.86 2558.6 3.03 0.59 3937.4 3613.9 2.06 0.76

2 1485.6 1.16 4.52 4604 1.92 1.25 4385 217.1 2.34 1.39

3 2728.6 3.46 9.55 10722 3.53 0.89 11793.8 3127.7 5.01 1.03

4 4420.4 3.54 2.71 24453 3.99 0.97 23385 128.8 4.18 0.67

Kelvin-Voigt Maxwell Zener

 

Figure 3.16.   Dots represent the dispersion curves measured in four different rat fibroadenomas, and 
lines represent the best-fit of Maxwell model (left) and Zener model (right). 
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Figure 3.17.   Reduced 𝜒2statistics for the Kelvin-Voigt, Maxwell, Zener rheological models. Error 
bars indicate ±1 standard error. 

 

Figure 3.18.    Simulated shear wave speed (left) and attenuation coefficient (right) as a function of 
frequency. Y-axis is Cs (m/s) for the left image, and 𝛼(m-1) for the right one. Both have x-axis as 
frequency. K-V model (red curve) and Maxwell model (blue curve) are plotted. Shear wave speed is 
simulated from equation 2 2
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3.3  Summary 
 

Each technique and rheological model have its own usefulness in some scenarios for some 

types of tissues, and if used correctly will reveal biological conditions. When making the true 

quantitative estimates that could be used to perform clinical diagnosis for tissue, measurement 

techniques (with its corresponding physical model) and rheological models are the two main parts 

that affect the results of the estimation. This chapter examines how techniques and rheological 

models affect measurements.  

First, can all the techniques achieve modality independent measurements?  This question 

has been addressed by a series of gelatin measurement studies in Section 3.1. Gelatin is chosen 

because it is close to a purely elastic material that does not need to imply a rheological model. The 

 

Figure 3.19.   Experimental shear wave attenuation dispersion of rat and mice tumors. Animal tumors 
used in this plot are Rat 4 and Mouse 4. As shown in the figure, rat tumor data fitted to K-V model, 
and mouse tumor data are more like Maxwell model in the sense that shear wave speed and 
attenuation reach plateaus. 
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fact that Young’s modulus estimations using all three techniques give the same value demonstrates 

that the inter-technique agreement can be achieved as long as the physical model assumptions are 

not challenged. In some cases where the assumption is challenged by the presence of boundary 

reflections and vibrational modes, post-processing methods could be used to eliminate the bias of 

the measured results. Then, some viscoelastic materials were also examined, and measurements 

were found to be consistent in the overlapped frequency ranges, at least for the two dynamic 

methods. This finding ensures that 1) comparing the results from different techniques is fair, and 

elastography techniques can be geared to the standards that often used in literatures; 2) the full 

spectrum responses of the material can be obtained through different modalities, each of which 

has its own bandwidth.  

In order to compare the model-based parameterized mechanical measurements, various 

rheological models and their results for tissue measurements are also examined. We learned that: 

1) Simple models like the Kelvin-Voigt and Maxwell model are suitable for only a subset of tissue 

types due to the distinct behaviors in the low and high frequency ranges. The Maxwell model 

appears to be more appropriate for representing a viscoelastic fluid and the K-V model is suitable 

for a real solid material. A combination of the K-V and Maxwell (eg. Zener)  models give a more 

realistic representation of material media such as biopolymers. 2) Even one type of material can 

exhibit very different mechanical behaviors in one test if the frequency bandwidth is broad. The 

rheological model must be very flexible in representing the mixing behaviors of fluid and solid 

components in order to incorporate the transition responses of them. It is also important to keep 

the number of parameters low.   

It is critical to introduce a better model that could describe mechanical behaviors of a wide 

frequency range in different types of tissues. The model parameters should have good biological 
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contrast, which represent tissue components or structural properties. It is also important to maintain 

the balance between model complexity and model resemblance of measurements. The current 

integer-order models from the constitutive equation are having difficulty satisfying the above 

requirements simultaneously. Fractional-order rheological models, given its flexibility, wide-

applicability, and mathematical simplicity, might be a good fit for biomaterials like tissues. The 

next two chapters will focus on the introduction of Kelvin-Voigt Fractional Derivative (KVFD) 

model into mechanical characterization for viscoelastic materials, and the value KVFD model 

brings to tissue identification and diagnosis. 
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CHAPTER 4: KVFD MODELLING FOR VISCOELASTIC MATERIALS 

         

Using the correct technique and model will assure finding the best parameters for retrieving 

tissue information, and thus adding diagnostic values. From previous chapters, three techniques 

have been successfully used to measure mechanical properties. It is shown that the results from all 

three techniques are consistent in gelatin samples. Therefore, the selection of methods just depends 

on the availability of modality. However, for time-varying materials like tissue, such comparison 

cannot be made due to the lack of a universal model for all techniques. Most models are specific 

to one technique or a narrow frequency range, and are particular to certain tissue types. It is 

difficult to choose a model that is applicable over the entire frequency range that covers very low 

frequency indentation, medium frequency shear waves used in ultrasonic shear wave imaging, and 

high frequency surface waves used in ARF-OCE. Kelvin-Voigt fractional derivative (KVFD) 

model has the potential to serve as one of the models that could fit all three techniques, and thus 

enabling me to investigate the value of each technique. 

In this chapter, the KVFD model will be evaluated using indentation technique. To examine 

the ability of KVFD model in depicting viscoelastic materials, a type of viscous phantom was 

developed that represents more aspects of the tissue properties. 

 

4.1  Background 
 

Fractional-derivative (FD) models have been applied in part to solve this dilemma. FD 

models represent viscoelastic material responses more closely than integer-order models and with 
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fewer parameters [123-126]. Fractional-derivative models are combinations of spring and 

fractional-order dashpot elements that reflects both elastic and time-dependent viscous mechanical 

behavior. The model fits load-relaxation data well despite a small number of fit parameters. 

Fractional Maxwell model, fractional Kelvin-Voigt (KVFD) model and fractional standard linear 

solid models have been widely used to describe the mechanical response of a variety of biological 

tissues as well as tissue-mimicking phantoms [127-132]. As for modeling load-relaxation curves, 

KVFD was shown to represent soft polymer dynamics very well, and the corresponding model 

parameters have been interpreted in terms of the material properties of elasticity and viscosity 

[132].   

In this chapter, models for estimating viscoelastic properties are explored using the ramp-

hold relaxation paradigm. Integer-order models expressed as Prony-series are compared to 

fractional-order expressions based on the Kelvin-Voigt material model.  The performance of the 

analytical solution in describing the time-dependent mechanical response was examined using soft 

viscoelastic polymers with systematically varied viscosity. The effects of different experimental 

conditions on KVFD parameter estimations are studied; e.g., the durations of the relaxation time 

series included in the model fits, the strain rates of the applied ramp deformations, and 

measurements using spherical indention are also compared with those of plate compression. 

Results are evaluated based on estimation precision and measurement independence.  Conclusions 

and recommendations for experimental protocols using the ramp-hold relaxation test are offered.   

 

4.2  Material and method 
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4.2.1  Gelatin-Cream viscoelastic phantom 
 

 The viscoelastic samples in this experiment are made of gelatin powder, deionized water 

and a skin cream each in specific weight percentages. Gelatin powder (Type B, Rousselot Inc., 

Dubuque IA) was mixed with deionized water in a beaker at room temperature, and heated in a 

70°C water basin for 45 minutes. The beaker was covered with aluminum foil to prevent water 

evaporation.  It was stirred every 5 minutes until visually clear. After the gelatin-water mixture 

was removed from the water bath, it was cooled at room temperature to 30°C, cream was added 

and stirred well until visibly homogeneous, and then the mixture is poured into cylindrical molds 

to congeal. The cylindrical mold is precisely machined to ensure a high degree of axial symmetry 

and flat, parallel end surfaces.  Since samples retain their shape after being removed from the mold, 

they present a flat parallel surface to the plate compressor.   

 Cream (Vanicream, Pharmaceutical Specialties, Inc. Rochester, MN) was added to the 

molten gelatin as water was removed and the gelatin concentration held fixed in order to increase 

the viscosity of the sample without significantly changing stiffness. This gel-cream mixture is a 

solidified emulsion of cream particles suspended in liquid gelatin that is allowed to congeal into a 

solid. These samples express viscoelastic properties in the range of soft biological tissues.  In 

contrast, gelatin gels constructed without the cream particles generally respond elastically to 

compression [36]. The molds used to form samples for spherical indentation testing are 50 mm in 

diameter and 20 mm in height. The molds used to form samples for plate testing are 37.5 mm in 

diameter and 19 mm in height. All samples were covered with plastic wrap and stored at room 

temperature for 16 hours after construction and before mechanical testing.  It is very important that 

the sample-manufacturing process is exactly reproduced in detail for material properties to be 

reproducible day to day.   
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Three different samples were prepared with the same gelatin concentrations (5% by 

weight).  The concentrations of cream were 5%, 15%, and 50% by weight, and the corresponding 

deionized water concentrations were 90%, 80%, and 45%, respectively.  These three samples are 

labeled Gel5Cream5, Gel5Cream15, and Gel5Creal50 in the Results section.   

 

4.2.2  Theory of KVFD model  
 

 The Kelvin-Voigt Fractional Derivative (KVFD) model describes the time-dependent 

relaxation behavior of viscoelastic materials.  Strengths of this model include its flexibility for 

describing different types of materials with just three parameters. The linear KVFD model is 

illustrated in Figure 4.1. 

 

 

 Stress 𝜎 is predicted from the applied strain 𝜀  given the relaxation modulus G of the 

material through the Boltzmann superposition integral [75],  

  

 

Figure 4.1.  Schematic representation of the KVFD model  
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( )( ) ( )
t dt G t d

d
 

  


                            (4.1) 

 For the KVFD model, the constitutive equation for the stress-strain relationship can be 

expressed by the following fractional-derivative equation [133] 

 

0 0
( ) ( )( ) ( ) ( )d t d tt E t E t

dt dt

 


 

 
    

 
    

 
                                        (4.2) 

where E0 is the elastic modulus, 𝜂  is a viscosity coefficient, and 𝛼 is a real number between (0,1) 

that defines the derivative order. Letting 0E   , the relaxation time constant 𝜏 is used in place 

of 𝜂 to give the second form of Equation 4.2 to define a 3-D feature set for materials 

characterization 0( , , )E   .  

The Laplace transforms of Equations 4.1 and 4.2 can be equated to show the relaxation 

modulus for the KVFD model is  

        
 

0( ) 1
(1 )
t

G t E






 
  

  
 

,                    (4.3) 

where 1

0

( ) t zz e t dt


     is a Gamma function.  

In the following sections, a mathematical solution is derived for the ramp-hold relaxation 

test based on the KVFD model for both the spherical-indenter and plate-compressor geometries. 

These are the analytic solutions fit to relaxation time series, including the ramp deformation, to 

estimate the 3-D feature set.  
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4.2.3  Ramp-hold relaxation solution for spherical and plate indenter 
 

 Mechanical testing employed the TA-XTPlus Texture Analyzer with two compression 

probes: a spherical-tipped indenter with 5mm diameter and a flat plate compressor having a 

diameter larger than the cylindrical samples. Load-relaxation tests with ramp deformations were 

performed on each sample at room temperature.   

A hemispherical indentation tip is pressed into the surface of a large-size sample at a 

constant velocity, after which the probe position is held fixed, as the relaxation of the force on the 

probe is monitor over time. 

A force-displacement relation is used in place of a stress-strain relation modeling spherical 

indentation data. The Boltzmann integral expression for spherical indentation under displacement 

control was shown to be [74] 

3/2

0

8 ( )( ) ( )
3

tR dhP t G t d
d


 


     ,          (4.4)   

where ( )P t is the force and ( )h t is the displacement depth of the indenter tip into the sample.  The 

ramp-hold displacement function is  

max

, 0
( )

,
r

r r

kt t T
h t

h kT t T
 

 
 

    ,                       (4.5) 

where rT  is the duration of the ramp and k is the velocity of the indenter tip during that time. 

The time-varying force response predicted to occur during the ramp-hold relaxation test is 

derived by combining Equations 4.3 – 4.5,  
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where 
1

1 1

0

( , ) (1 ) Re( ) 0,Re( ) 0x yB x y t t dt x y      is a complete beta function and 

1 1

0

( ; , ) (1 ) for [0,1]
a

x yB a x y t t dt a     is an incomplete beta function. 

The step-hold displacement function is max( ) ( )h t h u t , where ( )u t  is the unit step 

function. So Equation (1) reduces to  

 3/2
0 max

( )8( ) 1 for 0
3 (1 )

tRP t E h t




 
   

  
   .                          (4.7)  

A detailed derivation is provided in [134]. 

The spherical indenter used in the experimental studies has a diameter one-tenth that of the 

sample diameter to minimize boundary effects. The maximum displacement of the spherical probe 

into the top surface of the sample was always ℎ𝑚𝑎𝑥 = 1 mm.  However, the probe speed was 

varied between 0.02 - 5.0 mm/s to give a range of ramp times.  Afterward, the probe was held in 

place for 200 - 300 s while the decaying force on the probe from viscous relaxation was measured.  

All tests were conducted with deionized water on top of the samples to minimize surface adhesion 

forces.  It has been verified that water was not significantly absorbed by the samples during the 

experiments, and thus the mechanical properties of the phantom were not significantly influenced 
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by the water. The agreement was proved to be within measurement error provided the 

measurements were completed within an hour [68].   

In the plate compression tests, a plate larger than the sample surface compresses a 

cylindrical sample from above and free-slip boundary conditions are assumed. The sample is 

placed on a flat immovable surface with its side boundaries free to expand. A ramp displacement 

compresses the sample and is held fixed as the force on the plate is measured over time.     

The time-dependence of the ramp-hold strain function is similar to Equation 4.5, except 

that the strain ( )t  is used instead of displacement ( )h t .  Using the Boltzmann integral expression 

from Equation 4.1, the stress-relaxation response for the plate compressor is [75]  
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                 (4.8) 

 The step-hold strain function  is 0( ) ( )t u t  , which reduces Equation 4.1 to  

                       0 0
( )( ) 1

(1 )
tt E


 



 
  

  
  .                                                  (4.9) 

 During plate-compression tests, samples were removed from the mold carefully before 

testing and placed on a flat surface.  The top surface of the sample was displaced ℎ𝑚𝑎𝑥 = 1 mm 

toward the bottom surface at ramp speeds of either 0.1 mm/s or 5 mm/s to give ramp times of Tr = 

10 s or 0.2 s.  Samples were held for 300 s to measure stress relaxation.  
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The initial contact point of the plate with the sample surface was established as follows.  In 

a preliminary step, the sample was compressed at very low constant speed (0.01mm/s) before 

attempting the ramp relaxation test. A short-time moving-average filter was applied to the recorded 

force-versus-time curve to filter a small amount of load-cell noise as the point at which the force 

first deviates from zero was detected.  Then the probe was positioned at this point, waited at least 

1 minute to let the sample recover, and started the ramp-load relaxation experiment.  Because the 

opposing sample surfaces were flat and parallel, this simple method provided a reproducible 

contact point.   

The ramp-hold relaxation curves for spherical indentation and plate compression tests were 

fitted to the KVFD analytical solutions of Equation 4.6 and 4.8, respectively. For each relaxation 

curve, model parameters E0, 𝛼, and 𝜏 were varied, and the set of parameters generating the least-

squared error between model and data became the estimates.  Parameters were initially selected 

manually to approximate the fit, which became the initial values for least-square regression fits in 

MATLAB. The KVFD solutions for ramp relaxation curves describe the entire ramp-and-hold 

experimental time series. Thus any data segments from the curve should yield the same parameter 

estimation within numerical uncertainties. Due to noise in the experimental data, the least-squares 

fitting algorithm can truncate the search early if it becomes trapped in local optimal points.  

Manually selecting the initial values eliminated this problem.   

It should be noted that for plate-compression tests only, there is a very small linear drift of 

the relaxation stress not explained by the model. A similar effect was reported in [135].  Drifting 

might be caused by instrument drift during measurements spanning 300 s or, more likely, as the 

assumed nonslip boundary conditions may have a small amount of friction that delays sample 

expansion during plate compression. A weak linear trend term 𝑎𝑡 is added to the model after the 
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10 s ramp concluded to improve the quality of fit. Values for slope constant 𝑎 were found to range 

between -0.004 and -0.001 in the experiments.    

 

4.3  Results 
 

 There are no established standards for calibrating viscoelastic measurements in soft 

materials, although comparisons among independent measurement techniques can test for 

precision and consistency [68]. A model-based solution can be valuable for predicting viscoelastic 

properties from load-relaxation time series if it satisfies the following coupled criteria: 1) The 

model reliably predicts sample responses with few parameters; 2) Parameter estimates are robust 

to changes in experimental variables and conditions; 3) The same model applies to different 

materials having a variety of mechanical properties in a range of interest.   

In this study, I approached validation of the KVFD model solution for a ramp-hold 

relaxation test by first identifying a stable, reproducible, viscoelastic material. A series of 

measurements were made varying several key experimental parameters and observed the 

variability of KVFD model parameters,  0 , ,E   . The precision of estimates was examined by 

comparing KVFD results to those of the DMW model using spherical indentation and plate 

compression testing over a range of experimental variables. I also varied the material properties of 

the test samples within a small range of soft biological tissues to test model applicability.   

4.3.1  Impact of relaxation time on the variability of estimated model parameters   
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For this study, the sample labeled 5Gel15Cream (5% gelatin, 15% cream, 80% water) is 

subjected to a force/stress relaxation test. The ramp time Tr is fixed at 10 s for both spherical 

indentation and plate compression.  Figure 4.2 gives an example of the relaxation data from 

spherical indentation and the best fit to the model given by Equation 4.6. The four time durations 

examined are indicated on the time axis in Figure 4.2.   

 

a) Spherical indentation  

 Parameter values are estimated by fitting the KVFD ramp solution to different time 

durations of the relaxation data.  Results are listed in Table 4.1.  The coefficient of variation (CV) 

reflects the reproducibility of the fitting results for the different durations indicated in the first row 

of the table.  CV1 represents the variability of fitting the ramp and the holding phase of the force-

 

Figure 4.2.  KVFD fitting of a measured ramp-hold relaxation curve for 5Gel5Cream sample using 
spherical indentation.  The measured force-relaxation curve is shown as blue dots and the best-fit model 
curve is shown as a red dotted line. The experimental data in the zoomed figure is down sampled a 
factor of 10 in the ramp phase and 50 in the holding phase. 
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measurement time series up to the time indicated, and CV2 represents the variability of fitting only 

the holding phase, which begins at 10 s.   

 

 

 First, there is no significant change in 𝛼 when model fitting the holding phase at various 

durations with or without the initial 10 s of ramp data. 𝛼 is the most stable material parameter in 

this study; it is robust to variations in experimental parameters.  Second, the elastic modulus E0 

has the lowest coefficient of variation when the ramp data is included in the fit (CV1). Also, 

including the ramp phase, the modulus estimates decrease about 4%.  Similarly, the time constant 

estimates 𝜏  are most precise when the ramp data are included in the fitting procedure, and 

excluding the ramp biases 𝜏 estimates.  Noise in the recording of the time-varying force means 

that curve-fitting results may not be unique; the best fits are strongly influenced by the initial 

values supplied to the regression. It is believed that by including the ramp time in the fitting 

procedure, the chance of finding that one parameter set that best describes the entire time period 

is increased, thus the parameters generated are less dependent on the duration of the force data.   

 In comparison to some commonly used models for force-relaxation tests, parameters 

analogous to those of the KVFD set were obtained from a second-order Prony series assuming a 

Double Maxwell-arm Wiechert (DMW) model [74], yielding a relaxation modulus G(t) given by 

Table 4.1.  KVFD model parameters estimated from different durations of the relaxation 
data (top row) for the 5Gel15Cream sample using spherical indentation. 

time (s) 0-20 0-50 0 -100 0-300 10-20 10-50 10 -100 10-300 CV1 CV2 
𝐸0 (Pa) 2038.2 2032.1 2027.8 2021.3 2109.9 2096.2 2077.6 2068.1 0.0035 0.009 

𝛼 0.134 0.135 0.135 0.135 0.133 0.135 0.135 0.135 0.0037 0.0037 
𝜏 (s) 28.388 29.292 29.792 30.192 19.292 22.692 25.692 29.092 0.0264 0.1730 

* CV1 values are coefficients of variation for fits including the ramp phase of the relaxation curve.  CV2 values do not 
include the initial 10 s ramp phase. Values shown are from measurements made on one sample.   
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0 1 1 2 2( ) exp( / ) exp( / )G t C C t C t        .                    (4.10) 

As others reported [74], there is no analytic solution for the time-varying force.  If analyzing the 

relaxation curve during the holding phase only, we can assume the force Pr(t) has a form similar 

to Equation 4.10,  

0 1 1 2 2( ) exp( / ) exp( / )rP t B B t B t         .                                    (4.11) 

The ramp correction technique shown in Equation (13) was adopted from the work of Mattice et 

al. [74].  If the correction factor is defined by  exp( / ) 1k
k R k

R

RCF t
t


  , then model parameters 

can be corrected using 
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 This technique gives equations that relate 𝐵𝑘  obtained by fitting Equation 4.11 to 

relaxation data and 𝐶𝑘 in Equation 4.10.  Two metrics derived from the model parameters: the 

infinite-time relaxation modulus ( )G   and fraction number 𝛼𝑓  are calculated to compare with 

their KVFD counterparts E0 and 𝛼 for examining model stability under different experimental 

conditions.  ( )G   is set equal to 𝐶0 from Equation 4.10, and 𝛼𝑓 is defined as: 
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 Fitting the DMW model to the same relaxation data, the results are summarized in Table 

4.2.  Because there is no analytic solution for ramp loading, only the holding phase was fitted to 

Equation 4.11.  Model parameters are found for ramp indentation using Equations 4.12 and 4.13.  

 

 

 Among the DMW parameters, 𝛼𝑓 stands out as relatively stable, however the other 

parameters are sensitive to the duration of the relaxation data selected for inclusion in model fitting.  

Compared with KVFD model parameters 𝐸0, 𝛼, and 𝜏 parameters, DMW parameters 0C , 𝛼𝑓 and 

time constants 𝜏1  and 𝜏2  have CVs that are 4~30 times larger. Greater estimation precision 

indicates a uniqueness of the KVFD solution across the entire measurement time.  In summary, 

the KVFD ramp solution for spherical indentation (Equation 4.6) reliably and precisely describes 

the entire relaxation time series with less parametric variability that the DMW model.  Including 

the ramp portion of the relaxation data improves the fit, which yields more precise model parameter 

estimates. One cannot expect the two models to give the same values, but it is expected that the 

estimates for each model to be independent of the duration of the data used in the model fitting 

procedures.    

b) Plate compression 

Table 4.2.  DMW models parameters estimated from different durations of the 
relaxation data (holding phase only) for the 5Gel15Cream sample using spherical 

indentation.   

time (s) 10-20 10-50 10-100 10-300 CV2 

0C  (Pa) 1553.2 3265.9 3308.6 3116.4 0.2997 

f  0.566 0.614 0.587 0.580 0.0488 
1 (s) 7.47 2.485 3.66 121.00 1.7314 
2 (s) 2.02 46.44 41.33 9.17 0.9053 

* CV2 values may be compared with those in Table 1. 
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 The analysis was repeated for plate compression on 5Gel15Cream samples. Parameter 

estimates are found from the solution derived for the KVFD model and plate compression 

geometry in Equation 4.8.  These results are listed in Table 4.3. For comparison, fitted results using 

the DMW model also for plate compression and the same durations of relaxation data are 

summarized in Table 4.4. Note that the analytical solution for the DMW model during the ramp-

loading period can be derived for plate compression but not spherical indentation.   

From the data in Tables 4.3 and 4.4, the KVFD model parameters are found to be much 

more stable with respect to the duration of the relaxation curve when compared with those of the 

DMW model. Notice too that the KVFD model has fewer and more precisely estimated 

parameters, which offer major advantages when these parameters are mapped into elasticity image 

data provided contrast is also transferred with high fidelity.    

 

 

Table 4.3.  KVFD parameter estimates from different durations of the plate compression 
relaxation curve 

time (s) 0-20 0-50 0 -100 0-300 10-20 10-50 10 -100 10-300 CV 1 CV 2 
E0 (Pa) 2019.7 2031.1 2029.6 2029.4 2089.3 2039.3 2032.0 2031.0 0.0026 0.0136 

𝛼 0.135 0.1360 0.1360 0.1360 0.134 0.135 0.135 0.136 0.0037 0.006 
𝜏 (s) 80.53 76.56 77.06 73.64 30.56 56.83 61.62 70.37 0.0367 0.3124 

* Sample used is 5Gel15Cream.  CV1 includes the initial 10 s ramp data and CV2 does not. Values shown are 
from measurements on one sample. 
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4.3.2  Impact of ramp time Tr on model parameter estimates 
 

Tr should not influence parametric estimates provided the model fits the measurements 

equally well over a practical range of applied indention speeds.  For spherical indentation, a strain 

of 0.05 is applied over a range from 0.2 s to 100 s.  Below a Tr threshold value, quickly deforming 

the sample to approximate a step function is likely to create an underdamped response in the 

instrument that is not accounted for by the model.  The variability of parameters estimated from 

the KVFD ramp solution for ramp durations between 0.2 s and 100 s are repeated on several 

5Gel15Cream samples.  There is at least 30-minute waiting time between the measurements for 

the same samples for the samples to fully recover before the next test. All measurements were 

made on three 5Gel15Cream samples from the same batch.   

Figure 4.3 shows the fitting results for Tr values of 0.2 s, 33 s, 50 s and 100 s. The R2 metric 

for the same ramp times are found in Table 5, which shows the data are well described by the best-

fit model especially for Tr ≥10 s.  𝑅2 will not equal to 1 because of signal-independent noise in the 

time-varying force measurements. These results suggest that material properties are not strain-rate 

dependent in this range and the model consistently accounts for the force relaxation occurring 

during the ramp deformation.  

Table 4.4.  DMW parameter estimates from different durations of the plate compression 
relaxation curve. 

time (s) 0-20 0-50 0 -100 0-300 10-20 10-50 10 -100 10-300 CV 1 CV 2 

C0 (Pa) 
3902.0 3664.0 3521.0 3299.0 3333.1 3567.7 3558.2 3216.5 0.0704 1.410 

f  
0.646    0.329     0.293     0.314     0.239     0.194     0.192 0.277 0.0380 0.1371 

1 (s) 1.02 25.49   46.22   99.98 91.37 34.98 41.83 169.1 0.7335 0.9758 
2 (s) 10.59 2.04 4.39   7.22   46.57 31.97 22.54 20.03 0.3968 0.6087 

*Sample used is 5Gel15Cream.   CV1 includes the initial 10 s ramp data and CV2 does not.   
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It is expected that all of the curves in Figure 4.3 will converge at large relaxation times 

because the elastic modulus at infinite time ( )G   is equal to 0E  in the KVFD model, which does 

not depend on Tr.  As shown in Figure 4.3, relaxation curves for different ramp times tend to 

converge for relaxation time >250 s except at Tr = 0.2 s, suggesting the step-relaxation response is 

biased by the measurement process. 

 

                 

 

 The stability of the three KVFD parameter estimates can be assessed from the plots of 

Figure 4.4. When Tr is between 10~50 seconds, all three parameters are influenced very little by 

Tr. Among all there parameters, 𝛼 has the smallest CV because it is only sensitive to the shape of 

the relaxation curve, whereas E0 is influenced by the amplitude that depends on the initial contact 

between the probe and the sample surface. Variability in initial contact is well known to cause 

uncertainty in model-parameter estimates. 𝛼 is the most stable parameter, while 𝜏 is significantly 

more dependent on Tr compared with E0 and 𝛼.  

 Very small Tr can approximate a step deformation. However, indenting at high probe 

velocity introduces uncertainties from instrument oscillations. As shown in figure 4 when Tr ≤ 10 

Table 4.5.  Coefficient of determination R2 for goodness fitting 
measurement of 5Gel15Cream sample and the KVFD model 

Tr (s) 0.2 2 10 20 33 50 100 
R2      0.968 0.979 0.988 0.988 0.988 0.989 0.988  
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s, estimated parameters deviate from values obtained at longer ramp times where a plateau is 

reached.  

 

Ramp deformations are preferred over steps; nevertheless, measurements should be made 

over a range of Tr when investigating different sample types to ensure a plateau is reached.  If Tr 

is too long, the measurement system might drift or sample properties might change.  For this 

emulsion, parameter estimates are stable for 10 ≤Tr ≤ 50 s.  Others also found that short-ramp 

relaxation data fitted to a step-relaxation solution can result in big parameter errors [74, 136].  

 

 

 

Figure 4.3.  Illustration of KVFD model fits to data from 5Gel15Cream samples acquired using ramp 
times between 0.2 s and 100 s.  Points plotted are experimental relaxation data and the curves use the 
best-fit KVFD model-based solutions. Experimental data are down sampled by factors of 10-50 in the 
ramp phase and 120 in the holding phase for display purposes. 
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4.3.3  Quantifying samples with varying properties 
 

The above two sections discuss the stability of the parameters estimated by the KVFD and 

DMW models from ramp relaxation data on one type of sample (5Gel15Cream).  In this section, 

samples with different viscosities are examined for different stress-strain probe geometries.   

Samples with three different cream concentrations (5%, 15%, 50%) and the same gelatin 

concentration (5%) were constructed. 3-5 samples from the same batch of each material type were 

prepared for analysis. The entire recorded time series including the ramp phase were fitted to the 

proposed ramp solutions.  Figure 4.5 shows examples of experimental relaxation curves and 

 

Figure 4.4.  Estimated parameters for the 5Gel15Cream sample measured for different ramp times, Tr.  
Measurements are indicated by the mean points ±1 sd.  Means are averaged over data from three 
samples.  Lines are added only to clarify trends. 
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corresponding model predictions for each sample concentration for tests using spherical 

indentation (top) and plate compression (bottom). The models represent the experimental data very 

well; i.e., R2 ≥ 0.98.  

Table 4.6 contains the numerical values of model parameters from spherical indentation 

and plate compression tests.  The results for the two geometries agree within one standard deviation 

of the measurement. Students T-test suggested that the two measurements have no significant 

difference for all cream concentrations at the 0.05 significance level. The high consistency of 

estimates comparing two testing geometries further confirms the reliability of utilizing the ramp 

solution of the KVFD model to describe viscoelastic properties.   

  

 

 

 

 

Table 4.6.  Comparison of parameter estimates from spherical indentation and plate 
compression testing using the KVFD model and emulsion samples with cream concentrations 

of 5, 15, and 50% to vary the viscosity. 

Sample 5% 15% 50% 
Spherical 
indention 

tests 

E0 1782.51±53.20 2020.92±28.31 1952.51± 20.62 
 0.0768±0.002 0.135±0.001 0.209±0.002 
 38.69±19.82 34.31±13.61 150.6741±11.48 

Plate 
compression 

tests 

E0 1754.90±56.61 2029.30±57.73 1942.31 ±32.12 
 0.0798±0.002 0.136±0.005 0.216± 0.007 
 47.56±21.21 68.80± 36.06 159.46±15.77 

* The mean value for measurements obtained on three samples at each cream concentration are shown and the 
error bars are ±1 sd.   
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Figure 4.5.  Spherical indention (top) and plate compression (bottom) test measurements (points) along 
with best-fit KVFD solutions (lines).  The three curves correspond to the samples listed in the legend. 
The experimental curve is down sampled by a factor of 5~10 in the ramp phase and 100~150 in the 
holding phase. 
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4.4  Discussion and conclusion 
 

Experimental error contributes uncertainty to model parameter estimates.  Except for the 

random error from force/displacement sensors, parameter uncertainty could originate from several 

sources in this study.  

First, inaccuracies in recording indentation depth ℎ𝑚𝑎𝑥  can add significant bias to 

parameter estimations, especially E0.  Unlike stiff materials, it is challenging to identify the 

moment of the initial contact with the indenter probe when studying soft, wet tissue-like materials. 

Any deviation from the exact indention depth, including surface roughness, biases E0.  

Second, errors occur as part of the fitting process. Least-squares fitting of experimental 

data to model functions is challenging because of noise in the force measurements, which enables 

the regression algorithm to settle into local minima rather than the global minimum. The problem 

is amplified as the number of model parameters increases.  The experience enabled us to select 

model parameters when initiating numerical searches that were close to those giving a global 

minimum error.  Fitting the full duration of the ramp-hold relaxation curve yields more precise 

parameter estimates by avoiding local minima traps. Also, the concise feature set of the KVFD 

model coupled with the ramp-hold stimulus leads to more reliable parameter estimates.  

Third, despite my best efforts to manufacture uniform test materials reproducibly, there 

remain variations in material properties within and among the samples tested.  The mechanical 

properties of hydrogels are affected by the details of thermal history, including manufacturing 

temperature, heating duration, cooling rates, time and temperature at which the cream is added.  

The fact that gelatin stiffness varies over time when chemical cross-linkers are not used and with 
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pH further makes the sample elastic modulus vulnerable to measurement variations [68].  I was 

aware of these influences and made every effort to minimize all material property variations by 

standardizing the sample manufacturing process.   

Finally, the boundary conditions of the sample are another common source of variation in 

indentation testing of soft materials.  Inner-sample stress variations near stiff or soft boundaries 

influence force measurements. The general rule of thumb for spherical indentation is for the 

diameter of the probe to be less than one tenth of the sample diameter.  The validity of this rule 

was confirmed for representative gelatin samples recently [68].  Indented samples were 50 mm in 

diameter for a 5 mm probe diameter.  

It is verified that Tr does not produce significant changes in model parameter estimates 

provided Tr is larger than 10 s in these emulsion samples. Including the ramp deformation, the 

model fits involving force/stress relaxation data from 50-300 s in duration yield equivalent results.   

Samples were deformed using two geometries in this study: spherical indentation and plate 

compression. Each has advantages under different situations. The spherical indenter minimizes the 

effects of irregular sample geometries and has fewer boundary effects as long as the diameters of 

the samples are much larger than indenter. Spherical indentation also has no strict requirement on 

surface flatness, as long as a small flat region can be found. It is widely used to characterize 

viscoelastic materials.  However, depending on the dynamic range of the load cell, spherical 

indentation may not be ideal for very soft materials (<3 kPa) as the contact area is too small to 

generate sufficient force to avoid significant quantization errors in digital force measurements. In 

contrast, plate compression increases the net force in soft materials, using more of the dynamic 

range of the sensor, but requires the sample surface to be very flat. Also, sample area and height 
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must be precisely measured since they strongly influence stress and strain calculations. Moreover, 

plate compression of samples induces a small drift in relaxation force over time when the frictional 

forces at the sample-plate surface are non-uniform.  The choice between the two geometries 

depends on sample properties, where spherical indentation is preferred except for very soft 

samples.  

In summary, closed-form solutions for ramp-relaxation testing of soft viscoelastic 

materials involving the KVFD model give precise estimates of model parameters for spherical 

indention and plate compression within a broad range of experimental conditions. These 

parameters can be interpreted in terms of viscoelastic properties of the material.  Step deformation 

experiments should be avoided when possible.  The consistency of results shown in this report 

suggests that experimentally-independent estimates are possible by fitting models to 

measurements spanning the entire force-relaxation time series. Other rheological models should 

be explored, but the results suggest the ramp-relaxation experiment combined with the concise 

parameter set of the KVFD model offers much estimation stability and precision.  Since there are 

no standard materials for calibrating relaxation measurements, it cannot be claimed to measure 

intrinsic material properties.  Nevertheless, the high precision and independence of the results on 

experimental parameters suggests this approach offers advantages for mechanical measurements 

of soft materials in the elastic modulus range of many soft tissues (<10 kPa) where precise 

measurements can be difficult to achieve.   
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CHAPTER 5: ASSESSING COMPOSITIONAL AND STRUCTURAL 

INFORMATION OF TISSUE USING KVFD MODEL 

Previous chapters mainly focus on two topics in tissue mechanical characterization: 

measurement techniques and rheological models. Three techniques have been successfully 

developed to measure mechanical behaviors at distinct frequencies (see Chapter 2), and the 

consistency of quantifying elastic modulus using these techniques was verified through gelatin 

phantoms (see Chapter 3). Commonly used models such as the Kelvin-Voigt and the Maxwell 

models demonstrate usefulness for some tissue types and frequency bandwidth, however, the 

Kelvin-Voigt fractional derivative (KVFD) model is more representative in describing viscoelastic 

behaviors of a large collection of soft tissue types, with just one additional parameter, which is the 

fractional order (see Chapter 4). The KVFD model is also suitable for modeling responses captured 

within a wide frequency bandwidth.  

With these techniques and models being developed, a more critical question needs to be 

addressed: what is the biological interpretation of the model parameters or is there any correlation 

between tissue and model. Translating these model parameters into a concise set of intrinsic 

mechanical properties related to tissue composition and structure remains challenging. In this 

chapter, I will focus on correlating the mechanical parameters estimated by the KVFD model with 

tissue components and structures, and evaluating the sensitivity of these parameters in reflecting 

tissue changes. Two different measurement techniques, at the low and high frequency ends 

respectively, are used for mechanical characterization, and the model parameters obtained are 

compared in terms of the accessibility to various features about the tissue. These topics are first 

explored using the same biphasic samples used in the previous chapter.  The proportion of the two 
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main components (gelatin and cream) will be varied in order to mimic the compositional changes. 

Because of it compositional simplicity, it is easier to identify the relationship of each component 

with the estimated model parameters. The findings on the relationship will be confirmed with the 

ex vivo liver studies, where livers are undergone different thermal alterations. 

 

5.1  Material and method 
 

a) Gelatin-Cream phantoms 

The congealed gelatin-cream samples are emulsions of cream particles suspended within 

the denatured collagen-polymer aggregates, where each cream particle in the emulsion is itself a 

finer-scale emulsion. Gelatin represents the extracellular matrix in tissues, and Vanicream 

represents pockets of interstitial lipid.  The phantom is simple to make, has adjustable components, 

samples have reproducible properties, and the two components are independent of each other. For 

a fixed gelatin concentration, as the concentration of cream is increased in a sample, water is 

removed so the total sample mass remains at 100 g.  This recipe is scaled up to produce at least 6 

samples at every concentration. As long as the concentration of the gelatin component is fixed, the 

sample stiffness remains roughly constant.  Cream adds a fluidic component that generates a time-

varying mechanical response during quasi-static compressive macro-indentation. Without cream, 

the pure gelatin responds elastically to indentation.   

The detailed manufacturing process of the biphasic phantom has been described in Section 

4.2.1. To provide a broad range of time-varying mechanical responses similar to those observed in 

soft parenchymal tissues, both gelatin and cream concentrations are varied as follows. At each of 

three gelatin concentrations (3%, 5%, and 8% by weight) 6 samples are constructed at one of five 
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different cream concentrations (0%, 5%, 20%, 30%, and 50% by weight).  Samples labeled G3C5 

contain 3 g gelatin, 5 g Vanicream, and 92 g deionized water per 100 g of sample material. A 

sample labeled G8C20 has 8 g of gelatin powder, 20 g of cream, and 72 g of water per 100 g.  

From magnified visual inspection of the samples, it appears that cream particles in the congealed 

gel samples are liquid at room temperature (22 ℃) used for measurements.   

Since the elastic modulus of the samples is very sensitive not only to component fractions 

but to the thermal history of the samples during manufacturing and storage, the samples were made 

during three different days, 2 samples each day. In this way, inter-sample variability would be 

observed as well as measurement uncertainty. Error bars in plots summarizing gel-cream sample 

measurements are standard deviations measured from 6 samples unless otherwise noted.   

 

In this study, two major techniques will be used to measure the same material: indentation 

technique and surface wave ARF-OCE technique. My attempt is to compare the estimated KVFD 

parameters from the two techniques in terms of the correlation with material compositional change. 

There are several reasons that the needle-based ultrasound technique is not included. First, the 

frequency ranges of the ultrasonic technique (100 Hz ~ 500 Hz) are covered by the ARF-OCE 

technique (200 Hz ~ 5000 Hz). Second, both ARF-OCE and ultrasonic techniques estimate the 

same quantity - wave propagation velocities at multiple frequencies, and the overlapped frequency 

region should be consistent (proved in Figure 3.14). Therefore, the ultrasonic method is not used. 

Another important reason for choosing the optical technique over the ultrasonic technique is that 

the KVFD model is fitted to the data in frequency domain. A broader frequency bandwidth would 

increase the reliability of the estimations. 
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b) Indentation technique  

Mechanical tests were conducted on all samples using the TA-XT Plus Texture 

Analyzer (Texture Technologies, Algonquin, IL USA) with a 5-mm-diameter spherical indention 

probe. Two mechanical tests were performed on each sample: a ramp load-unload hysteresis test 

and a force-relaxation test with ramp loading. The time series data for the two experiments are 

illustrated in Figures 2.2 and 2.3.  All of the hydrogel samples were tested while bonded to their 

cylindrical molds. The size of the mold was shown to be large enough to avoid significant 

boundary influences during indentation for pure gelatin samples at concentrations between 3% and 

8% [68]. 

During ramp-hold force-relaxation testing (section 2.1.2), the maximum indentation depth 

was 𝑠𝑚𝑎𝑥 = 1 mm applied at the center of the flat cylindrical sample face.  The load-on ramp 

speed was 𝜈= 0.04 mm/s delivered during a ramp time of Tr = 25 s. Subsequently, the probe 

position was held constant for 300 s as relaxation of the force was monitored. During the load-

unload testing (section 2.1.1), where a ramp-load and ramp-unload sequence was applied, the same 

experimental parameters 𝜈 and Tr were applied.  Other details of the experiments are the same as 

the methods of Chapter 4. 

Ramp-relaxation measurements for each gel-cream sample were combined in a regression 

fit with Equation 4.6 to estimate the KVFD model parameters E0, α, and τ for that sample.  For 

example, the best-fit model response for sample G5C20 is shown along with the measurement data 

on the left side of Figure 5.1. Applying the same parameter estimates (without further fitting), the 

load-unload responses can be predicted theoretically by combining Equation 2.2 and Equation 4.4, 

and then compare with the experimental measurements (shown on the right side of Figure 5.1). 

The KVFD model parameters estimated from data obtained using the ramp-hold experiment 
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closely predicts data obtained from a load-unload experiment. The discrepancy at the end of the 

two curves (near t = 50s) occurs because the model does not allow the probe to separate from the sample 

surface.  Experimentally, the probe that was sprayed with a lubricant so it detached from the sample 

surface before returning to the initial height.  

 

c) Wave propagation technique   

All of the samples prepared for indentation tests and ARF-OCE tests were from the same 

gelatin batch. The gelatin and cream mixture was congealed in a large deep petri-dish. 24 hours 

later, the whole piece was cut into several cylindrical samples (with 25 mm in diameter and 8 mm 

in thickness each) for ARF-OCE measurements. Surface wave based ARF-OCE experiments were 

performed in the same manner as the experiments in Chapter 2 and 3. The shear wave speeds were 

analyzed from the velocity of the waves propagating at the sample surface, and the dispersion 

curves were prepared for rheological model fitting. 

  
(a)      (b) 

Figure 5.1.  Data and model fitting for the ramp-relaxation (a) and the load-unload experiments (b).  (a) 
Fitting Equation 4.6 (solid line) to the ramp-relaxation data (dots) acquired from a G5C20 sample, we 
found the KVFD model parameters E0 = 2.38 kPa,  = 0.163, and  = 8.31 s.  (b) Applying those same 
parameter values to predict force P(t) for the load-unload experiment that closely represents the 
measurements (dots).  
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The relationship between the shear wave speed dispersion curve and the complex modulus 

is defined in Equation 2.10. For the Kelvin-Voigt model, the storage modulus 𝜇𝑟 =  𝜇1 and the 

loss modulus 𝜇𝑖 =  𝜔𝜇2. The storage and loss modulus for KVFD model is defined in [130]: 

𝜇𝑟 = 𝜇1 + 𝜇1 (
𝜇2

𝜇1
)

𝛼

𝜔𝛼 cos (
𝜋

2
α)                                             (5.1) 

𝜇𝑖 = 𝜇1 (
𝜇2

𝜇1
)

𝛼

𝜔𝛼sin (
𝜋

2
α) 

If α = 1, Equation 5.1 becomes the Kelvin-Voigt model. If α = 0, then 𝜇𝑖 = 0, indicating that 

there is no loss for this material. Furthermore, if let τ =  
𝜇2

𝜇1
 , then 𝜇1 (

𝜇2

𝜇1
)

𝛼

=  𝜇1τ𝛼 =  𝜂, where 𝜂  

is the viscosity coefficient mentioned in the ramp relaxation method. Some examples of how well 

the KVFD model fit shear wave imaging results are shown in Figure 5.2. 

 

  
(a)     (b) 

Figure 5.2.  KVFD model fitting for the dispersion curves measured by ARF-OCE. (a) Fitting Equation 
5.1 (dash line) to the shear wave speed dispersion data (circles) acquired from a G5C30 sample, we 
found the KVFD model parameters 𝜇1 = 2.01 kPa,  𝜇2 = 2.12 kPa s and  = 0.49.  (b) Fitting Equation 
5.1 (dash line) to the shear wave speed dispersion data (circles) acquired from a thermal damaged liver 
sample. KVFD model parameters for damaged liver is 𝜇1  = 5.38 kPa, 𝜇2= 29.9 kPa s and  = 0.62. 
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5.2  Interpretation of KVFD model parameters in biphaic phantom 
 

The KVFD model can closely predict mechanical behaviors obtained from both quasi-static 

and dynamic techniques, thanks to the flexibility that the fraction order α provides. Others have 

also found good correlation between the fractional derivative models and experimental 

measurement data of viscoelastic media [139-140]. The next step is to study how the estimated 

KVFD model parameters are correlated with tissue microstructural signatures and components. In 

addition, how one would interpret changes of each parameter differently when different techniques 

are used. In the following two subsections, the biphasic phantoms with various concentrations of 

gelatin (solid matrix) and cream (fluid) will be used for the investigation of KVFD model 

parameters from both low frequency indentation measurement and high frequency wave 

propagation measurement. The contents of this section are based on the paper [137] which is in 

preparation. 

5.2.1  Low frequency indentation measurements 
 

From Equation 4.3, we can infer that 𝐸0 is the relaxation modulus measured at infinite time, 

i.e. 𝐸0 = 𝐺(∞). The fractional-order parameter 0 < α < 1 is widely regarded by many people as a 

measure of material fluidity; specifically, α → 0 for solids, α → 1 for fluids, and intermediate 

values reflect mixtures of the two phases [142, 143]. Relaxation time constant τ  scales 

measurement time t in the power-law (𝑡/𝜏)−𝛼 of Equation 4.3. It is a measure of the time required 

for the stressed medium to relax and reach temporal equilibrium in terms of force and 

displacement. Data and simulations will be presented to support and amplify upon those 

interpretations. 

a) Elastic parameter E0  
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The elastic modulus measured by applications of the Kevin-Voigt (integer-order 

derivative) or KVFD models is approximately the shear modulus [68, 81, 98]. To show this is also 

true for KVFD model, I compared 𝐸0 with the elastic modulus determined from Hertzian contact 

theory and shear-wave propagation measurements.  Since the latter quantities only apply to linear-

elastic solids in a semi-infinite geometry, measurements in pure-gelatin cylinders were acquired 

for these comparisons; i.e., samples G3C0, G5C0, and G8C0. The shear modulus was estimated 

via Hertzian theory by assuming gelatin gels are incompressible.  In that case, Hertzian estimates 

of Young’s modulus are divided by three to estimate shear modulus. 

Table 5.1 shows that values for the KVFD parameter 𝐸0  are approximately equal to the 

shear modulus as expected using the same force-displacement time series.  The table also shows 

the results are approximately equal to those using other measurement techniques [68, 81, 98].   

 

Estimates of 𝐸0  for all gel-cream samples are summarized in Figure 5.3 (a).  Each curve 

is formed from data using a different gelatin concentration. Clearly, 𝐸0  increases with gelatin 

concentration. 𝐸0  also increases with cream concentration initially, which is probably from 

molecular level changes made to the crosslinking structure in the denatured collagen aggregates 

Table 5.1  Comparison of E0 and shear modulus values from gelatin gel samples 

Gelatin % 
(sample label) 

KVFD E0 (Pa) Hertzian Shear Modulus (Pa) Shear modulus† (Pa) 

3% (G3C0)  329 ± 11 292 ± 14 320 ± 28** 

5% (G5C0) 766 ± 30 806 ± 18 930* 

8% (G8C0) 2120 ± 80 2070 ± 27 2286 ± 315*** 

*Measurements from [68] in pure gelatin at concentrations of 2%, 4%, 6%, and 8% were fit to the polynomial   y 
= 178.75x2 - 426.5x + 485 to interpolate and estimate a value at 5%.  Thus no error bar is reported.  
Orescanin et al. reported gelatin prepared in the manner of our study by applying an ultrasonic impulse-response 
measurement method to 3% gelatin** [81] and rheometer-based estimates to 8% gelatin *** [98].   
†Comparisons are with previous measurements made in our lab to minimize sample-preparation variability.   
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with the addition of cream. However, sample stiffness is relatively insensitive to cream 

concentrations above 20% 3 . Two-way ANOVA test results showed significant differences 

between various gelatin concentrations (p = 0.0005) and little significance to the differences 

between various cream concentrations (p = 0.129) [27].  

In summary, the KVFD model parameter 𝐸0  approximates the shear modulus.  It is 

sensitive to gelatin concentration but relatively insensitive to cream at concentrations greater that 

20%.  Hence, 𝐸0  reflects sample stiffness determined primarily by gelatin concentration. It is 

relatively independent of its fluidic content for cream concentrations between 5% - 50%.   

 

                                                           
3 There are well-known secondary effects that contribute to variations in E0 with cream concentration.  For example, Vanicream 
is acidic (pH = 3.73).  Increasing gelatin acidity at high cream concentrations will soften the samples [27].  Thus, the downward 
trend in E0 at cream concentrations observed above 20% is expected.   

 
(a) 

 

 
(b) 

 
Figure 5.3.  Estimates of E0 (a) and α (b) versus sample Vanicream concentrations are shown.  
Parameters were obtained by fitting ramp-relaxation data to the KVFD model.  The different curves 
in each plot are for different gelatin concentrations.  On the right, the line labelled “fitting” is found 
from a linear regression to the data shown (R2 = 0.992). Each error bar indicates ±1 sd obtained from 
measurements on six samples.   
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b)  Derivative-order parameter  

In Equation 4.3, the coefficient α determines the “rate” of energy dissipation over time 

during the indentation process; more specifically the shape of the stress relaxation curve over time. 

For example, when α is large, the energy dissipates quickly. Whereas, when α is small, the energy 

dissipation is gradual. Therefore, in biphasic materials, the percentage of the freely flowing 

medium is related to α [141] and the rate of energy dissipation. In solid viscoelastic materials, α is 

also related to the connectivity of the solid matrix networks [138]. Higher connectivity will 

facilitate greater energy dissipation. 

Figure 5.3(b) displays the measurements of α versus cream concentration in gel-cream 

emulsion samples. The error bars for the measurements on six samples summarized by each plotted 

point are very small. It is seen that α is proportional to cream concentration (R2 = 0.992). The linear 

regression line is plotted in the figure. The intercept of the line α = 0.046  is close to the α 

estimated in pure gelatin. Although gelatin is often regarded as an elastic solid, it exhibits a small 

amount of time-dependency when deformed, which may come from protein crosslinks or hydrogen 

bonds breaking and reforming. The dramatic change of α with cream percentage shows that the 

added cream component is the main source of energy loss during indentation process. Furthermore, 

the time required to dissipate the majority of the energy also shortens. Cream is added in 

replacement of water in the gel-cream compound. With the reduction of the tightly bounded water 

and gelatin macromolecules, the resistance on the cream decreases and it is easier for the fluidic 

component to relax. Therefore, as the cream is added, α will increase. 

In contrast, two-way ANOVA tests show there are no significant differences between 

gelatin concentrations (p = 0.82), implying α does not depend on gelatin concentration. Thus, 
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gelatin does not affect the rate of energy dissipation over time during the indentation process, only 

cream content and water content affect. 

 

c) Time constant  and viscous modulus  

 

The KVFD model of Equation 4.3 shows that α and τ combine with measurement time to 

predict the rate at which force relaxes through the scaled power-law factor (𝑡/𝜏)−𝛼. For a given α, 

relaxation time constant τ is the other parameter that describes the time-dependent behavior. If we 

re-write Equation 4.3 with η = 𝐸0𝜏𝛼, then η is proportional to the time-varying portion of stress 

per unit strain (Equation 5.2). Therefore, η can be called as viscous coefficient. 

 
0 0( ) 1

(1 ) (1 )
t tG t E E

 


 

    
            

                                     (5.2) 

Figure 5.4(a) shows that τ increases only with cream percentage, reflecting the increased viscous 

relaxation of the emulsion. Figure 5.4(b) shows that η increases with both cream and gelatin 

concentration. With both α and τ being sensitive to cream concentrations, the mechanism could 

be quite different. α is associated with the speed of internal energy dissipation, while τ is the 

measurement of the quantity of the components or crosslinks that contribute to the mechanical 

energy loss. From Equation 5.2, it is speculated that the viscous coefficient η  is linearly 

proportional to the total energy loss during indentation. In particular, normalizing the viscous 

coefficient by the shear modulus, η/E0, eliminates the gelatin-concentration dependence, leaving 

only the time-dependent components of the material (Figure 5.4 (c)). It further demonstrates a 

unique relationship between E0 and gelatin concentration.   
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The following part demonstrates that the viscous coefficient η is linearly proportional to 

the energy loss during load-unload test. In Chapter 2.1.1, a measurement for energy loss was 

introduced from load-unload experiments to approximate the viscosity of a material. Numerical 

simulation was performed first to examine the possible correlation between viscous coefficient 

η and the loss-energy 𝐸𝐴  calculated. Predictions were made for all combinations of three 

parameters when 𝐸0 was varied from 0.1 to 7.3 kPa, α from 0.01 to 0.7 and τ from 0.1 to 2500 s.  

These parameter ranges span those observed experimentally in the emulsion and liver-tissue 

samples. Figure 5.5 (a) shows that EA is proportional to , i.e., EA = k, where the coefficient k = 

k(,Tr)  depends on the material parameter  and measurement parameter Tr .  Each line in the plot 

is associated with one value of , such that combinations of E0 and  at fixed  and Tr  can be found 

along that line. The proportionality between viscosity  and loss energy EA suggests that energy 

loss in a load-unload indentation experiment, that is the model-independent EA is highly correlated 

   

   
(a)  (b) (c) 

 

Figure 5.4.  (a) The monotonic increase in KVFD parameter with Vanicream concentration is 
essentially independent of gelatin concentration.  (b) However, the increase in viscous modulus  with 
cream concentration does depend on gelatin concentration unless  is normalized by E0 (c).  The error 
bars shown indicate ±1 sd for measurements on six samples.   
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with the viscous coefficient in a ramp-hold experiment as described by  from the KVFD model. 

Figure 5.5(b) displays EA versus  for  fixed at 800 Pa-s and at four values of Tr. For each ramp 

time EA peaks at a different value of . This is caused by the dramatic decrease of Γ(1 − α) term 

in Equation 5.2 when α increases. This can also be explained from the physics perspective. Note 

that mostly elastic media exhibit little or no frictional loss, i.e., EA (→0) ≈ 0. Similarly, for a 

fluid where  → 1, frictional losses can be higher than those of elastic media but remain relatively 

low, especially for slower ramp speeds. Between the extremes, the parameter τ that indicates the 

quantity of viscous components is powered by the rate of energy dissipation α, and is amplified by 

the elasticity scaler, which predicts the total mechanical energy losses. 

 

    

  
  

(a)  (b) 
Figure 5.5.  (a) The predicted relationship between viscous coefficient   and loss energy EA is illustrated 
for eight values of  between 0 and 1 at Tr = 25 s. (b) EA is plotted as a function of  for four Tr values 
and at  = 800 Pa-s . For both sets of plots, the maximum indentation depth was smax = 1 mm.   
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The above simulation was verified experimentally. Figure 5.6 displays measurements of 

EA (points) acquired during load-unload experiments. These are plotted against separate 

measurements of  obtained from ramp-relaxation data.  One set of samples was used for both 

measurements.  Lines associated with the measurement points in the figure are predictions made 

using Equation 2.2 for the average  measurement value.  As predicted, measurements from 

samples with the same cream concentration (fixed ) but different gelatin concentrations fall along 

a straight line in the  versus EA plane. Also predicted, the measured loss energy from a quasi-

static load-unload experiment is linearly related to the viscous modulus computed from the KVFD 

model applied to ramp-relaxation experiments. One set of model parameters describes data from 

both experiments.  

 

 

 

Figure 5.6.  The predictions of Figure 5.5 (lines) are compared with measurements on gelatin-cream 
samples (points).  Three gelatin concentrations, 3%, 5%, and 8%, at each of the five cream concentration 
indicated in the legend are shown.  A fixed cream concentration establishes a line corresponding to , 
along which we find the three gelatin concentrations.  Along each line, the 3% gelatin samples have the 
smallest EA value while the 8% gelatin samples have the largest.  Error bars indicate ±1 s.d. for samples 
described in Table 5.2.  
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Table 5.2 shows the relative uncertainty in AE  given errors in  measurements applied in 

the predictive models. Values in the table are bias errors along with the two values in brackets that 

give the confidence intervals corresponding to ±1 standard deviation (sd) for each  measurement.  

The measurement of energy loss is denoted by the caret ˆ
AE  to distinguish them from the 

predictions, AE . To evaluate confidence intervals between measured and predicted values, the 

relative error is computed using  

ˆ| |A A
r

A

E Ee
E


                                                  (5.3) 

All bias errors are less than 20% and many are less than 5%; the notable exception being the elastic 

(pure-gelatin) samples.  The smallest prediction errors occur in stiff viscoelastic samples.   

The magnitudes of the relative errors and confidence intervals indicate that it is reasonable 

to use a pre-generated prediction plot to relate loss energy and viscous modulus parameters at least 

in these test samples. Consequently, either measurement can be made to estimate KVFD 

parameters.   
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In summary, the KVFD model parameters, E0, α, and τ, characterize respectively the 

elasticity, fluidity, viscosity of compressed biphasic emulsions in ramp-relaxation tests. These 

model parameters help explain the response of samples to the indentation technique in terms of 

sample components and molecular structure. E0 is shear modulus that quantifies material stiffness 

controlled primarily by gelatin concentration. At the cream-concentration range of 20-50%, 

emulsion stiffness does not significantly change, although secondary effects provide small 

systematic variations. Parameter  indicates the intrinsic speed at which the emulsion internally 

dissipates mechanical energy as it relaxes the applied force toward an equilibrium state. In this 

study, it is proportional to the cream percentage due to the increased volume fraction of freely 

Table 5.2.  Prediction errors for energy loss in biphasic phantoms with different cream 
concentrations 

[ , ]b a ce e e  0% 5% 20% 30% 50% 

3% 
0.156 

[0.103 0.369] 
0.177    

[0.031 0.321] 
0.019    

[0.046 0.083] 
0.025   [0.046 

0.096] 
0.149    

[0.103 0.196] 

5% 
0.173    

[0.123 0.464] 
0.026   

 [0.054 0.106] 
0.066    

[0.038 0.094] 
0.025   [0.003 

0.054] 
0.008    

[0.018 0.035] 

8% 
0.199    

[0.083 0.314] 
0.044    

[0.009 0.078] 
0.051    

[0.036 0.066] 
0.033   [0.019 

0.047] 
0.033    

[0.020 0.047] 

Fractional bias error is ˆ| |b Ae E k k     as shown in the figure, where   is mean value.  In 
brackets we display the confidence interval  
 

 
 
 
 
 
 
 
 
 
 

 predicting the error range  

associated with , the standard deviation for estimates.  
For example, the numerator for error ec is illustrated in the figure. 
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flowing fluid as well as the decreased volume fraction of fixed water contained in the material. 

Time constant  is associated with the amount of cream or components in the material that 

contributes to the time-dependent behavior during the indentation tests. It is found that E0, α, and 

τ form a basis that spans the feature space for component characterization of these relatively simple 

emulsions. Interestingly, a derived parameter from these three bases η = 𝐸0𝜏𝛼 is shown to contain 

the same information as the widely used energy loss metrics in hysteresis loop. The total 

mechanical energy losses as heat can be predicted through the parameter τ that indicates the 

quantity of viscous components, powered by the rate of energy dissipation α, and amplified by the 

elasticity scalar. 

 

5.2.2  High frequency wave imaging measurements 
 

Equation 5.1 and Equation 2.10 combined together will give the dispersion curve defined 

by KVFD model parameters. Fitting the same model to the measurements from two drastically 

different frequency responses may or may not yield the same parameter estimates. For elasticity 

related parameters, the two techniques should not yield different estimates since elasic coefficient 

E0 is not frequency dependent. For time-dependent properties, the consistency of the parameters 

depends on whether the same viscous or fluidic responses can be collected by different techniques. 

The high frequency technique is not sensitive to components that have relaxation time constant 

τ that is larger than several seconds (e.g., freely flowing fluid). Instead, it is more sensitive to the 

crosslinks and electrostatic bonds which have a much shorter relaxation time constant. 
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For the dynamic wave imaging technique, only 5% gelatin samples were used (G5C0, 

G5C5, G5C20, G5C30, G5C50). 

a) Elastic parameter E0  

Figure 5.7 shows the estimation results from samples with five different cream 

concentrations and the same gelatin concentration. Compared with results in Figure 5.3, ANOVA 

test shows no significant difference of the measurements between 𝐸0 measurements from the two 

techniques. The elastic modulus measured by applications of the KVFD model on indentation 

technique and dynamic wave imaging technique are very close. Like in indentation technique, it 

also predicts the initial stiffening effect when the cream is added. This proves that  𝐸0 is not a 

parameter that depends on force frequency. Therefore, the KVFD model parameter 𝐸0  still 

approximates the shear modulus for high frequency techniques. 

 

 

 

Figure 5.7.  Estimates of E0 versus sample Vanicream concentrations using dynamic wave imaging 
technique.  Parameters were obtained by fitting dispersion data (200 Hz ~ 5000 Hz) to the KVFD 
model. Each error bar indicates ±1 sd obtained from measurements on six samples.   
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b)  Derivative-order parameter 

        In Equation 5.1, α  determines the overall shape of the storage modulus  𝐺′  and loss 

modulus 𝐺′′. Figure 5.9 shows the different behaviors of  𝐺′ and  𝐺′′ when α varies. When α = 1, 

 𝐺′ is a constant, and  𝐺′′ is a straight line, which is in accordance with the Kelvin-Voigt model 

prediction (Figure 5.9(e)). When α → 0,  𝐺′  is also a constant, and  𝐺′′  is approximately zero 

(Figure 5.9(a)). Between two extremes, α controls the rate at which  𝐺′  and  𝐺′′  changes with 

frequency. When α is between 0~0.5, the increase rate of  𝐺′ is greater than the increase rate of 

 𝐺′′ (Figure 5.9(b)), and when α  is between 0.5~1, the increase rate of  𝐺′′  exceeds that of 

 𝐺′ (Figure 5.9(d)). When α = 0.5,  𝐺′ and  𝐺′′ increase in parallel (Figure 5.9(c)). Usually, the 

change of  α is due to some internal structural changes of solid matrix networks [143], which 

would change the energy dissipation patterns. 

 

 

 

Figure 5.8.  Estimates of 𝛼 versus sample Vanicream concentrations using dynamic wave imaging 
technique.  Parameters were obtained by fitting dispersion data (200 Hz ~ 5000 Hz) to the KVFD 
model. Each error bar indicates ±1 sd obtained from measurements on six samples.   
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        Figure 5.8 shows the estimates of 𝛼  versus cream concentrations using dynamic wave 

imaging technique. In contrast to the linear behavior in indentation estimates shown in Figure 

5.3(b), the 𝛼 estimates increase initially and plateau at 𝛼 =0.5. The difference can be explained as 

the fluidity from the cream plays a dominant role in dissipating energy in low frequency 

indentation technique, while in the high frequency technique, fluidity is negligible due to the small 

strain applied in short periods. Under these conditions, hydrogen and electrostatic bonds 

(crosslinks) determine viscous behavior. Therefore the molecular structure of the solid matrix 

network will affect the energy dissipated [143]. 

        The introduction of cream into the gelatin hydrogel system will cause some internal 

rearrangement of protein and fluid components initially when cream is first introduced, but the 

effects stabilize after the cream concentration exceeds 10%~20% of the sample mass.  

 

c)  Time constant  and viscous modulus 

        The parameter  is defined as τ =  
𝜇2

𝜇1
 . From Figure 5.10, it is seen that the trend of 𝜏 is similar 

to 𝛼. It reaches some equilibrium after the cream concentration exceeds 20% of the sample volume. 

I suspect that the addition of Vanicream mass has some effects on the distribution and density of 

gelatin crosslinks. The parameter  is defined as 𝜂 = 𝜇1 (
𝜇2

𝜇1
)

𝛼

=  𝜇1τ𝛼 . Similar to the low 

frequency technique, 𝜂 is a combination of 𝜇1, τ and 𝛼, which is proportional to the total energy 

dissipated. Figure 5.10 shows there is no significant change of the total energy loss as the cream 

concentration increases. 

 



 

141 
 

 

 

(a)                                                                           (b) 

     

                                         (c)                                                                       (d) 

 

(e) 

Figure 5.9. Simulation of the behavior of storage modulus (G’) and loss modulus (G’’) when 𝛼 varies 
between 0 and 1. Frequency range (0 ~ 5000 Hz) is the same as examined in experiments.  
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5.3  KVFD model parameters change during liver hyperthermia and ablation 
 

Given the above analysis of KVFD model parameters in emulsion samples, it is now 

prepared to extend the analysis to ex vivo liver-tissue samples. Of course, liver is compositionally 

and structurally much more complicated than the two-component gel-cream samples. However, it 

is also well known that heating liver tissue will systematically stiffen the tissue [144, 145, 146, 

 

 

Figure 5.10.  Estimates of 𝜏 (upper) and 𝜂 (lower) versus sample Vanicream concentrations using 
dynamic wave imaging technique.  Parameters were obtained by fitting ramp-relaxation data to the 
KVFD model. Each error bar indicates ±1 sd obtained from measurements on six samples.   
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147, 148], which is somewhat analogous to changing gelatin concentration in the gelatin-cream 

samples. Frozen pig livers were obtained from a local market and completely thawed in air over 

several hours.  Measurements were made on ex vivo samples at room temperature within 6 h of 

thawing. Samples roughly 40*30*15 mm3 in size were cut from organ regions lacking major 

vasculature or ducts.  Some specimens were tested without further processing and others after 

being heated at 45 °C, 55 °C, or 65 °C for 40 min.  After heating, samples were placed in isotonic 

saline at room temperature for at least 45 min before indentation. 

A major medical application of liver-tissue heating is curative nonsurgical treatments of 

hepatocellular carcinoma.  Liver tissues are locally heated in patients using percutaneous 

radiofrequency ablation, microwave ablation, or high-frequency ultrasound (HIFU) ablation 

techniques [149, 150].  Heating liver to 45 ℃ for 30-60 min irreversibly damages cells, inhibiting 

DNA replication and energy-producing mitochondrial function [150].  Faster heating to 

temperatures above 60 ℃  causes irreversible protein denaturation, which is also cytotoxic, leading 

to coagulative cellular necrosis.  Besides cellular damage, protein structure is changed, altering the 

extracellular matrix in ways that can be sensed through macroscopic mechanical testing [146, 147].  

Porcine liver samples were heated in saline for 40 min at 45 ℃, 55 ℃, or 65 ℃  before cooling the 

tissue for 45-60 min in room temperature saline prior to mechanical testing.   

Indentation measurements for thermally-damaged liver are compared with those of fresh 

liver in Figure 5.11 and Table 5.3.  As with the gel-cream samples, η was measured as a function 

of 𝐸0, α, τ using ramp-relaxation experiments and fit those data to the KVFD model to estimate 

model parameters. EA was also measured using load-unload experiments. Tr = 25 s was applied to 

all liver measurements.  Mean values are plotted against each other in Figure 5.11.  The last line 

in Table 5.3 lists the errors and the confidence intervals that are expected when predicting loss 
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energy from the KVFD parameters. The error bars in plots summarizing liver-tissue measurements 

are standard deviations of three measurements made on one liver sample acquired at different 

locations (assuming liver tissue is isotropic). These results are based on the paper [137] which is 

in preparation. 

Dynamic wave imaging measurements for the thermally-damaged liver are listed in Table 

5.4.  The error bars in the table summarizing liver-tissue measurements are standard deviations of 

three measurements made on one liver sample acquired at different locations (assuming liver tissue 

is isotropic). 

 

 

Table 5.3. Ex Vivo Liver sample Measurements using ramp-relaxation 

 fresh heated 450C heated 550C heated 650C 

E0 (Pa) 75 ± 11 188 ± 22 4150 ± 368 7398 ± 587 

 0.41 ± 0.01 0.35 ± 0.007 0.27 ± 0.005 0.27 ± 0.004 

 (s) 103 ± 12 850 ± 71 2300 ± 106 2500 ± 127 

(x104 Pa-s) 0.050 ± 0.020 0.199 ± 0.051 3.38 ± 0.313 5.98 ± 0.437 

EA (J) 0. 289 ± 0.033 1.36 ± 0.099 24.5 ± 0.98 42.6 ± 2.14 

[ , ]b a ce e e  
0.224   

[0.142  0. 382] 
0.130  

[0.092  0.224] 
0.023  

[0.008  0.015] 
0.004  

[0. 003  0.003] 

* Note that shear-modulus values for liver are about 30 times less than typical literature values, 
e.g., [145], which we attribute to the small sample size.   
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Figure 5.11. Similar to Figure 5.6, we plot indentation measurements of EA versus  for ex vivo liver 
samples.  The cyan circle marker near the origin is the result for fresh liver. The red star marker also 
near the origin indicates results for liver heated to 45oC for 40 min.  The blue diamond and green 
hexagram markers indicate measurements for liver heated to 55 oC and 65 oC, respectively, also for 
40 min.  Error bars along both axes indicate ±1 sd in  and EA measurements. The lines are for values 
of α = 0.41, 0.35, 0.27, found from ramp- relaxation measurements. 

Table 5.4.  Ex Vivo Liver sample Measurements using dynamic wave imaging 

 fresh heated 450C heated 550C heated 650C 

𝝁𝟏 (Pa) 206 ± 76 473 ± 56 2842 ± 265 5384 ± 1574 

 0.42 ± 0.05 0.45 ± 0.07 0.65 ± 0.05 0.62 ± 0.03 

  (x10-3 s) 1.02 ± 0.11 6.80 ± 1.26         11.01 ± 1.62 5.5 ± 1.17 

(Pa-s) 11.43 ± 1.22 50.11 ± 8.28 151.67 ± 25.1 215.16 ± 68.3 
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Table 5.3 and 5.4 summarizes the results of fitting the KVFD model to ramp-relaxation 

data from indentation and dispersion data from ARF-OCE respectively. For E0 measurements, 

thermal damage clearly modified the parameters. Generally, higher heating temperatures 

dramatically increase E0. However, the elasticity parameters E0  and 𝜇1  measured for the two 

techniques do not agree with each other. This may be due to the experimental conditions that liver 

samples were submerged in saline during indentation, causing looseness at the surface of the 

sample.  It is found that liver stiffness increases significantly between 45 oC and 55 oC in both 

measurements, suggesting a major change in mechanical properties has taken place. Other 

investigators [148, 150] reported that heating liver above 55-60oC irreversibly transforms 

extracellular collagen from its normal helical state to a random state, and this change in molecular 

structure leads to increased collagen crosslinking that is likely to increase stiffness and viscosity 

[148]. In the same temperature range,  and  change very little, due to the extracellular collagen 

denatures to expose charged sites that form a higher density of elastic crosslinks. 

For fractional order measurements, the indentation technique predicts that 𝛼  decreases 

during the heating process until 55oC. The energy dissipation takes longer time as the material 

solidifies (fluid content decreases). Once the major structural transformation is complete, 𝛼 

stabilizes. On the other hand, the high frequency shear wave imaging technique, which is more 

sensitive to solid matrix changes than fluidity changes, shows a significant increase in 𝛼 after the 

major structural transformation around 45 oC to 55 oC.  

For viscous coefficient measurements, the modest increase in  during liver heating is 

partially driven by the increase in E0, recalling that  𝜂 = 𝐸0τ𝛼.  Hence, the greater stiffening of the 

liver at higher temperatures means that thermally-damaged liver behaves increasingly as a lossy 
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viscoelastic solid.  These changes are consistent with changes in the chemical structure of the 

collagen matrix being responsible for increased EA. Also, the viscosity is consistently increasing 

as well. τ changes drastically at this temperature, probably coming from the suddenly increased 

number of viscous interactions and chemical bounds due to protein denaturing. 

Any changes observed in thermally-damaged ex vivo liver could be different when 

measured in vivo. The effects of blood perfusion, at the very least, modify the temperature 

distribution in ablative therapy where tissue temperatures quickly rise above 80 oC and fall as 

blood perfusion cools the region.  The rates of tissue heating and cooling will most certainly have 

an effect on mechanical properties.  The point in this study is to show that KVFD model parameters 

can explain the effects of thermal damage in liver tissue.  However, statements regarding the utility 

of mechanical properties for indicating therapeutic changes to liver require in vivo studies to 

account for perfusion. 

 

5.4  Summary 
 

The KVFD model provides a three-dimensional feature space of mechanical properties that 

properly characterizes the composition and structure of biphasic emulsions. Two different 

frequency techniques each produce the same elasticity parameter when the KVFD model is applied, 

and the values found are approximately equal to the shear modulus. The two techniques yield 

different values for 𝛼 and 𝜏 due to the different energy dissipation mechanisms occurring at these 

different force-frequency bandwidths. In both experiments, α is related to the energy dissipation 

rate that is sensitive to the internal structure as well as any molecular and micro-structural changes 

occurring in the solid network. Theory shows that the response of tissue to mechanical stimuli is a 
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power law in time (indentation) and frequency (shear wave), with exponent α. In indentation, 

where fluid is the main source of energy dissipation, α  and  𝜏  are closely related to cream 

concentration. While, in shear wave imaging, energy dissipation is mainly caused by the breaking 

and reforming of electrostatic and hydrogen bonds in collagen.  The difference in the sources of 

energy dissipation suggests that it should not be surprising that α measurements vary between the 

two measurement techniques. Estimation of α at high force frequencies is more likely to represent 

crosslink formation and ECM structural changes. Another derived KVFD parameter 𝜂 is a good 

approximation of the total energy loss when there is little change in α. Numerical simulations 

suggest that the viscosity modulus η and a loss energy EA (energy lost during quasi-static force-

displacement cycles, which is considered a good metrics for the viscoelastic property of the solid 

matrix) has a linear relationship, and the slope of the linear relation is determined by fractional 

order 𝛼. Experimental measurements from phantom and tissue data both show good agreement 

with the theoretical prediction of η − EA relation. 

Based on the emulsion sample analysis, I then carried out a study on ex vivo liver tissue. 

Liver samples were heated in a water bath at different temperatures to induce different changes 

inside the tissue. The KVFD model is found very promising because the parameters described 

changes caused by thermal damage that were consistent with results in the literature. Elasticity 

measurement can predict the stiffening of the tissue during heating. Both 𝛼 and 𝜏 are sensitive to 

the major structural transformation that happens around 45 oC to 55 oC. However, tissue is much 

more complicated than the two-component phantom. The disagreement of E0 at low and high 

frequencies may suggest a higher order FD model (more than one fractional order parameter [151]) 

is needed to represent responses from multiple elastic components and multiple viscous 

components.   
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From these combined results, it is concluded that KVFD model parameters form a concise 

features space for biphasic medium characterization that describes time-varying mechanical 

properties. It supports techniques with a wide range of load frequencies. The response from each 

technique will be sensitive to a set of medium components and related molecular structures. 

Finding techniques that are sensitive to changes in normal tissue will help diagnosis.  

The KVFD model can be applied in medical elasticity imaging, where images formed 

based on these features can be interpreted in terms of disease processes or treatment-induced 

effects. Biphasic phantom and ex vivo liver results show that it can provide much more details 

about tissue components and structures than other rheological models I tried. Future work would 

be to evaluate the necessity of using higher order fractional derivative models for tissue, and to 

identify the relationship between the model parameters and tissue components, structures and 

crosslinks with the aid from more quantitative biological measurements such as histology. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

6.1  Summary and Conclusions 
 

 Mechanical properties of soft biological tissues have been studied extensively with the 

hope of enriching our collective understanding of how tissue composition and structure influence 

the mechanical properties that guide cellular behavior [6, 19, 44, 152, 153]. Tissue deformation 

patterns resulting from applied force stimuli can reveal properties of the tissue mechano-

environment that can improve our understanding of the overall biological function and behavior 

of living systems. Additionally, responses from different force stimuli could arise from different 

selections of tissue structural components (i.e. ECM crosslinks, fluids, viscoelastic proteins), and 

the appropriate data-reduction models could transform these responses into intrinsic tissue 

properties. Therefore, to exploit the diagnostic potential of mechanical characterization, one must 

identify the combinations of measurement techniques and models that provide consistent 

parametric estimates that are sensitive to diagnostic microscopic features of tissue. The objective 

of this thesis is to develop a foundation on which the measurement techniques, data-reduction 

modeling, and biological interpretation can be studied in an integrated manner.  

Several techniques facilitate assessing tissue mechanical properties, of which indentation 

techniques are the most recognized and widely used for basic science investigations due to the 

simplicity and low cost. In recent years, elastography imaging technologies, which enable 

measurement of tissue mechanical properties in vivo, have been growing rapidly for clinical 

studies. Both classes of techniques have the potential of accurately mapping the elastic modulus 

and viscoelastic properties in research labs and in clinic applications. However, few people have 

ever unified the measurements from different classes of techniques. Three techniques were 
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developed for characterizing tissue viscoelastic properties based on indentation, ultrasound, and 

optical coherence tomography respectively. Each technique has its unique force frequency range, 

and each has been validated individually through numerical simulations, phantom experiments and 

tissue trials. When the physical assumptions on which a technique is established are violated, often 

due to the limited size of the sample, bias could be introduced to the measurements. Corrections 

are applied to minimize the bias, such as the adoption of a new physical model (i.e., Dimitriadis 

model, Lamb wave equation) or preprocessing of the responses (i.e., directional filters). It has been 

shown that the three techniques can yield the same Young’s modulus estimates for gelatin 

phantoms with various stiffnesses if the assumptions intrinsic to each technique are not violated. 

This not only verifies the reliability of each technique, but also suggests that there is an “intrinsic” 

elastic modulus of a material that can be obtained independent of the technique used, even at 

drastically different load frequencies.   

However, once the mechanical behavior of the material shows time-dependency or 

frequency-dependency, rheological models must be included in the analysis to provide parametric 

estimates that summarize those features. The experimental data shows that simple viscoelastic 

models such as Kelvin-Voigt model, Maxwell model, and Zener model all have limitations. They 

do not describe long time-duration data or data acquired when the applied load has a broad 

frequency range, and also are restricted to certain material types. Instead of adding more terms to 

these integer-derivative models, the Kelvin-Voigt fractional derivative (KVFD) model is adopted. 

The KVFD model is suitable for complex materials with multiple composites or compartments, 

which would otherwise require a separate model term for each compartment individually. It 

represents the measurement data of a broad range in both time and frequency domain with a small 
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number of parameters, and yields stable estimates for many types of phantoms and tissues. It is 

superior to integer derivative models for the materials and techniques used in this study. 

Moreover, the KVFD model provides a three-dimensional feature space of mechanical 

properties that properly characterizes the composition and structure of biphasic emulsions. To 

explore this correlation, tissue-like emulsions with varying elastic and viscous coefficients were 

developed, consisting of known proportions of gelatin and cream. It is found that the KVFD 

parameter 𝐸0 is approximately equal to the shear modulus, no matter which technique is used. This 

agrees with the previous finding that elastic modulus of a material can be obtained independently 

of the technique. It is also found that the other two parameters α and 𝜏 are closely related to energy 

dissipation. In particular, α  is related to the presence of energy-absorption components; it 

determines the rate of energy dissipation.  Parameter 𝜏  is related to the quantity of energy-

absorption components. In indentation, the cream is the major energy dissipation component. In 

high-frequency shear wave imaging techniques, energy dissipation is mainly caused by the 

breaking and reforming of electrostatic and hydrogen bonds in collagen. Therefore,  α and 𝜏 are 

most sensitive to cream percentages when indentation techniques are applied. 

This knowledge about KVFD parameters is then applied to monitor the transformation of 

tissue microenvironment in thermally damaged ex vivo liver. Estimates of 𝐸0 predict the slight 

increase in liver stiffening as temperature begins to increase, and a substantial increase in stiffness 

above 55oC.  The sudden transition above 55oC is a reflection of the increased number of covalent 

crosslinks due to the irreversible structural changes in collagen molecules caused by heating the 

tissue. Estimates of α from indentation testing have shown a continuous decrease until 55 oC. The 

same tissue samples imaged using shear wave technique have shown a sudden increase of α at 
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around 55 oC. It is in accordance with the reports that irreversible damage of the cells happens 

around 45 oC, and irreversible protein denaturation happens around 50 oC ~ 60 oC. Cell damage 

together with fluid solidification will influence α measured from low frequency technique; and 

protein denaturation will alter the electrostatic and hydrogen bonds of ECM, and thus affecting α 

measured from high frequency technique. A derived parameter from these three basic parameters 

η = 𝐸0𝜏𝛼  is a metric to predict the total energy loss, since it is shown in the experiments to 

correlate linearly with the energy loss in hysteresis loop. 

The correlation of the KVFD model parameters with tissue components and 

microstructures sheds light on the retrieving of information about biological systems using 

mechanical characterization techniques. It will lead to an improved understanding of how 

components interact to influence mechanical behavior of living systems. Different characterization 

techniques may probe different tissue components depending on the mechanism of the stimuli. 

In summary, I achieved the goal of finding combinations of measurement techniques and 

rheological models that reveal tissue microscopic features that potentially contain diagnostic 

information. Three techniques were developed. Each offers strengths in a large variety of 

applications and it is sensitive to a different set of viscous components in tissue. KVFD model was 

found to be appropriate in representing the experimental data, as well as providing parameters that 

reflect the contrast of elastic and viscous components. The combinations of techniques and KVFD 

model have great potential to be able to separate healthy and pathological tissues described by the 

histological features. This work demonstrates three techniques, one of the rheological models and 

the correlation of the obtained model parameters with tissue components and structures. However, 

one can use the same framework for other technique-model combinations. The future for 

diagnostic imaging techniques continues to brighten as we gain knowledge on the relationship 
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between mechanical parameters and specific tissue features.  The evolution of this field has the 

potential to bridge molecular, cellular, and tissue biology and lead to new approaches in the 

treatment of patients, linking these pathological changes to the exact mechanical behavior at a 

mesoscale tissue level larger than the cell but smaller than the organ. 

 

 

6.2  Future work 
 

1) Imaging techniques 

All conclusions drawn in this thesis are subjected to an assumption: the material is 

homogeneous. However, all tissues exhibit anisotropic and heterogeneous properties at different 

levels. It still needs to be studied on how reliable results of the two imaging techniques will be for 

heterogeneous tissue samples. Resolution is another topic for further study, given that the region 

of interest in tissue is usually small in size. The mechanical resolution of the imaging techniques 

will define the limits of the techniques in clinic practice. 

Although the concept of mechanical resolution is unclear in this field, it is obvious that 

large shear wavelength would render low mechanical resolution. In tissue experiments, small 

wavelength always means high frequency, low signal quality and very limited propagation distance 

due to high attenuation coefficient. There is a tradeoff between mechanical resolution and signal 

to noise ratio when shear wave based techniques are used. If high resolution (less than 1 

micrometer) is required in practice, other excitation techniques such as ARFI [28] are also 

available.  
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2) Rheological modeling 

In the frequency domain, KVFD model represents the dispersion curves very well (Figure 

5.2). However, it is not guaranteed that model predicted storage modulus (G′) and loss modulus 

(G′′) match the measured G′ and G′′. In this study, G′ and G′′ as a function of frequency were not 

obtained directly from the experiments to make this comparison. To verify that KVFD is the best 

representative rheological model, G′ and G′′ curves are needed to be represented by the model 

simultaneously. 

The disagreement between 𝐸0 measured by two techniques invokes some questions about 

the insufficiency of the KVFD model. People have been using a higher order fractional derivative 

model with one additional fractional order β [151]. The rationale is that if there are two viscous 

components causing energy dissipation at different rates, then two fractional orders will 

correspond to the two components respectively. The behavior of G′ and G′′  may facilitate the 

identification of the necessity for higher order models. 

 

3) Biological Interpretation 

 As shown in Chapter 5, tissue-like materials can enable us to interpret the relationship 

between medium components and model parameters. However, the two-component phantom 

(gelatin-cream) is still too simple to guide tissue investigations. Tissue properties are determined 

in part by fluid movement in the open- and closed-cell compartments found within a viscoelastic 

collagen matrix that is actively maintained by the embedded cells to meet programmed needs.  In 

future work, a multi-component phantom with more than one viscous component will be 
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constructed. For tissue correlation studies, characteristic histology and other quantitative 

biological measurements should also be included to perform the correlation analysis with modulus 

coefficients. 
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