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ABSTRACT

Many pathological processes in tissues are recognized by morphological changes

that reflect alterations of the soft tissue mechanical properties. Ultrasound

shear-wave imaging can provide quantitative information about soft tissue

mechanical properties, specifically the complex shear modulus. Advancing

this field has the potential to bridge molecular, cellular, and tissue biology

and to influence medical diagnoses and patient treatment. This disserta-

tion describes several quantitative developments in the field of ultrasound

shear-wave imaging. The initial study is a time-domain method for quan-

titative reconstruction of the complex shear modulus, estimated from the

tracked displacement of the embedded spherical scatterer. This study also

established a methodology for independent experimental verification of esti-

mated material properties using rheometer measurements. The second study

presents a technique for shear-wave imaging using a vibrating needle source

for shear wave excitation. An advantage of such an approach is extended

bandwidth of the measurement and a well-defined shear wave propagation

that can be advantageous in the complex shear modulus reconstruction. This

method was used to explore viscoelastic mechanisms in liver tissue and to

explore different modeling approaches. It was found that the shear dynamic

viscosity provides more contrast in imaging thermal damage in porcine liver,

as compared to the shear elastic modulus. The third study was to develop

an FDTD 3D viscoelastic solver capable of accurate modeling of shear wave

propagation in heterogeneous media. Numerical results are experimentally

validated. Furthermore, this numerical framework is used to study com-

plex modulus imaging, specifically a direct algebraic Helmholtz inversion.

The practical limitations and complex shear modulus reconstruction arti-

facts were studied, where it was found that distortions can be minimized

simply by imaging the magnitude of the complex shear modulus. The final

study was a recursive Bayesian solution to complex shear modulus recon-
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struction. A result of this is a stochastic filtering approach that uses a priori

information about spatio-temporal dynamics of wave propagation to provide

low variance estimates of the complex shear modulus. The stochastic filter-

ing approach is studied both in simulation and experiments. The benefit of

such an approach is low variance online reconstruction of the complex shear

modulus per imaging frequency.
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CHAPTER 1

INTRODUCTION

1.1 Background

It is well known that tissue pathology is strongly correlated with changes

in mechanical properties. One of the earliest diagnostic tools is palpation,

the routine physical examination process used by physicians to distinguish

between normal and abnormal tissues. Palpation is a method for qualita-

tive estimation of tissue elasticity. A recent clinical study reports that up

to 43% of detected breast cancers were detected via palpation compared to

57% detected by mammographic screening [1]. Some of the problems as-

sociated with clinical palpation are that it is subjective, dependent on the

proficiency of the clinician, and detection is limited by lesion size and depth

[2, 3]. Therefore, there exist compelling scientific and practical reasons for

developing an imaging modality using contrast in elasticity of the underlying

tissue to produce images. The ultimate goal of any elasticity imaging modal-

ity is to spatially map soft tissue mechanical properties. The advantages

of an elastic image should be reproducibility and a quantitative, objective

representation of a soft tissue mechanical properties.

Sources of contrast in elasticity imaging can be divided into physical and

biological sources. Physical sources of elasticity contrast are related to the

spatial variations in flow velocity of fluids through the extracellular matrix

(poroelasticity) and the rate at which the matrix itself mechanically relaxes

(viscoelastic) in response to applied forces [4]. On the other hand, biologi-

cal sources of elasticity strain contrast result from biological changes in the

tissue and are poorly understood. For example, in mammary tissues they

include edema, hyperplasia, acidosis, fibrosis, desmoplasia and inflammatory

responses characteristic of the reaction of breast stroma to cancer cells [5].

Pathological changes generally correlate with changes in tissue stiffness, but
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there exists no theoretical framework linking these pathological changes to

the exact mechanical behavior at a mesoscale tissue level larger than the cell

but smaller than the organ. Many of the hallmarks of human cancer and

pathological processes are recognized based on the morphological changes

that have roots in biophysical changes that reflect the change of the mechan-

ical parameters of the tissue. The evolution of this field has the potential to

bridge molecular, cellular, and tissue biology and lead to new approaches in

the treatment of patients [6]. In this thesis we focus on developing methods

that can facilitate estimation of the mechanical parameters of the tissue be-

cause they have the potential to be directly implicated in medical diagnoses

and patient treatment.

Common imaging modalities used in elasticity imaging are ultrasound

(US), magnetic resonance imaging (MRI) and optical coherence tomography

(OCT). These techniques have shown promise for discrimination between

benign and malignant breast lesions [7, 3], for liver fibrosis staging [8, 9],

assessing elasticity of myocardium [10], prostate cancer screening [11], and

probing the rheological properties of the human brain to diagnose subtle

neurodegenerative processes [12], to name a few. The diagnostic value of

elasticity imaging stems from the important role of the cellular mechanoen-

vironment in regulating disease progress, such as tumor growth [13], and

from the large contrast observed between various mechanical properties of

normal and disease-affected tissue [14, 11, 10, 9].

In this thesis work we will focus on US elasticity imaging. Pulsed-echo

ultrasound systems have a unique ability to survey the human body due to

the capability of compressional acoustic waves to penetrate deep into soft

biological tissues. Meaningful images of the human body are formed from

backscattered and reflected signals. One of the most common approaches to

image formation in US is the so called B-mode imaging, where the backscat-

tered energy is qualitatively mapped and range gated into images that can

produce contrast between different media. These contrasts in US images

correspond to the changes in the acoustic impedance of the medium and

correspond to brighter or darker regions in the B-mode images. Although

qualitative, these observations provide a very powerful diagnostic tool to

physicians. During the majority of US exams patients are not exposed to

any risks; this is in contrast to imaging technologies involving ionizing radi-

ation, which are known to have quantifiable risks [15].
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The variations in bulk modulus for soft biological tissues are in a relatively

small range, 109 - 1011 Pa [16], so compression wave imaging may not always

provide the contrast needed to differentiate different tissue types. On the

other hand, shear modulus for the soft biological tissues spans a much larger

range compared to the bulk modulus, 103-106 Pa [16]. Therefore, shear mod-

ulus could possibly add information to the compression wave based imaging

and provide additional contrast for tissue differentiation.

In this thesis the focus is on developing methods for studying complex

shear modulus of soft biological tissues and tissue-like materials. This chap-

ter provides the background motivating the quantitative estimation of the

complex shear modulus. In Section 1.2 elasticity imaging is introduced and

a literature review is provided with emphasis on dynamic methods for shear

wave imaging. The need for the complex shear modulus reconstruction is

motivated in Section 1.3. Specific aims and conducted research of this the-

sis are delineated in Section 1.4. Finally, in Section 1.5 the outline of this

dissertation is provided.

1.2 Elasticity Imaging

Rheological properties of soft biological tissues are of great importance in

medical diagnoses [7, 10] and can be measured using elasticity imaging.

Specifically, we focus on the complex modulus, which, with mass density, gov-

erns the mechanical wave propagation through soft tissue. Elasticity imaging

modalities are a set of techniques for estimating rheological properties of soft

biological tissues by modeling the tissue stress-strain relationship as a func-

tion of externally applied stress [17].

Elasticity imaging is characterized by several general steps in which the

tissue of interest is mechanically stressed, by either external or internal forces,

by various methods. Moreover, tissue movement induced by these forces

is measured via a phase-sensitive instrument such as ultrasound (or MRI,

OCT, etc.) by estimating either a displacement or velocity of the displaced

tissue [17]. In the case of US imaging, one can use a broad-band method

to collect time-series data and cross-correlation approach to estimate the

distance between returned echo fields.

Another approach is to use narrow-band excitations and use pulsed Doppler
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method to estimate the mean velocity within the resolution volume. While

the cross-correlation method has intrinsically higher resolution compared to

the Doppler method, it is subjected to ultrasonic speckle decorrelation in-

duced by out-of-plane motion, non-uniform motion of sub-resolution scatter-

ers, non-uniformity of the ultrasound field and non-rigid tissue deformation

leading to loss of echo signal coherence and displacement estimation errors

[5].

Doppler estimation of displacement or velocity is characterized by lower

resolution but with higher sensitivity to phase changes that can mitigate

some of the spatial problems associated with cross-correlation estimation.

This is because Doppler estimation is a volumetric measure of the mean

motion. From collected time-series data, rheological parameters of tissue

are reconstructed quantitatively [18, 19, 20] or qualitatively [21] from the

estimated motion.

There are several ways to estimate rheological properties of tissues from

the displacement or velocity time-series data. One approach is to use a direct

inversion of the wave equation, where the wave equation can be expressed as a

function of displacement or velocity and material parameters. Assuming local

homogeneity of the material properties, the wave equation can be inverted

locally (per pixel) from the collected time-series data to reconstruct visco-

elastic material properties [22] per shear wave frequency. Such an approach

requires knowledge of the 3D spatial distribution of displacement/velocity

for a full 3D inversion. This is not always practical nor feasible; thus, direct

inversions are often approximated from 1D or 2D fields which inherently

introduce biases and reconstruction artifacts in the inversion process.

Another approach is the phase gradient method [18], where from the col-

lected time-series data of displacement or velocity a spatial phase gradi-

ent can be calculated. Spatial phase gradient is directly related to shear

wave speed. In order to reconstruct viscoelastic material properties, shear

wave velocities are estimated over several frequencies to obtain a frequency-

dependant dispersion curve. By fitting the dispersion curve, viscoelastic ma-

terial properties are estimated. The displacement can be induced by quasi-

static compression [3] or dynamic vibration [23, 24, 25].

In this work pulsed Doppler ultrasound methods are used to detect tissue

motion induced by dynamic vibration. Different approaches are explored

for material properties reconstruction that include both phase gradient and
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algebraic inversion method. Emphasis is on the quantitative complex shear

modulus estimation using dynamic methods.

1.2.1 Dynamic Elasticity Imaging

In general, dynamic methods for elasticity imaging can be divided into two

categories based on the excitation approach. The excitation approach can be

through either external or internal excitation methods. External excitation

methods are where the vibration of the medium is induced on the boundaries

of the body. Internal excitation methods are where the vibration is either

remotely induced within the object, such as the acoustic radiation force ap-

proach [24, 18, 26] or the magnetomotive force [25], or the mechanical energy

of vibration is coupled via a needle inserted into body tissues [20, 27].

External Methods of Inducing Shear Waves

External methods for shear wave excitation are characteristic of MRI-based

imaging techniques. These techniques are in general termed magnetic reso-

nance elastography (MRE). Manduca et al. [22] developed a shear wave imag-

ing technique based on the external vibrator capable of exciting harmonic or

transient shear waves in the frequency range of 10-1000 Hz. Spatio-temporal

wave properties are captured over a volumetric acquisition. Material proper-

ties are obtained by localized direct inversion of the wave equation. For such

an approach all three components of the velocity vector must be collected

over several periods of the excitation signal. This approach can be used to

reconstruct viscoelastic material properties.

However, the majority of applications are based on elastic inversion. The

direct inversion approach is widely accepted in the MRI community and nu-

merous studies have been conducted in characterizing tissue material prop-

erties. McCracken et al. [28] used both transient and harmonic shear wave

approaches to study brain stiffness in vivo and found that both methods

estimated white matter to be stiffer than gray matter. Sinkus et al. [29]

used low-frequency mechanical waves to study viscoelastic shear properties

of in vivo breast lesions. Based on the sample of 15 patients he was able to

differentiate between benign and malignant lesions based on the contrast in

the elastic modulus. They estimated the elastic shear modulus of malignant
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tissue to be three times larger than the elastic modulus of fibroadenoma or

the surrounding breast tissue. On the other hand, reconstructed dynamic

viscosity did not yield contrast for the differentiation between the different

tissue types.

Siegmann et al. [30] conducted a similar clinical study to determine the

value of MRE in addition to contrast-enhanced MRI. They found that the

combination of MRE and MRI increased diagnostic performance of the ex-

ams. In the study, low-frequency mechanical shear waves at 85 Hz were

excited. A recent clinical study by Venkatesh et al. [31] targeted elastog-

raphy of liver tumors. Statistical analysis was performed on the stiffness

values for differentiation of normal liver, fibrotic liver, benign tumors, and

malignant tumors. They found that malignant liver tumors had significantly

higher mean shear stiffness than benign tumors, fibrotic liver and normal

liver tissue. Moreover, they report that fibrotic liver had values overlapping

with both malignant and benign tumors. Low-frequency shear waves at 60

Hz were used in this study for forming stiffness images.

One of the main drawbacks of the external methods for the excitation of

the shear waves is a low-frequency limit of the technique. High attenuation

of the shear waves limits the ability of higher frequency waves to propagate

to the organs far from the body surface. Moreover, long acquisition times of

MRI limit the method to the acquisition of one single harmonic < 100 Hz.

It has been reported in the literature that the 3D acquisition time for MRI

is not applicable for clinical use, and that most studies use 1D or 2D based

estimation to shorten the acquisition time [32, 30].

External, dynamic methods, have been used by the ultrasound community

as well. Catheline et al. [33] studied a plane shear wave propagation in gelatin

phantoms and beef muscle in vitro and demonstrated that these methods

can enable one to quantify viscoelastic properties. They used a 1D direct

inversion approach and frequency bandwidth of 50-500 Hz. They used a

custom-developed ultrasonic scanner capable of imaging at a rate of 3000

frames/s (100 times higher than conventional scanners) to detect fast tissue

motion induced by low frequency shear waves.
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Internal Methods

There are several approaches of internal shear wave excitation. Material

displacement within the object can be produced by a needle or a glass rod

vibration [20, 18, 34]. Chen et al. [18] used this approach to estimate shear

complex modulus of the beef muscle using shear wave imaging. They were

able to study anisotropy of the bovine muscle to find that shear wave speed

is grater along the muscle fiber than across of it. He provided estimates of

the complex shear modulus for both directions.

Yin et al. [34] used a needle driver to estimate elastic material properties

of hepatic fibrosis in an animal model using MRE. They demonstrated that

the shear stiffness of liver tissue increases systematically with the extent

of hepatic fibrosis. This approach, although invasive, can produce strong

displacements in the 10-500 Hz range. However, the methods are limited by

the mechanical actuator properties and the possibility of needle slippage for

higher frequencies and displacements.

Others have used acoustic radiation force, either by displacing large scat-

tering objects or weakly scattering media such as tissue. Both approaches

are based on transferring momentum from an acoustic compressional pulse

through scattering or absorptive interaction between the wave and the tissue

[35, 36]. Ilinskii et al. [37] developed a theoretical framework for estimating

material properties from displaced gas bubbles and spherical scatterers. They

were able to quantitatively estimate elastic properties of hydrogel phantoms.

A similar approach was taken by Chen et al. [38], who estimated vis-

coelastic properties of the gelatin phantoms in the frequency range up to

1 kHz. These methods can be used to estimate the material properties of

the medium, shear modulus, surrounding the sphere. A drawback of the ap-

proach is that a spherical inclusion has to be either placed in the material or

produced in it as in the case of the gas bubbles [37]. This method provides

spatially averaged information from the volume surrounding the displaced

object.

A different approach was taken by Nightingale et al. [24] who used fo-

cused ultrasound to apply localized radiation force within tissue, so called

ARFI (acoustic radiation force impulse imaging), where wave momentum

is transferred via attenuation. Resulting tissue displacements are mapped

using ultrasonic correlation based methods. The tissue displacements are
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inversely proportional to the stiffness of the tissue, where a stiffer region of

tissue exhibits smaller displacements than a softer tissue region. This is a

qualitative assessment of the elasticity. Several other methods based on the

ARFI approach have been developed and few of them are implemented in

the clinical systems.

Bercoff et al. [26] describes an ARFI based technique, named supersonic

shear imaging (SSI), that has been implemented in clinical system. Their

approach is to create a quasi-plane shear wave using consecutive acoustic

radiation force excitations and to image resulting particle displacements using

an ultra-fast, ultrasonic scanner (5000 frames/sec). They are able to provide

elastic modulus images of the material properties. Recently, they expanded

the proposed method to develop shear wave spectroscopy (SWS) [39, 32]

that is capable of providing point reconstructions of viscoelastic material

properties from an ROI.

A different approach was to ARFI imaging wast taken with Virtual Touch

tissue quantification that has been introduced by Siemens (Siemens AG, Ger-

many) and is still not commercially available as a feature on the systems sold

in the USA. Fierbinteanu-Braticevici et al. [40] used the Virtual Touch fea-

ture of the Acuson S2000 (Siemens AG, Germany) system in a clinical study

to measure shear wave velocities within the ROI of fibrotic livers. They re-

port that they were able to successfully stage liver fibrosis using the proposed

method. The Siemens system is only capable of providing information about

the elastic modulus or the shear wave speed.

The ability to produce shear waves locally within the imaging media pro-

vides the means for better material properties estimation compared to ex-

ternal methods. There are several reasons for this. Deep-lying tissue can be

imaged over larger bandwidth of the shear wave excitations compared to the

external excitations where in practice excitation frequencies are smaller than

100 Hz. Sterile environment can be preserved with noninvasive, remote ex-

citation, such as in case of ARFI techniques. Moreover, locally well-defined

wave propagation enables accurate estimation of material properties com-

pared to external excitation where wave characteristics can be significantly

changed due to the propagation path.

Limitation of the reviewed internal methods are dependant on the specific

implementation. Challenges in applying these techniques include generating

sufficient radiation force to measurably displace deep-lying tissues of a broad
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range of stiffnesses, invasive nature of the needle vibrator, tracking small tis-

sue displacements and, where possible, meeting the Food and Drug Adminis-

tration (FDA) safety recommendation for the spatial-peak temporal-average

intensity of 0.72 W/cm2 in situ [41] for ARFI based imaging systems.

1.3 Complex Shear Modulus

Mechanical wave propagation in tissues is governed by mechanical tissue pa-

rameters in unbounded media. Specifically, harmonic shear mechanical wave

propagation is governed by the complex wave number [42], which depends

on frequency, mass density, and complex shear modulus. Changes in mass

density and the complex shear modulus represent a direct influence on the

wave propagation.

Quantitative estimation of a complex wave number of soft biological tissues

generally requires estimation of mass density and shear modulus. Estimated

values of mass density of soft biological tissue are within a narrow range of ρ =

971− 1220 [kg/m3][43, 44, 45, 46]. For lipid-based tissues, density is slightly

lower, ρ = 920−970 [kg/m3], and for collagen-based tissues, density is slightly

higher, ρ = 1020− 1100 [kg/m3]. These values represent the compilation of

results using different estimation methods. Thus, realistic variation in density

between tissues can be even smaller. Depending on the tissue structure being

tested for shear material properties, density information might not provide

the contrast desired for differentiation between different tissues. Therefore,

it is common practice to assume in the reconstruction of the complex shear

modulus that the mass density is spatially uniform and equal to the mass

density of water, ρ = 1000 [kg/m3]. Consequently, estimation of the complex

wave number reduces to estimation of the complex shear modulus. Within

this thesis we will focus on the quantitative reconstruction of the complex

shear mechanical modulus.

One of the fundamental questions that should be asked is: Why do we want

to reconstruct the complex shear modulus? Although, from wave physics

it follows that wave propagation in viscoelastic media is characterized by

the complex shear modulus, most of the reported results are based on the

reconstruction of the real component or the elastic shear modulus.

The complex shear modulus describes the frequency dependence of ma-
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terial parameters. The relationship between the stress and strain for a lin-

ear viscoelastic solid can be defined by a complex modulus σ/ϵ = G(ω) =

G′− iG′′, where σ is the stress and ϵ is the strain. Exact mathematical forms

of G′, the storage modulus, and G′′, the loss modulus, are determined by the

assumed underlying mechanical model of the material [47]. As an example,

for a Kelvin-Voigt model G(ω) = G′ − iG′′ = µ− iωη, where µ is the elastic

shear modulus, ω is the angular frequency and η is the dynamic shear vis-

cosity. Two common ways of estimating complex modulus parameters are

by inversion of the dispersion equation [18, 48, 20] or by the local algebraic

inversion method [22].

Moreover, specific techniques are further differentiated based on whether

the inversion of the stress-strain relationship aims only at reconstructing elas-

tic material parameters or focuses on realistic viscoelastic behavior. It was

reported in the literature that although stiffness is correlated to pathology, it

is not a sufficient criterion for diagnosis [39]. Other mechanical parameters

such as shear viscosity could be very useful for increasing the mechanical

contrast in measurements [49]. Very little is known about the dynamic shear

viscosity of tissue or its diagnostic value.

One of the main reasons that most of the current clinical studies are con-

ducted using elastic assumptions about the shear modulus is the lack of

evidence in the literature that the loss modulus, G′′, carries diagnostic infor-

mation. In the literature, there exist only a few examples where the benefit

of reconstructing the loss modulus has added value to the material properties

reconstruction.

Huwart et al. [9] conducted a study to assess the feasibility of using non-

invasive MR elastography for determining the stage of liver fibrosis. A clinical

study was conducted on 25 patients who had liver biopsy for suspicion of

chronic liver disease. MR elastography was performed by transmitting 65 Hz

mechanical waves into the liver and material properties were reconstructed

using a direct wave inversion approach. They demonstrated that the mean

shear viscosity was significantly higher in the patients with cirrhosis (5.19 ±
1.85 Pa·s) than in the patients without cirrhosis (2.39 ± 0.86 Pa·s).
Chen et al. [18] conducted a study on estimating the complex shear mod-

ulus of in vivo porcine liver. They used an ultrasound shear wave imaging

technique based on the estimation of shear wave dispersion for the reconstruc-

tion of material properties. The estimated the mean and standard deviation
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of elastic and viscous constants obtained from nine different measurements

to be µ = 2.2 ± 0.63 kPa and η = 1.96 ± 0.34 Pa. Moreover, via intra-lab

comparison, they compared estimated results to in vivo values reported for

normal human liver (µ = 2.06 ± 0.26 kPa and η = 1.72 ± 0.15 Pa· s) and
normal rat liver (µ = 1.76 ± 0.37 kPa and η = 0.51 ± 0.04 Pa·s). Based

on the reported values it follows that there is no statistically significant dif-

ference in the mean estimated elastic modulus between the different species.

However, based on the viscosity, normal rat liver can be differentiated from

the normal porcine and human livers. Differentiation between normal human

and porcine liver is not possible.

In contrast there are several studies conducted with results not supporting

the evidence of the added value of information in the viscosity reconstruction.

As an example, Sinkus et al. [29] conducted an MR elastography study on

in vivo breast lesions. They tested six breast cancer cases, six fibroadenoma

cases and three mastopathy. The in vivo results showed a good separation be-

tween the cancer cases and benign fibrotic cases based on the mean estimated

shear elastic modulus. However, results obtained on the shear viscosity were

not shown to be useful for separating malignant from benign lesions.

Providing evidence of an added value of information in reconstruction of

the loss modulus can motivate further studies to determine quality of the

loss modulus or dynamic viscosity (in the case of KV model) as a diagnostic

parameter. Ultimately, contrast to variability (whether from noise or biologic

variability) determines the quality of a parameter for specific diagnosis, not

just the contrast.

1.4 Specific Aims and Research Conducted

The overall goal of this work is to design shear wave imaging techniques that

can facilitate quantitative estimation of mechanical properties, specifically a

complex shear modulus. Moreover, evidence is provided of added informa-

tion value in the loss modulus or the imaginary component of the complex

modulus. Spatial maps are provided, in both 2D and 3D, of the reconstructed

complex shear modulus. The approach here is comprehensive. It includes

experimental studies, analytical studies and the numerical simulations. The

experimental approach is based on internal excitation of displacement within
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soft tissues and tissue-like materials. By having well-characterized shear

wave excitations with large displacements of the material, a better detec-

tion SNR is obtained, which benefits estimation of the material properties.

Moreover, this approach makes it possible to address a broadband response

of the material, enabling understanding of viscoelastic mechanisms within

the bandwidth of the measurement.

Ultrasound is used to detect tissue movement. Specifically, the Doppler

feature of ultrasound is used to detect tissue displacements. There are many

reasons to use ultrasound for this work. Ultrasound is readily available at

medical institutions. It is portable, inexpensive and minimally invasive com-

pared to other modalities, which renders it desirable for diagnostic purposes.

However, ultrasound is not without limitations. Shear wave propagation is

a 3D phenomenon characterized by a three-component velocity vector, and

current systems can detect only one component of that vector. Nevertheless,

if a quantitative estimate of the complex shear modulus can be provided,

medical diagnosis can benefit.

While others seek diagnostic methods, we seek to understand the basic sci-

ence, and that enables our use of more invasive methods for applying forces.

Nevertheless, proposed methods under specific conditions can complement

current biopsy procedures and be implemented in clinical settings.

The general accomplishments of this dissertation are:

• Developed analytical and experimental framework for quantitative com-

plex shear modulus estimation from dynamic tissue stimulation.

• Validation of estimated complex shear modulus using independent mea-

surements.

• Developed numerical framework capable of representing shear wave

propagation in heterogeneous materials.

• Provided evidence of the added value in the viscosity reconstruction.

The focus of this thesis is to design a shear wave imaging technique that

can facilitate quantitative estimation of a complex shear modulus. In vivo

studies designed to discover sources of elastic contrast that are related to dis-

ease processes are very difficult to conduct because soft biological tissues are

heterogeneous, anisotropic, non-linear media with poorly defined boundaries

12



and complex internal stress fields. Therefore, in order to develop methods

for quantitative material property estimation, a well-understood material is

needed. The majority of the studies were conducted on homogeneous colla-

gen hydrogels that share key structural and mechanical features of natural

and engineered tissues [50]. Several studies were conducted using inhomoge-

neous phantoms both in vitro and in silico. This dissertation addresses the

complexity of the quantitative material properties estimation of soft biolog-

ical tissue in the porcine liver case study [49] ex vivo. In this dissertation

independent validation of our methods is sought through rheometry, but of-

ten such validation is difficult to achieve. However, there is a growing body

of published results that provide interlab comparisons, and this was used to

validate results. Immediate aims are to show that quantitative measurements

of the material properties can be made and to investigate the complexity of

the material model needed to quantify behavior of the soft biological tissues

at the testing bandwidth. The long term goal is to understand how biological

sources of contrast in elasticity imaging alter the dynamics of perfused soft-

tissue deformation and the value of the diagnostic information embedded in

the observed contrast.

1.5 Outline of this Dissertation

The rest of this document is organized as follows. Chapter 2 is a study on

the calibration of the acoustic radiation force [51] and the excitation methods

defining augmentation of scattering properties of the material as a desirable

approach toward acoustic radiation force excited shear wave propagation.

This chapter is based on the paper presented at the Society of Photo-Optical

Instrumentation Engineers (SPIE) meeting [51].

The problem of complex shear modulus reconstruction from acoustic radi-

ation force step response is explored in Chapter 3. This study was motivated

by the results obtained in Chapter 2. Knowing that the displacement of

the hard inclusion depended not only on the radiation force but on the sur-

rounding material properties, we proposed a method for reconstructing com-

plex shear modulus from the tracked displacement of the embedded spherical

scatterer [19, 52]. Underlying theoretical concepts are reviewed and the pos-

sibility of quantitative complex shear modulus reconstruction is explored.
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Chapter 3 is modified from a paper published in the Journal of the Acousti-

cal Society of America [19].

Chapter 4 is an exploration of dynamic shear wave excitation using a needle

as a source. A limitation of the approach in Chapter 3 was that in order to

estimate material properties using the proposed method, one would have

to have an ability to embed a spherical scatterer. Moreover, the proposed

method was bandlimited to <200 Hz. By using a needle source, first, we

extended the bandwidth of the measurement, and second, a well-defined shear

wave propagation can be used to our advantage in the material properties

reconstruction. Chapter 4 is modified from a paper published in the IEEE

Transactions on Ultrasonics Ferroelectrics and Frequency Control [20].

Chapter 5 is a direct extension of the Chapter 4. We conducted a study

on soft tissue to explore viscoelastic mechanisms in excised liver tissue and

appropriate models using the proposed method in Chapter 4. Moreover,

the effects of thermal damage on the viscoelastic properties of porcine liver

are studied. Chapter 5 is modified from a manuscript to be published in

Ultrasonic Imaging [49].

In Chapter 6, we describe our efforts to numerically model shear wave

propagation in heterogeneous media. Finite difference time domain (FDTD)

techniques commonly used in seismology were adopted to develop a 3D vis-

coelastic solver capable of accurate modeling of shear wave propagation in

heterogeneous media. A 3D shear wave imaging experimental method is

developed to validate numerical results. Moreover, we adapted 3D direct

algebraic inversion of the wave equation to reconstruct underlying complex

modulus. Both 2D and 3D spatial mapping of the reconstructed modulus

is provided. Chapter 6 is modified from a manuscript recently submitted to

the IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control.

A recursive Bayesian solution to complex shear modulus reconstruction is

explored in Chapter 7. A novel approach in the field uses a priori informa-

tion about spatio-temporal dynamics of wave propagation to provide lower

variance estimates of the complex shear modulus compared to phase gradient

and algebraic inversion methods. The proposed estimator is studied numer-

ically and experimentally with a 1D cylindrical wave model in homogeneous

materials. Chapter 7 is modified and extended from a paper presented at

2010 IEEE International Ultrasonics Symposium.

Finally, Chapter 8 describes the general conclusions about the develop-
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ments presented in previous chapters, and provides an outline of possible

future directions derived from this dissertation work.
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CHAPTER 2

ULTRASONIC RADIATION FORCES FOR
ELASTICITY IMAGING OF 3-D TISSUE

MODELS

2.1 Introduction

Contrast mechanisms in elasticity imaging are still poorly understood [53].

There is a need for precise and quantitative methods for elasticity imaging

that inherently depend on the ability to displace a sample in a well-defined

manner. This chapter describes an acoustic radiation force calibration tech-

nique.

In vivo breast studies designed to discover sources of elastic contrast that

are related to disease processes are very difficult to conduct because breast tis-

sues are heterogeneous, anisotropic media with poorly defined boundaries and

complex internal stress fields. A series of studies using hydropolymers that

share some of the structural and mechanical features of breast stroma [50]

were conducted. From these studies, a molecular-scaled description emerged

that relates changes in microstructure to the viscoelastic features.

However, these gels cannot reveal dynamic functional properties normally

associated with malignant progression, metabolism, or responses to treat-

ment; many of these features are assumed responsible for disease-specific

viscoelastic contrast.

Alternatively, 3-D cell constructs as ”living” elasticity imaging phantoms

exist and include a scaffold, like that used in engineered tissues, that hosts

live cells. For example, fibroblast cells may be mixed with cancerous epithe-

lial cells in a chitosan or matrigel scaffold. With biochemical encouragement,

fibroblasts proliferate, respond to molecular signals, and add collagen that

stiffens the polymer as in breast stroma. Correlating the mechanical prop-

erties of these polymer gels with cell density, collagen production rates, and

This chapter is adapted from M. Orescanin and M. F. Insana, “Ultrasonic radiation
forces for elasticity imaging of 3-D tissue models,” Proc. SPIE, vol. 6513, pp.OH1-11, San
Diego, February 2007. Used with permission.
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molecular stimulation and inhibition, provides an isolated system for under-

standing elasticity contrast.

To image mechanical properties of the polymer gels, we must apply known

forces to limited spatial areas. Time-harmonic radiation force methods al-

low for adjustable stress frequencies to increase the signal-to-noise ratio for

mechanical properties relative to quasi-static (ramp-and-hold) and impulse

stimuli. These methods also allow force application in sterile conditions.

This chapter describes our initial attempts to design radiation force tech-

niques that deform gels for imaging features of the complex compliance/modulus.

This initial study focuses on basic system design and calibration. We begin

by considering forces generated under continuous-time plane-wave conditions.

Experiments are conducted to test pressure-field calibration procedures and

extensions of the theory to pulsed force applications. We study movement

of a steel sphere in water (acoustic radiometer) and use video and ultrasonic

Doppler methods to measure velocity and displacements that can be related

to radiation force. We conclude with estimations of the scaffold deformations

possible by applying standard experimental approaches.

2.2 Methods

The goal of the proposed method is to generate a calibrated radiation force

that remotely deforms polymers. Acoustic pressure fields exert localized

forces with a magnitude that depends on the energy density of the field

and the scattering and absorption properties of the polymer medium. The

force can be modulated in time by transmitting a series of pressure pulses.

We adopted a standard radiometric technique for calibrating the primary

radiation force that involves deflection of a steel sphere in water [54].

2.2.1 Acoustic Radiation Force

Consider continuous-time plane pressure waves that are incident on an elastic

sphere immersed in a non-viscous fluid (water). The force along the direction

of wave propagation is

F = πa2Y ⟨E⟩, (2.1)
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where πa2 is the projected area of the sphere, Y is the radiation force func-

tion, and ⟨E⟩ is the time-averaged energy density. The plane-wave energy

density is simply E = p2(t)/ρc2, where ρ and c are the mass density of the

medium and the longitudinal propagation speed, respectively. The radiation

force function Y describes the interaction of the sphere with the field. It is

determined by the mechanical properties and the geometry of the object and

surrounding medium, and is usually expressed as a function of wavenumber

k times sphere radius a. The expression [35] for Y was evaluated numerically

in Matlab 7.1 (Mathworks, Inc.) for the physical constants of a stainless

steel sphere (steel grade 440 cc) given in Table 2.1. Figure 2.1 shows Y (ka)

evaluated in ka steps of 0.01 up to ka = 25. We avoided the effects of normal-

mode resonances (minima) by selecting a source frequency of 1 MHz and a

sphere diameter of 1.5 mm. In water at room temperature, ka ∼ 3.2.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

ka

Y

Figure 2.1: The acoustic radiation force function, Y , as the function of ka
numerically evaluated for the physical constants given in Table 2.1.

Table 2.1: Physical constants of the steel sphere used to evaluate the
radiation force function Y in Fig. 2.1

Density (kg m−3) Compressional Vel. (m s−1) Shear Vel. (m s−1)
7809 5240 2978

Equation 2.1 predicts the static force for continuous-time plane waves. Pre-
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dictions were possible using measurements of the incident pressure amplitude

(in Pa) from a calibrated membrane hydrophone (GEC-Research Ltd., Mar-

coni Research Center, Chelmsford, UK). Predictions were compared with

force measurement from an elastic-sphere radiometer (ESR) [54], where the

static radiation force F is in equilibrium with the gravitational force mg

(Fig. 2.2).

d


mg


F
s


L


Figure 2.2: Force balance diagram for an elastic sphere suspended in the
media in bifilar arrangement.

The relation at equilibrium between sphere displacement d and radiation

force F is

F =
mgd√

(L2 − d2)
, (2.2)

where m is the mass of the sphere corrected for buoyancy, g is the gravita-

tional acceleration and L is the length of the thread. The mass of the thread

and the adhesive are neglected in the equation.

To measure viscoelastic properties of the material, a dynamic stress field

is required. One way to produce a dynamic stress is to use the sum of two

narrow-band continuous-wave (CW) pressure fields at frequencies ω1 and ω2

where ∆ω = ω2 − ω1 ≪ ω1 [55]. In steady state, the resulting radiation

force is F (t) = F0(1 + cos (∆ωt)); it has static and dynamic components of

equal magnitude F0. The advantage of this approach is that the dynamic

force is sinusoidally amplitude modulated at frequency ∆ω. A drawback of
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this method for our application is the large amount of power required by the

source transducer to deform the polymers.

We adopted the simpler strategy of using CW bursts at a single frequency.

This approach also modulates the force amplitude to generate static and

dynamic components. The dynamic force was able to measurably deform the

polymer within the power limits of the source, although the dynamic force

component has a roughly saw-tooth, rather than sinusoidal time series, as we

will show. The radiation force was generated with a 1 MHz, 19-mm-diameter,

f/4, broadband, single-element PZT transducer. It was excited with a 1

MHz sinusoidal tone burst voltage of duration s and pulse repetition time T

(Fig. 2.3). T = 2s and the nominal frequency of the dynamic radiation force

is 1/T . For example, 50 ms duration bursts yield a dynamic force frequency

of 10 Hz. The force frequency can be swept over a broad range to measure the

complex compliance spectrum [50], and the transducer can be mechanically

scanned across the medium to describe the spatial distribution of properties.

The dynamic radiation force was calibrated using ESR techniques. Sphere

movements were tracked optically and with Doppler ultrasound.

s

T


t


Figure 2.3: Pulsing strategy used for generating dynamic radiation force,
where s is the pulse length and T is pulse repetition time.

2.2.2 Optical Method for Measuring Acoustic Radiation Force

Displacement, d, from the static radiation force of a CW pressure wave was

measured using a Canon XLH1 HD (high definition) video camera (100 mm

EF 2.8 lens). The pixel size of the camera was determined by counting pixels

over an image of a ruler. Horizontal and vertical images were acquired in

the imaging plane of the sphere and the number of pixels over 1 mm was
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counted. The pixel size was found to be 6.10 µm horizontally and 4.55 µm

vertically.

Short video clips covering the sphere motion were recorded by the camera

in Quicktime format. These clips were later processed using Final Cut Pro

5 software (Apple, Inc.) to produce sequences of uncompressed .tif files, one

for each frame. The camera recorded 30 frames per second, where each frame

is composed of two interlaced fields. ESR motion was estimated manually by

tracking displacement of the sphere between video frames using a matched

filter. Due to shutter speed and frame rate limitations of the camera, esti-

mation of dynamic motion of ESR at frequencies greater than 10 Hz were

considered unreliable.

2.2.3 Ultrasonic Doppler Method for Measuring Acoustic
Radiation Force

Spectral Doppler acquisitions were used to estimate velocity of the sphere

during dynamic force applications. Sphere displacement was found by inte-

grating the Doppler velocity over time; the radiation force was found from

this displacement estimate using Eq. 2.1. A Siemens Antares Sonoline system

using VF5-10 linear array transducer driven by a 7.72 MHz carrier frequency

transmitted Doppler pulses. The RF echo signals were recorded using the

URI feature of the Antares system and spectral Doppler traces (spectro-

grams) were computed offline.

The system transmits narrowband Doppler pulses of duration t′ on the

time interval Ts. The echo signals are digitally sampled by the Antares at 40

Msamples/s. The demodulated complex amplitude V is computed to obtain

the in-phase I and quadrature Q components:

V (n, k) = I(n, k) + iQ(n, k), (2.3)

where k = 0, 1, ...,M −1 with M being the number of pulses in the ensemble

(slow-time), and n = 0, 1, ..., P − 1 with P being the number of echo samples

recorded after transmitting each pulse (fast-time).

The first moment of the Doppler spectra is an estimate of the mean velocity

v̂ along the beam axis of the Doppler probe.

The first spectral moment is estimated using the lag-one autocorrelation
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estimate [56],

ϕ̂(n, Ts) =
1

M − 1

M−2∑
k=1

V ∗(n, kTs)V (n, (k + 1)Ts) , (2.4)

from which velocity was determined,

v̂(n) =

(
−λ
4πTs

)
arg(ϕ̂(n, Ts)) . (2.5)

The RF data were collected using the URI software in spectral Doppler

mode, where only one A-line (fixed spatial position) is being continuously

sampled. Data were collected in time blocks of 1.2 seconds. At each fast-

time sample in the P = 51 sample range gate, n, ϕ̂(n, Ts) was calculated for

the packet of pulses,M . Echo data in the range gate were averaged to obtain

one estimate of the autocorrelation function,

ϕ̂(Ts) =
1

P

P∑
n=1

ϕ̂(n, Ts) . (2.6)

Velocity estimates were also displayed in a spectral Doppler trace. A pe-

riodogram was computed for each fast-time sample in some N -point range

gate and the results were averaged for display [57]:

Ŝ(f) =
Ts
MN

N∑
n=1

∣∣∣∣∣
M−1∑
k=0

V (n, k)e−j2πfkTs

∣∣∣∣∣
2

. (2.7)

2.3 Experimental Results

Experiments were designed to verify the radiation force theory, test for lin-

earity, and explore the feasibility of generating known forces for polymer

mechanics experiments. The axes from the single element source transducer

and the linear array Doppler probe intersected the 1.5 mm diameter steel

sphere at an angle of α = 30 ◦. A video camera viewed the scene as illus-

trated in Fig. 2.4. The acoustic radiation force displaces the sphere from

gravitational equilibrium in a direction along the source axis. To compare

measured displacements with predictions, we needed to carefully place the
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Figure 2.4: Diagram of the source and Doppler transducers relative to the
steel sphere as viewed from the video camera.

sphere on the source transducer axis at the radius of curvature where the

plane-wave approximation holds. The focal length was found by scanning

the 3-D beam profile with a 0.5 mm Marconi hydrophone to find the pres-

sure maximum. We measured a peak pressure amplitude of 91.64 kPa. The

water temperature was 21.3 ◦C where the sound speed is 1487 m s−1. For this

geometry, ka = 3.17. Substitution of these parameters into Eq. 2.1 predicts

a static force of F = 2.98 µN.

Sphere motion over time as recorded by the video camera is shown in

Fig. 2.5. The steady state displacement is d = 1.4 mm for the ESR pendulum

length of L = 47 mm. Equation 2.2 gives the measured static force of F̂ =

3.51 µN. Measurement exceeds prediction by 18%.

We also conducted experiments to observe the influence of the pulse length

on sphere displacement. The pulse repetition time was held constant (T = 1.5

s) while we increased the pulse length from 5 ms to 25 ms to 50 ms. Figure 2.6

shows that longer pulses displace the sphere further, just as expected.

The ESR pendulum is a harmonic oscillator described by a second-order or-

dinary differential equation (ODE) with constant coefficients. The particular

solution of the ODE gives the steady-state displacement that facilitates the

comparison between measurement and prediction given above. The homo-

geneous solution of the ODE, which gives the transient response of the ESR
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Figure 2.5: Video tracking of the sphere motion for steady radiation forces
generated by a CW pressure field.
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Figure 2.6: Effect of the pulse length s on sphere displacement d for
constant pulse repetition time T , where T ≫ s.
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system, seen in Figs. 2.5 and 2.6, will be predicted by simple linear systems

analysis if the system was operated in the linear range. Simply stated, linear

systems analysis predicts that the displacement-time curve of Fig. 2.5 will

be the convolution of the pendulum impulse response h(t) with the applied

radiation force function F (t),

d(t) = C(s)

∫ ∞

−∞
dt′h(t′)F (t− t′) . (2.8)

C(s) is constant with time but a function of pulse length s. The three pulse

lengths selected in Fig. 2.6 are much shorter than the period at the resonant

frequency of the pendulum (>500 ms). Consequently, the curves in Fig. 2.6

may be considered as scaled impulse response functions of the pendulum,

C(s)×h(t). Applying a step force function F0 u(t) as we did experimentally,

the normalized predicted displacement curve and measured displacement-

time curves are given in Fig. 2.7. The normalized displacement curve is

given with

dnorm(t) =

∫ ∞

−∞
dt′h(t′)u(t− t′)/dmax . (2.9)

Close agreement validates our assumption of a linear system.
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Figure 2.7: Comparison of the observed and predicted ESR sphere
displacements. Motion was tracked using the video camera. s = 50 ms
pulse duration.

The dynamic component of the force was estimated by applying a square-
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wave force pulse train generated by a series of CW pressure bursts such that

T = 2s. The pulse length was varied to span the range of nominal frequencies

between 10 Hz and 100 Hz. In Fig. 2.8 we show sphere displacement versus

time at 10 Hz. The source-transducer voltage amplitude was 91.64 kPa, the

same as for the CW case. It is observed from this figure that the maximum

Figure 2.8: Sphere displacement (force) versus time as tracked using the
video camera. Applied force frequency = 10 Hz.

displacement in the transition state (from 0 to 1 seconds) is smaller than the

maximum in the CW case. The transition band in both cases is of the same

length. Once the system reaches steady state, the amplitude of the dynamic

component of the force is 0.13 µN. From the figure it can also be verified

that the frequency of vibration is 10 Hz. To verify a dynamic component of

the force, motion of the sphere was simultaneously observed using Antares

Sonoline Doppler system. The Doppler spectral trace of the experiment is

presented on the left-hand side of Fig. 2.9.

On the right-hand side of Fig. 2.9 the mean velocity v̂ is plotted as a

function of time. In both methods, periodogram estimation and pulse-pair

processing are implemented on the same data set over the same dwell time

with number of pulses M . Both representations of velocity verify the os-

cillation frequency f = 10 Hz of the dynamic component. Since Doppler

ultrasound has a much higher rate of sampling than the camera, the in-

fluence of different frequencies on the dynamic component of the force was

examined. Sampling rate for figures representing estimated mean velocity

acquired in Doppler mode is the length of one dwell time (MTs). Results for
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Figure 2.9: (left) The estimated Doppler spectrum. (right) Estimated mean
velocity (v̂) is presented over the same time period. Both figures represent
estimates calculated over the same dwell time with M = 64. In the
experiment center frequency of the imaging transducer was 7.27 MHz and
the PRF was 14204 Hz.

four different frequencies are presented in Fig. 2.10. For the lower frequencies

of f = 12.5 Hz and f = 25 Hz, v̂ was estimated over M = 64 pulses. For

higher frequencies f = 50 Hz and f = 100 Hz, v̂ was estimated over M = 16

pulses. It is important to point out that the variance of the estimator is in-

versely proportional to the number of pulses M that are used for estimation.

It can be observed in the above figures that estimated velocity as a function

of time, v̂(t), is not a sinusoid function. This motion represents the displace-

ment of a damped oscillator driven by a square wave forcing function with

fundamental angular frequency ω = 2πf and ω
ωd

≪ 1, where ωd is the angular

frequency of the damped motion [58]. Damped motion is caused by the vis-

cous frictional forces within the medium surrounding the sphere. It can also

be observed that as the frequency increases, velocity amplitude decreases.

Velocity amplitude is directly proportional to the force amplitude; amount

of force on the sphere is reduced with the increase in frequency. Estimated

ESR motion obtained by optical tracking was compared with the results ob-

tained by the Doppler technique for f = 10 Hz. From the displacement curve

in Fig. 2.8 at steady state (time interval from 1 s onward), the first derivative

over time has been taken to obtain a velocity curve. In order to compare

with the Doppler measurements, that curve was interpolated to match the

sampling rate of the Doppler system. Further, since measurements were not

synchronously collected, the two curves were aligned with respect to their

maxima. Moreover, mean value was taken out so that they are zero mean

processes.
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Figure 2.10: This figure illustrates effect of the frequency of the dynamic
force on the estimated velocity amplitude.

In Fig. 2.11, a comparison between the two proposed techniques for mea-

suring dynamic component of the motion is presented. Very good agreement

0 0.1 0.2 0.3 0.4 0.5 0.6

−3

−2

−1

0

1

2

3

x 10
−3

Time [s]

V
el

oc
ity

 [m
 s

−
1 ]

 

 
Camera
Antares

Figure 2.11: Comparison of the estimated velocity of dynamic motion using
optical and Doppler methods.

between two measurements, from independent sensors, can be observed.

It can be concluded that the imaging transducer will not influence mea-

surement of the dynamic component of the force. Pulse repetition frequency
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used in Doppler measurement is ∼15 kHz; based on the previous results dy-

namic displacement is negligible. It may bias the result of measuring the

static component. For this reason the Antares generated Doppler pulses at

the lowest power setting.

Based on the ESR data above, the strain in the polymer was predicted

for the same applied radiation forces. Results are shown in Fig. 2.12. Me-

chanical properties of chitosan and matrigel scaffolds were measured using

a mechanical indenter (TA-XTplus, Exponent Stable Micro Systems Ltd.,

Godalming, UK). For the estimated intervals of stiffness (E), for matrigel

(0.8 – 1.4 kPa) and for chitosan (4.3 – 8.0 kPa), the predicted strains are

shown in Fig. 2.12. Lower curves for both chitosan and matrigel scaffolds
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Figure 2.12: Prediction of the sample strains versus polymer stiffness for
the forces estimated in the ESR experiments.

represent estimated strain based on the calibration experiment results for

10 Hz oscillation. The lower two curves represent our current capability of

straining the polymer materials. By changing from f/4 to f/1 transducer and

increasing the excitation voltage by a factor of two, we can maintain linearity

and increase pressure amplitude by a factor of 8, which corresponds to the

overall increase in force and deformation of 64 times.
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2.4 Conclusions

This study demonstrates the feasibility of calibrating both the static and

the dynamic ultrasound radiation force using elastic sphere radiometer. The

static component of the force was estimated using a high definition video

camera. The steady state condition of the static force has been predicted

using measured pressure amplitude at the focal point. Disagreement of 18%

between the predicted displacement value and the estimated displacement

is observed. This disagreement is likely influenced by several parameters.

Acoustic pressure measured at the point of maximal intensity where the plane

wave approximation is valid is not necessarily equal to the actual acoustic

pressure incident on the sphere. The effect of a standing wave forming be-

tween the sphere and the transducer can cause a considerable disagreement

between the theoretically predicted forces and detected ones [59]. Moreover,

PVDF membrane used in the experiments has a variance in pressure estima-

tion of 8% which corresponds to 16% error in force estimation. Thus, 18%

difference between predicted displacement value and the estimated displace-

ment is within reasonable error limits. Dynamic radiation force can effec-

tively be produced by exciting a single element transducer with the train of

step functions in such a manner that the pulse repetition time is twice longer

then the pulse. Motion of the sphere vibrating at frequencies in the range of

10 Hz to 100 Hz was successfully tracked using ultrasound Doppler method.

Furthermore, from comparison with the optical method we inferred that the

Doppler pulses have negligible influence on the motion of the sphere.

Due to relatively large displacements of the sphere, high (>40 dB) imaging

SNR for the tracking and the influence of the sphere’s surrounding on the

motion of the sphere led to developing a technique that could facilitate mate-

rial properties reconstruction from the motion of the sphere embedded in the

material. In the next chapter, the feasibility of the complex shear modulus

reconstruction for practical experimental applications is explored by model-

ing a time-domain displacement of the stainless steel sphere embedded in the

gelatin gel sample.

In this chapter the influence of the viscosity on the motion of the sphere

is shown. Damped motion is caused by the viscous frictional forces within

the medium surrounding the sphere. This influence cannot be neglected and

it must be properly accounted for using an appropriate model. Through the
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following chapters of this dissertation realistic and practical models will be

discussed that include losses as an important model component needed for

quantitative material properties estimation.
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CHAPTER 3

MATERIAL PROPERTIES FROM
ACOUSTIC RADIATION FORCE STEP

RESPONSE

3.1 Introduction

Despite early clinical successes, the visibility of lesions in elasticity imaging

can vary widely. Some of the clinical variability may be reduced by improv-

ing understanding of elasticity imaging contrast mechanisms and adapting

the imaging techniques accordingly. The motivation for the presented ap-

proach is to develop a tool to study relationships between the physical and

biological sources of contrast across the spectrum of force frequencies used

by the various approaches to elasticity imaging. The results from the previ-

ous chapter prompted the development of the methods presented here that

measure quantitative material properties of hydrogel samples and potentially

engineered tissues. Specifically, the complex shear modulus is estimated.

Quasi-static elasticity imaging methods apply a ramp force suddenly and

hold it constant while strain is imaged over time [50]. The methods are

“quasi-static” for patient imaging because modest forces (1-5 N) are manually

applied slowly (∼1 s ramp on) to the breast surface through the ultrasound

transducer. Quasi-static methods interrogate tissues at a very low applied-

load frequency bandwidth that is bounded from above at approximately 1

Hz and from below at 0.01 Hz depending on the total acquisition time for the

strain image recording sequence [60]. At the other load bandwidth extreme

are acoustic radiation force imaging methods [24]. A focused push-pulse

applies a weak impulse force deep in tissue for about 1 ms, after which dis-

placements are imaged in time as the tissue relaxes. This load bandwidth is

nominally 100-1000 Hz depending on experimental details. Other acoustic-

based approaches, including ultrasound-stimulated vibro-acoustic spectogra-

This chapter is adapted version from M. Orescanin, K. S. Toohey, and M. F. Insana,
“Material properties from acoustic radiation force step response,” Journal of the Acoustical
Society of America, vol. 125, no. 5, pp. 2928-2936, 2009. Used with permission.
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phy [61], shear wave elasticity imaging [62], and harmonic motion imaging

[63], probe load bandwidths somewhere between these two extremes.

It is difficult to design studies to discover disease-specific sources of elastic-

ity contrast for any of these imaging techniques. In vivo breast tissue prop-

erties are spatially heterogeneous, frequently anisotropic, and have poorly

defined boundaries. Hence complex internal stress fields are common, mak-

ing it difficult to even rigorously define a modulus. Excised tissue samples

are nonrepresentative because of changes caused by the lack of perfusion, de-

composition, or use of fixatives. Gelatin hydrogels are structurally simpler,

homogeneous, and able to mimic some properties of breast stroma as required

for imaging system development [60]. However, hydrogels do not mimic cell-

driven dynamic properties normally associated with malignant progression

or responses to treatment; many of these features are assumed associated

with tumor contrast.

We are exploring the use of 3-D cell cultures [64]. While they suffer many

of the same problems experienced in excised tissue measurements, they have

the advantage of containing living mammary cells embedded in hydrogel vol-

umes. The cells can be biochemically or mechanically stimulated and then

observed under sterile conditions. Cell cultures do not simulate the tumor

macroanatomy, but they can mimic the responses of tumor-cell clusters to

their microenvironment. Gels combine geometric simplicity for ease of me-

chanical measurements with dynamic cellular processes that can be indepen-

dently verified via optical microscopy.

Many biological tissues and all of the gels we considered are biphasic poly-

mers, which means their mechanical properties are determined by a polymeric

matrix (solid phase) embedded in a liquid (fluid phase). The mechanical re-

sponses of multiphasic polymers depend significantly on the rate at which

force is applied. For example, the complex shear modulus is known to vary

widely with force frequency in lightly-crosslinked amorphous polymers [65],

breast tissues [23], and even within individual cells of the body [66].

The purpose of this chapter is to establish an experimental and theoretical

framework for the estimation of the complex shear modulus from the tran-

sient motion of a displaced rigid spherical object. The approach is to use a

radiation force technique for estimating shear modulus and shear viscosity

of gel types often used in 3-D cell cultures and engineered tissues. These

measurements will eventually be made over the bandwidth of force frequen-
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cies used in various elasticity imaging techniques. This chapter focuses on

the application of Doppler measurements to describe transient dynamic re-

sponses of gelatin gels to a step change in radiation force. Particle velocity

estimates are related to modulus and viscosity through a second-order rhe-

ological model. The results provide an estimate of the impulse response

function of shear wave imaging.

3.2 Methods

The goal of the proposed method is to remotely and quantitatively estimate

material properties using acoustic radiation force. Acoustic pressure fields

exert localized forces with a magnitude that depends on the energy density

of the field and the scattering and absorption properties of target media.

Gelatin gels are used in this study that describes the measurement system

and rheological models applied for material property estimation.

3.2.1 Acoustic Radiation Force

In quasi-static ultrasonic elasticity imaging methods, an external mechanical

force is applied to the surface of the medium, and the induced deformation

is imaged as strain using speckle tracking methods. Forces applied to the

surface result in a spatially diffuse stress-field distribution where boundaries

everywhere in the medium affect deformations at each point. Interpretation

of strain maps is challenging under these conditions. Alternatively localized

stress fields may be applied using acoustic radiation force. By remotely

exerting a locally oscillating stress field at the desired frequency, the object

responds with an harmonic deformation that is mostly decoupled from the

boundaries. The size of the vibrating region and the amplitude and phase of

vibration depend on the material properties and field pattern of the acoustic

wave.

Acoustic radiation force is generated when momentum of the acoustic wave

is transferred to the propagation medium via attenuation and scattering in-

teractions. We study low-attenuation gels to which a strongly scattering

sphere is embedded. Scattering from the sphere efficiently couples the acous-

tic field to the gel to induce forces that measurably deform gels at relatively
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low acoustic intensity. Without added scatterers, the attenuation coefficient

of gelatin gels is small compared with biological tissues (<0.02 dB/mm at

1 MHz for gelatin concentrations less than 10%)[67] and when compared to

the scattering coefficient from a steel sphere cast into a gelatin gel.

For sphere diameters small compared with the beam width (1.5 mm and 6

mm, respectively), we can assume local plane waves and the time-averaged

force on the scattering sphere is approximately [35]

F = πa2Y Ē . (3.1)

The quantity a is the sphere radius and Y is the radiation force function as

determined by the mechanical properties and geometry of the sphere and the

surrounding gel. Ē is the average energy density of the incident field. The

time average is over several cycles of the carrier frequency (microseconds) but

typically varies over the period of the amplitude modulation (milliseconds).

We measured the acoustic radiation force on a steel sphere suspended in

water and found it agreed with the prediction of Eq. 3.1 within experimental

error [51].

3.2.2 Source Transducer

Figure 3.1 illustrates the experiment depicting a gel sample containing a

stainless steel sphere. Force is applied by the acoustic field of a circular, 19-

mm-diameter, f/4, PZT element that is transmitting sine-wave bursts at the

resonant frequency of 1 MHz. Bursts 200 ms in duration were transmitted

every 2 s to induce a maximum sphere displacement >20 µm for gels con-

taining 3% w/w gelatin. The pressure field from the source transducer was

measured in water using a recently calibrated PVDF membrane hydrophone

(GEC-Research Ltd., Marconi Research Center, Chelmsford, UK). The re-

sults were used to estimate a primary radiation force at 60 µN [51]. The error

on the force estimate was approximately 16% of the mean value, and was de-

termined primarily by the uncertainty in pressure estimates. The sphere was

positioned on the beam axis at the 76-mm radius of curvature of the source.

The location of the sphere was tracked in time by measuring and integrating

the instantaneous sphere velocity.
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Gel Sample

Source transducer

Imaging transducer

Figure 3.1: Diagram of the experiment to measure viscoelastic properties of
gel samples. Acoustic force applied by a source transducer displaces a
sphere embedded in the gel. An imaging transducer tracks the induced
motion of the sphere.

3.2.3 Sphere Velocity and Displacement Estimation

A Siemens Sono-line Antares system was used to estimate sphere velocity

via pulsed Doppler methods. A VF5-10 linear array transducer was driven

by 1 cycle, 7.27 MHz voltage pulses to transmit nominally 2.5 cycle, 7 MHz

acoustic pulses. Doppler pulse transmission was repeated for a fixed beam-

axis position on the time interval Ts = 76.8 µs. RF echo waveforms were

sampled at 40 Msamples/s using the Ultrasound Research Interface (URI)

of the Antares system [68] and stored for offline processing. The axes of

the source transducer and linear array intersected at the 1.5-mm-diameter

steel sphere, and the beam axes were separated by θ = 30◦ as illustrated in

Fig. 3.1.

The demodulated complex envelope V [n,m′] was computed for each Doppler

echo waveform. The sample index 1 ≤ n ≤ N counts echo samples within

an echo waveform in what is commonly referred to as “fast time.” The index

1 ≤ m′ ≤M ′ counts the waveforms in “slow time.”

We compute the lag-one correlation function estimate between adjacent

pairs of echo waveforms using

ϕ̂[n,m] = V ∗[n, 2m− 1]V [n, 2m] , m′ = 2m− 1 . (3.2)
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The change of index from m′ to m (1 ≤ m ≤ M) avoids counting by 2.

The estimate of instantaneous sphere velocity υ̂s from complex correlation

estimates is [56, 57]

υ̂s[m] =

(
−c

4πfcTs cos θ

)
1

N0

n0+N0−1∑
n=n0

arg(ϕ̂[n,m]) , (3.3)

where c is the compressional-wave speed of sound in the gel medium (1.5

mm/µs), n0 marks the first fast-time sample in the region of interest near

the sphere-echo peak, N0 is the number of fast time samples in the region of

interest, and arg(·) indicates the phase angle obtained from the arctangent

of the ratio of imaginary to real parts of the argument. High-pass filtering in

slow time, which is frequently used in blood flow measurements (wall filter),

was unnecessary because scattering from the gel was negligible compared to

the sphere.

Finally, sphere displacement is estimated by integrating velocity estimates,

x̂(t) ≡
∫ t
0
υ̂s(t

′)dt′, where t′ = 2mTs. Integration was performed numerically

using a cumulative trapezoidal scheme [69].

3.2.4 Hydrogel sample construction

Gelatin gel samples (250 bloom strength, Type B, Rousselot, Buenos Aires,

Argentina) were constructed to test acoustic radiation force measurements of

shear modulus and viscosity. Gelatin powder and distilled water are heated

in a water bath at a temperature of 65− 68 ◦C for one hour and periodically

stirred. When the sample is cooled to 50 ◦C, 0.1% by weight formaldehyde

is added and thoroughly mixed. Molten gelatin is poured into a cylindrical

sample mold (diameter 7.5 cm, height 5.5 cm). Two or three stainless steel

spheres 1.5 mm in diameter are widely dispersed within the cooling gel just

prior to gelation. Samples with 3% or 4% w/w gelatin concentrations are

homogeneous except for the isolated spheres that are separated by at least

1.5 cm.

Narrowband through-transmission measurements of compression-wave speed

and attenuation coefficient [67] were made on samples without steel spheres

and with 4% gelatin concentration. Measurements made at 21 ◦C in degassed

water were first calibrated using a castor oil sample. Two phantoms were
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measured every 0.5 MHz between 7 and 12 MHz. The slope of the atten-

uation coefficient as a function of frequency was estimated to be 0.027 ±
0.003 dB mm−1 MHz−1. Using no alcohol in the sample, the average speed

of compressional waves was c = 1506 ± 0.34 m s−1 over the frequency range

of the measurement.

The material properties of the gelatin gels were verified independently

through oscillatory rheometer experiments. Parallel plate shear experiments

were conducted on an AR-G2 rheometer (TA Instruments, New Castle, USA).

Circular specimens, 25 mm in diameter and 2-4 mm high, were molded from

the same gelatin used to make the large samples containing spheres. After

1 day of gelation, the specimens were removed from the molds and bonded

to parallel plate fixtures using cyanoacrylate (Rawn America, Spooner, WI,

USA). Five percent strain was applied over a frequency range from 0.1 Hz to

10 Hz with 10 sample points per decade of frequency. For both concentrations

of gelatin, the measured storage modulus was averaged over the test range

giving 321±14 Pa and 640±17 Pa for 3% and 4% gelatin concentrations.

3.2.5 Modeling

The rheological behavior of hydrogels on a scale larger than the ultrasonic

wavelength may be described as that of a continuum [65]. We propose to

model the displacement x(t) of a sphere embedded in gelatin as a simple

harmonic oscillator,

Mt
d2x(t)

dt2
+R

dx(t)

dt
+ kx(t) = F (t) . (3.4)

F (t) is the driving force, Mt is the total mass on which the force acts, R

is a damping constant related to the mechanical impedance of the gel (see

Appendix A), and k is an elastic constant. Because the uniaxial load is

applied along the source transducer beam axis and movement of the sphere is

in the same direction, x and F are the axial components of the corresponding

vectors. For a step change in force over time from a constant value to zero,

F (t) = F0(1− step(t)), the homogeneous solution for displacement obtained
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from Eq. 3.4 has the form

x(t) =

{
x0 t ≤ 0

Ae−αt cos(ωdt+ φ) t > 0
. (3.5)

A is the displacement amplitude, α = R/2Mt, ωd =
√
ω2
0 − α2 is the resonant

frequency with damping, and ω0 =
√
k/Mt is the resonant frequency without

damping. From the initial conditions, A = x0/ cosφ and tanφ = −α/ωd.
It is important to include the surrounding gel in estimating the dynamic

inertia of the system [70]. The total mass that reacts to the radiation force

is Mt = Ms +Ma, where Ms is the mass of the sphere and Ma =
2
3
πa3ρg is

the added mass of surrounding gel, where a is the sphere radius and ρg is

the density of the gel. The next step is to relate the constants k and R to

rheological parameters µ and η.

The viscous drag force Fd experienced by a 1.5-mm sphere as it moves

through incompressible and viscous gel at velocities<10 mm/s has a Reynolds

number on the order of 0.02. Consequently Eq. 3.4 gives the linear approxi-

mation Fd(t) = −Rυs(t), and the classic Stokes equation for R is [71]

R = 6πaη , (3.6)

where the parameter η has the SI units Pa·s. In the Appendix A, we show

that R is the mechanical resistance or the real part of the impedance. This

implies that η may be interpreted as the shear damping parameter, which

within the frequency range of the experiments is defined as µ2+µ1a/cs, where

µ2 is shear viscosity or the imaginary part of the complex shear modulus µ′,

µ1 is the real part of the complex shear modulus µ′ and cs is the shear wave

velocity.

Ilinskii et al. [37] applied an analysis parallel to Stokes’ derivation to show

that the elastic constant in the restoring force equation, Fr(t) = −kx(t), is

k = 6πaµ , (3.7)

where µ, with the SI units Pa, approximates the shear elasticity, µ1 (see

Appendix A).

Combining Eqs. 3.5-3.7, sphere displacement is modeled in terms of shear

elasticity and shear damping parameter. The approach is to measureMt and
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a independently and then numerically fit normalized displacement estimates

x̂′(t) = x̂(t)/x̂0 to model values x′(t) = x(t)/x0 obtained from Eqs. 3.5-

3.7 with µ and η as free parameters. Normalization scales and shifts the

response so that displacements have values between 0 and 1. Thus µ and η

are estimated without knowledge of the applied force magnitude F0.

3.3 Results

We verified the proposed model and assumptions by conducting radiation

force experiments. The 1 MHz source transducer transmitted 200 ms voltage

bursts with the same amplitude in each experiment. Originally at rest, the

sphere was suddenly displaced away from the transducer by the pulse a max-

imum distance x0 (see Fig. 3.2) before being released to return to its original

location. The imaging probe measuring the sphere velocity was transmitting

and receiving Doppler pulses during the entire process.
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Figure 3.2: Measurement of sphere displacement versus slow time as
determined from the change in Doppler echo phase. The sphere is
embedded in a 3% gelatin gel. Region I is a time period before radiation
force is applied and the sphere is at rest. Region II is a time period during
which the source transducer is transmitting a 1 MHz CW burst and the
sphere is displaced away from the source. Oscillations indicate cross-talk
between the source and Doppler probes. Region III is the time period after
the source is turned off and the sphere returns to its original position.

The RF echo waveform in Fig. 3.3 shows that each Doppler pulse causes
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the steel sphere to ring. Because the echo signal-to-noise ratio for tracking

sphere velocity was very high, Doppler pulse durations were set to 2.5 cycles

to temporally resolve the first echo from subsequent ringing echoes. Echo

phase is estimated near the peak of the first echo in Fig. 3.3.
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Figure 3.3: Example of a broadband Doppler echo waveform versus
fast-time. A single transmitted pulse is reflected from a steel sphere in 3%
gelatin gel. Multiple echoes indicate ringing of the sphere.

From the data of Fig. 3.2, we can illustrate the process for a specific ex-

periment. The spectral Doppler acquisition was initiated (Region I). After

approximately 1.26 s, the source transducer was turned on for 200 ms (Region

II). The phase of the Doppler echo from the sphere changed as the sphere

was displaced by the acoustic force. On the time axis of the figure at 1.46

s, the source transducer is turned off (this time is set to t = 0 in Eq. 3.5)

and the sphere returns to the equilibrium position with the response of a

slightly underdamped oscillator. We analyzed sphere displacement data as

the source pulse was turned off rather than turned on to avoid cross-talk

between the source and Doppler probes as seen in Fig. 3.2, region II.

Figure 3.4 is an example of a comparison between a measured displacement

time series x̂′[m] and samples from the best-fit model x′[m] as a function of

slow time, 2mTs. For an M -point displacement time series with normally

distributed random error, the material parameters µ and η are chosen to
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Figure 3.4: Normalized sphere displacement measurements x̂′(t) from
region III in Fig. 3.2 are compared with the model equation x′(t) from Eq.
3.5. The minimum least-squares fit (r2 = 0.996) was obtained for 3%
gelatin gel aged one day to find µ = 317 Pa and η = 0.57 Pa s.

give the smallest residual sum of squares [72],

r2 = 1−
∑M

m=1(x̂
′[m]− x′[m])2∑M

m=1(x̂
′[m]− x′)2

, x̄′ =
1

M

M∑
m=1

x̂′[m] , (3.8)

where r2 is bounded from above by 1 (perfect agreement between data and

model) and from below by zero, although it can be negative.

For small displacements, there is close agreement between measurements

and the model suggesting that gel deformation is linear as required by Eq. 3.5.

Furthermore, if the normalized displacement is time invariant, then we may

express the model as a linear system

x(t) =

∫ ∞

−∞
dt h(t− t′) (1− step(t′))

with impulse response

h(t) = −dx
dt

= Ae−αt (α cos(ωdt+ φ) + ωd sin(ωdt+ φ)) . (3.9)

Equation 3.9 enables prediction of the displacement for any time-varying

applied load for which the gel responds linearly.
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Measurements of µ and η for 3% and 4% gelatin gels conducted over four

days are presented in Fig. 3.5 and Fig. 3.6, respectively. Without adding

a strong chemical cross linker, gelatin gels slowly increase their cross-link

density, and thus gels continue to stiffen over days. Although gelatin gel

responses are not strictly time invariant, the change in the impulse response

is negligible over the duration of any experiment. Estimated values of the

modulus and shear damping for gels with C = 4% gelatin concentration

are larger than that at 3% for each day of the study. Gilsenan and Ross-

Murphy [73] found that the shear modulus varies with the square of gelatin

concentration, µ ∝ C2, by 1-5%. Our data in Fig. 3.5 gives a concentration

dependence of C2.7 on day 1 and C2.4 on day 3. Similarly, Fig. 3.6 shows that

the shear viscosity coefficient increases linearly with gelatin concentration on

day 1 and as C1.3 on day 3, which are similar to the Gilsenan and Ross-

Murphy result of η ∝ C1.1. Our viscosity measurements are considerably

smaller than theirs commensurate with our higher load-frequency bandwidth.

Our measurements are comparable to those reported by others using similar

acoustic radiation force techniques [74, 26].
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Figure 3.5: Shear modulus as a function of gel age for 3% and 4% gelatin
concentrations. Rheometer estimates of µ made on day 1 are also shown
with error bars indicating ±1 sd.

As indicated in Fig. 3.5, rheometer measurements of the shear storage

modulus were also made on day 1 for both gelatin concentrations. Five

rheometer measurements were made on five different 3% gelatin samples to
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Figure 3.6: Shear damping parameter as a function of gel age for 3% and
4% gelatin concentrations.

yield a mean and standard deviation of µr = 321± 14 Pa. The comparable

radiation force estimate was 317 Pa. Three measurements were made on three

different 4% samples to find µr = 640 ± 17 Pa. The comparable radiation

force estimate is 681 Pa. Considering the rheometer measurements as a

standard, radiation force estimates of shear modulus are accurate well within

the observed day-to-day change in mean values. We were unable to obtain

independent estimates of shear viscosity for the gels.

Radiation force measurements may also be used to estimate the shear speed

cs and shear viscosity µ2; both are defined in the Appendix. At the end of the

Appendix, we show that µ1 ≃ µ, µ2 = η−µ1a/cs, and at low force frequencies

where ω2µ2
2 ≪ µ2

1 we obtain the elastic result, cs ≃
√
µ1/ρ. Applying the 3%

gelatin sample results at 24 hours following gelation, µ = 317 Pa and η = 0.57

Pa·s, we estimate cs = 0.56 m s−1 and µ2 = 0.14 Pa·s. Our estimates are

comparable to those reported by others using similar acoustic radiation force

techniques [26, 38].

Intra-sample precision variability was estimated by measuring µ multi-

ple times for a single sphere in one gelatin sample. The percent standard

deviation was found to be approximately 3.5% of the mean; for example,

µ = 317 ± 11 Pa. Boundary variability, i.e., proximity of each steel sphere

to the gel sample surfaces, was examined by averaging µ measurements for

different spheres placed in one gelatin sample. That standard deviation was
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approximately 7% of the mean. Inter-sample variability for µ was larger,

20% of the mean, primarily because of differences in gel preparation. The

relatively small random experimental error is a consequence of the high echo

signal-to-noise ratio.

3.4 Discussion

Mechanical parameter values are primary factors determining the ultrasonic

sampling rate for pulsed-Doppler velocity estimation. Discussion near Eqs. 3.5

- 3.7 explains that the time-varying displacement amplitude, the frequency,

and the phase are functions of µ and η. Estimation accuracy and preci-

sion will vary with the sampling rate depending on the bandwidth of the

displacement spectrum. For linear gels, the displacement spectrum is the

spectrum of the applied force filtered by the mechanical system response of

the gel, H(ω;µ, η). H(ω;µ, η) is the temporal Fourier transform of Eq. 3.9

parameterized by the material properties.

The model spectrum of interest is the squared magnitude of the temporal

Fourier transform of x′(t) from Eq. 3.5. It has the Lorentz form,

|X ′(ω)|2 = 1

α2 + (ω − ωd)2
.

The 3 dB, 6 dB, and 20 dB bandwidths of the displacement spectrum are,

respectively, ∆ω = R/Mt,
√
3R/Mt, and

√
99R/Mt. Therefore the upper

limit on angular frequency is

ωmax = ωd +∆ω/2 =
√
ω2
0 − α2 +Bα , (3.10)

where B = 1,
√
3, or

√
99 for the 3 dB, 6 dB, or 20 dB bandwidths.

To illustrate, Fig. 3.7 displays the displacement spectrum corresponding

to the parameters for measurements on day 1 for 3% gelatin-concentration

samples. The highest frequency in the 3 dB bandwidth is found from Eq. 3.10

to be fmax = ωmax/2π = 120 Hz. The highest frequencies in the 6 dB and

20 dB bandwidths are 152 Hz and 510 Hz, respectively.

The sampling theorem for bandlimited signals states that minimum sam-

pling rate needed to avoid aliasing is twice the value of the the maximum
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Figure 3.7: Power spectrum of displacement for model parameters from 3%
gelatin 24 hours after gelation: µ = 317 Pa and η = 0.57 Pa·s.
Characteristic parameters are the natural frequency wd/2π = 76.1 Hz, half
bandwidth ∆w/4π =44 Hz, and maximum frequency at the 3 dB limit
fmax = 120.1 Hz.

frequency in the bandwidth. However, we must further increase the rate by

the number of pulses in the velocity estimator ensemble, Me. That is,

fs ≥ 2Mefmax =
Me

π

(√
ω2
0 − α2 +Bα

)
(3.11)

=
Me

π

√6πaµ

Mt

−
(
3πaη

Mt

)2

+
3πBaη

Mt

 .

For the experiments described in the previous paragraph, where we adopt

the 6 dB bandwidth limit and Me = 2, the pulse-repetition frequency (PRF

= fs) must exceed 608 Hz to avoid aliasing.

To decide on an acceptable lower bound on the sampling frequency, we

over-sampled the Doppler measurements at fs = 13 kHz. We then incre-

mentally downsampled this waveform sequence, being careful to apply the

appropriate low-pass anti-aliasing filter as the Nyquist frequency changed,

before processing. We thus obtained µ and η estimates as a function of fs.

We observed that a 15 dB bandwidth (B =
√
31) was sufficient to eliminate

estimation errors within the intra-sample random error range of 7%. If the

echo signal-to-noise ratio was reduced, for example, in stiff gels where sphere

displacement is small or for low-scattering spheres, Me could be increased to
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compensate as given by Eq. 3.11. There is also a tradeoff between time reso-

lution for velocity estimates and distance to the target, in our case the sphere

depth. Increasing fs reduces the depth for the maximum unambiguous range

to c/2fs [56].

We have evaluated Eq. 3.11 for a range of µ and η values estimated for

gels and for the typical experimental parameters Me = 2, Mt = 14.7 mg and

B =
√
31 (15 dB bandwidth). The corresponding minimum Doppler-pulse

sampling rates are plotted in Fig. 3.8. It is important to point out that

Eq. 3.11 is valid only for the Lorentz spectrum characteristic of the Kelvin-

Voigt model, with total mass Mt as defined above. Changing the model to,

for example, a three-element Zener model [75], would require a new analysis

to establish the minimum sampling frequency.
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Figure 3.8: Contour plot of the minimum sample frequency (i.e., pulse
repetition frequency) in Hz from Eq. 3.11 as required to estimate µ and η
as a function of these same material properties. We used a fixed ensemble
size Me = 2, B =

√
31 (15 dB bandwidth), and Mt = 14.7 mg. For

example, for µ = 1.5 kPa and η = 0.5 Pa s, fs ≥ 1.6 kHz.

Quick estimates of µ and η may be made for a well-calibrated experimental

system. If Mt and a are known, then η can be found directly from the 3dB

bandwidth of the step response, η = Mt∆ω3 dB/6πa. Applying this result

and an estimate of the spectral peak to the expression for resonant frequency

ωd, we can estimate µ.
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3.5 Conclusion

In this chapter a technique was developed as a natural extension of our pre-

vious work on the calibration of the acoustic radiation force. The presented

method uses a damped harmonic oscillator model to accurately predict the

movement of a hard sphere embedded in a congealed hydrogel to a sudden

change in acoustic radiation force. This result suggests that the gel responds

linearly to the force. A contribution of this work is how to relate parameters

of the harmonic oscillator to the mechanical impedance of the system and ma-

terial parameters as derived in Appendix A. The coefficients of the complex

shear modulus (shear elasticity and shear dynamic viscosity) are estimated

with 7% intra-sample random experimental error by interpreting model pa-

rameters in terms of rheological elements. The radiation force estimates of

modulus at two gel concentrations closely agree with independent measure-

ments of the gels using a rheometer. This simple but accurate technique is

designed to measure viscoelastic properties of 3-D cell cultures remotely to

maintain sterile conditions.

There are several disadvantages of the proposed approach. Complex shear

modulus can be estimated only at one point where the estimated value de-

pends on the volume averaged material properties around the spherical scat-

terer. Although the procedure is experimentally fairly simple for the pro-

posed testing of the gelatin phantoms, translation to 3D cell cultures due to

the technical problems of embedding spherical scatterers could be challeng-

ing. Moreover, application of the technique for in vitro or in vivo becomes

even more challenging. In order to mitigate some of these drawbacks of the

proposed method and to move toward the technique that could eventually

spatially map the complex shear modulus we decided to analyze propagated

shear waves through the medium. From Appendix A it follows that during

the sphere displacement part of the system energy is lost on wave propaga-

tion, both shear and compressional, where latter was neglected for the given

bandwidth. In the next chapter we focus on the propagation of the shear

waves in the isotropic homogeneous media and the techniques for the wave

excitation.

Gelatin phantoms are weakly viscous. Most of the energy loss of the second

order system stems from the radiation of the viscoelastic shear waves. In

order to accurately model displacement of the sphere, dynamic viscosity had
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to be included. In the next chapter effects of the viscosity will be more

apparent as it governs shear wave propagation via complex shear modulus.
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CHAPTER 4

SHEAR MODULUS ESTIMATION WITH
VIBRATING NEEDLE STIMULATION

4.1 Introduction

During the last decade, several shear-wave estimation techniques have emerged

as tools for measuring shear modulus of biological tissues [48, 76, 26, 77].

These dynamic techniques apply an acoustic radiation force or contact vi-

brator to generate shear waves in the medium that are imaged by phase-

sensitive medical imaging methods, e.g., ultrasonic, MR, or optical. In this

chapter we describe an ultrasonic Doppler technique that maps shear wave

energy generated by a vibrating needle at frequencies between 50 and 450 Hz

to estimate the complex shear modulus. It builds on a growing shear-wave

imaging literature for estimating the regional elastic modulus [78, 34].

The approach in this chapter is to use a mechanical actuator to harmoni-

cally drive a stainless steel needle placed in the medium to generate narrow-

band cylindrical shear waves. Shear waves are imaged in a radial plane using

a multi-lag phase estimator, which leverages the narrow-band wave feature to

extend standard pulse-pair (lag-one) processing for reduced velocity variance.

A multi-lag phase estimator is adapted from weather radar literature. Per-

formance of the multi-lag phase estimator is evaluated experimentally and

through simulation. We use a phase-gradient technique to estimate shear

wave speed from estimated particle velocities at each frequency, and we fit

those results to rheological model predictions relating shear wave dispersion

to the complex modulus of the medium. Thus we obtain spatially-averaged

modulus estimates for hydrogel media that can be independently verified to

assess accuracy and precision.

The reminder of this chapter is organized as follows. Section 4.2 reviews

This chapter is adapted from M. Orescanin and M. F. Insana, “Shear modulus estima-
tion with vibrating needle stimulation,” IEEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control, vol. 57, no. 6, pp. 1358-1367, 2010. Used with permission.
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the standard approach toward ultrasound Doppler velocity estimation and

presents the theoretical framework for the adapted multi-lag estimator. Fur-

thermore, we discuss the cylindrical shear wave model and the rheological

models applicable to the given material. Moreover, we develop a spatial

phase-gradient estimator for the estimation of the shear wave speed and

formulate a least squares approach toward reconstruction of material param-

eters. In Section 4.3 we compare both numerical and experimental results

of assessing the performance of the proposed multi-lag phase estimator. We

present results of the material properties estimation for two gelatin concen-

trations. We discuss the possibility of a more complex model in Section 4.4

and finally summarize our findings in Section 4.5.

4.2 Methods

The aim of the proposed method is to accurately measure the complex shear

modulus of soft biological media. These initial studies measure properties of

collagenous hydrogels that share key structural and mechanical features of

natural and engineered breast tissues [50].

4.2.1 Temporal Phase and Velocity Estimation

The shear wave imaging experiment is depicted in Fig. 4.1. A mechanical

actuator (SF-9324, PASCO Scientific, Roseville, CA) was adapted to hold a

stainless-steel needle. The needle is 1.5 mm in diameter (17 gauge) and 13

cm long. The actuator is driven by an arbitrary waveform generator trans-

mitting 500 ms pure-tone voltage bursts in the frequency range of 50 Hz

to 450 Hz. The voltage amplitude ranged from 5 V to 15 V. The needle

vibrates along the z axis, thus generating cylindrical shear waves that propa-

gate radially for several millimeters. Harmonic shear waves are tracked with

a linear-array transducer BW-14/60 (SonixRP, Ultrasonix Medical Corpora-

tion, Richmond, BC). The axis of the vibrating needle is oriented θ = 35± 5

degrees from the Doppler beam axis.

The ultrasound system was used to estimate particle velocity via pulsed

Doppler methods. A linear array transducer driven by 6-cycle, 6.67 MHz

voltage pulses generated echo waveforms with a center frequency of fc = 6
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Figure 4.1: Diagram of the experiment to measure viscoelastic properties of
gel samples. The mechanical actuator is driving a stainless steel needle.
Momentum of the needle displacement is transferred to the medium as
cylindrical shear waves. A linear array Doppler probe tracks the induced
transverse motion of scatterers as shear waves propagate. At the bottom is
a timing diagram for the (up to) 3000 Doppler pulses transmitted at each
position along x.

MHz. Doppler pulse transmission was synchronous with actuator excitation.

At each lateral position x, up to 3000 Doppler pulses were emitted at a rate

of 10 kHz so the total acquisition time was Ts ≤ 300 ms. The beam-axis

position was shifted laterally 0.46 mm, one array element, after each packet

transmission, except near the field edges where the beam was electronically

steered. The lateral beam increment was verified using a phantom (ATS

Laboratories, model 539). 128 A-lines were recorded per RF frame with beam

interpolation turned off. RF echo waveforms were sampled at 40 Msamples/s

(fast time) and internally downsampled to 20 Msamples/s.

Typical Doppler velocity estimation is based on pulse-pair phase-shift es-

timation measurements using lag-one autocorrelation [79]. Acquisition time

is divided into M ′ = 500 records of 0.6 ms, the temporal-phase sampling

interval, where 1 ≤ m′ ≤M ′. Within each record there is an ensemble of six

echoes from M = 6 pulse transmissions. The index 1 ≤ m ≤ M counts the

echo waveforms in “slow time” sampled on the interval Tprf = 0.1 ms within

the ensemble. The analytic signal of the echo waveform V and its complex

conjugate V ∗ were entered into the lag-one correlation estimator of temporal
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phase,

ϕ̂[ℓ, n,m′] = (4.1)

1

M − 1

M(m′−1)+M−1∑
m′′=M(m′−1)+1

V ∗[ℓ, n,m′′]V [ℓ, n,m′′ + 1] .

The process was repeated for each of 1 ≤ n ≤ N echo range samples in the

A-line range and for the 1 ≤ ℓ ≤ L A-lines at lateral indices along the x axis

of the array. Phase estimates are approximately constant with range, and

therefore values are averaged spatially over 10 range samples using a running

mean: ϕ̄[ℓ, n′,m′] =
∑n′+10

n′′=n′ ϕ̂[ℓ, n′′,m′]/10 for 1 ≤ n′ ≤ N − 9.

From these data, we estimate the instantaneous particle velocity υ̂ as a

function of time and space for each frame of RF data (see Fig 4.2) using

[56, 57]

υ̂[ℓ, n′,m′] =

(
−c

4πfcTprf cos θ

)
arg(ϕ̄[ℓ, n′,m′]) , (4.2)

where c is the compressional-wave speed of sound in the medium (1.5 mm/µs)

and arg(ϕ̄) indicates the phase angle of spatially-averaged estimates. High-

pass “wall” filtering is disabled for these acquisitions. The term υ̂ estimates

the z-axis component of particle velocity where we track the sign of arg(ϕ̄)

to indicate movement toward or away from the transducer.

Time-harmonic shear wave excitation produces a narrow velocity spec-

trum, which correlates the echo data within each M -pulse ensemble record.

Therefore we may combine multiple phase lags within the ensemble to im-

prove performance.

4.2.2 Lag-k Phase Velocity Estimator

Lag-k estimation of the mean velocity has been investigated by several au-

thors within the weather radar community [57, 80], where it is called poly-

pulse-pair processing. This method is able to reduce velocity estimation

variance for narrow-band Doppler echoes when the echo signal-to-noise ra-

tio (SNR) is less than 30 dB. The improvement is due to averaging phase

estimates whose fluctuations are caused by zero-mean echo-signal noise.
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Figure 4.2: Particle velocity image υ̂(x cos θ, z cos θ) in gelatin from one RF
frame. Shear waves are generated by a needle moving near the elliptical
center. The x, z axes (Fig. 4.1) are rotated θ = 30o counterclockwise about
the needle.

Lag-k estimation is a generalization of Eq. 4.1,

ϕ̂[ℓ, n,m′, k] = (4.3)

1

M − k

M(m′−1)+M−k∑
m′′=M(m′−1)+1

V ∗[ℓ, n,m′′]V [ℓ, n,m′′ + k] ,

where P correlation estimates are computed within each M -pulse record

such that 1 ≤ k ≤ P < M . We spatially average estimates along the z-axis

and combine the P = 5 estimates at a point while eliminating phase-angle

ambiguity via

arg(ϕ̄[ℓ, n′,m′]) =
1

10P

10(n′−1)+10∑
n′′=10(n′−1)+1

P∑
k=1

1

k
arg(ϕ̂[ℓ, n′′,m′, k]) . (4.4)

Choosing P = 1 reduces Eq. 4.4 to the lag-one autocorrelation estimate.

Equation 4.4 estimates may be applied to Eq. 4.2 to find υ̂(t) (Fig. 4.1, left

plot), and then further processed to estimate the shear-wave phase speed

from estimates of spatial phase (Fig. 4.1, right plot and Fig. 4.2) as shown

below.

The maximum detectable particle velocity υ̂max is limited by the ±π bound
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on temporal phase. For the lag-one estimate of Eq. 4.1, Eq. 4.2 gives υ̂max =

c/4fcTprf . The disadvantage of the lag-k phase estimate of Eq. 4.4 is the

k-fold reduction in υ̂max = c/4fcTprfk.

4.2.3 Rheological Models

Like many soft tissues, gelatin gels can be modeled as linear viscoelastic

media. Our goal in this section is to relate observed properties of particle

displacement waves to the viscoelastic properties that characterize media in

which they travel. Beginning with a solution to the wave equation for elas-

tic solids, we extend the result to include the frequency-dependent complex

modulus of viscoelastic media. The results depend on the assumed rheo-

logical model describing dynamic behavior of the medium. We then show

how temporal phase estimates are applied to the estimation of shear-wave

phase speed. The wave speed dependence on applied force frequency, viz.,

dispersion, is used to estimate the complex modulus.

The Navier wave equation for particle displacement vector uuu = (ux, uy, uz)

[m] in a homogeneous elastic solid is [42],

ρ
∂2uuu

∂t2
= (λ+ µ)∇∇ · uuu+ µ∇2uuu+ ρfff , (4.5)

where λ and µ are Lamé constants [Pa], ρ is the mass density of the medium

[kg/m3], and fff = (fx, fy, fz) is the external body force per unit mass of the

medium [m/s2]. Let x = (x, y, z) and r2 = x2 + y2.

A needle is inserted into gel along the z axis and vibrated harmonically

without slipping at radial frequency ω along z with force fff = (0, 0, fz(x, t))

where fz(x, t) = f0(r) e
−iωt. That force displaces the needle as uuu = (0, 0, uz(x, t))

where uz(x, t) = u0(r) e
−iωt. If the needle length and the medium dimensions

are both larger than several wavelengths, we can model the experiment as a

source radiating into an infinite homogeneous medium. These shear waves

diverge cylindrically from the needle along r, and f0(r) = Cµδ(r)/πρr where

C [m] is a dimensionality constant and δ(r)/πr = δ(r) = δ(x)δ(y) is the 2-D
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Dirac delta. Lacking compressional waves, ∇ ·uuu = 0, and Eq. 4.5 reduces to

−ω2uz(x, t) =
µ

ρ
∇2
ruz(x, t) + fz(x, t)

−k′2s u0(r) = ∇2
ru0(r) + Cδ(r)/πr , (4.6)

where the elastic shear-wave number k′s =
√
ρω2/µ = ω/cs for shear-wave

speed cs =
√
µ/ρ, and ∇2

r =
∂2

∂r2
+ 1

r
∂
∂r
.

We now solve Eq. 4.6 for u0, the z component of particle displacement

within the x, y plane. Leveraging polar symmetry, a solution is found by

taking the Hankel transform of Eq. 4.6 and solving for U0(ξ) , Hu0(r) =

C/(ξ2 − k′2s ). The inverse transform yields the spatial part of displacement

[42],

u0(r) = H−1U0(ξ) =
iπC

2
H

(1)
0 (k′sr)

≃

√
−πC2

2k′sr
ei(k

′
sr−π/4) . (4.7)

The exact solution (first form) includes H
(1)
0 , a zeroth-order Hankel func-

tion of the first kind. The approximate solution (second form) includes the

asymptotic expansion of H
(1)
0 for large k′sr [81]. At 50 Hz, k′sr ≃ 3 at 1 cm

from the needle.

Applying the correspondence principle [82, 83], we can extend the above

solution for linear elastic solids to include linear viscoelastic solids. To do

this, we represent the dynamics of viscoelastic media with a complex shear

modulus from the Kelvin-Voigt (K-V) rheological model, µ = µ1 − iωη,

where µ1 is the elastic shear constant and η is the dynamic viscous constant

of the K-V model. The wave number for viscoelastic media is now complex,

ks =
√
ρω2/µ = k′s + iαs, where αs is the shear-wave attenuation coefficient.

Also, shear speed can vary with frequency for the K-V model [84],

cs(ω) = ω/ℜ{ks} =

√
2(µ2

1 + ω2η2)

ρ(µ1 +
√
µ2
1 + ω2η2)

and

αs(ω) = ℑ{ks} =

√
ρω2(

√
µ2
1 + ω2η2 − µ1)

2(µ2
1 + ω2η2)

. (4.8)
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Equation 4.8 relates µ1, η to measurements of shear wave dispersion [48]

and attenuation. Our next step is to estimate cs from the spatial phase of

harmonic shear wave propagation.

4.2.4 Shear Speed From Spatial Phase Gradient

The z component of particle velocity is, from Eq. 4.7,

v(x, t) =
∂

∂t
u0(x) e

−iωt =

√
πω2C2

2ksx
ei(ksx−ωt−

π
4
)

= V0(x)e
iγ(t)eiψ(x) . (4.9)

Since we measure velocity in the x, z plane (Fig. 4.1), we replace r with x. The

last form of the “complex” velocity expression of Eq. 4.9 separates velocity

magnitude V0(x) from the temporal and spatial phase factors. Because ks is

complex, it requires some algebra to show the spatial phase gradient is

dψ

dx
=

ω

cs(ω)
. (4.10)

Thus cs is estimated from the spatial phase gradient of particle velocity. In

practice, phase is sampled along the x axis at a constant interval equal to

the transducer array pitch, X = 0.46 mm, such that x[ℓ] = ℓX.

Let υ̂′ be the analytic signal of particle velocity estimates from Eq. 4.2.

Recall that we compute as many as 500 temporal velocity estimates at each

location in the x[ℓ], z[n′] image plane. Beginning with the left-most A-line in

Fig. 4.1, we compute a four-sample running mean in space and average 40 val-

ues in time (after the transient wave has dissipated) to form spatiotemporally-

averaged estimates,

ψ̄[ℓ′, n′] =
1

40

340∑
m′=301

1

3

ℓ′+3∑
ℓ′′=ℓ′

υ̂′∗[ℓ′′, n′,m′] υ̂′[ℓ′′ + 1, n′,m′] . (4.11)

Phase ψ̄[ℓ′, n′] is a function of space via x[ℓ′], z[n′].

In Appendix B we show that dψ/dx from (5.2) is approximately (arg ψ̄)/X.

Similar to that found by Hoyt et al. [85] for crawling wave imaging, the
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average shear speed is

ĉs(ω) =
ωX

⟨arg(ψ̄[ℓ′, n′])⟩Ω(ω)

, (4.12)

where ⟨·⟩Ω(ω) indicates that we further spatially average values over area Ω

near the vibrating needle where the velocity SNR > 20 dB. Area Ω includes

a subset of indices ℓ′, n′ that becomes smaller with ω because attenuation in-

creases and needle vibration amplitude decreases with frequency. The stan-

dard deviation of cs(ω) estimates is found using the number of independent

samples within Ω(ω) as the degrees of freedom. The number of independent

samples was estimated from the 2D autocovariance function for υ̂(x, z).

Analogous to the maximum detectable particle velocity in Section 4.2.1, we

can estimate the minimum detectable shear-wave velocity from the bound on

the spatial phase argument: | arg(ψ̂)| < π. The minimum detectable shear

wave velocity from Eq. 4.12 is therefore ωX/π.

We close this section by comparing measurements of spatial phase in a

gelatin gel with the exact and large-argument approximate predictions in

Fig. 4.3. Clearly the approximation is accurate within measurement error

even for k′sx = 1.
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Figure 4.3: Comparisons of the exact (solid line) and approximate (dashed
line) solutions to the cylindrical wave equation with measured values for 4%
gelatin gel (solid-squares line) at ω/2π = 150 Hz. Good agreement between
the three justifies the phase gradient approach of Eq (4.12). Note k′sx ≃ 1
at x = 1 mm.
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4.2.5 Complex Modulus From Shear Wave Dispersion

Viscoelastic parameters µ1 and η are estimated by comparing modeled and

measured data using least-squares fitting techniques: predicted values are

obtained from Eq. 4.8 and measured values from Eq. 4.12. Assuming mea-

surement errors are normally distributed N (0, σ2), the maximum-likelihood

principle suggests that estimates µ̂1, η̂ are given by the parameters that min-

imize the sum of weighted, squared residuals,

min
J∑
j=1

(
ĉs(ωj)− cs(ωj;µ1, η)

σj

)2

. (4.13)

There are J frequencies in the bandwidth at 50 Hz intervals. Minimization

was performed using a Levenberg-Marquardt method with precalculated an-

alytical gradients [86].

4.2.6 Gelatin Gel Samples

Gelatin samples (250 bloom strength, Type B, Rousselot, Buenos Aires, Ar-

gentina) were constructed to test the method. Gelatin powder and distilled

water are heated in a water bath at 65− 68 ◦C for one hour and periodically

stirred. When the sample is cooled to 50 ◦C, 0.1% by weight formaldehyde

is added and thoroughly mixed. We also mixed in cornstarch particles, 3%

by weight, to introduce random acoustic scatterers. Molten gelatin is poured

into cylindrical molds (11.3 cm diameter, 7.5 cm height) and allowed to con-

geal. Homogeneous samples with 4% or 8% w/w gelatin concentrations were

tested.

Material properties of the same gelatin gels were tested in a parallel-plate

shear rheometer (Model AR-G2, TA Instruments, New Castle, DE) using

additional samples. Samples 2.5 cm in diameter and 0.2-0.4 cm high were re-

moved from their molds one day after gelation and bonded to the rheometer

plates using cyanoacrylate (Rawn America, Spooner, WI). Five percent shear

strain was applied. For each of the 4% and 8% gelatin concentrations, five

samples were tested and the measured relaxed shear modulus was averaged

giving, respectively, µ1 = 571 ± 67 Pa and µ1 = 2286 ± 315 Pa. Parame-

ter η cannot be estimated by this method. While shear modulus increased

quadratically with gelatin concentration, no change was detected with the
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addition of cornstarch particles.

4.3 Results

4.3.1 Phase Estimator Performance

The performance of the lag-k phase estimator (P = 5) compared to lag-1

estimator is known to depend on the echo SNR and the correlation between

ensemble echoes, i.e., the relative Doppler spectral bandwidth [87, 80]. To

help us decide when to apply each estimator, we simulated an ensemble of RF

echo signals in one spatial dimension and time so we could measure velocity

variances.

Doppler-pulse echo simulations assumed constant particle velocities in the

range gate that varied between 0 and 8 cm/s. This range was observed

experimentally in gelatin at 100 Hz needle vibration. We modeled scatterers

using a white Gaussian random field scanned by a linear time-invariant pulse-

echo system with 6-cycle pulses and other parameters given in Section 4.2.1.

Zero-mean, additive, white Gaussian noise was added to echoes to adjust the

echo SNR.

Estimator performance was quantified from the errors observed using sim-

ulated echo data. If var(υ̂1) and var(υ̂k) are measured variances for the lag-1

and lag-k particle velocity estimates (M = 6 for both), the percent improve-

ment for the lag-k estimator relative to lag-1 is given by the factor

ξ = 100

(
1−

√
var(υ̂k)

var(υ̂1)

)
, (4.14)

which can be positive or negative. The echo simulator was validated by com-

paring velocity variances measured from simulated data to those predicted

[88].

Figure 4.4 shows the improvement as a function of the fractional Doppler

bandwidth that is normalized by the maximum detectable velocity 2υ̂max.

This normalized bandwidth is labeled σvn in Fig. 4.4. At high echo SNR (40

dB), the lag-k estimator provides advantages only for extremely narrow-band

Doppler spectra. At 10 dB echo SNR, however, there is a 60% - 70% im-
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Figure 4.4: Percent improvement ξ is plotted as a function of normalized
Doppler spectrum width σvn for 10, 20 and 40 dB echo SNR ratio. Results
are from simulated echo data.

provement at all bandwidths. In the 20-30 dB range of echo SNR, of greatest

experimental interest, the advantage is primarily at low bandwidth. Because

of long wavelengths, particle velocity in shear-wave imaging is nearly con-

stant within a range gate. Pulse bandwidth, which has the largest effect

on Doppler spectral bandwidth, dictates the relative advantage of lag-k es-

timation over lag-1. We also estimated ξ for experimental data. Shear wave

recordings were repeated 19 times for 4% gelatin concentration at 100, 300

and 400 Hz. The improvement factor is plotted in Fig. 4.5 as a function of

lateral distance from the needle source. We find that, although the echo SNR

is constant with x, the improvement factor ξ increases with x, suggesting the

greatest advantage of lag-k estimation is at low particle velocity (low am-

plitude shear waves). The advantage stems from the reduction in Doppler

bandwidth that accompanies lower mean velocity.

4.3.2 Modulus Measurements in Gelatin

Measured shear-wave dispersion curves for 4% and 8% gelatin samples are

shown in Fig. 4.6. For both concentrations, measurements of three gel sam-

ples are shown along with best-fit dispersion model curves from Eq. 4.8.

Values for µ1 and η obtained by minimizing Eq. 7.7 are listed in Table 4.1

along with mean values ± sd and rheometer estimates of µ1. Correlation co-
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Figure 4.5: Percent improvement ξ is plotted as a function of lateral
distance from the source for 100, 300 and 400 Hz shear wave frequencies.
Results are measured from gelatin gels.

Table 4.1: Viscoelastic parameter measurements for gelatin gels.

4% Gelatin µ1 [Pa] η [Pa s] r2

Sample1 469 0.18 0.87

Sample2 564 0.17 0.83

Sample3 680 0.27 0.85

Average 571± 105 0.21± 0.06

Rheometer 571± 67

8% Gelatin µ1 [Pa] η [Pa s] r2

Sample1 3323 0.47 0.1

Sample2 3173 1.34 0.8

Sample2 2708 0.7 0.5

Average 3068± 321 0.84± 0.45

Rheometer 2286± 315

efficients of the fit, r2, were computed using the method of Cameron [72] as

adapted for our application [19]. The actuator voltage amplitude was 15 V.

Three dispersion measurements and corresponding best-fit model curves are

displayed for one 4%-concentration gelatin sample in Fig. 4.7. Measurements

were acquired for 5, 10, and 15 V mechanical actuator voltage amplitudes

that provided three different particle displacements at the needle surface.
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Figure 4.6: Measurements of shear wave dispersion in six samples, three
each with 4% and 8% gelatin concentration. Lines are best-fit dispersion
models used to estimate the complex moduli listed in Table 4.1. For both
concentrations, measurements from sample 1 are indicated by a circle,
sample 2 by a diamond, and sample 3 by a square.

Particle displacement amplitudes at 50 Hz estimated in gel regions imme-

diately adjacent to the needle gave peak measured displacement amplitudes

of u5V = 86 µm, u10V = 185 µm and u15V = 255 µm. Particle displace-

ment amplitudes at 450 Hz were found to be much smaller u5V = 0.3 µm,

u10V = 0.7 µm and u15V = 1 µm. From these data, we estimated µ1 at 5,

10, and 15 V to be, respectively, 476, 482, and 469 Pa. We also estimated

η and found values of, respectively, 0.21, 0.21, and 0.18 Pa·s. Close agree-

ment among estimates at the three applied strains supports the assumption

of linearity in gelatin between 50 and 450 Hz.

4.4 Discussion

We compared rheometer measurements to shear-wave estimates of µ1 in the

previous section to validate results. Although the two measurements are

based on different rheological models, direct comparisons between some pa-

rameters are possible [89]. The Maxwell model is often used in the constitu-

tive equation describing shear rheometry. We found a third-order Maxwell

model represents rheometer measurements in gelatin [4] with the time-varying
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Figure 4.7: Measurements of shear wave dispersion in one 4% gelatin sample
for actuator voltages set to 5, 10, and 15 V. Lines are best-fit dispersion
models used to estimate the complex modulus. Equivalence of the three
responses demonstrates the linear mechanical response of the gelatin gel.

shear modulus

G(t) = G0 +G1e
−t/τ1 +G2e

−t/τ2 +G3e
−t/τ3 , (4.15)

for constants Gi and τi. The relaxed modulus of the Maxwell model is G0,

which we obtain at t ≫ τmax where G(t → ∞) ≃ G0. Comparing this

result with the complex modulus of the K-V model in the frequency domain,

µ(ω) = µ1 − iωη, it can be shown that G0 from rheometry is comparable to

µ1 from shear wave imaging. These values may be compared in Table 4.1.

Unfortunately, no similar relationship exists between η and Maxwell model

parameters. We compared measurements in fresh and damaged liver tissues

with those reported by other labs using different techniques, and we found

general agreement for cs(ω) [49]. Inter-lab consistence may help validate

viscoelastic measurements in complex-structured tissues.

Rheological models help us parameterize the viscoelastic behavior of ma-

terials: the Kelvin-Voigt model describes creep while the Maxwell model

describes stress relaxation. Of the two, the Kelvin-Voigt model is thought to

be more representative of shear wave propagation through gelatin. However,

the Zener model (series connection of an elastic spring and a Kelvin-Voigt

unit) is the simplest model that predicts both phenomena in linear viscoelas-

tic polymeric solids [75]. We now summarize its frequency response in the
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context of our analysis.

The complex modulus that results from the Zener model is given by [75]

µZ(ω) = µ1
1 + ω2τστϵ
1 + ω2τ 2σ

− iωµ1
τϵ − τσ
1 + ω2τ 2σ

, (4.16)

where µ1 = µZ(0) is the relaxed modulus and τσ and τϵ ≥ τσ are time

constants.

The complex wave number for the Zener model is kZs = (ρω2/µZ)
1/2 =

ω/cZs + iαZs , which can be expressed in terms of shear wave speed and atten-

uation coefficient using

cK,Zs (ω) = ω/ℜ{kK,Zs }

=

√
2(ℜ{µK,Z}2 + ℑ{µK,Z}2)

ρ(ℜ{µK,Z}+
√
ℜ{µK,Z}2 + ℑ{µK,Z}2)

and

αK,Zs (ω) = ℑ{kK,Zs } (4.17)

=

√
ρω2(

√
ℜ{µK,Z}2 + ℑ{µK,Z}2 −ℜ{µK,Z})
2(ℜ{µK,Z}2 + ℑ{µK,Z}2)

.

K, Z indicates that parameters from either the Kelvin-Voigt or Zener models

may be applied.

We estimated parameters of the Zener model for the same gelatin sample

data described above, and we list them in Table 4.2. These may be compared

with results from Table 4.1. The small difference between µ1 results for the

K-V model in the two tables depends on whether data from three samples

were first averaged and then fit to a model (Table 4.2) or vice versa (Table

4.1).

Equation 4.17 is fit to the averaged dispersion measurements from 4% and

8% gelatin concentration, and the results are shown in Fig. 4.8. Averaged

measurements are also plotted with standard errors indicated. For both

models, the shear speed at low frequency is
√
µ1/ρ, increasing monotonically

with ω. However the Kelvin-Voigt model is unbounded cs(∞) → ∞ while

the Zener model is bounded by cs(∞) → µ1(τϵ/τσ). In the 50-450 Hz shear-

wave bandwidth, the two models agree within measurement uncertainties
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Table 4.2: Estimated parameters from Zener and Kelvin-Voigt models are
compared with G0 from rheometry in 4% and 8% gelatin.

Gelatin µ1 [Pa] τϵ [ms] τσ [ms]

Z: 4% 563 0.5 0.2

K-V: 4% 570

Rheometer: 4% G0 = 571± 67

Z: 8% 2836 0.53 0.21

K-V: 8% 2919

Rheometer: 8% G0 = 2286± 315

and therefore each represents measurement in gelatin gels equally. Only at

higher frequencies do the two models diverge.
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Figure 4.8: Average shear-wave dispersion measured for 4% and 8% gelatin
concentrations and best-fit model curves. The dashed lines are for the
Kelvin-Voigt model and solid lines are for the Zener model. Error bars
indicate one standard error based on measurements from three samples
each.

Frequency characteristics of viscous losses have also been quantified using

a quality factor Q(ω) = −ℜ{k2s}/ℑ{k2s} or its inverse Q−1 called the dis-

sipation factor [75]. The relaxation peak of the Zener model is located at

f0 = 1/(2πτ0) where τ0 =
√
τϵτσ and represents a peak of viscous losses. For

the estimated properties for 4% and 8% gelatin, estimated relaxation peaks

are located at f4%
0 = 503 Hz and f 8%

0 = 481 Hz respectively.
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4.5 Conclusion

This chapter presents a method for measuring the complex shear modulus of

hydrogel samples. Eventual applications of these measurements include the

basic-science goal of following changes in the mechano-environment of 3-D

cell cultures undergoing malignant cell transformations and tumor develop-

ment. More detailed knowledge of cellular mechanobiology on the scale of

a millimeter is expected to help illuminate the role of elasticity imaging in

cancer diagnosis.

Vibrating a thin needle along its long axis generates shear waves. This

geometry provided closed form solutions to the shear wave equation that

yielded a Green’s function describing how wave energy propagates and is

dissipated in the surrounding medium. Long needles induce extended and

predictable fields of shear waves that yield high velocity signal-to-noise ratios

for materials characterization below 450 Hz. Time-harmonic waves, imaged

under steady-state conditions, use lag-k estimators of phase, thus improving

the reliability of shear-wave dispersion measurements for modulus estima-

tion. This approach lends itself to accurate estimation of the complex shear

modulus parameters. Accuracy of the elastic shear modulus estimates was

verified through comparisons with the relaxed modulus from parallel-plate

rheometry, where agreement was observed.

The current method is based on an inversion of the shear-wave dispersion

equation. One limitation of this method is that measurements at several

frequencies must be obtained to estimate each complex modulus value. Fur-

thermore, material homogeneity and reflectionless boundaries are assumed

within the measurement region, which is a reasonable assumption for our

proposed applications. Therefore the phase-gradient method is an accept-

able method for measuring a modulus from velocity estimates.

One alternative approach to needle vibration is to apply an amplitude-

modulated acoustic radiation force to a sphere placed in the medium [19, 90,

38]. An oscillating sphere produces shear wave energy that also has known

closed-form expressions, and thus permits quantitative mechanical analysis of

the medium. However the dipole radiation pattern is more complex and more

heterogeneous within any Doppler imaging plane. Yet radiation force offers

the best opportunity for extending the stimulus force frequency above 500 Hz,

where clear distinctions among rheological models become more apparent.
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The displacement amplitude of mechanical actuators mechanically loaded by

a needle placed in a viscous gel is significantly reduced at higher frequencies

either because of the actuator itself or needle slippage. The signal-to-noise

ratio for velocity estimates becomes the limiting factor when imaging shear

waves above 500 Hz not only because precise force patterns are difficult to

generate but also because of wave divergence and absorption at distances

greater than a couple millimeters from the source. The overall conclusion is

that accurate measurements of the complex shear modulus may be achieved

with needle vibration in viscoelastic hydrogels up to 450 Hz.

In order to explore the frequency landscape of material response, a higher-

order model, or standard solid body model, was considered that has a fre-

quency dependant elastic shear modulus. Probing the frequency response

of the shear modulus could yield valuable insight into viscoelastic mecha-

nisms for different tissues which could lead to potentially valuable clinical

information.

The higher-order Zener model was considered for characterizing hydrogel

response within the given bandwidth of the measurement. Within the testing

bandwidth, hydrogel exhibits strong elastic behavior and differences between

the two models are negligible. Therefore, either model is representative of

gelatin gels between 4% and 8% concentrations. Increasing the measurement

bandwidth above 450 Hz would provide a means to differentiate between the

two models. In soft biological tissue with larger viscous response, it would be

possible to differentiate between the two models where the Zener model could

provide more insight into the complex dynamics of the perfused mammary

tissues.

In the next chapter the developed experimental method is used to study

complex material properties in fresh and thermally damaged porcine liver.

Liver was chosen as the biological phantom for the proposed technique char-

acterization and as a medium to study modeling of the soft tissue mechanics.

Moreover, in order to invoke larger contrasts in soft tissue mechanical re-

sponse, porcine liver was thermally damaged to enhance viscoelastic changes

in the material.
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CHAPTER 5

DISPERSION AND SHEAR MODULUS
MEASUREMENTS OF PORCINE LIVER

5.1 Introduction

Rheological models of organ and tissue material properties are playing sig-

nificant roles in developing image-guided medical diagnoses and surgical pro-

cedures. During the previous two decades, advances in instrumentation and

modeling have led to improvements in elasticity imaging and its interpreta-

tion for discriminating benign from malignant breast lesions [7, 3], staging

liver fibrosis [8, 9], monitoring tumor ablation [91], assessing myocardial func-

tion [77, 10], screening for prostate cancer [11], and probing neurodegenera-

tive processes in the human brain [10]. The diagnostic information provided

by elasticity imaging originates with the important role of the microscopic

cellular mechanoenvironment in establishing homeostasis and regulating dis-

ease progression [13, 92]. It is thought that these microscopic effects influence

the appearance of tissues in elasticity images by modifyingmacroscopic tissue

structures. Rheological modeling aims to summarize the material properties

of complex-structured media by representing it as a simple mechanical sys-

tem characterized by just a few parameters. When the mechanical response

of the model system closely represents tissue measurements, we assign model

parameters to represent tissue properties at the spatiotemporal scale of the

measurement. The value of elasticity imaging depends on how well the model

parameters represent tissue behavior.

The principal aim of this chapter is to observe how well standard rheo-

logical models represent measurements of shear-wave speed in parenchymal

tissues. The complex modulus of fresh, ex vivo, porcine liver is estimated

because the modulus can be modified by heating the tissue, measurements

This chapter is adapted from M. Orescanin, M. A. Qayyum, K. S. Toohey, and
M. F. Insana, “Dispersion and shear modulus measurements of porcine liver,” Ultrasonic
Imaging, accepted for publication. Used with permission.
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could be readily verified through literature comparisons, and the results con-

tribute to the accumulating data on assessments of thermal tissue damage

induced during ablation procedures. Standard linear-solid two-parameter

(Kelvin-Voigt or K-V) and three-parameter (Zener) rheological models [89]

are used in this study to model the complex shear modulus.

This chapter follows the presented approach in Chapter 4 where the basic

measurement applies pulsed-Doppler techniques to image particle velocities

v associated with shear-waves radiating from a harmonically vibrating needle

placed in the liver tissue sample [20]. The phase speed of cylindrical shear

wave estimates ĉs is measured from the spatial-phase gradient ∇ψ. Speed

estimates are numerically fit to modeled values to find the complex shear

modulus, µ [84]. From µ and liver density ρ, the shear attenuation coefficient

can be estimated.

5.2 Methods

5.2.1 Tissue Preparation

Six freshly-excised whole porcine livers were obtained in pairs during three

different days from the Department of Animal Sciences at the University of

Illinois. Mechanical studies were conducted on one fresh and one heated

liver sample as illustrated in Fig. 5.1. Each organ appeared to be healthy

and free of obvious lesions or other structural anomalies. Livers were placed

in iced saline (0.9% sodium chloride) immediately after harvesting and then

transported to the lab for measurement. Once in the lab, fresh livers were

warmed in normal saline at 23 ◦C for one hour before mechanical testing.

Thermally damaged livers were prepared by placing a fresh liver in saline

heated to 47 ◦C for 90 minutes. The aim was to thermally denature proteins

[93] and modify the collagen cross-linking to alter the viscoelastic properties

of the liver. After the heating period, livers were cooled in 23 ◦C saline for

one hour prior to mechanical testing. All liver measurements were made at

23 ◦C within 8 hours of harvesting.

Following each experiment, a small liver sample was prepared for histo-

logical study. Tissues were fixed with formalin, embedded in paraffin for

sectioning and stained with hematoxylin and eosin. Slides were examined for
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structural changes that might correlate with mechanical measurement obser-

vations. No significant histological changes were observed. Examples of fresh

and thermal-damaged tissues can be seen in Fig. 5.1.

Figure 5.1: (left) Photograph of a shear-wave imaging experiment using
fresh porcine liver. (right) Histological sections of fresh and thermally
damaged porcine liver samples at 20x magnification.

5.2.2 Shear-Wave Phase Speed Estimation

A 17-gauge stainless-steel needle (13 cm long) was inserted 3-5 cm into a

liver sample (Fig. 5.1) and vibrated sinusoidally in time along its long axis

by a mechanical actuator (SF-9324, PASCO Scientific, Roseville, CA). The

actuator was driven by 500-ms-duration pure-tone voltage bursts (15 V) from

a waveform generator at single frequencies in the range of 50 Hz to 300 Hz.

In this range, the measured vibration amplitude was 10-250 µm. Vibration

generates harmonic shear waves that propagate radially from the needle for

several millimeters before the mechanical energy is absorbed. Shear waves are

tracked with a Doppler probe, where actuator motion and Doppler transmis-

sions are electronically synchronized. Imaging the needle and adjacent tissues

simultaneously, we found there was negligible needle slippage.
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A Sonix-RP system was used to estimate particle velocity as shear waves

passed through the liver. A BW-14/60 linear-array transducer was driven by

6-cycle Doppler pulses at a center frequency of 6.67 MHz and a Doppler angle

of 35 ◦ ± 5 ◦. The peak echo frequency was found to be ∼6 MHz. We used the

default beamformer for the array resulting in 128 A-lines separated laterally

by a 0.46-mm array pitch. We acquired a 3000-pulse ensemble of echoes

at each of the 128 lateral spatial locations at a pulse repetition frequency

of 10 kHz. Echoes were sampled in fast time at 40 Msamples/s and then

downsampled internally by a factor of two before data were transferred for

off-line processing on a PC. We summarize the estimation of shear wave

speed from the Doppler echoes below; however, readers are referred to [20]

for details.

The first 500-1000 Doppler traces are discarded to eliminate the shear-

wave transient as the needle begins to vibrate. Particle velocity υ̂(r, t, ts) is

then estimated from an ensemble grouping of six sequential echo traces in

slow-time ts using autocorrelation techniques [79]. This process yields ∼400

temporal velocity estimates at each radial location r and range time t. Note

that in the shear-wave image shown below, the lateral dimension is r and

the axial dimension is z = ct/2, where c is the compressional velocity. Shear

speed cs is estimated from the spatial wave phase as we now explain.

Let υ̂′[ℓ, n,m] be the discrete form of the complex analytic signal for par-

ticle velocity, where ℓ, n,m are integers. Here r = ℓX, t = nT , and ts = mTs

for sampling intervals in radial position, fast and slow times, X = 0.46 mm,

T = 25 ns and Ts = 0.1 ms, respectively. We further average 40 velocity

estimates along slow time (after the transient wave has dissipated) and com-

pute a four-sample running mean in radial position to form the shear-wave

spatial-phase estimate,

ψ̄[ℓ, n] =
1

40

40∑
m=1

1

3

ℓ+3∑
ℓ′=ℓ

υ̂′∗[ℓ′, n,m] υ̂′[ℓ′ + 1, n,m] . (5.1)

At angular shear-wave frequency ω and tissue location (r, z) = (ℓX, cnT/2),

the shear-wave phase speed estimate is

ĉs(ω, r, z) =
ωX

arg ψ̄[ℓ, n]
. (5.2)
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Equation 5.2 is a practical implementation of the phase gradient expression,

dψ̄/dr = ω/cs(ω), which is derived in [20] based on the discussion in [85].

5.2.3 Complex Modulus Estimation

The complex shear modulus µ(ω) is estimated from the shear speed dis-

persion curve, cs(ω). The association between the two functions is through

the complex shear wave number, ks(ω) = ω/cs(ω) + iαs(ω) = (ρω2/µ)1/2,

where αs(ω) is the shear-wave attenuation coefficient and ρ is mass density.

Expressing ks in terms of real ℜ{·} and imaginary ℑ{·} components yields

cs(ω) = ω/ℜ{ks} =

√
2(ℜ{µ}2 + ℑ{µ}2)

ρ(ℜ{µ}+
√

ℜ{µ}2 + ℑ{µ}2)
(5.3)

and

αs(ω) = ℑ{ks} =

√
ρω2(

√
ℜ{µ}2 + ℑ{µ}2 −ℜ{µ})
2(ℜ{µ}2 + ℑ{µ}2)

(5.4)

that require adoption of a rheological model to carry out the computations.

The Kelvin-Voigt model illustrated in Fig. 5.2a is frequently employed in

imaging experiments where forces are applied to a viscoelastic material and

strain is measured over time. The complex modulus for the Kelvin-Voigt

model,

µK(ω) = µ1 − iωηK , (5.5)

has one elastic and one viscous component in parallel. The elastic shear con-

stant is µ1, which is also referred to as the relaxed modulus because µK |ω→0 =

µ1. The dynamic viscosity constant is ηK . Viscous dissipation of shear wave

energy is also quantified by the quality factor Q(ω) = −ℜ{k2s}/ℑ{k2s}, whose
inverse is the dissipation factor Q−1 [75]. For the Kelvin-Voigt model,

Q−1(ω) = ωτ , (5.6)

where τ = ηK/µ1 is a relaxation time constant. The frequency dependance

of Q−1 shows that K-V dissipation is unbounded and increasing with fre-

quency. Thus the Kelvin-Voigt model describes the viscoelastic behavior of

liver tissues as a low-pass filter of shear wave energy.

The Zener model illustrated in Fig. 5.2b adds an elastic element in series
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Figure 5.2: Parametric representations of the standard linear-solid
two-parameter (Kelvin-Voigt) and three-parameter (Zener) rheological
models. µ1 is the elasticity shear constant, ηk,z is the dynamic viscosity
constant for the K-V or Zener models, and k1,2 is an elastic spring constant.

with the K-V unit to allow for more complex dynamic behavior [75]. It has

been shown to accurately represent the viscoelastic behavior of human liver,

in vivo, in the shear frequency range of 25 to 62.5 Hz [94]. The complex

modulus obtained from the Zener model is

µZ(ω) = µ1
1 + ω2τστϵ
1 + ω2τ 2σ

− iωµ1
τϵ − τσ
1 + ω2τ 2σ

, (5.7)

where µ1 = µZ |ω→0= k1k2/(k1+k2) is the relaxed modulus and τσ = ηZ/(k1+

k2) and τϵ = ηZ/k2 ≥ τσ are associated relaxation times. For the Zener model,

Q−1(ω) = ω(τϵ − τσ)/(1 + ω2τϵτσ) . (5.8)

Systems represented by the Zener model exhibit purely elastic behavior at

both ends of frequency spectrum where Q−1 → 0. Moreover, there exists a

relaxation peak at ω0 = 1/
√
τϵτσ and viscous losses are greatest. Thus the

Zener model describes the viscoelastic behavior of liver tissue as a band-stop

filter of shear wave energy.

5.2.4 Rheometer Testing

Liver samples were cut into cylindrical slabs to measure the shear stress

relaxation using a controlled shear-strain rheometer (TA Instruments, Model
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AR-G2, New Castle, DE, USA). The rheometer had parallel circular plate

fixtures, each 25 mm in diameter. Liver samples were first cut into slabs

approximately 5 mm thick and then cut into cylinders 25 mm in diameter

using a circular punch. To avoid having samples slip when torqued, a water-

proof sandpaper was fixed to the upper and lower rheometer plate surfaces.

A small compressive load (<0.1 N) was applied to samples to ensure contact

with the sandpaper and minimize slippage. A 5 % rotational strain was

applied to each sample for a period of 30 minutes with a one-second ramp-

on time to study shear relaxation. Time-varying torque measurements were

analyzed to estimate relaxation moduli through a third-order generalized

Maxwell model as previously described [19]. No preconditioning was applied

to liver samples.

5.2.5 Liver Density

The mass density of liver samples was estimated in an independent mea-

surement by applying Archimedes’ principle. Liver samples free from major

blood vessels were cut into roughly 10 g cubes and submerged into a beaker

with 400 g of distilled water at 23 ◦C. Samples immediately sank to the

bottom. Sodium chloride (Sigma Aldrich, inc., St. Louis) was added in 0.5

g increments and dissolved until the sample began to float. Then sodium

chloride was added in 0.05 g increments until the liver became neutrally

buoyant. Assuming the density of water is 1.00 g/cm3 and the density of

sodium chloride is 2.16 g/cm3, we computed the density for three fresh and

three thermally-damaged samples. Results are summarized in Table 5.1.

Table 5.1: Measured density of fresh and thermally damaged porcine liver
at 23 ◦C.

Fresh tissue [g/cm3] TD tissue [g/cm3]

1.05 1.06

1.07 1.05

1.05 1.05

1.06± 0.01 1.06± 0.004

Our measurement values agree with others from the literature, where the

density of porcine liver was reported to be 1.064 g/cm3 at 37 ◦C [95]. Our
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intention was not to characterize samples based on density, but to demon-

strate that there is not a measurable difference between densities that could

bias modulus estimates.

5.3 Results

Figure 5.3 is an example of a particle velocity image showing 100 Hz shear

waves propagating from a vibrating needle through fresh porcine liver. The

needle is located near the center of the dark ellipse. The shape of the wave-

front is tilted because of the 35◦ angle between the Doppler beam axis and

the needle axis. Under these conditions, shear waves propagate at least one

wavelength, about 16 mm.
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Figure 5.3: Particle velocity image of a 100 Hz shear wave in fresh porcine
liver tissue from one RF frame. Waves are generated by a needle vibrating
near the dark elliptical center. The top surface of the sample is located at a
depth of 5 mm.

Shear speed measurements between 50 and 300 Hz in steps of 50 Hz are

computed for each of the three fresh and three thermally damaged liver

samples. Values plotted in Fig. 5.3 are the average of the three samples at a

given frequency. The Kelvin-Voigt and Zener models were numerically fit to

the measured data using methods described previously [20]. Lines plotted in

the figure result from the parameters that gave the least-squares fit of model

functions to speed measurements. Table 5.2 lists those parameters along

with µ1 estimates obtained from rheometer stress-relaxation measurements

on samples from the same livers. Applying K-V model parameters to Eq. 5.4,

76



Table 5.2: Estimated viscoelastic parameters.

Rheo. Model Porcine Liver µ1 [kPa] ηK [Pa s]

K-V Fresh 2.2 1.8

K-V Therm. Dam. 5.0 5.8

k1 [kPa] k2 [kPa] ηZ [Pa s]

Zener Fresh 1.8 6.2 2.6 4.99

Zener Therm. Dam. 3.7 18 4.6 12

Rheom., 2% Strain Fresh 0.06± 0.03

Rheom., 5% Strain Fresh 0.09± 0.02

Rheom., 2% Strain Therm. Dam. 0.14± 0.01

Rheom., 5% Strain Therm. Dam. 0.15± 0.06

we found at 100 Hz that αs = 0.94 cm−1 for fresh liver and αs = 0.79 cm−1

for thermally damaged liver.

We conducted a two-sample, unpaired, two-tailed Student’s t-test of the

null hypothesis that heating does not alter the shear speed of liver. Hypoth-

esis testing was conducted at each frequency in Fig. 5.4 where shear speeds

were estimated. The untested assumption is that tissue samples from the

fresh and thermally damaged classes of liver are normally distributed with

equal variance. There were three measurement samples from each liver class,

and we estimated class means from those samples. Therefore there are four

degrees of freedom. We found for speed estimates at the six frequencies that

the corresponding p value fell in the range of 0.0145 ≤ p ≤ 0.0458. Therefore

we must reject the null hypothesis at the significance level of 0.05 and con-

clude, within the limits of the assumptions, that shear speed measurements

of fresh and thermally damaged liver are distinct.

There is a small difference between dispersion curve models seen in Fig. 5.4

(left). Consequently, either rheological model may be used to represent mea-

sured shear speeds within measurement error. From the model parameters

of Table 5.2, we generated mechanical dissipation curves Q−1 for the two

models via Eqs. 5.6 and 5.8 and plotted them in Fig. 5.4 (right). While the

K-V model predicts a monotonic increase in wave energy loss with shear-

wave frequency, the Zener model exhibits a dissipation resonance peak at

ω0/2π = 153 Hz for fresh tissue and ω0/2π = 135 Hz for thermally damaged

liver tissue. Above ω0, the two models clearly diverge. Unfortunately, we
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Figure 5.4: Comparison of shear wave speeds (left) and dissipation factors
(right) as a function of frequency for the Kelvin-Voigt and Zener models for
both fresh (FR) and thermally-damaged (TD) porcine liver. Measurements
are indicated by points that specify the mean ± 1 SD.

were unable to obtain reliable shear speed estimates above 300 Hz in liver.

We discuss the possible implications of this observation in the next section.

5.4 Discussion

The complex modulus was estimated from shear wave images obtained in

large tissue samples that included at least one entire liver lobe. Reflected

waves at tissue boundaries were negligible because of high shear-wave atten-

uation. We considered that non-physiological conditions, such as the lack

of liver perfusion and room temperature measurements, could affect the re-

sults as compared with in vivo findings. Others [96] found that non-perfused

porcine livers were stiffer and more viscous under cyclic compressive loads,

and the effects were found to be more pronounced when large preloads were

applied to the liver. The shear-displacement amplitudes in our study pro-

duced strains <1% and there was no preload. Consequently, liver perfusion

and temperature were not expected to be a major influence on viscoelastic

properties, provided there was little degradation of the protein structure.

We attempted to validate our shear-wave measurements of the elastic shear

constant µ1 through comparisons with independent rheometer measurements

of µ1. We found reasonably close agreement between rheometer and shear-

wave estimates for gelatin in a previous study [20]; however, Table 5.2 shows

no such agreement for liver tissue. Estimates of µ1 derived from the two tech-

niques can be expected to agree for linear viscoelastic media, as we found
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gelatin to be, but liver parenchyma is known to deform nonlinearly. Indeed,

Liu and Bilston [97] found that shear relaxation moduli measured for bovine

liver demonstrated significant strain and strain-rate sensitivities above 0.2%

strains. Lacking an independent standard measurement, we decided to com-

pare our measurements with those published by other labs.

In Fig. 5.5 (left) our measurements from Fig. 5.4 may be compared to those

of Chen et al. [18] who applied a shear-wave dispersion ultrasound vibrom-

etry (SDUV) method to in vivo porcine liver. The principal experimental

differences are their use of radiation force and their use of perfused liver

measured near normal body temperature. These authors measured speed

from the spatial phase shift over a distance of 3-5 mm in liver and assumed

the K-V model when relating dispersion to modulus constants. There is close

agreement between shear speed estimates for the two labs up to 300 Hz. It

is not surprising then that the complex modulus constants from the two labs

are similar for porcine liver: 2.2 kPa, 1.8 Pa·s (UIUC) and 2.4 kPa, 2.1 Pa·s
(Mayo). The agreement suggests that liver perfusion, temperature, and mea-

surement technique are not major factors in shear-wave measurements of µ1.
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Figure 5.5: Shear wave speed measurements in fresh ex vivo porcine liver
from Fig. 5.4 are compared with two other measurement sets reported in
the literature. Our measurements (circle-labeled points with error bars in
both plots) and best-fit model curves are compared with the measurements
of (left) Chen et al. ([18], Fig. 6d), as indicated by diamond-labeled points,
and (right) Deffieux et al. ([39], Fig. 11, second volunteer), as indicated by
square-labeled point with error bars. The K-V model values are indicated
by the dashed curve and the Zener model values are indicated by the solid
curve.

In Fig. 5.5 (right) our same measurements may also be compared to those
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of Deffieux et al. [39]. They developed a supersonic shear imaging technique

(SSI) for in vivo shear wave spectroscopy (SWS), and they adopted the K-V

model to relate shear speed to modulus constants. Their in vivo measure-

ments on healthy livers of human volunteers yielded speed estimates that are

statistically comparable to ours made on excised porcine liver. Shear speed

values appear to be slightly lower for human data relative to pig, which is con-

sistent with the slightly lower value of µ1 reported by Chen et al. citechen09

for humans via MRE methods relative to pigs. Although the findings are

consistent and perhaps expected given known differences in lobular collagen

content between humans and pigs, none of the observed species-specific dif-

ferences in shear properties can be considered statistically significant when

measurement uncertainties are considered.

Conversely, heating increased the stiffness and viscosity of ex vivo liver

tissue, as detected by the significant increase in shear wave speed observed

(Fig 5.4). Assuming the heating regimen that we adopted [93] produces pro-

tein denaturation and coagulative necrosis similar to that found following in

vivo liver ablation procedures [98], then it seems that thermally-induced bio-

chemical changes to liver tissue influence the complex modulus to a greater

extent than variations in anatomical structure. For example, the histology

displayed in Fig 5.1 showed no apparent thermally-induced changes in cel-

lular architecture. We estimate a doubling of µ1 in thermally damaged liver

compared to fresh liver. Others found as much as a fourfold increase in

µ1 that varied systematically with heating time and rate [99]. Previous re-

sults formed the basis for more recent studies exploring the use of elasticity

imaging methods to track the growth of thermal lesions during ablation pro-

cedures [100, 101]. Our contribution to these results is the findings of Table

5.2 that the dynamic viscosity constant η increases threefold after thermal

damage as compared to a doubling of µ1. Thus η could be a more robust

parameter for viscoelasticity imaging of thermal lesion growth in the 50-300

Hz bandwidth provided its measurement uncertainty is comparable to that

observed for µ1.

Our technique does not provide enough measurement bandwidth to con-

clude whether one rheological model is more representative of liver dispersion.

It is possible that our inability to easily sense shear-wave energy in liver above

300 Hz could be an indication that dissipation increases with frequency, as oc-

curs directly with the K-V model. Fitting the first-order Zener model to liver
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dispersion measurements predicts a dissipation resonance at ω > ω0 ≃ 150

Hz, and the nonintuitive result that attenuation should decrease with fre-

quency. Adding more Kelvin-Voigt units in series with the first-order Zener

model (Fig. 5.2b), each having increasing resonance frequency, would provide

more degrees of freedom for modeling. Yet our confidence in modeling results

degrades as the number of fit parameters increases without also increasing

data samples. It is also true that as shear-wave frequency increases, the am-

plitude of the mechanical actuator is reduced [20], and the potential for the

needle slipping against the tissue is greater.

Determining the lowest-order constitutive model that best represents dis-

persion data up to about 1 kHz could provide new insights into the sources of

viscoelastic tissue contrast created through disease processes or applied ther-

apeutics. Model parameters conveniently summarize macroscopic rheological

behavior of tissues, which offers us intuition regarding the relative degrees

of elastic and dissipative responses that we often relate to constituent tissue

components. What are the components of tissue that interact with shear

wave energy? We believe that, with extension of the measurement band-

width, some of the answers are emerging. Specifically, consider the work of

Frizzell et al. [102] and Madsen et al. [84] who made measurements at 2-14

MHz, a frequency band five orders of magnitude higher.

At shear-wave frequencies below 500 Hz, the wavelength is on the order of

centimeters. At 8 MHz, the wavelength is just 6 µm. One might expect mod-

ulus values to vary significantly between these bandwidths if tissue structures

larger than cells were responsible for the interaction. In the 50-300 Hz range

for porcine and human liver, we measured shear speeds between 1-3 m/s and

shear attenuation coefficients less than 2 cm−1. At frequencies of 2-14 MHz,

Frizzell and Carstensen and Madsen et al. each independently measured

shear-wave speeds at room temperature for bovine, rodent, and canine liver

samples in the range of 10-60 m/s and shear attenuation coefficients in excess

of 104 cm−1. Yet they found for bovine liver in the MHz range and assuming

a K-V model that µ1 = 2.3 kPa, in line with measurements made at much

lower frequencies, e.g., those in Table 5.2. They also found η = 0.013 Pa·s,
lower by two orders of magnitude in the MHz frequency range as compared

to the Hz range. (Note that η is weighted by frequency in the expression for

shear attenuation coefficient.) The apparent frequency dependence of η is

evidence that the K-V model is incomplete.
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A similar conclusion was reached by others independently. It was found

that a power-law relationship describing shear attenuation, which is based on

the Kelvin-Voigt model, was unable to represent the fractional power-law re-

lationship observed in soft biological tissue [23]. Szabo and Wu [103] reached

the same conclusion during their study of polymer materials. They proposed

a theoretical framework based on the K-V model that expands the dynamic

viscosity component with fractional-derivative-like terms, effectively making

a frequency dependent η for the K-V model. This modification implies that

classical models with combinations of springs and dashpots cannot model the

shear modulus over the measurable frequency range. However, below 300 Hz,

we and others found that the modulus is sensitive to thermal history and yet

parametric models respond similarly so it is unnecessary to choose one over

another.

Conversely, the elastic shear constant µ1 measured in the frequency range

of 50-300 Hz is comparable to values measured in the MHz range, which sug-

gests that µ1 could be frequency independent as predicted by the K-V model.

Shear measurements between 500 Hz and 1 MHz are needed to verify fre-

quency independence. Parameter µ1 appears to be invariant for liver among

the mammalian species examined. While there are obvious macrostructural

differences among the livers of various species, the cellular biochemistry and

structure are very similar as are µ1 estimates. Heating tissues, however,

increases the average stiffness as it induces cellular necrosis and collagen

fiber cross-linking. Thus shear-wave energy interacts primarily with protein

and other molecular-scale structures that are common among species but

can change with disease. Absorption of shear wave energy in liver is much

stronger than scattering at all frequencies, apparently even more so than it

is for compressional waves [104].

5.5 Conclusion

Several aspects of shear wave imaging in soft biological tissues are studied

and yield the following conclusions. First, the Kelvin-Voigt rheological model

predicts an elastic shear constant µ1 ∼2 kPa for liver tissue over two distinct

bandwidths of shear-wave frequencies: 50-300 Hz and 2-14 MHz. The elastic

shear constant is invariant with mammalian species and degree of perfu-
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sion. Yet µ1 is a sensitive indicator of thermal damage, a process known to

modify tissue macromolecules. The dynamic viscosity “constant” η for liver

tissue was found to vary significantly between the same two measurement

bandwidths, and yet it exhibits greater sensitivity than µ1 to thermal dam-

age. Taken together, the data suggest the K-V model may be an incomplete

model but is adequate for assessing thermal effects below 300 Hz. Dispersion

measurements made at shear-wave frequencies between 0.5 and 1000 kHz

are needed to define the most appropriate and concise rheological model for

representing viscoelastic behavior of liver.

Second, shear waves interact with mammalian tissue predominantly at

the molecular scale through absorption. Consequently, elasticity imaging

contrast from disease-induced changes can be expected to occur at a sub-

cellular scale, and is not greatly affected by tissue structures larger than a

cell. Macromolecular changes that increase the complex modulus in heated

liver could have counterparts in disease formation and therapeutic responses

that also provide contrast. We need to more closely consider the role of

molecular processes in elasticity contrast, and to more completely probe the

shear-wave frequency landscape to find constitutive models that concisely

represent tissues.

The third and most important contribution of this chapter, is the evidence

that reconstruction of complex shear modulus has an added value in informa-

tion. This is reflected in our finding that the viscous component can provide

more contrast in detection of thermal damage than the elastic component.

For the given conditions of the experiment, we have found a twofold increase

in the value of estimated shear elastic modulus versus threefold increase in

the value of estimated shear dynamic viscosity assuming K-V model.

In summary, the proposed method for the reconstruction of the complex

shear modulus based on the phase gradient approach was successfully used in

characterization of fresh and thermally damaged porcine liver. Results sug-

gest that dynamic viscosity exhibits greater sensitivity to thermal changes

in soft biological tissues. Hence, it can provide more contrast in the recon-

struction of the underlaying soft tissue material properties.

83



CHAPTER 6

3-D FDTD SIMULATION OF SHEAR
WAVES FOR EVALUATION OF COMPLEX

MODULUS IMAGING

6.1 Introduction

The goal of the work presented in this chapter is to image the spatial vari-

ability of complex shear modulus constants in heterogeneous media. For

this work, we adapted a widely-used technique that directly inverts the wave

equation [105, 22]. It allows for the estimation of modulus constants as a

function of position and at individual shear-wave frequencies. Shear waves

are sensed by scanning the medium with pulsed Doppler pulses to estimate

particle velocities as described previously [20]. Velocity maps are processed to

reconstruct modulus images using the Algebraic Helmholtz Inversion (AHI)

method [106]. This algorithm operates under the assumptions that medium

dynamics are linear, isotropic, and piecewise homogeneous. It is found that

dynamic imaging techniques can yield artifacts in elastic shear modulus im-

ages near the surface of heterogeneities, and these artifacts appear to be

related to approximations made when processing data to form images.

To study limitations imposed by the various assumptions, a 3-D shear-

wave simulator is developed that accurately represents wave propagation in

heterogeneous media. Gelatin phantom studies, with known geometry and

mechanical properties, cannot address all of these questions, largely because

gelatin gels exhibit a relatively weak viscous response, unlike many soft tis-

sues. A finite-difference time-domain analysis was developed for simulating

shear-wave propagation in time and three spatial dimensions for heteroge-

neous media (3-D FDTD solver). These numerical methods are based on an

extensive seismic research literature, e.g., [107, 108, 109]. In this chapter, the

sensitivity of various assumptions intrinsic to the AHI algorithm is tested by

This chapter is adapted from M. Orescanin, Y. Wang, and M. F. Insana, “3-D FDTD
Simulation of Shear Waves for Evaluation of Complex Modulus Imaging,” IEEE Transac-
tions on Ultrasonics, Ferroelectrics and Frequency Control, 2010. Used with permission.
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comparing imaging results from simulated and experimental data.

The rest of this chapter is organized as follows. In Section 6.2 the adopted

3-D FDTD numerical approach is described. Furthermore, the adaptation

of the algebraic Helmholtz inversion is presented in Subsection 6.2.2. Ex-

perimental verification of the proposed numerical approach is presented in

Section 6.3 together with the AHI inversions on both numerical and exper-

imental phantoms. In Section 6.4 the effect of viscosity on the AHI recon-

structions is studied with the help of the proposed simulator. A summary of

findings is presented in Section 6.5.

6.2 Methods

The next section describes the forward problem of simulating shear waves

induced by a vibrating needle. We then summarize the inverse problem by

describing our adaptation of the AHI algorithm for modulus image formation.

Finally, we describe the experimental techniques used to validate the 3-D

FDTD solver for simulating shear waves.

The following section uses the notation ∂t to represent a partial derivative

operator ∂/∂t applied to values to the right of the symbol.

6.2.1 Numerical Approach

Although the equations of motion can be formulated in several ways, we

chose a velocity-stress formulation for an assumed isotropic medium [107].

That is, we propagate in time distributions of velocity and stress at spatial

points on a regular grid to which material properties (complex modulus and

density) and sources of mechanical energy are assigned. The velocity maps

may be related directly to Doppler-detected particle velocity fields measured

experimentally.

Generally a system of nine first-order hyperbolic equations is needed to

describe wave propagation in 3-D space. Shear waves were generated by a

needle vibrating sinusoidally along its long axis, in part, to minimize com-

pressional wave energy and thus reduce the computational load. Assuming

negligible compression, we may zero the normal stress components and as-

sume an incompressible medium to describe pure shear-wave propagation.
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The remaining six first-order hyperbolic equations expressed in terms of stress

tensor σ and velocity vector v for a viscoelastic medium are

ρ∂tvx = ∂yσxy + ∂zσxz

ρ∂tvy = ∂xσyx + ∂zσyz

ρ∂tvz = ∂xσzx + ∂yσzy (6.1)

∂tσxy = (µ+ η∂t) (∂yvx + ∂xvy)

∂tσxz = (µ+ η∂t) (∂zvx + ∂xvz)

∂tσyz = (µ+ η∂t) (∂zvy + ∂yvz) .

The mass density is ρ and is assumed to be spatially constant throughout

the medium. The complex shear modulus is G(xxx, ω) = µ(xxx)− iωη(xxx), where

µ(xxx) is the elastic shear constant and η(xxx) is the dynamic viscous constant

that can each vary with position xxx. This form of G results from selecting the

Kelvin-Voigt model.

As Virieux [107] describes, stable spatial discretization is achieved with

the finite-difference grid illustrated in Fig. 6.1. Time is uniformly sampled

via t = n∆t for integer n and interval ∆t. Similarly, space is uniformly

sampled where integer indices i, j, k count intervals ∆x, ∆y, ∆z to form

Cartesian coordinates x, y, z, respectively. Velocity components are specified

at grid positions that are offset by half intervals from the corresponding stress

components.

To propagate spatial quantities in time, the classic time-staggering ap-

proach is often used to estimate stress and velocity at alternating time in-

tervals. We chose an alternative method, the forward-backward differencing

technique [110], where velocities and stresses are computed at each time in-

terval. The system is initially at rest so that we can view the initial transient

response if needed. Issues of computational load, memory usage, and sta-

bility should be considered when deciding between approaches. Readers are

referred to the book by Durran [110] for this discussion.

The net FDTD approach is illustrated by expressing the first and fourth
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Figure 6.1: Diagram of the staggered grid discretization of the medium
with positions of the wave-field variables. Black symbols denote particle
velocities and white symbols denote stresses.

lines in Eq. 6.1 in discrete form as follows:
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where spatial indices are subscripts and temporal indices are superscripts.

To ensure numerical stability, spatial heterogeneities are handled by volume

harmonic averaging of µ(xxx) and η(xxx) with their 26 nearest neighbor grid

values [108, 109]. A straightforward augmentation to the derivations for

elastic media found in [108] allowed us to include viscoelastic properties.

Reflections at outer boundaries of the simulation domain were minimized
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by applying an absorption boundary layer. The layer is defined by a loss

profile chosen within a perfectly matched absorptive layer (PML) [109, 111].

The attenuation factor τ is given by

τ(i) = τmax

(
i− ipml
Npml

)m
(6.4)

where we set m = 2.1 and τmax = 0.1. The term i − ipml indicates posi-

tion within the PML and Npml = 10 is the layer thickness in grid points.

For example, within the layer near field boundaries, the velocity vn+1
x |ipml

=

vn+1
x |i − τ(i)(vn+1

x |i − vtarget), where vtarget → 0.

The vibrating needle source was introduced to the simulation by setting

vz at grid points within the needle at the instantaneous vibration amplitude.

Because grid sampling in the plane normal to the needle axis was set to

△x = △y = 1 mm, the needle was modeled with a 1 mm × 1 mm cross

sectional profile.

The FDTD algorithm was implemented in a fully parallel fashion using

the C language and parallelized using OpenMP API. The code was written

to run on two systems: a dual core workstation and a multi-core SGI Al-

tix supercomputer at the National Center for Supercomputing Applications

(NCSA) located at the University of Illinois campus.

6.2.2 Direct Inversion of the Wave Equation

In this section, we describe the AHI algorithm for imaging the complex mod-

ulus from the spatial patterns of measured or simulated shear waves.

Assuming that the viscoelastic properties of the medium are isotropic and

there is negligible compression applied to the medium by the source, the

particle velocity vector vvv = (vx, vy, vz) can be described by the Navier wave

equation in a homogeneous solid,

ρ
∂2vvv(xxx, t)

∂t2
= G′(xxx, t)∇2vvv(xxx, t) . (6.5)

Under these assumptions, it is sufficient to estimate just one velocity compo-

nent, e.g., vz, to estimate modulus values. Component vz is selected because

the axes of the Doppler beam and needle are aligned with the z axis. Con-

sequently, each pulsed Doppler echo frame forms a plane where scattering
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particles move vertically and shear waves move horizontally.

Direct inversion of the wave equation solves Eq. 6.5 for the complex modu-

lus either in the time domain G′(xxx, t) or temporal frequency domain G(xxx, ω).

When the temporal Fourier transform of particle velocity exists, frequency-

domain inversions are desired to reduce the number of derivatives calculated

on noise corrupted particle velocity fields [22].

The needle is vibrated harmonically in time according to −v0 sin(ωot), so
we begin by taking the temporal Fourier transform of the particle velocity

maps in a region surrounding the source, i.e., Vz(xxx, ω0) = Ft{vz(xxx, t)}|ω=ω0 ,

saving only the value at the excitation frequency ω0. This is a noise reduction

process, whereby many time-varying velocity estimates measured at each

spatial location are compressed into a single complex number. Equation 6.5

becomes the Helmholtz equation(
G(xxx, ω)

ρ
∇2 + ω2

)
Vz(xxx, ω)

∣∣∣∣
ω=ω0

= 0 , (6.6)

where for G(xxx, ω0) = µ(xxx)− iω0η(xxx) direct inversion yields

µ(xxx) = ℜ
{
−ρω2Vz(xxx, ω0)

∇2Vz(xxx, ω0)

}
, η(xxx) = ℑ

{
−ρωVz(xxx, ω0)

∇2Vz(xxx, ω0)

}
. (6.7)

We investigated how modulus parameters are distorted when this algebraic

Helmholtz inversion of velocity data is applied in two spatial dimensions

instead of three. Specifically, we asked what is the effect of using either

vz(x, z, t) or vz(x, y, z, t) to compute the Laplacian? In the 2-D case, ∂2vz/∂y
2

was set to zero, where the y axis is normal to the scan plane of the Doppler

probe. We examined related effects of material property symmetry in this

regard.

Prior to applying Eq. 6.7, we spatially filter Vz(xxx, ω0) in three dimensions

using a low-pass second-order Butterworth filter with a cutoff frequency of

160 m−1. Since the direct inversion process is not regularized, spatial filtering

is essential [106]. For 2-D reconstructions, we filter with a 2-D low-pass

Butterworth filter. After inversion, µ and η images are again spatially filtered

by a median filter with a symmetric kernel size of 15 in either two or three

spatial dimensions.
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6.2.3 Experimental Approach

This section introduces our experimental approach to 3-D shear wave imag-

ing. We begin by explaining the synchronized acquisition of Doppler echo

signals that effectively samples shear waves in a volume up to 1000 volumes

per second. We review the process of estimating velocity from echo signals,

and finish by summarizing the procedure for heterogeneous phantom prepa-

ration.

Data Acquisition

Ideally we would transmit and receive Doppler echoes from the entire scan

volume simultaneously at a rate more than twice the highest shear wave fre-

quency and with a spatial sampling that prevents spatial aliasing. Without

this capability, we are relegated to sequential echo acquisitions where time

series of echo signals are recorded in phase with the vibration of the needle.

Our method is to record a 3000-pulse Doppler ensemble at a rate of 8000

pulses/s sequentially for each value on the x, y plane sampling grid (0.46 mm

× 1.0 mm). Echoes are recorded as a function of fast and slow time without

moving the aperture, as is the convention for spectral Doppler recordings.

Fast-time series samples give range echoes along the z-axis, while slow-time

series samples become the velocity time axis t. We then index the beam

aperture electronically along the lateral x axis and mechanically along the

elevational y axis to obtain ensembles from the entire volume and in time

but always synchronized to the phase of the vibrating needle. Phase-lock re-

peatability of the acquisition was tested previously [20]. Each 3-D acquisition

requires several hours to scan one phantom at each shear wave frequency.

Doppler Imaging

A Sonix-RP system (Ultrasonix Medical Corporation, Richmond, Canada)

was used to transmit and receive narrow-band Doppler pulses as described

above. We used two sequential linear array transducers (BW-14/60 and

BW-14/40) that differed in the lateral line density and extent (x axis) of

the recorded field. Six-cycle pulses were transmitted at a center frequency

of 6.67 MHz and a zero Doppler angle (beam and needle axes were parallel).
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The peak echo frequency was found to be ∼ 6 MHz. We used the default

beamformer resulting in 128 A-lines separated laterally by a 0.46-mm array

pitch for a BW-14/60 and 0.3-mm array pitch for BW-14/40. The 3000-pulse

ensemble was recorded at each of the 128 lateral spatial locations. Echoes

were sampled in fast time at 40 Msamples/s and then downsampled internally

by a factor of two before data were transferred for off-line processing on a

PC. The slow-time sampling rate was 8 kilo-pulses/s.

At each spatial position, the 3000 time series in the echo ensemble were

divided into six sequential, non-overlapping groups to estimate instantaneous

particle velocities using a lag-5 autocorrelator [20]. Thus, at every point in

the volume, we acquired a time series of 500 velocity estimates at an effective

sampling interval of 0.75 ms. This velocity estimator was described previ-

ously [20]. The spatial sampling intervals for velocity estimates were 0.46 mm

× 1.0 mm × 0.39 mm for the BW-14/60 array (lateral x, elevational y, range

z) and 0.30 mm × 1.0 mm × 0.39 mm for the BW-14/40 array. For both

transducers, the range interval of 0.39 mm was determined by downsampling

velocities a factor of 10 using averaging.

Phantom Preparation

Gelatin gel phantoms (250 bloom strength, Type B, Rousselot, Buenos Aires,

Argentina) were constructed for two purposes. First, we validated the accu-

racy of shear waves simulated by the FDTD solver. Second, we tested the

accuracy of the AHI algorithm at forming elastic modulus images from shear

wave measurements. Independent measurements of the elastic modulus for

each phantom component were obtained during a prior study [19, 20].

Using construction techniques described in [20], a molten gelatin prepa-

ration containing undissolved cornstarch particles is poured into an acrylic

mold (height 9.5 cm, width 9.5 cm and length 12.5 cm) and sealed. Within

the acrylic box, there is a solid cylindrical rod (15-mm dia) fastened to op-

posite interior walls and sprayed with a mold release. The rod creates a void

where later the inclusion will be formed. The solution is allowed to congeal

quiescently at room temperature for 24 hrs. Then the acrylic rod is removed

and molten gel of different gelatin concentration is poured into the cylindrical

void. This heterogeneous phantom is again sealed and allowed to congeal for

another 24 hrs before testing.
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Phantoms were constructed with a gelatin concentration of 8% (by weight)

in the background and 4% in the inclusion. The background and inclusion

regions contained 3% and 6% cornstarch, respectively. Two nominally iden-

tical phantoms were constructed weeks apart, one for each experiment at 100

Hz and 150 Hz shear wave frequencies.

6.3 Results

In the following section we compare particle velocity images from shear waves

simulated using the 3-D FDTD solver with those measured experimentally in

a gelatin phantom for matched conditions. We then apply the AHI algorithm

to both types of data to form shear modulus images using either 2-D or full

3-D velocity maps.

6.3.1 Experimental Validation

A needle was inserted about 5 cm into a phantom for shear wave imaging.

The needle axis was oriented parallel to the axis of the soft, 15-mm diameter

cylindrical inclusion (along the z axis) but the two axes were separated by

approximately 20 mm. The two C-scans in the left column of Fig. 6.2 display

x, y image planes at a z-axis depth of several centimeters below the top

surface of the phantoms. The view is from the Doppler probe looking down

the beam axis. The needle is positioned about 15 mm above the top of the

images (out of view) and vibrated along its long axis.

The three images in the top row of Fig. 6.2 were generated for one of the

two phantoms at a needle vibration frequency of 100 Hz. The bottom row

of three images was generated for the second phantom at a needle vibration

frequency of 150 Hz. The pitch and length of the linear arrays are different

for the two phantoms, as described above, which changes pixel sizes and

makes the circular cross sections of the inclusion appear different sizes.

The middle column of images in Fig. 6.2 are the experimentally recorded

maps of particle velocity caused by cylindrically diverging shear waves radi-

ating from the needle. Images in the right column are numerically simulated

with the 3-D FDTD solver for the same experimental conditions. Black and

white pixels indicate motion along the z axis, away and toward the probe.
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Figure 6.2: Phantom images for comparing FDTD simulations with
Doppler measurements of shear-wave-induced particle velocities. The
velocity range displayed is ±5 mm/s in the top row and ±1 mm/s in the
bottom row. The needle source (positioned approximately at (22 mm, -5
mm)) was vibrated at 100 Hz (top row) and 150 Hz (bottom row). (a) and
(d) are 6 MHz C-scans of the phantom, (b) and (e) are measured shear
wave images. (c) and (f) are simulated under the same conditions. Bright
and dark regions indicate particle velocities toward and away from the
Doppler probe. The lateral dimension is the x axis and the elevational
dimension is the y axis. The Doppler linear array aperture was oriented
vertically with the beam oriented into the scan plane.
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We measured modulus constants in the phantoms and applied those values

in the simulations. The spatially averaged values in the inclusion at 100 Hz

were found to be µinc = 1.1 kPa and ηinc = 0.1 Pa·s. In the background at

100 Hz, we found µbck = 4.0 kPa and ηbck = 0.5 Pa·s. In the inclusion at 150

Hz, we measured µinc = 0.95 kPa and ηinc = 0.2 Pa s, and in the background

at 150 Hz we have µbck = 4.4 kPa and ηbck = 0.5 Pa·s. We assumed the

density ρ = 103 kg/m3 throughout the volumes.

During the experiments, the needle was vibrated for 2 s before data were

recorded. This recording delay ensured that the transient responses were

negligible. Thus the measured and simulated shear wave images describe the

steady-state response at the same instant in time. Shear wave reflections

from the outer boundary were not observed. Because the background is

stiffer than the inclusion, we see that the shear wavelength is reduced in the

inclusion region. Although the phase front is distorted, the wavelength in

the background material distal to the inclusion is restored – an effect more

obvious when the shear wavelength is smaller that the inclusion size. Clearly

shear waves are attenuated more at higher frequencies. Note that we are

displaying velocity images at a specific depth, Vz(x, y, z0, ω0); however, the z

component of velocity was measured throughout the 3-D volume.

The FDTD solver assigns relative values to particle velocities in the shear

wave simulations. Therefore we selected a single overall scale factor for the

images in the right column of Fig. 6.2 to facilitate comparisons. Furthermore,

we plotted in Fig. 6.3 the vertical lines of 100 Hz velocity data through the

inclusions of Figs. 6.2(b) and (c) at y = 20 mm.

Overall the measured and simulated data agree well. However there is

evidence that the non-slip condition at the inclusion surface assumed in the

simulation was violated experimentally. We found the surfaces were very

weakly bonded because of the use of mold release during construction.

Applying the AHI algorithm to the measured and simulated 3-D velocity

estimates, we reconstructed µ and η images at 100 Hz and 150 Hz. We

summarize results only for the elastic shear modulus µ at 150 Hz. Results

generated from measured experimental velocities are shown in Fig. 6.4 and

those from simulated velocities in Fig. 6.5. In both figures, the top row of

images are from the x, y plane of Fig. 6.2 (short-axis view), and the bottom

row of images are from the orthogonal x, z plane near the center of the

cylindrical inclusion (long-axis view). Elastic modulus values in both figures
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Figure 6.3: Lateral cut through the inclusion center for both experimental
and simulation data for shear wave excitation at 100 Hz. Slight differences
are attributed to the stronger reflections within the inclusion in
experimental data due to the boundary conditions.

have the same scale.

The two levels of spatial filtering applied in the AHI algorithm clearly

reduce spatial resolution. Notice the gray band surrounding the inclusion in

every view. The differences are particularly clear between Fig. 6.5(a), elastic

modulus map input into the shear wave simulator, and Fig. 6.5(b), the elastic

modulus reconstructed from those simulated shear waves.

Figure 6.4 shows there is good spatial registration between the C-scan and

µ images. The C-scan inclusion echogenicity contrast is from differences in

scatterer number density and µ-image stiffness contrast is due to different

gelatin concentrations. The appearance of the inclusion in cross section is

consistent for µ images generated from 2-D and 3-D velocity data. However

the appearance of the inclusion in long-axis view is distorted when 2-D veloc-

ity data, Vz(x, z, ω0), are used. The appearance of the inclusion in long axis

is not distorted for 3-D velocity data, Vz(x, y, z, ω0), and these observations

hold for both the experimentally acquired and the simulated velocity data.

In Fig 6.6 we present a volume rendering of the reconstructed 3-D elastic

shear modulus.

Using 2-D velocity data, we have no information about ∂2vz/∂y
2 in Eq. 6.7.

Setting this derivative to zero ignores the flow of mechanical energy through

the image plane. In the presence of strong out-of-plane energy fluxes, as for
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Figure 6.4: Algebraic Helmholtz Inversion (AHI) reconstructions of elastic
shear modulus µ [kPa] from experimental velocity data obtained from a
gelatin phantom at 150 Hz. Image (a) is an ultrasonic C-scan image at the
same depth as the µ(x, y) images shown in (b) and (c). The B-scan in (d) is
registered to the µ(x, z) images in (e) and (f). Images (b) and (e) are
reconstructed from vz data acquired in three dimensions, while images in
(c) and (f) are from 2-D vz data acquired in the plane of the image.
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Figure 6.5: AHI reconstructions of elastic shear modulus µ [kPa] from
simulated velocity data at 150 Hz. Images (a) and (d) show the modulus
image input into the 3-D FDTD solver, and images (b), (c), (e), (f)
correspond to those of the experiment shown in Fig. 6.4.

Figure 6.6: Volume rendering of 3-D reconstructed elastic modulus from
150 Hz experimental data set.
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the long-axis view, artifacts are generated. In the short-axis view, however,

energy flow is almost entirely in the image plane because object properties

change negligibly along the y axis. Images of the dynamic viscous coefficient

η were very noisy for experimentally acquired and simulated data in 2-D or

3-D.

6.4 Discussion

An advantage of using phantoms to develop imaging techniques is that the in-

ternal geometry and constituent component properties are generally known.

Unfortunately, the low dynamic viscosity of gelatin, as compared with the es-

timation noise, means that gelatin, as we prepare it, is not a reliable medium

for testing the fidelity of the AHI algorithm for reconstructing η. Other in-

vestigators reported similar troubling results for the viscous constant [105].

Since the difficulty lies in calculating Laplacians in noisy measurements, one

solution is to test the algorithm in a more dispersive medium such as liver

tissue.

We applied the 3-D FDTD solver, now experimentally validated in phan-

toms, to the same phantom geometry but with liver-like material properties

to further investigate AHI performance. Previous measurements by our lab

(Chapter 5) and others [18] showed liver to be more dispersive and therefore

of substantially higher dynamic viscosity than gelatin gels. At the same time,

µ for the two media are comparable. Measurements in fresh porcine liver gave

an elastic modulus µ = 2.2 kPa and dynamic shear viscosity η = 1.8 Pa·s.
We also measured the properties of thermally damaged porcine liver and

found µ = 5.0 kPa and η = 5.8 Pa·s. Using fresh liver values to represent

the background material and thermally-damaged liver for the inclusion, we

simulated 150 Hz shear waves propagating through a “liver phantom”. The

results are presented in Fig. 6.7.

Reconstructed values of µ and η in the short-axis views of Fig. 6.7(b) and

(c) are within 10% of the values input into the shear-wave simulator. How-

ever, the inclusion shape is distorted in both images. The degree of distortion

increases with η. The inclusion appears to be shorted in the direction of wave

propagation for both images, and shifted away from the incoming wave for

µ images and toward the incoming wave for η images. Combining the two
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Figure 6.7: AHI reconstructions from simulated shear-wave particle velocity
data of liver containing a thermal lesion. The magnitude of the complex
shear modulus input into the FDTD solver is shown in (a). Background
properties of the region are taken from measurements on fresh porcine liver,
while properties for the bright target area are from stiff, thermally-damaged
liver. Shown are an elastic shear modulus µ image in (b) and a dynamic
shear viscosity η image in (c) resulting from reconstructing a shear-wave
simulation. (d) is given by combining images in (b) and (c) to form the
magnitude of the estimated complex shear modulus,

√
µ2 + ω2η2.

images using (µ2+ω2η2)1/2, we can recover the general shape of the inclusion,

as in Fig. 6.7d), regardless of the wavelength or viscosity.

Although the phase gradient method for estimating complex modulus val-

ues suffers from biases induced by medium heterogeneities [20], they appear

to be more sensitive to low values of dynamic viscosity, even at low shear-

wave frequencies, when those results are compared to the results from AHI

algorithm.

Recently in the literature, several authors have addressed the effects of

coupling between shear and pressure waves [112]. These studies were con-

ducted using a Green’s function approach and the assumption of acoustic

radiation force excitation. In our simulations and experiments, we can safely

ignore pressure wave propagation because very little is generated by the vi-

brating needle except near its tip. One reason for choosing the needle over a

radiation force stimulus is to lower the computational complexity by ignoring

compressional waves.

In classical computational fluid dynamics, the stability condition requires

c∆t/∆x < 1, where c represents the velocity of the fastest wave in the simula-

tion domain and ∆t and ∆x are the temporal and spatial sampling intervals.

We would have to decrease ∆t in the simulator by three orders of magni-

99



tude to avoid undersampling the compressional waves in time, and reduce

∆x similarly in all three spatial dimensions to avoid spatial aliasing. These

reductions increase the computational load by many orders of magnitude.

Although we neglected coupling between compressional and shear waves, we

have not observed any consequences as a result. We showed [20] that the

needle generates waves that can be modeled as cylindrically diverging with

enough accuracy to solve the wave equation for that geometry and therefore

apply analytical expressions to the phase gradient estimation of the complex

modulus. Needle vibration opens up the possibility of more general model-

based reconstructions of the complex modulus that can reduce image noise

significantly when compared with direct inversion approaches. With noise re-

duction comes improved spatial resolution as the need for spatial filtering is

reduced. The needle is an invasive technique, and therefore most appropriate

for basic science investigations.

6.5 Conclusions

This chapter presents a developed and implemented finite-difference time-

domain technique for simulating shear waves in heterogeneous 3-D viscoelas-

tic media. The simulator is straightforward to code and generates 3-D shear

waves in time within a few days of processing on a desktop workstation, but

it is representative of experimental results only when minimal compressional

wave energy is present. The simulator was validated experimentally using

a cylindrical source of shear waves. A comparison is presented of simulated

particle velocity fields in heterogeneous phantoms of known properties with

experimental estimates of the spatial wavelength, amplitude attenuation and

refraction patterns. The results were found to be in good qualitative agree-

ment.

The simulator was then used to study the accuracy of the algebraic Helmholtz

inversion algorithm. The images of complex modulus constants can be dis-

torted in patterns that depend on the shear wavelength and the amount

of dispersion in the medium. These distortions were minimized simply by

imaging the magnitude of the complex shear modulus. To avoid additional

artifacts it is essential to measure velocity components in all three spatial di-

mensions for which medium heterogeneities have significant curvature. How-
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ever it is sufficient to make measurements in just three adjacent scan planes

when estimating the Laplacian from the AHI algorithm. Sufficient data may

be obtained by translating the aperture in elevation either mechanically or

electronically, e.g., using a 1.25D array. Alternatives include model-based re-

construction methods (Chapter 7) where the shear field is known analytically

and therefore the wave equation can be solved in closed form. The vibrat-

ing needle generates nearly cylindrical waves that can provide the missing

velocity information needed to avoid artifacts.

The conducted study of the influence of viscosity on shear wave propaga-

tion in heterogeneous materials provided further evidence of the added value

of information in viscosity reconstruction. By reconstructing complex shear

modulus we were able to spatially register highly viscous inclusion and to

avoid artifacts that one might encounter when reconstructing only elastic

modulus.

This type of artifact would not appear if a phase gradient method for the

reconstruction of the shear wave speed were used. The reason for this is

that the shear wave speed already contains viscoelastic information, so the

image of the inclusion based on the shear wave speed reconstruction would

be properly registered. Nevertheless, due to boundaries within the inclusion,

the reconstructed shear wave velocity would be biased.

Work presented in this chapter brought several aspects of this dissertation

to our attention regarding proposed methods for shear wave imaging. First

of all, wave propagation is a 3D phenomenon; any reconstruction from 2D

acquired fields without proper correction for the out-of-field component will

be biased and prone to artifacts in the reconstructed images of the complex

shear modulus. This conclusion applies for algebraic reconstruction methods.

With the phase gradient method, by estimating the shear wave speed, we can

reconstruct localized material properties that are unbiased and without ar-

tifacts for 2D case if material is homogeneous. On the other hand, in the

presence of the inclusions and reflections from boundaries the phase gradient

method will be biased and artifacts would be produced in the reconstructed

images. Algebraic reconstruction can resolve material properties in the pres-

ence of reflections from the boundaries because it inverts the wave equation.

Depending on the application and based on these engineering tradeoffs, one

can decide on the best suited method for his needs.

In the next chapter a different method is pursued. The idea is to use 2D
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particle velocity fields for the reconstruction of the material properties be-

cause such approach is practical and common in ultrasound imaging. More-

over, a priori knowledge of the wave dynamics is used to our advantage

when estimating complex shear modulus. In the next chapter a model based

Bayesian approach to reconstruction of complex shear modulus is presented.
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CHAPTER 7

MODEL-BASED COMPLEX SHEAR
MODULUS RECONSTRUCTION: A

BAYESIAN APPROACH

7.1 Introduction

In previous chapters, important experimental results were obtained with

methods for complex shear modulus estimation. In particular, statistically

significant differences between fresh and thermally damaged tissues were ob-

served. In spite of their usefulness, the studied methods, i.e., phase gradient

and algebraic inversion methods, suffer from practical limitations. First, nei-

ther one of these two methods is suitable for online implementation. Second,

the phase gradient method required fitting to a shear wave dispersion equa-

tion where data had to be available at several frequencies, although 1D and

2D data could be used. In contrast, direct algebraic inversion required 3D

data, although data at one frequency was sufficient for shear modulus estima-

tion. Therefore, there is a need to develop inversion methods that are more

suitable for online implementation while combining some of the advantages of

the algorithms explored in Chapters 4-6, i.e., ability to both properly handle

1D, 2D data and obtain inversions with single frequency data. In this chap-

ter, an approach to complex shear modulus reconstruction is introduced that

can circumvent a few of the drawbacks of methods studied in Chapters 4-6.

The method is described for obtaining quantitatively accurate estimates of

the complex shear modulus from a harmonic source at individual frequencies

using 1-D spatial information.

The proposed method is based on a Bayesian approach, where material

parameters are assumed to be random variables whose particular realization

must be estimated [113]. This approach departs from the one followed in

Chapters 3-6 where the underlying material properties were assumed to be

This chapter 7 is an extended version of M. Orescanin and M. F. Insana, “Bayesian
reconstruction of complex shear modulus images,” Proc. IEEE International Ultrasonics
Symposium, San Diego, October 2010.
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deterministic but unknown constants. The reasoning behind the proposed

Bayesian approach is that knowledge about tissue parameters, if available,

can be integrated in the estimator in order to improve estimation accuracy

[113]. This method requires an assumption that parameters being estimated

are random variables with prior probability density function (pdf).

In the case of shear wave imaging, like in many other applications, an ap-

proximate dynamical model with uncertain estimates of initial and boundary

conditions is available. In addition, we have measurements of the model so-

lution collected at different spatial and temporal locations depending on the

engineering properties of our imaging system. The inverse problem to address

in the proposed approach is the calculation of the pdf of the model solution

conditioned on the measured observations. More often this approach is re-

ferred to as data assimilation [114]. We describe a new technique based on

spatiotemporal nonlinear stochastic filtering of Doppler-detected particle ve-

locities. Parameters derived from a maximum a posteriori (MAP) estimate

of particle velocities are regularized by a dynamic wave propagation model

to quickly obtain low-noise estimates of complex shear modulus parameters.

In the field of elasticity imaging several researchers used stochastic filtering

for the reconstruction of underlying material properties. Zheng et al. [115]

implemented a linear Kalman filter for the reconstruction of the harmonic

motion of particle velocities at distinct spatial locations. Their approach is to

model displacement at the spatial point of interest as a sinusoidal function

of time. From estimated quantities, absolute phase at a distinct spatial

location can be found. By repeating the same procedure for another location

a phase difference is found similar to the method proposed in Chapter 4.

Shear wave speed and shear wave dispersion curves are estimated over a

frequency bandwidth and, via a fit, material properties are obtained. The

stochastic filtering approach helped the authors to obtain optimal estimates

of the temporal phase at the given spatial location from available IQ data,

but their approach to material properties estimation is similar to the one

proposed in Chapter 4. A drawback of this method is that, although optimal

estimates of the particle velocities are provided, reconstruction of complex

shear modulus is not optimal and is a post-processing procedure requiring

several shear wave frequency measurements.

For thin tissue constructs, the modulus reconstruction of Liu and Ebbini

[116] proposed a second-order dynamical model similar to the one presented
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in Chapter 3. Their approach was to displace a tissue construct at the dis-

tinct spatial location by using acoustic radiation force. They track tissue dis-

placement and use an extended Kalman filter (EKF) approach to reconstruct

material properties at the given location. The EKF approach is necessary

since the dynamical model used is a non-linear function of the underlying ma-

terial parameters. Scanning samples in the raster manner, they form images

of the underlying material properties. Similarly to Zheng, their approach is

limited to single spatial location during filtering. A drawback of the Liu and

Ebbini [116] method is that the force magnitude needs to be known for the

calculations.

The above mentioned approaches can be classified as temporal reconstruc-

tions [117] of the underlying parameters using stochastic filtering. A different

approach was taken by Tada et al. [118] for the material properties recon-

struction during indentation tests. Instead of reconstructing material prop-

erties from dynamics of a single spatial point, they used an FEM simulator

to link the field of the spatial points and their dynamics during indentation

procedure. Observations of the material displacement over time are obtained

using MRE. Material properties are reconstructed using an EKF to obtain

low variance estimates.

In this dissertation, we favor the latter approach, where spatial area, not

just one point, is evolved over time. We call this the spatiotemporal approach

[117], where the spatial solution of the shear wave equation evolves over time.

This approach is common in more mature fields such as geophysical sciences

[114]. Comparing the spatiotemporal approach to the temporal approach of

Zheng et al. [115], material properties can be reconstructed from estimated

particle velocities per frequency in real-time.

The emphasis in this dissertation chapter is not on developing a new

stochastic filtering framework for data assimilation. Rather, the intention

is to adapt a well-developed method and study the feasibility of the data

assimilation approach for the complex shear modulus reconstruction. This

chapter is organized as follows. Section 7.2 provides a background on the

stochastic filtering needed for understanding the Bayesian approach taken

and the results in this chapter. This brief introduction to stochastic filtering

is followed in Section 7.3 by details of the adapted approach. Specifically,

the system model equation is derived; a joint parameter and state estima-

tion problem is formulated via augmented state representation; and details

105



of the adapted stochastic ensemble filter, the maximum liklehood ensemble

filter (MLEF) [119], are explained. Furthermore, our version of an ultrasonic

Doppler simulator capable of simulating realistic moments of particle veloc-

ities based on the imaging parameters is outlined. In Section 7.4, numerical

and experimental results are presented. Finally, in Section 7.5 concluding

remarks are provided.

7.2 Background

A model-based processor is formulated on the analytical solution to the cylin-

drical shear wave equation. A Bayesian MAP solution for the resulting time-

variable wave system and the processor is shown to be a recursive solution

that can be solved using stochastic filtering techniques. In this chapter, the

focus is on the practical application of the stochastic filtering; specifically,

the discrete stochastic filtering problem is addressed. The discrete stochastic

filtering problem is a dynamic system that can assume the following form:

xk = M(xk−1), k = 0, 1, . . . (7.1)

yk = H(xk) + ϵk, k = 0, 1, . . . (7.2)

where k is the discrete time index, xk is the N dimensional state vector,

M is the deterministic, possibly non-linear, mapping function, yk is the

observation vector, H is the deterministic (observation operator), possibly

non-linear, mapping function of xk, and ϵk is an independent observation

noise sequence.

Equation 7.1 is the state equation or the system model equation. Physical

processes subject to random disturbances, whose state can be represented

as a finite-dimensional vector, can be modeled via a vector difference equa-

tion [120]. Equation 7.2 is the observation operator equation. The Bayesian

approach suggests that we calculate density p(xk|yk), also called a posteri-

ori pdf, which encapsulates the information on the state vector, xk, that is

contained in the observations yk and the prior distribution of xk [113].

According to Bayes theorem, the posterior pdf follows from the relation

p(x|y) ∝ p(y|x)p(x). (7.3)
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In the MAP estimation approach, we chose x̂ to maximize the poste-

rior pdf or x̂ = argmax
x

p(x|y) [113]. Hence, the MAP estimator is x̂ =

argmax
x

p(y|x)p(x). In this thesis, several assumptions are made regard-

ing the pdf’s of the processes of interest. We model pdf’s as Gaussian

[121, 122]. Specifically, for generality we drop time index k. Therefore,

the error marginal density p(x) is given with the error distribution ϵf =

(xf − x) ∼ N (0,Pf )

p(x) =
1

(2π)N/2|Pf |
1
2

exp

(
−1

2
(x− xf )TP−1

f (x− xf )

)
, (7.4)

where xf is the predicted state value, Pf is predicted covariance (positive-

definite matrix), and |Pf | is the determinant of Pf . The conditional mean,

xf , and the covariancePf are obtained via the model state equation evolution

of the prior mean and the covariance. The likelihood pdf, or the observation

error conditional pdf, is assumed to be Gaussian with ϵr = (y − H(xf )) ∼
N (0,R) [114]

p(y|x) = 1

(2π)N/2|R| 12
exp

(
−1

2
(y −H(x))TR−1(y −H(x))

)
, (7.5)

where R is positive-definite matrix and |R| is the determinant of R.

With help from Eqs. 7.4 and 7.5, Eq. 7.3 can be written as

p(x|y) ∝ 1

(2π)N/2|Pf |
1
2

exp

(
−1

2
(x− xf )TP−1

f (x− xf )

)
× 1

(2π)N/2|R| 12
exp

(
−1

2
(y −H(x))TR−1(y −H(x))

)
. (7.6)

Equivalent to maximizing the a posteriori probability, we can take the

logarithm of Eq. 7.6, ln p(x|y), and minimize the cost function J [121, 122]:

J (x) =
1

2
(x− xf )TP−1

f (x− xf ) +
1

2
(y −H(x))TR−1(y −H(x)). (7.7)

The least square solution xa = xopt, that gives minimum J , also yields the

maximum for p(x|y), hence it is the maximum liklehood estimate. A detailed

derivation of the cost function can be found in books by Evensen [114] and

Van Der Heijden [122]. The optimal x can be determined using iterative
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unconstrained minimization methods.

In this dissertation, for the task of minimizing the cost function defined

by Eq. 7.7, we adapt a Maximum Liklehood Ensemble Filter (MLEF) [119].

MLEF is a stochastic filter capable of handling nonlinear dynamical mod-

els and nonlinear observation operators. More details about this specific

stochastic filter and its adaptation are provided in the next section.

7.3 Methods

A mechanical actuator harmonically drives a stainless steel needle placed

in the medium to generate narrow-band cylindrical shear waves. Shear

waves are imaged in a radial plane using a multi-lag phase estimator, which

leverages the narrow-band wave feature to extend standard pulse-pair (lag-

one) processing for reduced velocity variance (Chapter 4). By applying a

vibrating-needle source, we can model shear wave dynamics as the solution

to the Helmholtz equation with a cylindrical geometry. A well-defined source

geometry provides exclusively cylindrical shear wave propagation from the

source, except in the region around the needle tip. Strong coupling between

the source vibration energy and the propagating shear wave results in large

particle displacement amplitudes along the path of propagation. This cylin-

drical wave model is applied in developing a prediction filter used to model

the nonlinear relationship between wave dynamics and material parameters.

Consequently, we adapted a Maximum Likelihood Ensemble Filter (MLEF)

[119] for this estimation. The feasibility of this technique is demonstrated

via simulations with realistic imaging parameters and from ultrasonic mea-

surements of mechanical properties in tissue-like hydrogels. Details of the

experimental setup are found in Chapter 4.

7.3.1 System Model Equation

In Chapter 4, narrow-band cylindrical shear waves excited by a harmoni-

cally driven needle were studied. It was shown that spatiotemporal shear

wave dynamics can be accurately modeled with an analytical expression for
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cylindrical shear wave propagation along the radial axis,

v(r, t) =
1√
r
Ae−αr cos(ωt− ksr) , (7.8)

where v is the particle velocity, r is the radial distance from the needle in the

plane, t is the time, A is the magnitude of the wave at the source location,

α is the absorption or imaginary part of the complex shear wave number,

and ks is the real part of the complex shear wave number at angular shear

frequency ω. Validity of the proposed model was verified via comparison

with experimentally acquired data as illustrated in Fig. 4.3. Equation 7.8

needs to be transformed into a difference system model equation to be used

within the theoretical framework discussed in Section 7.2.

In the following equations, we derive the generalized difference form of

Eq. 7.8. We start with a generalized version of Eq. 7.8 given by

vk =
1√
r − r0

Ae−α(r−r0) cos(ωk△t− ks(r − r0)− ϕ) , (7.9)

where index k denotes discrete time, r0 is the initial distance from the source,

△t denotes discrete time step and ϕ represents initial temporal phase. Equa-

tion 7.9 can be represented as a function of previous time step,

vk =
1√
r − r0

Ae−α(r−r0) cos(ω(k − 1 + 1)△t− ks(r − r0)− ϕ)

=
1√
r − r0

Ae−α(r−r0) cos((ω(k − 1)△t− ks(r − r0)− ϕ)− ω△t) . (7.10)

Using the trigonometric identity,

cos(φ− θ) = cos(φ) cos(θ)− sin(φ) sin(θ) , (7.11)

one can derive from Eq. 7.10

vk =
1√
r − r0

Ae−α(r−r0)[cos(ω(k − 1)△t− ks(r − r0)− ϕ) cos(ω△t)

− sin(ω(k − 1)△t− ks(r − r0)− ϕ) sin(ω△t)] . (7.12)
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Following the definition in Eq. 7.9

vk−1 =
1√
r − r0

Ae−α(r−r0) cos(ω(k − 1)△t− ks(r − r0)− ϕ) . (7.13)

From Eq. 7.12 and Eq. 7.13 it follows that

vk = vk−1 cos(ω△t)−
1√
r − r0

Ae−α(r−r0)

× sin(ω(k − 1)△t− ks(r − r0)− ϕ) sin(ω△t) . (7.14)

This model allows for appropriate initialization of the forward model that

is capable of predicting spatiotemporal cylindrical shear wave dynamics in

a recursive manner. Equivalently, model state equation Eq. 7.14 takes the

form

vk = M(vk−1;θ) , θ = [r0 ϕ A α ks]
T (7.15)

where M is the nonlinear forward model assuming that the parameter vector

θ represents unknown variables assumed spatially constant, i.e., ∇θ = 0. If

the parameter vector represents known constants, the derived model would

be considered linear with respect to particle velocities.

7.3.2 Observation Model Equation

In general the observational equation is a nonlinear function of the state vec-

tor, characterized by the nonlinear operator H, Eq. 7.2. Operator H models

the transfer function between the true underlying particle motion, v, and

estimated particle velocities, v̂. Ultrasound systems do not detect particle

velocities directly; rather, a change in the phase shift between two received

pulses is estimated and velocity estimate is formed using this information

(see Chapter 4). In practice, ultrasound systems can be modeled using linear

systems theory. One can find linear observation operator H for the given

system at hand to model US Doppler detection. With the assumption that

all particles within imaging pulse volume move with constant velocity v, es-

timated velocity within the pulse volume for this case corresponds to the

averaged value of the velocity within the pulse volume. Hence, estimated

velocity is given with v̂ = H(v) = 1
N

∑N
i=1 vi = v, where N is the number of
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particles. Number of particles is a scaling constant that affects imaging SNR

and does not affect estimated velocity within the pulse volume. Under these

conditions, H = H = I (ideal Doppler imaging system), the observation

equation, Eq. 7.2, becomes

v̂k = Ivk + ϵk , k = 0, 1, . . . (7.16)

The noise term varies by application; it is directly related to the variance

of Doppler velocity estimates. The variance of Doppler velocity estimates

depends on several engineering parameters of the system and the magnitude

of the particle velocity. More details are provided in the Section 7.3.5. Noise

is modeled as Gaussian, ϵ = N (0,R), where R is a diagonal covariance

matrix.

7.3.3 Augmented State-Space Representation

The joint state and parameter estimation problem is treated as an augmented

state estimation problem for the nonlinear model equation represented by

[120, 123, 114],

xk =

[
vk

θk

]
=

[
M (vk−1;θk−1)

θk−1

]
, (7.17)

where v is the vector of radial particle velocities and M is the nonlinear

forward operator, both defined by Eq. 7.14. In Eq. 7.17, the state vector

of radial particle velocities is augmented with the vector of the unknown

parameters. The relationship between θk and θk−1 was obtained assuming

material parameters to be constant during the data acquisition time; i.e.,

θ̇ = 0. This is a sound assumption since data acquisition occurs over a

time frame of one hour. During that time and at the constant temperature,

gelatin is not expected to change physical properties. For specific gelatin

concentrations, the complex shear modulus change as a function of age is

illustrated in Figs. 3.5 and 3.6.

Similarly, using Eq. 7.16, the augmented measurement equation gives the

vector of velocity estimates v̂ as

yk =

[
v̂k

0

]
= [I 0]

[
vk

θk

]
+

[
ϵ0

0

]
. (7.18)
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The parameter vector θ is not directly observable by the ultrasound system

and is therefore zeroed in the observation model in Eq. 7.18. The joint

state and parameter estimation problem can now be understood as a state

estimation problem for the augmented nonlinear system given by Eqs. 7.17

and 7.18.

7.3.4 Maximum Likelihood Ensemble Filter (MLEF)

The augmented non-linear system formulation given by Eqs. 7.17 and 7.18

leads to a filtering problem solved using MLEF [119, 124]. MLEF estimates

the state vector through the minimization x̂ = argmin
x

J (x). The compu-

tational steps of MLEF are similar to those of other stochastic filters that

adopt a form of feedback control estimation. The filter predicts the process

state at regular time points from a model with assumed parameters. It uses

measurements to then correct the state vector for parameter inaccuracies.

The equations fall in two general groups: a forecasting step that predicts the

state of the system and an analysis step that makes corrections to the pre-

dicted state. In the forecasting step, the current state and error covariance

matrix are projected forward in time to provide the a priori estimates for

the next time step. The analysis step provides the feedback correction with

a posteriori data information. Details about the derivation of the algorithm

and minimization of the cost function can be found in [119] and [124].

The first step in MLEF filtering is the initialization of the state vector

x0 = [v0 θ0]
T and the error square-root covariance matrix with

P
1/2
0 = [p1 p2 · · · ps], pi =


p1,i

p2,i
...

pN,i

 , (7.19)

where index N defines the dimension of the state vector and index S defines

the number of ensembles. Generally, MLEF is a reduced rank filter, i.e.,

S < N , although it could be full rank.

The expressions for forecasting and analysis steps in MLEF filtering often

imply time index k while explicitly indicating quantities determined through

the forecasting process by subscript f and those from the analysis process
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by subscript a. We outline the algorithm below

• Forecast step

1) Project the state

xf =

[
vf

θf

]
=

[
M (va;θa)

θa

]
, xa = [va θa]

T . (7.20)

2) Project the error covariance matrix

P
1/2
f = [b1 b2 · · ·bs],

bi = M(xa + pai )−M(xa). (7.21)

• Analysis step

3) Update state estimate

xa = xf+

P
1/2
f [I+ ZTf Zf ]

−1ZTf [R
−1/2(y −H(xf ))], (7.22)

where Zf is the observed perturbation matrix defined as

Zf = [z1(x
f ) z2(x

f ) · · · zs(x
f )],

zi(x
f ) = R−1/2[H(xf + pfi )−H(xf )]. (7.23)

4) Update error covariance matrix

P1/2
a = P

1/2
f [I+ ZTaZa]

−1/2 , (7.24)

where Za is the observed perturbation matrix defined as

Za = [z1(x
a) z2(x

a) · · · zs(x
a)],

zi(x
a) = R−1/2[H(xa + pfi )−H(xa)]. (7.25)

5) Repeat steps 1-4 when the new observation vector becomes available.

Following the form of a feedback controlled estimation, upon initialization,

we first evolve in time the state vector and the covariance matrix (Forecast
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step, Eqs. 7.20 and 7.21). This is our best guess of the state of the system

in current time step without available measurement. When measurement

for the current time step becomes available, we first calculate the observa-

tion perturbation matrix Zf and update the state estimate (Analysis step,

Eqs. 7.23 and 7.22). With the optimal state estimate for the current time

step, xa, we calculate the observation perturbation matrix Za, which we use

to update the error covariance matrix Pa (Analysis step, Eqs. 7.25 and 7.24).

In sequential manner we repeat Forecast steps and Analysis Steps whenever

new measurement becomes available.

7.3.5 Simulation

One-dimensional random scattering fields were generated in MATLAB (The

MathWorks, Inc., Natick, MA), using Monte Carlo methods, to facilitate sim-

ulation of RF echo Doppler pulses of a vibrating scattering medium. For the

purposes of the model presented in this article, the scatterers are uniformly

distributed within a volume and each has unity reflectivity. The mean num-

ber of scatterers positioned along the entire axis was selected to be greater

than 20 per pulse length to ensure fully developed speckle conditions. The

mean was introduced into a Poisson random number generator to select the

actual number of identical point scatterers present for each Monte Carlo re-

alization [125]. The scattering field was numerically generated so that the

coordinate of each scatterer was preserved as a floating-point value. Scat-

terers were displaced by shear-wave energy based on the velocity within the

resolution element as defined by Eq. 7.9.

Calculated displacements were used to reposition each scatterer in the

scattering field to simulate vibration at the given shear frequency. The result

was convolved with an ultrasonic linear time invariant impulse response of

the system, given by the Gaussian modulated sinusoid

h(t) = e−t
2/2σ2

t sin(2πfct) . (7.26)

The carrier frequency of the pulsed transmission was fc = 6 MHz, c = 1540

m/s, and σt is the pulse-duration parameter. The effective fractional band-

width is given with Beff/fc = 1/(2fcσt
√
π) [125]. We considered pulse frac-

tional bandwidth of Beff/f0 = 0.2. White Gaussian noise was added to the
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signal and the RF echo signal was decimated to give a vibration Doppler

echo signal at 20 Msamples/s.

To verify the performance of the simulator, we compare simulated velocity

variances with theoretically predicted velocity variances for a well-described

case. To simplify the analysis, we assume that the particle velocity is constant

throughout the resolution volume. This would correspond to steady flow

velocity scenario. An expression for the variance of the velocity estimator

from the correlated pulse pairs embedded in white Gaussian noise (WGN) is

given by [57]

σ2
υ̂ =

c2

32π2Tprfϱ2(Tprf)f 2
c (M − 1)

×
{
[1− ϱ2(Tprf)]

(M−2)∑
k=−(M−2)

ϱ2(kTprf)× ((M − 1)− |k|)

+
1

(M − 1)SNR2
+

2

(M − 1)SNR

×
[
1 + ϱ(2Tprf)(

1

(M − 1)
− 1)

]}
(7.27)

where ϱ(kTprf) = ϕ̂k
ϕ̂0

is the magnitude of the normalized signal correlation

(correlation coefficient). The expression defined by Eq. 7.27 is valid under

the assumption of a large ensemble, M.

Doppler power spectrum can be modeled as Gaussian with spectrum width

σvD at 6 dB [56]. Doppler spectrum width and spectral broadening depend

on various parameters, such as length of the pulse, beam-characteristics, dis-

persion of velocity within the resolution volume, and vector velocity direction

to name a few [56, 57, 126, 127]. Discussing statistical properties of the esti-

mator with respect the normalized spectrum width, σvn = σvD/2υa [m s−1],

includes many combinations of these parameters that can be estimated for

the specific experimental conditions. Equation 7.27 was experimentally ver-

ified in [88] in ultrasound detected flow of blood mimicking fluid. Assuming

that velocity is constant over the ensemble time and the transit time effect

is negligible, the width of the Doppler spectrum is

σfD =
1√

22πσt

2υ

c
[Hz] . (7.28)
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Spectrum width in the velocity domain, σvD, is related to spectrum width

in the frequency domain via σvD = σfDλ/2 [m s−1]. From Eq. 7.28 it follows,

that for the given pulse parameters, Doppler spectral broadening is directly

proportional to the change in the velocity within the resolution volume. With

increase in the spectrum width, for the given SNR ratio, correlation within

the ensemble is decreasing, ϱ(kTprf), and the variance of velocity increases.

Doppler estimation benefits from the high ensemble correlation; however,

with a decrease in SNR ratio, the variance of the velocity increases due to

the small number of independent estimates within the ensemble due to the

high correlation. We demonstrated this in the study based on the lag-one

estimator approach (Chapter 4).

In Fig. 7.1, we present Eq. 7.27 for three values of normalized spectrum

width σvn of 0.01, 0.02 and 0.047 m s−1 and large ensemble size of M = 128

pulses. The results are from the Monte Carlo simulation with 200 realizations

of the uniform constant velocity shift within the resolution volume. Very

good agreement exists between the analytical expression and the result of

the simulation, thus verifying the statistical accuracy of the simulator.
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Figure 7.1: Standard deviation of mean Doppler velocity estimates, υ̂, vs.
the SNR for three values of normalized spectrum width, σvn1 = 0.047,
σvn2 = 0.02 and σvn3 = 0.01 m s−1 and large ensemble size of M = 128.
Dashed lines show theoretical predictions and circles show results from the
simulations (200 realizations).

In order to verify the performance of the proposed MLEF filtering for the

reconstruction of the complex shear modulus, several simulations were con-

ducted. Simulation parameters were selected to match those measured during
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imaging experiments where the assumption was made that within the imag-

ing pulse length particle velocity is constant. This is a reasonable assumption

for the cylindrical wave propagation in the homogeneous material since, ax-

ially, particles displace continuously in phase with the same velocity. This

was verified experimentally in Chapter 6. The Doppler processing scheme

follows the recommendation of Chapter 4 and is based on lag-k estimator

with the same settings as in Chapters 4-6.

7.4 Results

The algorithm described above was tested by estimating the complex modu-

lus from shear waves passing through a homogeneous block of 4%-concentration

gelatin gel. The gelatin phantom is tested with three different excitation am-

plitudes to check for linearity. A mechanical actuator harmonically vibrates

a 1.5-mm diameter needle at frequency values in the range of 50-450 Hz. We

use data collected over 40 spatial locations sampled regularly on the inter-

val 0.46 mm for a total length of 18.4 mm. We make an assumption that

the first spatial location is immediately adjacent to the needle, and we allow

that parameter to vary with r0. The filter is initialized as follows. The first

observation of particle velocity over the 18.4 mm length is assigned to v0.

Parameter r0 is assigned 0.3 mm with the error of 0.1 mm; phase correction

constant ϕ and the amplitude A with the errors are estimated from the first

period of the particle velocities at the first spatial position. Material param-

eters are assigned from measurements of gelatin [20], where α = 23 Np m−1

and ks = 414 m−1, that are obtained assuming a K-V model for an elastic

shear modulus of µ = 570 Pa and shear dynamic viscosity of η = 0.2 Pa·s.
We assumed that material parameters are known within a 20% error fol-

lowing the work presented in Chapters 3 and 4 and correspond to sample

variability. The initial covariance matrix for the analysis error, Eq. 7.19, is

defined using ensemble members initiated by randomly perturbing errors of

the state vector, Eq. 7.19.

Under these conditions, we estimated the values of shear wavenumber and

attenuation as a function of frequency that are shown in Fig. 7.2 and Fig.

7.3, respectively.

Measurements were acquired for actuator voltages of 5, 10, and 15 V that
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Figure 7.2: Estimated wavenumber of 4% gelatin gel as a function of shear
wave frequency for three excitation voltages.
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Figure 7.3: Estimated shear attenuation of 4% gelatin as a function of shear
wave frequency for three excitation voltages.
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provided proportional particle displacement amplitudes at the needle surface.

From Doppler estimates of the shear waves, we estimated ks and α at each

source frequency. Agreement among estimates at the three applied strains

confirms the assumption of linearity in gelatin between 50 and 450 Hz.

As an example of the MLEF performance in Figs. 7.4 and 7.5, conver-

gence of the parameters, α and ks, as a function of time steps is presented.

Both parameters converge within 50 time steps where wavenumber converges

within 1% of variation.
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Figure 7.4: Convergence of the attenuation parameter α as a function of
time steps for experimentally acquired data set at 50 Hz. For the given
initialization filter converges within 50 time steps.

Since we are estimating parameters not only but particle velocities as well,

in Fig. 7.6, the last estimate of state space is compared to the last observation.

For particle velocities stochastic filtering is a denoising operation. Hence, the

MLEF estimate of the state space is smooth compared to the observation

data.

Particle velocities at distinct spatial locations as a function of time steps

are compared for observational data and MLEF filtered data. Two locations,

first at 4.6 mm from the source and second at 13.8 mm from the source, are

illustrated in Figs. 7.7 and 7.8 respectively. At each of the spatial locations

particle velocities are time harmonic functions with constant amplitude and

at frequency of 50 Hz. Amplitude of the sinusoidal function closer to the

source is larger because the wave is less attenuated. Also, in Fig. 7.8, variance

of the sinusoidal signal is larger compared to the Fig. 7.8. The reason for this
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Figure 7.5: Convergence of the wavenumber parameter ks as a function of
time steps for experimentally acquired data set at 50 Hz. In the first 50
time steps of the filter, the parameter converges to be within 1% variation.
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Figure 7.6: Doppler estimates of particle velocities are compared with those
estimated by the MLEF filter as a function of space. Data are compared for
the final time step. Doppler measurements are indicated by a dashed black
line and MLEF tracking estimates by a solid black line.
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Figure 7.7: Doppler estimates of particle velocities are compared with those
estimated by the MLEF filter as a function of time. Data are compared for
distinct spatial location 4.6 mm from the source. Doppler measurements
are indicated by a dashed black line and MLEF tracking estimates by a
solid black line.

is that the shear wave is attenuated and for smaller magnitude of particle

velocities variance of estimation increases.

In Chapter 4 we discussed two rheological models for modeling viscoelas-

tic material properties of gelatin phantoms. First, we addressed Kelvin-Voigt

model as a standard model used in complex shear modulus reconstruction.

Second, we tested a standard solid body model, the Zener model. We com-

pared the two based on the shear wave dispersion fitting. Results were incon-

clusive. Within the bandwidth of the measurement one model could not be

favored over the other. We concluded in Chapter 4 that, due to the uncertain-

ties in dispersion equation estimation, larger bandwidth of the measurements

of up to 1 kHz would be needed to resolve the two models. Complex shear

modulus constants are estimated from complex wave number

k∗ = (ρω2/G∗)1/2 = ks − iα . (7.29)

By applying standard relationships as found in [20], we tested whether the

K-V or Zener model represented wave dynamics in gelatin by estimating the

complex modulus constants, G∗ = G′ − iG′′, where G′ is the elastic storage

modulus and G′′ is the viscous loss modulus. The results are presented in
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Figure 7.8: Doppler estimates of simulated particle velocities are compared
with those estimated by the MLEF filter as a function of time. Data are
compared for distinct spatial location 13.8 mm from the source. Doppler
measurements are indicated by a dashed black line and MLEF tracking
estimates by a solid black line.

Fig. 7.9.

For weakly viscous media such as gelatin gels the storage modulus is ex-

pected to be much larger than the viscous modulus within this bandwidth.

In many applications, it is of interest to express material properties not in

terms of the complex shear modulus but in terms of rheological models de-

scribing elastic and viscous properties of the material. Deciding on the model

best suited to describe viscoelastic characteristics of the material will depend

on the shape of the frequency dependant storage and loss modulus curves.

Figure 7.9 shows that shear storage modulus is approximately constant with

frequency and the loss modulus increases linearly with frequency. The sim-

plest model that can describe this behavior is the Kelvin-Voigt (KV) model,

where G′ = µ and G′′ = ωη. We estimated the mean shear elastic modulus

over three voltage excitations to be µ = 428 ± 30 Pa and the shear dy-

namic viscosity η = 0.05± 0.019 Pa·s. These estimates of µ agree with those

made using the phase gradient approach while estimates η are comparatively

smaller Chapter 4. Moreover, the Zener model assumes frequency dependent

storage modulus, which for the given data is not the case. Hence, the Zener

model is not appropriate to model viscoelastic properties of gelatin.

To evaluate the performance of the MLEF Bayesian estimator we simulate
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Figure 7.9: Estimated storage and loss moduli, G′ and G′′, from shear
waves in 4% gelatin gel and for three actuator voltage amplitudes.

spatiotemporal particle velocities in media using proposed Doppler simulator.

Material properties simulated are α = 11.5 Np m−1 and ks = 416 m−1.

Cylindrical wave equation is numerically imaged over 60 spatial locations

sampled on the interval 0.46 mm (pitch of the Doppler array). These material

properties correspond to a shear elastic modulus µ = 570 Pa and shear

dynamic viscosity η = 0.1 Pa·s. The ensemble size used in this study was

S = 30.

Convergence of the parameters for one of the realizations at 50 Hz is illus-

trated in Figs. 7.10 and 7.11. Convergence of the parameters, α and ks, as a

function of time steps is presented. Attenuation, Fig. 7.10, converges within

50 time steps. Solid line represents true value and dashed line represents

parameter value. Convergence is the approach from initial guess toward a

definite value, a true value in the case of simulation. After 30 time steps,

the filter converges within 5% error compared to the true value of the at-

tenuation. This is similar to the the experimental data set case, Fig. 7.4.

Wavenumber, Fig. 7.11, converges faster than the attenuation and within 15

steps is within 2% error compared to the true wavenumber.

Similarly to the experimental data case, the last estimate of state space

is compared to the last observation of particle velocities in Fig. 7.12. The

MLEF estimate of the state space is smooth compared to the simulated

observation data.

Particle velocities at distinct spatial locations as a function of time steps are

compared for simulated observational data and MLEF filtered data. Three lo-

cations at 4.6, 13.8 and 27.4 mm from the source are illustrated in Figs. 7.13,
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Figure 7.10: Convergence of the attenuation parameter α as a function of
time steps for simulated data set. True value of the attenuation is indicated
by a solid black line and MLEF tracking by a dashed black line. After 30
time steps the filter converges within 5% error compared to true value of
the attenuation.
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Figure 7.11: Convergence of the wavenumber parameter ks as a function of
time steps for simulated data set. True value of the wavenumber is
indicated by a solid black line and MLEF tracking by a dashed black line.
The filter quickly converges within 15 steps with error less than 2%
compared to true value of wavenumber.
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Figure 7.12: Doppler estimates of simulated particle velocities are compared
with those estimated by the MLEF filter as a function of space. Data are
compared for the final time step. Doppler measurements are indicated by a
dashed black line and MLEF tracking estimates by a solid black line.

Table 7.1: Estimated material parameters over 20 realizations using MLEF.

Freq. [Hz] µ [Pa] η [Pa s]

50 571.2± 0.9 0.0985± 0.0071

100 570.1± 0.4 0.0995± 0.0020

150 570± 0.56 0.0991± 0.0010

7.14 and 7.15 respectively. Similarly to experimental data, amplitude of the

sinusoidal function closer to the source is larger because the wave is less atten-

uated. Also, in Fig. 7.15, variance of the sinusoidal signal is larger compared

to the Figs. 7.14 and 7.13.

We tested MLEF performance over 20 realizations for three frequencies of

50, 100 and 150 Hz. The results are summarized in Table 7.1. We found ex-

cellent agreement between MLEF estimated parameters and input simulation

parameters as characterized by a standard error less than 2%.

On the same data sets we estimated complex shear modulus using AHI

(Chapter 6). The algorithm was adapted for 1-D data. We followed the

same computational steps as in Chapter 6. Performance of AHI is evaluated

over 20 realizations and three frequencies, the same as MLEF, on the same

simulated data sets. Results are summarized in Table 7.2. The 1-D algorithm

is suited for plane wave propagation and cannot compensate for the diffrac-
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Figure 7.13: Doppler estimates of simulated particle velocities are
compared with those estimated by the MLEF filter as a function of time.
Data are compared for distinct spatial location 4.6 mm from the source.
Doppler measurements are indicated by a dashed black line and MLEF
tracking estimates by a solid black line.
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Figure 7.14: Doppler estimates of simulated particle velocities are
compared with those estimated by the MLEF filter as a function of time.
Data are compared for distinct spatial location 13.8 mm from the source.
Doppler measurements are indicated by a dashed black line and MLEF
tracking estimates by a solid black line.
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Figure 7.15: Doppler estimates of simulated particle velocities are
compared with those estimated by the MLEF filter as a function of time.
Data are compared for distinct spatial location 27.6 mm from the source.
Doppler measurements are indicated by a dashed black line and MLEF
tracking estimates by a solid black line.

Table 7.2: Estimated material parameters over 20 realizations using 1-D
AHI.

Freq. [Hz] µ [Pa] η [Pa s]

50 559.4± 2.8 0.39± 0.014

100 566.8± 1.6 0.17± 0.003

150 576± 6.3 0.13± 0.047

tion effect of the cylindrical shear wave propagation, hence reconstructed

values will be biased [33]. This bias affects stronger the reconstruction of

the low magnitude value of the shear viscosity compared to the shear elastic

modulus reconstruction.

7.5 Conclusion

A complex shear modulus reconstruction method based on the inversion of

shear wave spatiotemporal propagation excited by a vibrating needle is pre-

sented. In our study we demonstrate the feasibility of using shear wave propa-

gation and a stochastic filter to estimate the underlying material parameters.
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Quantitative estimation of the viscoelastic properties is demonstrated on soft

gelatin gel samples.

We established the feasibility of estimating complex shear modulus con-

stants for single shear wave excitation frequencies. Moreover, since phase

gradient methods require large bandwidths for the dispersion reconstruction,

an advantage of the MLEF approach is the direct reconstruction of the com-

plex shear modulus per shear wave excitation frequency. Hence, MLEF re-

constructs complex shear modulus with higher spectral resolution compared

to the phase gradient methods. This allows for better rheological modeling

of material parameters.

Spatiotemporal MLEF filter reconstruction of the shear complex modu-

lus compares closely to values estimated by a standard shear wave dispersion

technique for the Kelvin-Voigt assumption. Moreover, results in Fig. 7.9 sup-

port the Kelvin-Voigt model since the storage modulus is roughly constant

across the bandwidth of the measurement and the loss modulus increases lin-

early across the same bandwidth. This conclusion coincides with our previous

finding [20] that the Kelvin-Voigt model provides representative description

of the gelatin shear modulus in the 50-450 Hz bandwidth.

We compared the algebraic inversion method for the complex shear mod-

ulus reconstruction used in Chapter 6 with MLEF estimation. MLEF recon-

struction of complex shear modulus is characterized by lower variance of the

estimates and higher accuracy in the estimation of the mean material prop-

erties compared to AHI. With AHI estimation, large error in estimated mean

dynamic viscosity is observed at 50 Hz. This agrees with reports by other

investigators with similar troubling results for the viscous constant [105].

The work presented in this chapter mitigated the major limitations of the

phase gradient approach (Chapter 4), and the algebraic Helmholtz inversion

(Chapter 6). Furthermore, in the current form the technique can be easily

adapted for commercial medical systems that use acoustic radiation force

excitation. However, for the commercial systems based on the acoustic ra-

diation force excitations using proposed cylindrical shear wave model could

result in the systematic bias in estimated material properties. By reducing

the number of spatial locations used for the filtering, potentially, images of

the complex shear modulus might be made in 2D. Moreover, provided results

motivate further explorations of stochastic filtering for complex shear mod-

ulus reconstruction. The possibility exists, similar to Tada et al. [118], to

128



use the numerical 3-D FDTD model developed in Chapter 6 with the MLEF

filter to reconstruct 3-D complex shear modulus in an online manner. Such

an approach would not suffer from the loss of spatial resolution, as do the

phase gradient method and the proposed implementation of MLEF.
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CHAPTER 8

CONCLUDING REMARKS

Ultrasonic shear wave imaging is sufficiently established to provide method-

ologies for clinical imaging. As a result, there exists an excellent qualitative

understanding of shear elastic modulus and shear wave velocity reconstruc-

tion in elastic and viscoelastic materials. Fundamental laws governing shear

wave propagation in homogenous viscoelastic materials are well known. This

theoretical picture is in remarkable agreement with observations, as discussed

in Chapters 4 and 6. However, sources of viscoelastic contrast are still poorly

understood. Lacking is a theoretical framework linking the tissue pathology

to viscoelastic contrast. Moreover, in clinical settings, results relate mostly

to stiffness, shear elastic modulus or shear wave velocity. The reason for

this is in part, that the elastic modulus is directly related to stiffness, which

physicians are accustomed to using via palpation. Although stiffness is corre-

lated to pathology, it is not a sufficient criterion for diagnosis [39]. Arguably,

other mechanical parameters such as shear viscosity could be very useful for

increasing the mechanical contrast in measurements [49]. Lack of evidence

in the literature that viscosity carries diagnostic information limits clinicians

from demanding tools capable of providing viscoelastic reconstructions.

For that reason this dissertation work presented several developments in

the field of ultrasound elasticity imaging and complex shear modulus recon-

struction. Most importantly, it provides evidence that there is useful addi-

tional information when reconstructing the complex shear modulus. Specif-

ically, several developed techniques in this dissertation demonstrated quan-

titative complex shear modulus reconstruction under various assumptions.

A comprehensive approach includes experimental studies, analytical studies

and numerical simulations. Experimental studies were designed to address

specific aims in characterization of proposed techniques. Also, models and

numerical methods for simulating shear wave propagation in viscoelastic het-

erogeneous media and the Doppler estimation of particle velocities have been
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presented, which serve to further understanding of current and future appli-

cations.

The initial idea was to follow the mainstream approach and use acoustic

radiation force for the excitation of the shear wave propagation. First, a

calibration technique was adapted in Chapter 2, which quickly led to de-

veloping the first quantitative method based on the acoustic radiation force

step response as presented in Chapter 3. Compared to other similar methods,

the calculation of radiation force on the sphere is not crucial in the appli-

cation described in this dissertation, because complex shear modulus can

be determined without the knowledge of the magnitude of the force. The

only assumption made, if comparing results with other methods, is that the

measurement was made in the linear range of the material. This is a valid

assumption for gelatin phantoms, as addressed several times throughout this

dissertation. The primary disadvantage of this method is the requirement of

a calibrated target. This can limit the application potential of this technique.

Nevertheless, if applicable, this simple yet elegant time domain measurement

yields an estimate of complex shear modulus under the Kelvin-Voigt assump-

tion. The analytical framework presented in Appendix A could be extended

to include higher order models. One application in mind when this tech-

nique was developed was characterization of engineered tissue samples and

3-D cell cultures. The proposed approach is feasible for these applications,

since known scatterers can be embedded in the process of sample preparation.

In the latter chapters of this dissertation a different approach was favored

over acoustic radiation force for shear wave excitation. Several reasons led

to choosing harmonic shear wave excitation using a steel needle vibrated by

an external mechanical actuator. First, strong coupling between the needle

and the material results in large displacement of the medium which is a

favorable condition for the Doppler estimation of particle velocities. Second,

excited waves are not only exclusively shear waves but have a well-defined

geometry of cylindrical shear wave propagation that is used to our advantage

to reconstruct complex shear modulus. In this way, the requirement of a

calibrated target is eliminated and images of shear properties can be formed

if the object is scanned and local homogeneity is assumed. While others seek

diagnostic methods, the agenda in this dissertation is to develop sophisticated

tools to further the understanding of the basic science which enables use of

more-invasive methods for shear wave excitation.
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Using the proposed approach for shear-wave excitation, a phase gradient-

based method was developed for shear-wave velocity estimation from which

the complex shear modulus can be reconstructed via a fit to the dispersion

equation. In order to enhance the quality of estimated complex shear modu-

lus, possible sources of variance in this measurement were examined. Quality

of estimation for any of the methods presented in this dissertation will depend

on the quality or velocity signal-to-noise ratio of estimated particle velocities

using the Doppler approach, where lower variance of estimates defines better

quality of data for use with the next level estimators. In order to reduce vari-

ance of the estimated particle velocities, a lag-k estimator is adapted from

weather radar literature in Chapter 4. Performance of the proposed estima-

tor is statistically studied via experiments and simulations. For the given

imaging conditions of high imaging SNR (>25 dB), improvement in statis-

tics of up to 15 % was registered. Feasibility of the proposed method for the

complex shear modulus reconstruction was demonstrated and the technique

was characterized on gelatin phantoms. The quantitative nature of mea-

surements is verified via comparison with rheometer. Excellent agreement

was found between elastic shear modulus values estimated by rheometer and

those estimated by the shear-wave imaging. Experimental results suggest

the Kelvin-Voigt model is capable of capturing viscoelastic properties of the

gelatin phantoms.

Previous study provided confidence in the accuracy of this method and re-

sults and it was used to study viscoelastic properties of soft biological tissues

(Chapter 5). The initial idea was to observe how well standard rheological

models represent measurements of shear-wave speed in parenchymal tissues.

The complex modulus of fresh, ex vivo, porcine liver was estimated. More-

over, complex shear modulus was modified by heating the tissue to enhance

viscoelastic effects. Porcine liver was chosen because measurements could

be readily verified through literature comparisons, and the results contribute

to the accumulating data on assessments of thermal tissue damage induced

during ablation procedures.

Analysis of the shear-wave dispersion curves confirmed that due to thermal

damaging, liver undergoes substantial changes in complex shear modulus. In-

terestingly, the dynamic viscosity “constant” η, for liver tissue was found to

exhibit greater sensitivity than elastic shear modulus, µ1, to thermal damage.

This offset in contrast, where the dynamic viscosity increased three fold and
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the elastic shear modulus increased twofold, represents the first evidence of

the value in complex shear modulus reconstruction. Our data on estimated

dispersion for the fresh porcine liver, in agreement with results from other

groups, provided evidence supporting several other claims. First, the agree-

ment suggests that liver perfusion, temperature, and measurement technique

are not major factors in shear-wave measurements of µ1. Second, for com-

parison with human liver, although the findings are consistent and perhaps

expected given known differences in lobular collagen content between humans

and pigs, none of the observed species-specific differences in shear properties

can be considered statistically significant when measurement uncertainties

are considered. Hence, based on the shear wave measurements within the

given bandwidth, inter-species differentiation is not possible. It is impor-

tant to point out that the heating regimen thermally induced biochemical

changes to liver tissue and influenced the complex modulus to a greater ex-

tent than variations in anatomical structure. Histology reports showed no

apparent thermally-induced changes in cellular architecture. Therefore, this

result suggests that shear wave imaging is more sensitive than histology given

experimental conditions described.

To study limitations imposed by the various assumptions in shear-wave

imaging, a finite-difference time-domain numerical method was developed

(Chapter 6). The developed 3-D FDTD solver is capable of simulating shear-

wave propagation in time and three spatial dimensions in heterogeneous me-

dia. These numerical methods are based on an extensive seismic research

literature, e.g., [107, 108, 109]. The role of simulation is thus twofold here;

simulations can be used for testing different complex shear modulus imaging

techniques, and estimating their accuracy. In addition, simulations can pro-

vide important insight on how to design experiments to reduce the errors in

shear-wave velocity estimation due to reflections. For example, the simula-

tions can help in the selection of geometry based on the excitation frequency,

or in selection of a better suited shear-wave excitation. In both cases, un-

derstanding 3-D shear-wave propagation in heterogeneous viscoelastic media

is crucial. Better understanding of these effects will open a new avenue in

quantitative shear wave imaging and complex shear modulus reconstruction.

The direct algebraic Helmholtz inversion (AHI) algorithm was studied, and

sensitivity of various assumptions intrinsic to the AHI algorithm were tested

by comparing imaging results from simulated and experimental data. It was
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found that it is essential to measure velocity components in all three spatial

dimensions for which medium heterogeneities have significant curvature in

order to avoid artifacts. Moreover, the conducted study of the influence

of viscosity on shear wave propagation in heterogeneous materials provided

further evidence of the added value of information in viscosity reconstruction.

By reconstructing complex shear modulus it was possible to spatially register

highly viscous inclusion and to avoid artifacts that one might encounter when

reconstructing only the elastic modulus.

To alleviate degradation of the spectral resolution of the phase gradient

method and bias associated with algebraic inversion when imaging in 1-D

or 2-D this research project examined the applicability of a stochastic fil-

tering approach to complex shear modulus reconstruction (Chapter 7). A

recursive dynamic cylindrical shear wave model is introduced and utilized

to reconstruct complex shear modulus from noisy observations of particle

velocities. Specifically, it was demonstrated using stochastic filtering that

the proposed method can reconstruct the complex shear modulus per exci-

tation frequency in homogeneous materials. It was also illustrated on the

experimentally acquired data of shear wave propagation in gelatin phantoms

that the best way to decide on the appropriate model of the material is from

the complex modulus spectra. Presented results support previous findings

throughout this dissertation work that the gelatin can be modeled via Kelvin-

Voigt viscoelastic model. Accuracy of the proposed method was studied via

numerical simulations with realistic Doppler imaging parameters. Simulation

results yield high accuracy of proposed approach with error within 2%.

When 3-D dynamic data sets are available, data processing time is not

of interest, and material is sufficiently viscous, algebraic inversion is rec-

ommended over any of the other methods studied in this dissertation. It

provides reconstruction per frequency with high spatial resolution that the

other methods do not provide. In contrast, when the spatial requirement is

not met for homogeneous materials, stochastic filtering with the cylindrical

shear wave model provides optimal estimates of the complex shear modu-

lus. Moreover, with stochastic filtering the complex shear modulus can be

estimated in an online manner per frequency with low variance.

This dissertation presented work that is part of a larger interdisciplinary

group effort. The major focus is to develop an experimental and theoreti-

cal framework capable of linking physical to biological sources of viscoelastic
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contrast. Physical sources of elasticity contrast are related to the spatial

variations in flow velocity of fluids through the extracellular matrix (poroe-

lasticity) and the rate at which the matrix itself mechanically relaxes (vis-

coelastic) in response to applied forces.To study the relationships between

two sources of contrast, 3-D cell cultures are developed as controllable bi-

ological phantoms. Understanding these relationships is the way to bridge

molecular, cellular, and tissue biology and might lead to new approaches in

the treatment of patients [6].

This dissertation provided evidence of an added value of information in

reconstruction of the complex shear modulus. Studies like this one can mo-

tivate further studies to determine quality of the loss modulus or dynamic

viscosity (in the case of K-V model) as a diagnostic parameter. Such a re-

search endeavor would require not only clinical studies but also an interest by

some of the big manufacturers to adapt for medical grade ultrasound systems

techniques capable of reconstructing the complex shear modulus. Ultimately,

contrast to variability (whether from noise or biologic variability) determines

the quality of a parameter for specific diagnosis, not just the contrast.

8.1 Future Outlook

In this dissertation several experimental and theoretical aspects of shear wave

imaging and complex shear modulus reconstruction are addressed. Still, it

is by no means the final word on that topic. The following presents some

directions for future work.

Variance of the estimated particle velocities could be further decreased. It

is common practice in ultrasound shear wave imaging to average axially the

estimated particle velocities or displacements to reduce the variance. This is

an acceptable loss of axial spatial resolution since axial sampling is usually

much larger than lateral (> 10 times). Nevertheless, averaging L correlated

samples does not reduce variance L times. One way to overcome this would

be to statistically decorrelate the range samples in such a manner that, upon

averaging, the variance of the velocity would be reduced by L times. This

could be achieved by using a statistical whitening transform [128]. It was

demonstrated in weather radar literature that such an approach is feasible

[129]. Any improvement in the quality of estimated particle velocities has a

135



direct impact on the next level of estimators that produce quantities from the

particle velocity data. Moreover, the impact of the method could be broader

since it is directly applicable to blood flow imaging problems.

The favored approach in this dissertation for shear wave excitation is nee-

dle vibration. Although invasive, such an approach is acceptable for studying

complex shear modulus of engineered tissues and 3-D cell cultures. Never-

theless, the proposed methods under specific conditions can complement cur-

rent biopsy procedures and be implemented in clinical settings. Ideally, the

proposed method could be coupled with an optical method such as Fourier

transform infrared (FTIR) spectroscopy (a common technique employed to

identify a material and relate its properties to the molecular structure). A

multi-modal approach could yield both chemical and mechanical properties

of tissue during a biopsy procedure, as in the case of breast cancer.

The proposed stochastic filtering approach for complex shear modulus re-

construction can be further extended to include more-complicated dynamic

models. As an example, the proposed approach using MLEF filter can be

coupled with the developed 3-D FDTD solver to potentially reconstruct the

complex shear modulus in 3D. Such optimal reconstruction of the complex

shear modulus would not suffer from blurring like the AHI method. More-

over, stochastic filtering allows for tracking of the dynamics of the parame-

ters. The 3-D FDTD solver can be extended to include heat transfer. Such

a solver could be used to simulate shear wave propagation during ablation

procedures. Via data assimilation approach, the ablation temperature and

the extent of thermal damage could be monitored in real time.
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APPENDIX A

MATERIAL PROPERTIES FROM
MECHANICAL IMPEDANCE

The viscoelastic material properties of the gel medium surrounding a rigid

sphere are frequently characterized by the mechanical impedance, Z, which

relates, in three spatial dimensions, y = y1, y2, y3, and time, t, the resistance

force of the sphere to motion, F(t,y), and the resulting sphere velocity,

vs(t,y), via the Ohm’s law-like expression [58]

F(t,y) = −Z × vs(t,y) . (A.1)

Force and velocity are vector quantities, impedance is a scalar, and all

three are complex quantities in this expression. Stationary harmonic forces

at radial frequency ω applied along the y1 axis and of the form F (t) =

Fω,1 exp(−iωt) generate sphere velocities of the form vs(t) = vω,1 exp(−iωt).
In that situation, the material properties that influence Z are gel density

ρ ≃ 1 g/cm3, sphere radius a = 0.75 mm, and the complex Lamè mod-

uli µ′ = µ1 − iωµ2 and λ′ = λ1 − iωλ2. Parameter µ1 is shear elasticity,

µ2 is shear viscosity, λ1 is volume compressibility, and λ2 is volumetric vis-

cosity. For the small forces used in our experiments, it is assumed the gel

responds linearly so the sphere velocity for an arbitrary time-varying force

is a weighted linear superposition of velocities at each frequency in the force

bandwidth. Further, it is assumed that the sphere is bound to the continuous,

homogeneous, and isotropic gel.

Of course, the force and velocity vectors also vary spatially. For har-

monic, compressional, plane waves traveling along the y1 axis, F (t,y) ŷ1 =

Fω,1 exp(ky1 − ωt), the impedance is straightforward to find from Eq. A.1

and the 1-D wave equation, as shown in standard texts [58].

The mechanical impedance Z for the case of an oscillating sphere was found

by Oestreicher [130]. Making use of the spherical symmetry, he separately

solved for the irrotational and incompressible components of the wave equa-
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tion relating pressure and displacement in terms of spherical harmonics [70].

Integrating the pressure over the sphere to find force and for vs(t) = −iωx(t),
he found

Z = −4

3
πa3ρiω

{
1−

[
1

3

(
1− 3(1− ikca)

k2ca
2

)−1

−2

3

(
1− 3(1− iksa)

k2sa
2

)−1
]−1
 . (A.2)

The above expression is the form given by Norris (see Eq. 5 in Ref.[131]).

In Eq. A.2, kc = (ρω2/(2µ′ + λ′))1/2 and ks = (ρω2/µ′)1/2 are, respectively,

the compressional and shear complex wave numbers. The wave number ks =

ω/cs + iαs may also be written as a function of the shear wave speed and

shear wave attenuation constant, respectively [84],

cs = ω/ℜ{ks} =

√
2(µ2

1 + ω2µ2
2)

ρ(µ1 +
√
µ2
1 + ω2µ2

2)
(A.3)

and

αs = ℑ{ks} =

√
ρω2(

√
µ2
1 + ω2µ2

2 − µ1)

2(µ2
1 + ω2µ2

2)
. (A.4)

Oestreicher [130] comments that the number of constants in the Lamè

moduli increases if time derivatives of order greater than one are required to

model the data. For harmonic oscillations, the corresponding Lamè moduli

will have added terms multiplied by increasing powers of −iω. Higher-order
time derivatives generate frequency dependent Lamè moduli that appear ex-

perimentally as dispersion; i.e., frequency dependent wave speeds. It was

shown experimentally [67] that gelatin is non-dispersive for compressional

waves between 1 and 10 MHz with and without particle scatterers. Applying

Eq. A.3 and the values of µ1 and µ2 reported in Chapter 3, it can be seen that

cs varies by less than 0.7% for clear gelatin gels at shear-wave frequencies less

than 50 Hz. Consequently, it is reasonable to assume non-dispersive media

for our low-frequency experiments.

In incompressible viscoelastic gels, the bulk modulus λ + 2µ/3 becomes

infinite while µ remains finite [131]. We measured cc = 1506 m/s and µ1 =

317 Pa for clear 3% gelatin gels, and adopt µ2 = 0.1 Pa·s as Ilinskii [37].
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Applying the expressions from the paragraph below Eq. A.2, we estimate

that cs = 0.56 m/s and λ1 = 2.25 × 109 Pa. Further, like Oestreicher [130],

we assume λ2 = 0. Consequently, kc/ks ≪ 1, and Eq. A.2 reduces to

Z ′ = −6πaµ′

iω

[
k2sa

2

9
−
(
1− iksa

)]
(A.5)

provided the sphere remains bound to the gelatin [131]. Expanding Eq. A.5

using µ′ = µ1 − iωµ2, we find

Z ′ = −6πa

[
µ2

(
1− k2sa

2

9

)
+
µ1

ω
ksa

]
− i6πa

[
µ1

ω

(
1− k2sa

2

9

)
− µ2ksa

]
. (A.6)

Noting that µ2/µ1 ≪ 1 and a = 7.5 × 10−4, we neglect all terms O(a3) and

O(µ2a
2) to find

Z ′′ ≃ −6πa

(
µ2 +

µ1ksa

ω
− i

µ1

ω

)
. (A.7)

Finally, expanding ks as a function of cs and αs we can rewrite Eq. A.7 as

Z ′′ = −6πa

(
µ2 +

µ1a

cs
− i

µ1

ω
(1 + αsa)

)
. (A.8)

Impedance, Z, and its approximations, Z ′ and Z ′′, were evaluated numer-

ically using values for constants listed above. The real parts are plotted in

Fig. A.1 and the imaginary parts in Fig. A.2. There is no significant differ-

ence among the three expressions provided ω/2π < 100 Hz, where we are

free to adopt Eq. A.8. The damping constant, R from Eq. 3.4, corresponds

to the real part of the mechanical impedance, Z ′′. Comparing R in Eq. 3.6

with ℜ{Z ′′} in Eq. A.8, we find η = µ2+µ1a/cs. Also, since vs(t) = −iωx(t),
comparing µ from Eq. 3.7 with ℑ{Z ′′} in Eq. A.8 yields µ = µ1(1+αsa) ≃ µ1

for our experimental conditions.
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Figure A.1: Mechanical resistance (real part of impedance) for an
oscillating sphere in 3% gelatin gel.
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Figure A.2: Mechanical reactance (imaginary part of impedance) for an
oscillating sphere in 3% gelatin gel.
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APPENDIX B

SPATIAL PHASE ESTIMATION

This appendix shows that the model for the spatial phase gradient of shear

waves described by Eq. 5.2 is related to lateral estimates of spatial phase

from Eq. 5.1 by the equation dψ/dx ≃ arg(ψ̂)/X. This discussion follows a

derivation by Jensen [56].

The analytic signal for particle velocity as a function of lateral position

υ̂′(x) is a function of the Hilbert transform of velocity υ̂h(x), viz.,

υ̂′(x) = υ̂(x) + iυ̂h(x)

=
√
υ̂2 + υ̂2he

i tan−1(υ̂h/υ̂) = A(x)eiψ(x) . (B.1)

Noting explicitly that x is sampled and that ψ[ℓ] , ψ(x[ℓ]), we have

△ψ[ℓ] = ψ[ℓ+ 1]− ψ[ℓ]

= tan−1

(
υ̂h[ℓ+ 1]

υ̂[ℓ+ 1]

)
− tan−1

(
υ̂h[ℓ]

υ̂[ℓ]

)
. (B.2)

Using the identity

tan(A−B) =
tan(A)− tan(B)

1 + tan(A) tan(B)
, (B.3)

we find

△ψ[ℓ] = tan−1

(
υ̂h[ℓ+ 1]υ̂[ℓ]− υ̂h[ℓ]υ̂[ℓ+ 1]

υ̂[ℓ+ 1]υ̂[ℓ] + υ̂h[ℓ]υ̂h[ℓ+ 1]

)
. (B.4)

Turning to measurements, the kernel of the lag one correlation estimate
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without averaging is

υ̂′∗[ℓ] υ̂′[ℓ+ 1] = (υ̂[ℓ]− iυ̂h[ℓ]) (υ̂[ℓ+ 1] + iυ̂h[ℓ+ 1])

= (υ̂[ℓ]υ̂[ℓ+ 1] + υ̂h[ℓ]υ̂h[ℓ+ 1])

+ i(υ̂[ℓ]υ̂h[ℓ+ 1]− υ̂h[ℓ]υ̂[ℓ+ 1]) . (B.5)

So we can write

arg(ψ̂[ℓ]) = tan−1

(
υ̂h[ℓ+ 1]υ̂[ℓ]− υ̂h[ℓ]υ̂[ℓ+ 1]

υ̂[ℓ+ 1]υ̂[ℓ] + υ̂h[ℓ]υ̂h[ℓ+ 1]

)
= △ψ[ℓ], (B.6)

and finally
dψ

dx
≃ △ψ[ℓ]

X
=

arg(ψ̂[ℓ])

X
(B.7)

provided X ≪ 2πcs/ω.
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APPENDIX C

KALMAN FILTER DERIVATION

The purpose of this appendix is to supplement the derivation of the cost

function found in Chapter 7. Explicitly, we show that by minimizing the cost

function defined by Eq. 7.7 using Newton’s approach, a linear Kalman filter is

derived under the assumptions of a linear models equation and linear observer

operator. Similar derivations can be found in Jazwinski [120], Section 7.3,

Example 7.3 (maximum liklehood) or in [122]. Moreover, we show a classical

approach for dealing with nonlinear systems by using Taylor series expansion.

This is the so-called “extended Kalman Filter approach.” We present a

study on de-noising particle velocity images using the extended Kalman filter

approach.

Assume linear observation and prediction model operator, i.e. quadratic

cost function. The cost function is derived in Chapter 7, Eq. 7.7. Optimal

x can be found using Newton’s method for optimization, which theoretically

converges in a single iteration for quadratic cost function. The solution is

xk+1 = xk + αkdk (C.1)

where k is the minimization iteration index, α is the line search (step-length)

constant, and d is the descent direction vector. Since the cost function is

quadratic (observation operator,H, is linear), the Newton’s method produces

an optimal line search α = 1 (e.g. Luenberger and Ye [132]). In Newton’s

method,

d = −
(
∂2J
∂x2

)−1(
∂J
∂x

)
, (C.2)

where
(
∂2J
∂x2

)−1

is inverse Hessian and −
(
∂J
∂x

)
is a negative gradient of the

143



cost function. Starting from xf as the first guess in minimization, as the best

available initial value, one can write optimal solution of Eq. 7.7 as

x = xf −
(
∂2J
∂x2

)−1(
∂J
∂x

)
, (C.3)

with the assumption of α = 1. The gradient and the Hessian of the function

can be explicitly calculated using next matrix identities:

∂

∂x
(xTCx) = 2Cx, (C.4)

and

∂

∂x
(Ax+B)TC(Ax+B) = 2ATC(Ax+B), (C.5)

where C is symmetric matrix for both Eqs. C.4 and C.5.

The gradient of Eq. 7.7 at x = xf is

∂J
∂x

= P−1
f (x− xf )−HTR−1(y −Hx)|x=xf = HTR−1(y −Hxf ), (C.6)

and the Hessian of Eq. 7.7 at x = xf is

∂2J
∂x2

= P−1
f +HTR−1H. (C.7)

A straightforward substitution of Eq. C.6 and Eq. C.7 in Eq. C.3 gives

x = xf − (P−1
f +HTR−1H)−1HTR−1(y −Hxf ). (C.8)

Since the analysis error covariance is equal to the inverse Hessian [122], we

have

Pa = (P−1
f +HTR−1H)−1. (C.9)

The expressions Eqs. C.8 and C.9 are identical to Kalman filter analy-

sis equations. Too see that, use the matrix identity (e.g., Jazwinski [120],

144



Appendix 7B, (7B.6))

(P−1
f +HTR−1H)−1HTR−1 = PfH

T (HPfH
T +R)−1 (C.10)

in Eq. C.8 to obtain the standard Kalman filter solution

x = xf −PfH
T (HPfH

T +R)−1(y −Hxf )

= xf −K(y −Hxf ), (C.11)

where K is the Kalman gain. After applying Woodbury matrix identity

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1 (C.12)

to Eq. C.13, one obtains

Pa = Pf −PfH
T (HPfH

T +R)−1HPf

= (I−KH)Pf . (C.13)

In summary, following the state and covariance propagation (Chapter 7),

Kalman filter algorithm is given with:

• Forecast Step

xf = Mxa (C.14)

Pf = MPaM
T (C.15)

• Analysis Step

K = PfH
T (HPfH

T +R)−1 (C.16)

xa = xf −K(y −Hxf ) (C.17)

Pa = (I−KH)Pf (C.18)

In the case of non-linear prediction model M and non-linear observation

operator H, one could use the extended Kalman filter (EKF) equations,

which are of the same form as Eqs. C.15-C.18, but with
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M =

(
∂M
∂x

)
(C.19)

H =

(
∂H
∂x

)
. (C.20)

The Jacobians in Eqs. C.19 and C.20 are calculated at the first guess.

C.1 De-Noising Particle Velocity Images

In this section a conducted study using the EKF approach is described.

This material is presented as an appendix because it did not fit the main

argument of Chapter 7; nevertheless, it represents a significant amount of

work that led toward developments in Chapter 7. The study conducted was

de-noising images of estimated particle velocities using stochastic filtering.

This work was motivated by the results presented in Chapter 6. Direct

algebraic reconstruction of the complex shear modulus operates on the images

of Fourier transformed particle velocities Eq. 6.7. Prior to applying Eq. 6.7,

we spatially filter Vz(xxx, ω0) in three dimensions using a low-pass second-

order Butterworth filter with a cutoff frequency of 160 m−1. Since the direct

inversion process is not regularized, spatial filtering is essential [106]. Such

filtering will act as a blurring function and, depending on the spatial features

of wave patterns, results might be biased. Instead of spatially filtering an

image in postprocessing, an alternative is to use stochastic filtering to de-

noise particle velocities during acquisition (on-line estimation).

The simplest, yet an effective, approach is to perform temporal stochas-

tic filtering. From the harmonic cylindrical shear wave equation solution,

Eq. 4.9, it follows that in every spatial point of the medium only one har-

monic component at the frequency of the excitation propagates. This can be

modeled by sinusoidal function with known frequency and unknown phase

and amplitude. With that in mind, and following the approach outlined in

Chapter 7, a model equation for particle velocity at the given location is
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given by

vk = vk−1 cos(ω△t)− A sin(ω(k − 1)△t− ϕ) sin(ω△t). (C.21)

In Chapter 7 it was outlined that an approach to solving this problem

is to form an augmented state vector. Similarly, as in Chapter 7, a direct

observability of the particle velocities is assumed (ideal Doppler system). An

augmented state estimation problem for the presented case is given by

xk =

[
vk

θk

]
=

[
M (vk−1;θk−1)

θk−1

]
, (C.22)

where v is the vector of radial particle velocities from Eq. C.21, θ = [A ϕ]T

is the parameter vector and M is the nonlinear forward operator defined

by Eq. C.21. Material parameters are constant during data acquisition; i.e.,

θ̇ = 0.

Similarly, the augmented measurement equation gives the vector of velocity

estimates v̂ as

yk =

[
v̂k

0

]
= [I 0]

[
vk

θk

]
+

[
ϵ0

0 .

]
(C.23)

The augmented non-linear system formulation given by Eqs. C.22 and

C.23 is solved following the extended Kalman filter approach presented in

this appendix.

Data used in this experiment were collected from scanning a cylindrical

inclusion phantom. Details about cylindrical inclusion phantom preparation

are given in Chapter 6. The phantom used in this study was prepared with

a stiff inclusion compared to the background. Inclusion was made with 8%

gelatin concentration and the background was made with 4% gelatin con-

centration. Doppler imaging parameters are identical to those in Chapter 7

for the BW-14/60 probe, with the exception of PRF = 8 kHz. Shear wave

excitation is at 100 Hz.

Figure C.1 illustrates spatial distribution of Doppler estimated particle

velocities at approximately 375 ms from the start of the data acquisition.

Change of wavelength is observed in the stiff inclusion compared to the back-

ground. Spatial noise in the image correlates with depth. For fixed focusing,

SNR changes with depth. The deeper the acquisition, the lower the SNR

and more variance can be observed in the image. In Fig. C.1, from 40 to 50
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Figure C.1: Particle velocity image of a 100 Hz shear wave in gelatin
phantom with cylindrical inclusion. Waves are generated by a needle
vibrating outside of the image plane on the left-hand side. Bright and dark
regions indicate particle velocities toward and away from the Doppler
probe. The velocity range displayed is between -5 and +5 mm/s.

mm, an axially noisy feature is very strong and it is hard to resolve the wave

pattern in this region. This is especially exaggerated in the lower right-hand

side of the image where the magnitude of the shear wave velocity is smaller

due to the attenuation effect of wave propagation through the sample.

In Fig. C.2 spatial distribution of EKF filtered particle velocities 375 ms

from the start of the data acquisition is presented. Overall variance of the

image is significantly reduced, especially in the deeper region between 40 and

50 mm axially. The wave pattern is clearly resolvable in the lower right-hand

corner.

Calculation of Laplacians in Chapter 6 can benefit from this considerable

reduction of variance in images. Moreover, the image de-noising procedure

described does not affect the resolution of the produced images. The advan-

tage of this approach is that it can be performed in an online manner during

data acquisition. Alternatively, instead of performing algebraic inversion in

the frequency domain, a time domain application could be feasible that would

reduce the processing time before displaying the images. One of the main

objections for the algebraic inversion methods for MRI applications is high

computational load and long processing times before the image is available

for the physician.
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Figure C.2: An image of EKF filtered particle velocities. Bright and dark
regions indicate particle velocities toward and away from the Doppler
probe. The velocity range displayed is between -5 and +5 mm/s.
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Marko Oreščanin obtained his BS degree in Electrical and Computer En-

gineering at the University of Belgrade, in Belgrade, Serbia in 2003. He

began his graduate studies in Electrical and Computer Engineering at the

University of Oklahoma (OU) the following year. Mr. Oreščanin finished
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