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Abstract

The prognosis of breast cancer patients improves with early and accurate diagnosis. The quality of the strain

image produced by displacement estimation algorithms are heavily influenced by the RF echo data recorded

by different ultrasound systems. A small clinical study was conducted with 21 women having a single

nonpalpable breast lesion, each detected mammographically with later pathology confirmation. Elasticity

images were acquired on each patient to test for the ability to differentiating malignant and benign lesions.

The mechanical relaxation time T1 images showed a tissue-specific T1 contrast that is negative for all 11

malignant lesions and positive for all 10 benign lesions. Strain images were estimated using a regularized

multi-scale optical flow (ROF) algorithm. Adjustments to the input parameters to the ROF and their

subsequent effects on T1 estimation and computation time are shown to have a strong effect on diagnostic

performance.
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Chapter 1

Introduction

Breast cancer is the fifth most common cause of cancer death worldwide, and the most frequently diagnosed

cancer in women [1]. In the US during 2007, it was expected that approximately 178,480 women would

develop invasive breast cancer and an estimated 40,910 patients will die from this disease. The combined

efforts of early detection and improved treatment have steadily decreased the death rate in women from

breast cancer since 1990. The earliest cancer signs are detectable by medical imaging often before symptoms

appear. Diagnosis is currently based on information obtained from the clinical examination, anatomical

imaging, and biopsy. Although histopathology is the gold standard for diagnosis, the biopsy procedure is

invasive, expensive and carries some risk. Therefore, additional noninvasive diagnostic imaging method to

increase specificity and reduce the need for biopsy would be beneficial.

Recent discoveries in molecular biology have triggered interest in developing new and potentially more

specific imaging methods for breast cancer diagnosis [2]. These include techniques for (a) direct imaging of

signaling molecules and/or receptors mediating malignant progression, and (b) indirect imaging of intrinsic

tissue properties (e.g., biochemical, mechanical) that describe the tumor microenvironment controlling sig-

naling pathways. We use the latter method to detect local changes in soft tissue. The alteration in elasticity

properties is in part a result of inflammation that usually occurs during the early stages of disease develop-

ment. The extracellular matrix (ECM) of breast stroma, which provides the solid consistency of parenchymal

tissues, plays an active role in cancerous tumor growth [3]. Hence, breast stroma is a potentially valuable

source of endogenous disease-specific contrast.

The term ”elasticity imaging” refers to any application of imaging technologies to the spatiotemporal

description of the mechanical properties of a medium [4]. Medical elasticity imaging is broadly categorized

as dynamic or quasi-static, where in both cases a small applied force creates tissue deformations that may be

tracked by ultrasonic, magnetic resonance, or optical imaging technologies. Dynamic methods for imaging

viscoelastic breast features stimulate tissues with harmonic [5, 6] or impulse [7, 8] forces, typically in the

micro-to-milliNewton (µN - mN) amplitude range and at frequencies above 50 Hz.

We employ quasi-static ultrasonic methods for viscoelastic breast imaging. Echo movements are tracked
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as an ultrasonic probe is gently pressed into the skin surface. Step-force amplitudes of 3-6 N1 are applied

suddenly and handheld constant for 10-20 s while ultrasonic echo data are acquired to track movements in a

series of strain images. Such methods are quasi-static because the frequency range for this force stimulus is

less than about 1 Hz [9]. The slow movement of tissue under a load - called viscous creep - is characteristic

of the viscoelastic (VE) properties of tissues. VE properties are found by analyzing a time series of elastic

strain images. Because creep responses to mechanical forces vary in soft tissues and other hydropolymers with

the frequency of the force stimulus, dynamic and quasi-static methods are thought to provide independent

information. It is not yet known which part of the force bandwidth has the most diagnostic information.

Recent studies [10, 11, 12, 13] suggest that elastic strain images of breast tissue can be effective at

discriminating focal benign and malignant tumors. Thomas et al. [11] showed that strain and strain-rate

images were most effective when diagnosing BI-RADS (Breast Imaging-Reporting and Data System) 3 lesions

with lipomatous involution and somewhat less effective with BI-RADS 4 or 5 lesions. A sensitive diagnostic

feature was the ratio of lesion size visualized in strain images versus that in spatially registered sonograms,

suggesting that many of the malignancies studied had a palpable degree of desmoplasia thereby appearing

larger on strain images than sonograms. Zhi et al [12] also showed that strain imaging was effective at

malignant-benign discrimination for late-stage tumors. However, with strain images, early stage (I & II)

infiltrating ductal carcinomas (IDCs) were misdiagnosed presumably because of the lack of desmoplasia.

Although lesion palpability and size were not selection criteria for patients in these prior studies, more than

half of the lesions were identified as palpable and the maximum tumor diameter ranged from 0.3 cm to 10

cm. The purpose of our preliminary patient study was to determine whether viscoelastic features improved

benign vs. malignant differentiation for nonpalpable breast lesions discovered on mammographic scanners.

One of the most important feature that we look for is image contrast. In this case, the image contrasts

resulting from any of the viscoelastic parameters are based on estimations from algorithms that track the

displacements of RF echo signals recorded by ultrasound systems. The ability of the ultrasound systems

to record small movements and the ability of the algorithms to estimate the necessary displacement maps

for the estimation of strain images are important. In the next section, we conducted a series of testings

with a tissue-mimicking phantom and two ultrasound systems with different hardwares (resulting in slightly

different recorded RF echo signals) and compare the strain images obtained from the algorithms.

1For comparison, mammographic compressional forces are 100-200 N
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Chapter 2

Phantom Imaging

2.1 Processing Algorithms

2.1.1 Companding Algorithm

The companding program by Chaturvedi et. al [14] is normally used for the processing of RF data acquired

from the compression of tissue-mimicking phantoms. Companding is a process in which a before-compression

RF image is conditioned such that the image will match the post-compressed RF data as much as possible

(the same can be applied vice-versa). The algorithm is split into two parts: global companding, where a

coarse grid is used to roughly stretch the post-compressed image frame; and local companding, where the

fine tuning between the two images happen. Both processes use the same Sum-Absolute-Difference (SAD)

algorithm [15, 16] to determine the new pixel position.

The theoretical of the algorithms and their applications in the Matlab code are explained below:

Global Companding

In global companding, the image grid is separated into a number of non-overlapping blocks which we call

data kernels. We then select a search region in the following image and try to find the best match for each

data kernel. If we let the data kernel size be L×M, the search region size be P×Q, the pixel positions be i,

j, and the uncompressed and compressed frames be U and C respectively, we can find the minimum SAD

coefficient, δi,j by minimizing the following SAD equation:

δi,j =
L∑

l=1

M∑
m=1

|Cl,m − Ul+i,m+j | (2.1)

Figure 2.1 is a schematic of this kernel search.

In actual programming code, global companding is done by a C-executable code to increase the processing

speed. Because the kernels are non-overlapping, the program simply divides the input data matrix into blocks

as shown in Figure 2.2a. The size of the kernels in the axial direction is determined by the user (set to 120
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Figure 2.1: Diagram of a Data Kernel Search. Assuming that U and C are of equal sized matrices, take a
data kernel sized L×M from U and find the most probably location for it in a search region sized P×Q from
C, the deciding factor is the minimum error as determined by equation 2.1.

rows) assuming that the axial sampling frequency is always 40 MHz while the number of kernels in the

lateral direction is set to 8, therefore the lateral kernel size is determined by the lateral image size, this is to

ensure that the data kernels are not too large if the lateral resolution is low.

The program outputs a number of new center coordinates and their displacements for each data kernel.

Matlab then takes in these center coordinates and displacements to find the original center coordinates, then

performs linear regression to find the strain and shift estimations in the axial and lateral directions. Finally,

a 2D interpolation is performed using these estimations to stretch the data kernels, Thus companding image

U to match image C.

Local Companding

Local companding is very similar to global companding except in 2 aspects: the data kernels now overlap

and the size of the data kernels is smaller.

In actual programming code, local companding is done by a C-executable code to increase the processing

speed. The data kernel size is determined by the user (set to 80 rows by 8 columns). The overlapping

procedure is done by moving the data kernels down (axially) 10 rows at a time and moving the data kernels

left/right (laterally) 2 columns at a time as seen in Figure 2.2b. The maximum search window size is also

pre-determined by the user (set to 160 rows by 24 columns).

The search direction is as follows:

1. For a certain data kernel located on a certain row, m, the program searches down the center column

of the overall image matrix in the previously defined search region size to locate a initial pixel position

(imin,jmin). The SAD algorithm is used to match the data kernels each time and return the index

value matching the minimum SAD coefficient.
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2. The search then goes 2 ways, from the center column to the left side of the image matrix and from

the center column to the right side of the image matrix, these two processes are similar except for the

countdown of column numbers, therefore only the left side search process will be described in the next

step.

3. The search window region is also flexible now, depending on the minimum pixel position values obtained

previously, with the smallest possible search window region being 3×3 pixels. As the search progresses

towards the bottom of the image, the search window size also returns to the maximum possible search

region in order to account for more pixel displacements towards the bottom of the image matrix. The

SAD algorithm is again used to find the index values matching the minimum SAD coefficents for every

other column, n, on a specific row, m.

4. The program then shifts down 10 rows and the process begins again.

Figure 2.2: Global and Local Companding Diagrams. (a)Global companding diagram. The image matrix
is divided into non-overlapping data kernels of a specific size depending on the size of the image matrix ;
(b)Local companding diagram. The data kernels overlap each other. The number 1 depicts step 1 in the
local companding search process, the number 2 depicts step 2 in the local companding search process. Data
kernels skip every 10 rows when it is moving down (axial direction) and they skip every 2 columns when it
is moving left/right (lateral direction)

After this is done for the entire image matrix, we obtain an axial and a lateral index map. Since we

skipped the data for every 10 rows and every 2 columns, we need to define the index values for every skipped

pixel. Assuming that displacement is linear in a small distance, we use a simple linear interpolation to find

the index values.

Finally, local companding conditions the data matrix via nearest-neighbor 2-D interpolation in order to

locally deform image U to more closely approximate image C for the eventual correlation process.
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Companded Displacement

The C-programming code for local companding results in a conditioned image set as well as the the new pixel

position values. To find the displacement along the beam axis, we simply need to define the original pixel

position values along the beam axis and then find the difference. This is what is known as the companded

difference in the Matlab program. Since we know that each segment of displacement should be linear, we

can apply a simple smoothing filter to minimize noise. The size of the smoothing window is set to 16 pixels.

Correlated Displacement

The companding program can only condition image C to approximate image U, therefore, we use the

correlation algorithm to find the remaining displacements. The correlation window size is set by the user

(default at 256 samples/rows). At each iteration (sample length is 256 rows) in the Matlab code, all columns

of the image matrix are produced. Given 2 complex signals s1 and s2, the complex cross correlation equation

corrs1,s2(x) is defined as

corrs1,s2(x) = s1(x)× s2∗(x) =
∫ ∞
−∞

s1(x)s2∗(u− x)du (2.2)

In Matlab, the sequence is carried out using the Fast Fourier Transform (FFT) and Inverse Fast Fourier

Transform (IFFT) functions with the previously described sample size.

The same smoothing filter (window length = 16 pixels) is also applied to the correlated displacement

map.

Strain

The companded displacement map and the correlated displacement map are added to produce the total

displacement estimated between adjacent RF data frames. The strain is found by taking the derivative of

the total displacement map.

2.1.2 Optical Flow Algorithm

The regularized optical flow algorithm (ROF) [17] estimates the displacement fields between adjacent frames

recorded during compression, and the derivative of the sum displacement field is used to find the strain

image. The general equation for displacement d̂ can be written as:

d̂ = argmind∈Ω(E1(d) + αE2(d)) (2.3)
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Equation 2.3 minimizes the energy of the cost function to estimate displacement d̂. The cost function is con-

strained by two components: conservation (E1) and regularization (αE2), where α is a positive regularization

coefficient. E1 assumes that the echo amplitude is conserved during deformation (minimal decorrelation).

The regularization term stablizes the solution by minimizing local displacement variations [17]. Displacement

estimates are found by minimizing the total energy, with coefficient α weighting the relative contributions

of E1 and E2.

There are three key parameters that can be adjusted to apply the ROF strain algorithm to clinical data:

the regularization coefficient α, the search window size, and the numbers of spatial scales over which RF

echo data are compared.

The search window size depends on the percent tissue compression that occurs between adjacent RF

frames recordings. A search window that is too small may render the algorithm unable to find the global

energy minimum. A search window that is too big may increase computation time as well as noise, which

adds to the estimation uncertainty.

ROF employs a multi-scale approach to displacement estimation optimize the convergence of solutions

while avoiding local minima. At each scale level 0 ≤ i ≤ I, the image grid is partitioned into Ni equal sized

data kernels [18] where N stands for the number of data kernels, and equation 2.3 is estimated. The highest

scale level (coarsest) estimation is not constrained by the regularization term, thus allowing an initial global

minimum to be found. This initial level is similar to that of the global companding process in the companding

algorithm. At the lowest scale level (finest), the data kernel size is 4×1 pixels, which corresponds to the ratio

of axial and lateral dimensions [18]. The number of iterations required for the solution to converge increases

dramatically as the scale becomes finer. By changing the number of scale levels, both the computation and

convergence time will be affected [17].

In actual C code, the program begins with the first level (maximum level with no regularization) search,

the image grid is searched through a rough displacement map is obtained. This map is then written into

blocks that is the size of the data kernel for the next search level. For all of the following search levels, the

regularization term of equation 2.3 is also applied. After finding the minimum energy for each data kernel,

the displacement map is updated and the data kernel size is halved for the following search level (Figure 2.3).

This process is repeated until all of the search levels (as designated by the user) are finished.

Displacement and Strain

The C programming for the ROF algorithm directly produces the estimated displacement maps for the

axial and lateral directions. Only the axial direction displacement map is used in the calculation of strain.
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Figure 2.3: ROF Displacement Estimation. Starting at the top level (coarsest level) i, a rough displacement
map is obtained for data kernels. In the next level, the smaller data kernels are initialized with displacement
vectors obtained from the previous level. Minimum energy is then found and the displacement vectors
updated. This process is repeated until the final size of the data kernel is 4×1 pixels.

A smoothing filter of 16 sample length is also used to smooth out the displacement map before strain is

calculated. The strain is found by taking the derivative of the total displacement map.

2.2 Making the Phantom

All gelatin phantom specimens were constructed using 275 bloom strength, Type A, animal-hide gelatin

powder provided by Fisher Scientific (Chicago, IL). To prepare the stiff center inclusion of the phantom, in

a glass beaker, 100 ml of deionized water was combined with 13 ml of n-propanol and 10 g of gelatin powder

to arrive at a 8% gelatin concentration. The solution is heated in a water bath at 60◦C until visually clear

(∼35 min) and stirred every 15 minutes. The solution is then removed from heat and allowed to cool at room

temperature (21-22◦C) until 50◦C before adding 0.3 ml of formaldehyde. The solution is further cooled to

45◦C and 9.1 g of graphite powder was added to act as the scattering particles for ultrasound. To prevent

water loss, the beaker was covered with aluminum foil throughout the process. Finally, when the solution

is cooled to 40◦C and poured into a rigid, cylindrical container (diameter ≈ 1 cm), sealed, and placed on a

slow rotator for 24 hours to prevent the graphic powders from settling. The stiff center inclusion is allowed

to polymerize for 3 days before the rest of the phantom is made. To make the softer background phantom

that surrounds the inclusion, the process is the same except that 6.75 g of gelatin powder was used to arrive

at a 5.5% gelatin concentration. The inside of the 5 cm cubic container was sprayed with mold release and

the stiff inclusion constructed earlier was inserted through the center of opposing sides of the acrylic mold

as shown in Figure 2.4.
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Figure 2.4: Schematic of the Mold Used for Creating Elasticity Imaging Gel Phantoms. A 4 inch C-clamp
is used to hold the acrylic mold to the rotation table (not shown). A 10cc Leur-Lok syringe (with its tip
removed) is positioned in the top of the mold for gel entry..

2.3 Imaging Techniques

The tissue-mimicking phantom was imaged with 2 separate Ultrasound systems: the Siemens Sonoline

Antares ultrasound scanner with a VF10-5 linear array transducer and the Ultrasonix SonixRP ultrasound

scanner (Ultrasonix Medical Corporation, CA) with a L14-5 linear array transducer. The Antares system

was equipped with an Ultrasound Research Interface (URI) capable of recording radio-frequency (RF) echo

data corresponding to the image displayed on the monitor for off-line processing. The SonixRP system was

equipped with a C-compilable software package called Texo that allows for the automated process of recording

RF echo data, however, the image cannot be displayed on the SonixRP monitor while the recording process

is ongoing. Both scanners recorded data with frame rate of 4 frames per second and 17 frames per second.

The RF frame rate was controlled through a waveform generator (Wavetek 30Ms/s Universal Waveform

Generator Model 39) connected to the ECG trigger input of the Antares scanner or the trigger input of

the SonixRP scanner. The waveform generator output a square wave signal with an amplitude of 50 mV

peak-to-peak.

The compression process is done with a motion controller with feedbacks from a digital scale. The bottom

surface of the phantom was coated in oil to simulate free-slip boundary conditions, and the top surface was

coated with an acoustic coupling gel. The phantom was placed on the digital scale and a transducer holder

with a flat acrylic plate was attached to the motion controller. The motion controller was programmed to

ramp up to the applied stress level (between 850-900 Pa) in 1 second and was held constant for approximately

2000 seconds. A uniaxial stress was applied in the direction of the sound beam and normal to the top surface

of the phantom via the acrylic plate. The digital scale provided stress measurement feedbacks to the motion

controller in order to maintain the appropriate displacement to maintain constant stress. The RF echoes
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were recorded at a depth of 1.5 to 4 cm.

2.4 Processing the RF Data

Strain images were estimated from the RF echo data collected from both ultrasound systems. RF data were

collected from the tissue-mimicking gelatin phantoms. The data were processed both with a companding

program based on the SAD algorithm and an optical flow algorithm. The echo data recorded at 4 frames

per second were processed by the SAD companding program and the echo data recorded at 17 frames per

second were processed by the regularized optical flow algorithm.

2.4.1 RF Data From 2 Systems

Both the Antares and the SonixRP ultrasound systems are programmed to record RF echo signals. However,

due to the hardware differences between the two systems, the RF echo signals that were acquired were also

slightly different from each other. For comparison purposes, the B-mode images, which are made from the

envelope of the RF echo signals, are shown in Figure 2.5. Even though the stiffness of the center inclusion

of the phantom is higher than the rest of the phantom, the amount of scatterers are the same throughout.

Since the contrast from B-mode images depends on the intensity of the RF echo signals, we don’t expect

much contrast for these B-mode images. The approximate positions (not size) of the center inclusion are

selected with black circles. Another thing to notice here is that the noise speckles in Figure 2.5b are much

larger than that in Figure 2.5a. This is also due a hardware limitation of the SonixRP system which will

be talked about later. Signal-to-noise ratio (SNR) calculations are conducted on both RF echo signals using

equation 2.4, where net signal is determined by signal = µsignal − µbackground and RMS Noise is defined as

the square root of the sum of variances from the signal region. The SNR calculated from the Antares RF

data is 0.0358 and the SNR calculated from the SonixRP RF data is 0.0024. The RF signal acquired from

the Antares ultrasound machine formed a better B-mode image with a better SNR value.

SNR = 20log10
netsignal

RMSnoise
(2.4)

2.4.2 Processing of 4 Frames per Second RF Data

Both the Antares ultrasound system and the SonixRP ultrasound system were used to collect RF data with

a rate of 4 frames per second. Upon initial processing, we obtain the following results in Figure 2.6.

From the strain images we can see that the strain estimated from the data from the SonixRP system is
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Figure 2.5: Antares and SonixRP B-mode Images. The black circles depict the approximate top position
(not size) of the stiff inclusion. (a) B-mode image formed from RF echo data collected from Siemens Sonoline
Antares system. (b) B-mode image formed from RF echo data collected from Ultrasonix SonixRP system.

Figure 2.6: Antares and SonixRP before Adjustments Strain Images. The data was collected at a depth of 1
to 3.5 cm, therefore only the top half of the center stiff inclusion is shown (a) Strain Image obtained from RF
data collected with the Antares ultrasound system at a sampling frequency of 40 MHz and lateral resolution
of 200 um; (b) Strain Image obtained from RF data collected with the SonixRP ultrasound system at a
sampling frequency of 20 MHz and lateral resolution of 300 um.

less fine than the strain estimated from the data from the Antares system. By comparing the data collection

parameters, we realized that there are several discrepancies between the Antares and the SonixRP ultrasound

system:

1. The default axial sampling frequency of the SonixRP system (20 MHz) is half of that of the Antares

system (40 MHz). This resulted in a worsening of the axial resolution of the data collected from the

SonixRP system, and thus small displacements in the axial direction may not be recorded, resulting

in a quantization error of the displacement map and a more blurry strain image.

2. The SonixRP L14-5 probe is has 128 physical elements, half of the number of physical elements in

the Antares VF10-5 probe. The number of scanlines are also different, the SonixRP system produced

B-mode images with a default of 128 scanlines (lateral resolution 300 um), while the Antares system

produced B-mode images with a default of 192 scanlines (lateral resolution 200 um). This difference

11



in lateral resolution also results in a less detailed strain image.

The SonixRP system therefore had to be adjusted to sample the data at 40 MHz in the axial direction, and

the number of scanlines changed by changing the activation of the virtual elements through the programmable

Texo interface of the SonixRP system (please see Appendix for details). After adjustments, we were able to

obtain the following strain images in Figure 2.7.

Figure 2.7: Antares and SonixRP after Adjustments Strain Images. The data was collected at a depth of 1.5
to 4 cm, the entire stiff center inclusion is shown (a) Strain Image obtained from RF data collected with the
Antares ultrasound system at a sampling frequency of 40 MHz and lateral resolution of 200 um; (b) Strain
Image obtained from RF data collected with the SonixRP ultrasound system at a sampling frequency of 40
MHz and lateral resolution of 200 um.

From this we can see that the strain images now closely resemble each other near the center of the image

but the bottom of Figure 2.7b appear decorrelated (black and white pixels). Since the main reason that we

do strain imaging is to increase the contrast between non-homogenous regions in the tissue, we can compare

between the contrasts in the strain images obtained from these two different ultrasound systems. Using

equation 2.5 for contrast resolution (CR), where Sa is the signal inside of the stiff center inclusion and Sb is

the signal in the background, we obtain CRantares=-0.13712 and CRsonixrp=-0.11277. This shows that the

strain image obtained from the Antares RF echo data is approximately 17% better the strain image obtained

from the SonixRP RF echo data.

CR =
Sa − Sb

Sa + Sb
(2.5)

2.4.3 Processing of 17 Frames per Second RF Data

The 17 frames per second RF data were initially processed by the optical flow algorithm and the resultant

strain image is shown in Figure 2.8.
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Figure 2.8: Antares 17 FPS Strain Image before Adjustments. The image contained quantization errors that
presented as horizontal wave lines that distorted the image.

As we can see, the strain image is disrupted by horizontal wave lines. This is the due to the quantization

errors during the estimation of the displacement map. To explain this, we first investigate the search process

for the SAD companding program. As mentioned previously in Section 2, the companding program works by

matching a data kernel from image U with a data kernel in image C within a search region. After matching,

the program produces a set of coordinates for the new position of the data kernel within the image grid.

Since the search moves in units of pixels, any subpixel movement is disregarded. In other words, if a data

kernel in U happens to have moved to a position that is in between two pixels, the resulting new coordinates

is from a local minimum of equation 2.1 and not the global minimum. This is especially evident when the

percentage of compression between adjacent RF frames is small. This is a different type of quantization error

than the one resulting from a lowering of the sampling frequency of the ultrasound scanner as described

previously.

Because of this limit in the search resolution (resolution = 1 pixel), the displacement map is presented

as a series of staircase-shaped, linearly increasing lines instead of smooth lines. As seen in Figure 2.9a, the

displacement estimation for a single scanline in the image matrix is plotted. Even though a smoothing filter

is applied later on, the original map has lost much of the subpixel displacement, thus resulting in large spikes

in the strain estimation as seen in Figure 2.9b.

A way to fix this is to use interpolation to restore the movements in between the steps in the staircases

patterns. Since we know that displacement increases linearly within a small distance. We can use a linear

interpolation method to estimate these subpixel displacements. For this interpolation, we assumed that the

resolution is 0.2 pixels, and we obtain the following companded displacement and strain plots in Figure 2.10

This process can be run for the entire image matrix, and the before and after correction companded-only

strain image is shown in Figure 2.11

The optical flow algorithm, which is used to estimate strain from RF data with a high frame rate (therefore

percentage of strain between adjacent frame is small) suffers from the same problem (see Figure 2.8). When
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Figure 2.9: Displacement and Strain Plots for a Single Scanline with Quantization Error in the Image
Matrix. (a) Displacement Plot. The large staircase patterns is a result of the search quantization error, due
to the rounding of coordinates to whole integers, subpixel movements are disregarded; (b) Strain Plot. The
quantization error is amplified when taking the derivative of the displacement plot to find strain. The large
spikes are the horizontal wave lines seen in Figure 2.8.

Figure 2.10: Companded Displacement and Strain Plots for a Single Scanline with Corrections for Com-
panding in the Image Matrix. (a) Displacement Plot. The large staircase patterns is now interpolated to
assume a resolution of 0.2 pixels; (b) Strain Plot. Without the large spikes in Figure 2.9, the true shape of
the strain curve emerges.

Figure 2.11: Companded-Only Strain Image before and after Corrections. (a) Companded-only strain image
before correction, notice the horizontal wave lines that disrupts the image; (b) Companded-only strain image
after correction, the actual strain image details are shown.
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plotting out the displacement for a single scanline as estimated by the optical flow algorithm, we obtain

Figure 2.12a.

Figure 2.12: ROF Displacement Plots for a Single Scanline with Errors in the Image Matrix. (a) Displace-
ment Plot before any corrections. The large staircase patterns is present, as well as many outliers; (b)
Displacement Plot after a smoothing correction for the outliers.

A smoothing filter with a window length of 70 pixels was applied to the curve seen in Figure 2.12a. The

idea is to filter out the outlier spikes using the ”mode” function in Matlab. The corrected displacement

curve is shown in Figure 2.12b.

After obtaining a clean displacement curve, the same interpolation method is applied, and the resultant

displacement and strain curves are shown in Figure 2.13. After the entire image matrix is corrected, we

obtain the following strain image (Figure 2.14). One thing we should notice is that the image appears

smoothed out. This is a result of the smoothing filter (window length = 70 pixel) that is necessary to filter

out the noises in the displacement staircase-like plots. A shorter smoothing filter (window length < 70 pixels)

would not be sufficient in removing the displacement noises, which would then affect the interpolation step

that is necessary in removing the quantization errors observed in Figure 2.8.

The same procedure was then applied to the 17fps RF echo data acquired by the SonixRP ultrasound

system. The displacement and strain curves are shown in Figure 2.15. As we can see from the displacement

plots, the bottom of the displacement plots showed big fluctuations in the estimation of the displacement

vectors which were not present in the estimations from the RF echo data obtained from the Antares system.

Since the SonixRP system was programmed to have its beam properties (e.g. lateral resolution, axial

resolution) match the Antare system as closely as possible and both sets of RF echo data were processed by

the same algorithm, plus the fact that the strain image estimated from the SonixRP RF echo data acquired

at 4fps also showed decorrelation towards the bottom of the image, the only possibility that remains is that

the quality of the signal as recorded by the SonixRP degrades towards the bottom of the image (farthest

from the transducer probe surface). It is possible that the SNR towards the bottom of the image is too
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Figure 2.13: ROF Displacement and Strain Plots for a Single Scanline with Corrections for ROF in the Image
Matrix. (a) Displacement Plot. The large staircase patterns is now interpolated to assume a resolution of
0.2 pixels; (b) Strain Plot.

Figure 2.14: Antares 17 FPS Strain Image After adjustments. The horizontal wave lines are gone, however,
the image appears more smoothed out.

low that random noises dominated the signal, which made it impossible for either algorithms to make a

reasonable match between the data kernels of adjacent frames. Since the filtering/smoothing windows and

the interpolation steps afterwards all depended on a fairly clean displacement estimation, the resulting strain

image (shown in Figure 2.16) showed a loss in spatial resolution (image appear much smoothed out) as well

as a decorrelated region at the bottom of the image.

Since most of the lesion is still visible, however, we can attempt to calculate the image contrast using

equation 2.5 like before. We obtain CRantares=-0.14292 and CRsonixrp=-0.12097. This shows that, even

with the decreased axial spatial resolution, the strain image obtained from the Antares RF echo data is

approximately 18% better the strain image obtained from the SonixRP RF echo data.

2.4.4 Viscoelasticity Imaging

After the initial compression, the motion controller holds the compression plate and the transducer probe in

place for an additional 30 minutes. The RF data acquired during this time records any possible viscoelastic
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Figure 2.15: ROF Displacement and Strain Plots for a Single Scanline in the Image Matrix. The bottom
of the displacement plots show vastly different displacement estimations that resulted in large spikes in the
strain plot which in turn resulted in a decorrelated strain image for that region. (a) Displacement Plot with
many noise. (b) Displacement Plot after noise corrections. (c) Displacement Plot with interpolation. The
large staircase patterns is now interpolated to assume a resolution of 0.2 pixels; (b) Strain Plot.

Figure 2.16: SonixRP 17 FPS Strain Image after Adjustments. The horizontal wave lines are gone, however,
we lost spatial resolution and gained much decorrelated noises near the bottom of the image.

responses that the phantom may have. To produce the time-series of strain images needed for viscoelastic

curve fitting, only simple correlation between adjacent images should be used since there are very little

change between the corresponding RF signals from adjacent RF images. If companding is used between

simple correlation, it may actually overcompensate and distort the RF signals.
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2.5 Conclusions

Two different algorithms are used to produce the strain images from RF echo data (of frame rates 4 and

17 fps) recorded by two different ultrasound systems, the SonixRP ultrasound system (Ultrasonix Medical

Corporation, CA) and the Siemens Sonoline Antares system. The advantage of the SonixRP system is

the ability to program most transmit and receive aperture features, as well as the temporal pulse profile.

However, hardware limitations on the SonixRP scanner made it necessary to program adjustments to its

beamforming properties before obtaining strain images that can be compared to the Antares system.

The first major difference is the native (what the machine defaults to) sampling frequencies of the

scanners. The SonixRP scanner has only half the sampling frequency as the Antares scanner. This means

that only axial displacements that were twice as big as what was previously detectable on the Antares would

be recorded on the RF echo data obtained from the SonixRP. This would be a major setback to the strain

estimation algorithms since we are attempting to detect sub-pixel movements if possible. This difference in

axial sampling frequencies can be changed through the programmable interface of SonixRP, so that both

machines can now acquire RF echo data at 40 Mhz. The second major differences between the two systems

is the linear array pitch. The number of physical elements on the SonixRP L14-5 linear array is only 128

while on the Antares VF10-5 linear array it is 256. Since the overall size of the transducer probes are similar,

the result of less physical elements is that the pitch of the SonixRP linear array is about twice that of the

Antares linear array. This presented a problem when we wanted to achieve a lateral resolution that is smaller

than the pitch of the linear array, as we tried to do in the phantom study in order to make the RF image

parameters between the two systems as similar as possible. The additional scanlines were interpolated in

order to match up the lateral resolution of the two systems. As a result, the B-mode image obtained from

the SonixRP scanner looked worse than the B-mode image obtained from the Antares scanner.

Even though both systems recorded the data at 16 bits. The SonixRP system works a little differently.

As reported on the Ultrasonix Users Forum by the support engineer, the RF data is packed into 16 bits,

but after the summation of 10 bit ADCs, the result will not be more than 14 or 15 bits. As tested by this

engineer, he could obtain values up to 14 bits when the TGC gain is maximized. Since the SonixRP RF

signals didn’t actually have 16 bits worth of discrete values, the SonixRP RF signals are less detailed than

the Antares RF signals and smaller displacements in the phantom may be missed.

From the strain image comparisons, we can see that the strain images produced by the SonixRP RF

echo data is always a little worse in contrast than the strain images produced by the Antares RF echo data.

Since patient studies required estimations of viscoelastic features which are obtained from a large collection

of strain images, the Antares ultrasound system would be better suited for the study.
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Chapter 3

Patient Imaging2

3.1 Methods

3.1.1 Patient Selection

Data were collected from 26 adult female patients through the breast clinic at UC Davis Medical Center

in Sacramento, CA. Consent to participate was obtained from patients with a single, nonpalpable lesion

identified by mammography just prior to undergoing a core needle biopsy procedure. The protocol was IRB

approved at both UCD and UIUC. Data from 5 patients were rejected due to bad acquisition techniques

that did not allow for further extractions of viscoelastic parameters needed for this study. Data from 21

patients were used for this clinical study. Out of these 21 patients, 10 patients were diagnosed with benign

lesions and 11 patients with malignant lesions of various types. Patient ages ranged between 28 - 72 years,

and tumor sizes ranged between 0.5-2.5 cm. The patients were selected randomly under the criteria that

they have nonpalpbale lesions that were identified via mammography. All lesions were BI-RADS 4 or 5,

which identified these lesions as potentially malignant and requiring tissue diagnosis.

Biopsy samples from patients with malignant tumors were assigned SBR (Scarff-Bloom-Richardson)

scores based on three morphologic features: degree of tumor tubule formation, tumor mitotic activity and

nuclear pleomorphism of tumor cells. SBR scale assigns 1-3 points for each feature; the final score is the

sum of all 3 (minimum 3, maximum 9) where higher scores indicate greater likelihood of tumor growth and

metastasis. Tumors scoring between 3-5 are labeled Grade 1 (normal cell appearance); those with a score

of 8 or 9 are labeled Grade 3 (poorly differentiated with tendency to grow and spread aggressively); and

those with a score of 6 or 7 are in between. The SBR score and tumor grade aid physicians with treatment

strategies and prognosis. Among the 11 patients with confirmed malignant tumors in our study, four were

diagnosed as Grade 1 tumors, four as Grade 2, one as Grade 3, and 2 were not scored. Small size, low level

of lymphatic invasion, low number of tumors per patient, lack of metastasis, and the tumor grades classify
2Portions of this chapter are reprinted from Y. Qiu, M. Sridhar, J. K. Tsou, K. K. Lindfors and M. F. Insana. Ultrasonic

Viscoelasticity Imaging of Nonpalpable Breast Tumors: Preliminary Results. Academic Radiology, 15:1526-33, 2008. c©[2008
Elsevier]

19



our patient group as having early stage malignancies.

3.1.2 Lesion Diagnoses

Benign and malignant lesions were further classified into four subtypes or combinations with the exceptions

of one benign lesion diagnosed as dense collagenous stroma and one malignant lesion diagnosed as B-cell

lymphoma.

a. IDC. Invasive/infiltrating ductal carcinoma (IDC) is the most common form of breast cancer, account-

ing for 65% to 80% of malignant mammary carcinomas [19]. Eight of 11 patients with malignant

tumors were diagnosed with either IDC or IDC combined with DCIS (ductal carcinoma in-situ). All

were Grade 1 or 2 and categorized as BI-RADS 4 or 5. While many IDC tumors have a stiff desmo-

plastic stroma surrounding the tumor, IDC tumors in our population were nonpalpable.

b. ILC. Invasive lobular carcinoma (ILC) accounts for about 10% to 15% of all breast cancers [19]. Two

of the 11 patients with malignant tumors were diagnosed with ILC. One had a Grade 1 tumor and

both were classified BI-RADS 5. Both ILC patients were in their mid 50’s to early 60’s. Both had

only one breast involved and no signs of metastasis. Early-stage ILC lesions are usually nonpalpable

due to lack of desmoplasia reaction, difficult to observe mammographically, and thus often larger in

size at diagnosis.

c. Fibroadenoma. Seven of 10 patients with benign tumors were diagnosed with fibroadenoma. All of

these patient images were categorized as BI-RADS 4.

d. Fibrocystic Change. Two of 10 patients with benign tumors were diagnosed with fibrocystic changes.

Both were BI-RADS 4 lesions. The condition is characterized by stiff noncancerous regions containing

a high-density of normal ECM collagen and increased interstitial fluid pressure. However, our patient

group presented no palpable lesions at physical examination.

All four lesion types usually express increased levels of ECM proteins, which tend to stiffen the lesion

to varying degrees relative to their surround medium. IDC lesions with desmoplasia are particularly stiff,

often palpable, and frequently they appear larger in the elastic strain image than on the sonogram [20]. By

limiting our test population for VE imaging parameters to nonpalpable lesions, our study focuses on early

disease that can be difficult to diagnose.
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3.1.3 Imaging Techniques

Techniques for imaging viscoelastic features of breast tissues have been described previously [9, 21]. A

Siemens Sonoline Antares ultrasound scanner was used with a VF10-5 linear array transducer operated at

8 MHz. The scanner was configured with an Ultrasound Research Interface (URI) capable of recording

radio-frequency (RF) echo data corresponding to the image displayed on the monitor for off-line processing.

Patients were positioned supine and the breasts were scanned anterior-posterior with the chest wall as com-

pression support. Patients were instructed to hold their breath during the 12 to 15 seconds data acquisition

time to minimize breast motion. The RF acquisition frame rate was 17 fps. Scanning was repeated at least

three times for each patient to ensure consistency in the compressive motion of the breasts.

A small compressive force was applied manually to the breast surface by operators holding the trans-

ducer probe without restraint, the same as in clinical imaging. The operators apply a constant downward

(compressive) force of approximately 4 N for the duration of the scan. Sridhar [9] showed that sonographers

with limited training were able to keep the force constant within ± 0.24 N. The recording of RF echo frames

began just prior to compression. The entire force was applied within 1 s and held constant while RF frames

were recorded for 12 to 15 s. Echoes were recorded at an average depth of 30 mm.

3.1.4 Curve Fitting

From the time series of RF frames recorded during the application of the force, strain images were formed

using multicompression techniques [22] and a regularized optical flow algorithm [17]. Figure 3.1 illustrates

how we analyze the RF echo frames (totaling K frames) recorded over time by applying a sliding reference

frame to form a time series of K -1 strain images. The k -th strain image in the series is made from adjacent

RF echo frame pairs, fk and fk+1 where k=1, 2, 3, , K -1. Each strain image is spatially registered to match

the geometry of the pre-compression sonogram. Strain is plotted over the time series of images to generate

the viscous creep curve as shown in the figure. The VE phase of the curve begins immediately after tissue

compression at time t0. One curve is computed for each strain pixel, or small group of pixels, from which

VE parameters are estimated as described below.

VE parameters were extracted from each measured creep curve by least-square fitting of the patient data

to a rheological model [23]. Our clinical imaging acquisitions are no longer than 15 s. Consequently the long-

duration VE response terms are not engaged, and therefore a first-order discrete Kelvin-Voigt rheological

model [9, 23] is appropriate,

ε (t) = ε0 + ε1 ×
(

1− exp
−t
T1

)
(3.1)
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Figure 3.1: Multicompression RF Echo Acquisition, Strain Image Formation, and VE Parameter Estimation
for a Patient with a Nonpalpable Fibroadenoma. ε0 describes the instantaneous elastic strain. ε1 describes the
viscoelastic strain amplitude. Compression is applied from time t = 0 until t0 during which the instantaneous
elastic strain is measured. t0 is also the time at which computation of the viscoelastic response begins. The
viscoelastic curve lasts 12 to 15 seconds.

The term ε0 is the instantaneous elastic strain that occurs immediately after compression (Fig 3.1). In the

second term, ε1 is the amplitude of the exponential creep curve. The constant T1 is the retardation time

of the curve characterizing the delay in the full strain response. Strain delays in stroma are from frictional

resistance due to movement of the ECM in viscous interstitial fluids [9]. Elastic strain ε0, viscoelastic

strain amplitude ε1, and the strain retardance time constant T1 are the VE features analyzed in our study.

Examples of malignant and benign VE curves are shown in Figure 3.2.

3.1.5 Pixel Selection and Averaging

Small areas 10×30 pixels were selected by hand within the lesion and background regions of each patient

image (Fig 3.3). In those regions, the average B-mode, ε0, ε1 and T1 values from the spatially registered
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Figure 3.2: Examples of Malignant and Benign Viscoelastic Strain Curves. ε0 describes the instantaneous
elastic strain. ε1 describes the viscoelastic strain amplitude. The retardance time constant T1 measures the
time required for the VE curve to reach a plateau. T1 value for the malignant tumor is shorter than that
for the benign tumor.

images are estimated. In cases of tissue heterogeneity, the selection area was reduced to 10×15 pixels,

but consistency of the mean parameter values was maintained by repeating the process for difference area

selections. For each image set, there are at least 5 selections per image that yields values that are within

15-20% of each other. These selections are averaged to give the mean values reported.

Figure 3.3: Example of Pixel Selection for Statistical Analysis. The selection boxes (marked in white) vary
in size from 10×30 to 10×15 pixels.

3.1.6 Parametric Contrast

Contrast is an important visual feature for diagnosis, more than the parameters values. The goal of VE

imaging is to provide tissue-specific parametric contrast for diagnosis. Contrast is calculated using

C =
Xlesion −Xbackground

Xlesion+Xbackground

2

=
Difference

Average
(3.2)

where Xlesion and Xbackground represents any of the four parameters described above from the lesion and

background tissue areas of a patient scan.
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3.1.7 The Three Adjustable ROF Parameters

As mentioned previously in the Phantom Imaging chapter, there are three adjustable parameters involved

in the estimation of strain images from RF echo data using the Regularized Optical Flow algorithm: the

regularization coefficient α, the search window size, and the numbers of spatial scales over which RF echo

data are compared. These three parameters were varied to check for the differences in the visual appearance

of the strain images, the computation time, and the resultant T1 estimates. α is varied while the number of

scale levels remained at 6 (I = 5) and the search window size remained at 8×2 pixels. The number of scale

levels is then varied while α remained at 40 and the search window size remained at 8×2 pixels. Finally, the

search window size is varied while α remained at 40 and the number of scale levels remained at 6.

Regularization Coefficient, α

Coefficient α was varied between 2 and 120 for a time series of strain images from the patient data set, and

VE parameters were extracted for an infiltrating ductal carcinoma (IDC) lesion. α is proportional to the

smoothness of the strain image; Figure 3.4a shows the resultant strain images when the coefficient is too

small and Figure 3.4b shows a normal/smooth strain image. Strain noise suppression increases with α at

the cost of spatial resolution. The recommended α value range of 2 to 10 [17] was unable to sufficiently

minimize decorrelation noise, so we adopted a value of 40 for processing all patient data.

Figure 3.4: Strain Images with Different α. The lesion region is indicated with black arrows in (a) Strain
image ε0 when regularization coefficient α = 2. Not enough noise suppression. (b) Strain image when α =
5. There is some noise suppression. (c) Strain image when α = 10. Minute noises still exist. (d) Strain
image when α = 40. The image is smooth.

T1 values versus α are plotted in Figure 3.5for a malignant lesion. T1 values are stable forα¿40 where

much of the strain noise is suppressed. VE lesion contrast calculated in this range provided a reliable

separation between benign and malignant lesions, thus improving diagnostic performance.
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Figure 3.5: T1 Estimates from the Lesion and Background Tissues Collected at Different α Values. Values
below 40 shows bias in T1 estimates because of strain noise, as shown in Figure 3.4.

Number of Scale Levels

The default number of scale levels as determined in [17] is I = 5 (6 levels). The anisotropic ratio of 4 is

used to account for the ratio of axial-to-lateral block size. The number of scale levels used for our patient

data was 6. The effect of the change on the computation time needed to process 166 strain images is shown

in Table 3.1. Computational times for 7 scale levels are similar to those for 5 scale levels. However, strain

images resulting from 5 scale levels failed to detect small parts of the breast tissue whereas the strain image

resulted from 7 scale levels showed additional decorrelation noise. Therefore, the optimal number of scale

levels for this study is 6.

Number of Scale Levels ROF Computation Time (min)
5 69.2
6 80.8
7 91.3

Table 3.1: T1 Computation Time for Different Number of Scale Levels

Search Window Size

The default search window size was 8×2 pixels (axial×lateral). For comparison purposes, other search

window sizes were used that were determined to be optimal for smaller and larger between-frame compression

percentages in [17]. The resultant ROF computation time to process 166 strain images and the resultant T1

contrast estimates are shown in Table 3.2. Although different search window size yielded similar T1 contrast

values (T1 = 0.8814±0.0066), the computation time for the strain image sequence increases as the window

size increases. A larger window size is ideal when there is a bigger change in the percentage strain between

adjacent frames. For this patient study, a search window size of either 4×1 or 8×2 pixels is recommended

due to the low percentage of strain between frames.
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Search Window Time ROF Computation Time (min) T1 Contrast
4×1 44.3 -0.8739
8×2 85.8 -0.8865
12×3 157.7 -0.8838

Table 3.2: T1 Computation Time for Different Search Window Sizes

3.2 Results

3.2.1 Statistical Analysis

Average VE parameter values for the 21 patient studies are displayed in Figure 3.6 as histograms with error

bars indicating standard errors. Due to the low number of patient studies in each lesion subtype, data

were grouped into malignant and benign classes only. Two-sided t-tests were performed for each of the

four parameters to test the hypothesis that data from the malignant and benign groups are really just one

population. Parameters for which p values were less than 0.05 were considered able to distinguish between

the two lesion groups. The t-tests results from data summarized in Figure 3.6 are shown in Table 3.3.

Figure 3.6: Average Lesion Parameters. (a) Elastic strain values ε0 (p<0.5); (b) Time constants T1 (p<0.01);
(c) creep-curve amplitudes ε1 (p<0.1); and (d) B-mode pixel values (p<0.6). Error bars denote ±1 standard
error.

Parameter p-values (95% significance)
ε0 0.4213
ε1 0.0098
T1 0.0986

B-Mode 0.5830

Table 3.3: Student’s T-test Results from Viscoelastic Parameters
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Only the VE retardance time constant, T1, was found to be separable and at the 99% significance level

(p<0.01). The histogram of Figure 3.6(b) shows the difference of means for T1 clearly exceed the standard

errors. For comparisons, we refer to the viscoelastic parameters found for normal glandular breast tissue

from a previous study, T1= 3.2±0.8 s [9]. The current study summarized in Figure 3.6(b) shows an average

T1 value of 3.9±0.7 s for benign tumors and 1.4±0.2 s for malignant tumors. Therefore the difference in

average T1 values between normal parenchyma and malignant lesions is also highly significant. We also

looked for correlations between T1 image contrast, Eq 3.2, and tumor grade value (1-3), and we found the

linear relationship CT1 = −0.18 × Grade − 0.35. The norm of the residuals for the equation fit was 0.014,

suggesting strong correlation. However, there are too few samples to obtain the statistical power required for

significance; therefore the result should be considered preliminary. Parameter uncertainties reported above

are of the same order of magnitude as those caused by handheld force applicators. A previous study on

normal volunteers [9] showed that the standard deviation for time constant estimates is typically 25% of the

mean. Because the uncertainties are of the same magnitude on patients measurements, we infer that patient

variability is small compared with operator variability.

3.2.2 Contrast Histograms and Scatter Plot

While the t-test for retardation time T1 revealed a statistically significant difference between the mean

values for benign and malignant tumors, it is important for image-based diagnosis to also explore contrast

differences with respect to background areas. Equation 3.2 was applied to calculate patient contrast for each

of the four parameters, B-mode, ε0, ε1, T1; the results are shown in Figure 3.7, where we see that only T1

provided statistically significant contrast.

Figure 3.8 shows a scatter plot of elastic strain (ε0) contrast versus T1 contrast for each of the 21 patients.

In this figure, T1 contrast is negative for all malignant tumors and positive for benign tumors, thus clearly

providing lesion discrimination. None of the other features provided such strong discriminability.

3.2.3 Color Imaging

The previous section showed that spatially averaged T1 contrast allows us to clearly discriminate nonpalpable

malignant and benign breast lesions. This section explores spatial variations in the retardance time constant

using color mapping of the T1 contrast as an overlay on the sonogram. The concept is analogous to color-flow

imaging where blood velocity is mapped onto the sonographic anatomy.

Consider each image as a matrix of size I×J. For each pixel p(i,j) in the matrix, i = 1, . . . , I and

j = 1, . . . , J , we compare its T1 value to the spatially averaged T1 value near the periphery of the image,
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Figure 3.7: Patient Average VE Contrast Values for (a) elastic strain ε0, (b) T1, (c) ε1 and (d) B-mode
images. Error bars denote ±1 standard error.

Figure 3.8: Scatter Plot of Patient Contrast Values for Two Parameters, ε0 and T1. A dotted line drawn at T1

contrast = 0 divides malignant and benign lesions. However, ε0 contrast offers no significant discriminability.

T1 (selection box size 10×30 or 10×15 pixels). For pixels where T1(i,j) < T1, we assign an overlay color

in the blue spectrum where the shade indicates the negative difference value T1(i,j)− T1. For pixels where

T1(i,j) > T1, we assign an overlay color in the red spectrum where the shade indicates the positive difference

value T1(i,j) − T1. For example, see the color bars in Figure 3.9 where an an isoechoic IDC lesion and a

hypoechoic fibroadenoma are shown. These color pixels were spatially smoothed and amplitude thresholded

in a manner similar to color-flow imaging.

3.3 Conclusions

This preliminary clinical study tentatively confirms the hypothesis that viscoelastic parameters from patients

with nonpalpable breast lesions can be used to differentiate between malignant and benign breast tumors. A
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Figure 3.9: Sonograms with T1 Parametric Color Overlays. The example in (a) is from a patient with a
malignant (IDC) lesion; the negative T1 contrast values are shown in blue. The example in (b) is from a
patient with a benign (fibroadenoma) lesion; the positive T1 contrast values are shown in red.

statistical test performed on four parameters, ε0, ε1, T1, B-mode, showed a significant difference between the

retardation time constants T1 for the two lesion types. In addition, T1 contrast was found to be negative for

malignant lesions and positive for benign lesions in all 21 patient studies. The observed contrast differences

are consistent with known changes in the collagenous stromal ECM near the lesion [24]. Benign tumors have

increased normal collagen density; that is, the associated proteoglycan content increases in proportion. Dense

ECM increases both the cross linking among collagen fibers and the viscosity of interstitial fluids, which

increase the resistance to creep and lengthen T1 values. Very similar results were found in VE phantom

studies where hydropolymers density was locally increased [23]. Malignant tumors also have increased

collagen density; however these collagen fibers are structurally different from those of normal ECM stroma.

Malignant stroma has reduced proteoglycan content for loose and dense connective breast tissues that then

reduces the frictional forces resisting creep. Consequently, T1 values in nonpalpable lesions are less than

with that of normal breast stroma. In other words, IDC and ILC lesions are generally more fluidic in their

mechanical response than the more solid-responding fibroademomas. We point out that lesion palpability

is determined very subjectively. A study with more patients is required to reach conclusion about clinical

efficacy.

As we discovered previously by comparing VE results from breast tissues of normal volunteers [9] and

hydropolymers phantoms [23] over much longer acquisition times (200 s and 3600 s, respectively), the RF

acquisition time significantly influences lesion contrast. Eigenanalysis of normal breast tissues [9] suggests

there are at least two VE components in the rheological model for 200 s breast acquisitions using our quasi-
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static elasticity imaging method. The VE retardance time constants are T1 = 3.2±0.8 s and T2 = 42±28

s. By truncating the acquisition time to practical values <20 s, as in the current study, we can ignore

the effects of T2 on T1, and we can expect a coefficient of variation for T1 estimates of 25% due mostly

to jitter from the hand-held force application [9]. The current study did not examine the T2 component

because 200 s acquisitions were impractical. Also there is greater relative error for T2 estimates, which

is a tissue response at a much lower force bandwidth (<0.1 Hz) and which requires development of new

scanning techniques. Nevertheless, we are encouraged by the diagnostic performance of T1 estimates for

malignant-benign discrimination.

Potential sources of error in viscoelasticity imaging are patient movement (respiratory and cardiac) and

hand-held transducer movement during force application. Small transducer movements increase decorre-

lation errors in strain images [22, 17], which then propagate into large noise variations in VE parametric

images. Changing to the high-frequency force stimuli used in dynamic imaging methods [4, 5, 6, 7] reduces

VE parameter estimation errors for several reasons. However, we know from the polymer mechanics liter-

ature that the frequency of the applied force influences the time-varying strain response and therefore VE

parameters. To visualize this point, consider movement of stroma: an ECM polymer embedded within a

viscous interstitial fluid. Slow application of a compressive force allows fluid motion with little frictional

resistance, and therefore cross linking among ECM fibers determines the VE response. However,dynamic

friction increases with the velocity of the applied force, depending on the viscosity of the fluid, until fluid

flow dominates the time-varying strain response. Consequently, there is merit in pursing both quasi-static

and dynamic elasticity imaging methods. Both methods are currently limited for clinical applications by

our ability to precisely apply forces to the tissue.

Results from this preliminary study have demonstrated that viscoelastic imaging of breast tumors can

effectively aid in the characterization of nonpalpable breast lesions. The greatest advantage of this novel

imaging method is that the viscoelastic parameters obtained can be used to clearly differentiate between

malignant and benign lesions for patients with nonpalpable, early stage, BI-RADS 4 and 5 breast tumors.

The addition of viscoelastic features into the diagnosis feature space can aid the physicians in making a more

accurate diagnosis of early breast cancer patients.
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Chapter 4

Conclusions

The emergence of accurate diagnostic tools for the detection of early, non-palpable, suspicious breast lesions

is very important in improving the overall survival rate of the cancer patients. Women who come in for their

annual breast exams may have small lumps (<2 cm) in their breasts that are not detectable via manual

palpation but appear suspicious on medical imaging devices such as ultrasound (breast sonogram) and x-ray

(breast mammogram). The next logical step would be a core-needle or fine-needle aspiration biopsy to obtain

tissue samples for examination by the pathologists. The biopsy result would establish the type, stage of the

tumor as well as any possible nodal involvement and metastasis. However, biopsies count as minor surgeries

which would carry risks of infections and up to half of these biopsies can turn out to be unnecessary as the

lesions are benign. The ideal situation then would be to develop a non-surgical technique that would help

to eliminate some of the unnecessary biopsies and provide more information than simple detection of breast

lesions.

In the preliminary patient studies we used ultrasound elastography techniques to study the viscoelastic

responses of non-palpable breast lesions. An ultrasound probe is used to apply and hold the compression to

the breast region where a small, non-palpable, suspicious lesion is present and record the displacement of the

tissue over time (∼17 seconds). Strain images are calculated from displacement maps which are estimated

by correlation algorithms using the time-series of RF echo data recorded. Viscoelastic information are then

extracted from the time-series of strain images through curve-fitting. Because of the many estimations

(where errors from the previous estimation are amplified in the next) we have to go through in order to

extract information that may be useful in distinguishing between malignant and benign breast lesions, it is

very important to have a good set of RF echo data to begin with. And since we are dealing with lesions

of very small diameters (<2 cm), we would want the spatial resolution to be high so that the viscoelastic

parameters obtained are useful for further diagnosis. The phantom study compared strain images of the

same tissue-mimicking phantom estimated by the same correlation algorithms using RF echo data recorded

from two different ultrasound systems. The Ultrasonix Sonix RP system produced strain images that had

poorer spatial resolution and contrast than the Siemens Sonoline Antares system. If we are to estimate

31



viscoelastic parameters from these strain images, the results may be a false-positive diagnosis for the patient

because the viscoelastic parameter values may not be accurate. Therefore, an ultrasound machine with high

spatial resolution would be better in ultrasound viscoelasticity studies.

Using the RF echo data that we have acquired using the Antares ultrasound machine, we were able to

conduct a preliminary study that yielded some interesting results. The ability of the viscoelastic parameter

T1 in discriminating between malignant and benign lesions can be a very useful addition to the diagnostic

features of ultrasound. A larger study with more patient data may reveal more about the sensitivity and

specificity of T1 contrast discrimination of breast lesions, and may even provide further information on

the specific types of breast lesions being studied. This noninvasive technique has the potential to reduce

the number of unnecessary biopsies while providing the doctors and patients with some early diagnostic

information on suspicious breast lesions.
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Appendix A

SonixRP Adjustments

The Texo demo program is written in C code. Using this program, the SonixRP system produces 128

scanlines in the RF images by default, corresponding to the 128 physical elements available in the transducer

array. The Texo demo C code divides each physical elements (numbered 0 to 127) into 10 virtual elements

(numbered 0 to 9). and so there are 128×10 virtual elements that you can control. In order the change the

number of scanlines in the RF image, we have to change which virtual elements are the center elements.

By default, every 5th virtual elements of every physical element is activated. In other words, if we let the

current physical element number be i, then every (i×10)+5 virtual element is designated the center element

and a scanline is added at the position.

If we wish to increase the number of scanlines, thereby interpolating between elements, we need to change

the designation of the center element. For 192 scanlines, the virtual elements are in a sequence as follows: 0,

6, 13, 20, 26, 33, 40, 46, 53, 60, 66, 73, 80, 86... Basically, every 6th or 7th virtual element is designated as

the center element. To figure out how to assign this in the C code efficiently, it is helpful to draw a picture

of the virtual elements like in Figure A.1. As we can see, the center virtual element position on the physical

element repeats itself for every 2 physical element, since the position of the center virtual element on physical

element i+2 is the same as the position of the center virtual element on physical element i, we can simplify

the C code by assigning the right center virtual element positions to the even and odd numbered physical

elements.

Figure A.1: Diagram for 192 Scanlines Center Virtual Element Assignment. The center virtual element is
represented by a solid black rectangle. The center virtual element position on the physical element repeats
itself for every 2 physical elements.

The same can be done for 360 scanlines, but the space between center virtual elements will be smaller.

In this case, the spacing between the center virtual elements are 3 or 4 virtual elements, and it is harder to
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find a pattern. It would be more useful to write out the designation for every single center virtual elements

and then combine those that have the same line of code.
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