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Abstract

The Viscoelastic response of hydropolymers, which include gelatin phantom and glandular breast

tissue, may be accurately characterized with as few as three parameters using the Kelvin-Voigt Frac-

tional Derivative (KVFD) modeling approach. We propose to image these parameters for simulated

and experimental imaging phantoms and to estimate them for normal and cancerous in-vivo breast

tissues. After a detailed presentation of the processing algorithm and discussion of its performances,

we analyze the KVFD parameter values in simulated and experimental hydrogels. We show that the

KVFD parameters can separate the biphasic mechanical properties of hydropolymers that describe

the response of its solid and fluidic components and present the effects of pH and concentration

changes in gelatin phantoms. We then interpret average results observed in normal and cancerous

breast tissues and show that this modeling approach may be applied to tumor differentiation.
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Chapter 1

Introduction

1.1 Breast cancer development and detection

Statistics from the American Cancer Society (ACS) show that breast cancer is the leading cancer

type in women under 65. The ACS also indicated in 2007 that about 180,000 persons would be

diagnosed with breast cancer while 41,000 patients would die. The last ten years have however seen

a decrease of these numbers, which may be attributed to the improvement of diagnostic imaging

and therapeutics.

Mammography and sonography are often the initial imaging techniques applied to patients when

diagnosing breast tumors. Both modalities are considered able to better detect the presence of a le-

sion than to differentiate between benign and malignant tumors [1, 2]. For example, nearly all breast

lesions appear as hypoechoic regions in sonograms; diagnosis requires careful visual evaluation of

the lesion boundary, image texture and shadow features. To help improve discriminability, elasticity

imaging was proposed because of its ability to reveal the presence of a stiff desmoplastic reaction

specific to regions surrounding some malignant tumors [3]. Recent clinical experience examining the

diagnostic performance of elasticity imaging for breast disease is very encouraging [4, 5, 6].

Static elasticity imaging techniques generate strain maps describing deformation patterns re-

sulting from small, quasi-static, uniaxial compressions applied to the tissue surface as it is scanned

ultrasonically. However, strain images are just the tip of the diagnostic information iceberg pro-

vided by mechanical properties. It is now known from molecular biology studies that cancerous

epithelial cells must send and receive molecular signals to and from surrounding stromal cells if they

are to develop into malignant tumors [7]. To effect malignant transformation, tumorigenic signaling

pathways induce structural modifications to the extracellular matrix (ECM) and alter the viscos-

ity of extracellular fluids, thus inducing changes to viscoelastic properties of the tissue. The most

noticeable change is the palpable stiffening of breast stroma. Changes in the cellular mechanical en-

vironment can profoundly influence the progression of disease [8, 9]. Therefore time-varying features
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of the viscoelastic (VE) response of breast tissues to gentle deforming forces may be an important

untapped source of diagnostic information about both the biology of the malignant processes and

the medicine of diagnosis and treatment monitoring.

1.2 Elasticity imaging with ultrasound

Elasticity imaging with ultrasound may be used to image small scale displacements of tissues in re-

sponse to a stimulus. Radio-frequency (RF) echo signals from pulse-echo ultrasonic imaging systems

are often used to image the strain response of tissues from applied stress stimuli [10]. Information

about the VE properties of tissues is found from spatiotemporal variations in the corresponding

strain fields. We form static strain images by processing ultrasonic RF echo frame sequences using a

multi-resolution cross-correlation-based displacement algorithm [11] or a regularized optical-flow al-

gorithm [12]; the algorithm choice depends on the amount of applied deformation. Both algorithms

were designed to minimize strain noise for relatively large (>1%) deformations. Later generation

algorithms [13, 14] provide superior strain estimates for the very small displacements (<0.1%) as-

sociated with radiation force stimuli [15] and viscoelastic creep imaging techniques [16]. For each

volume element of tissue imaged, a time sequence of strain estimates is measured from which VE

imaging parameters are extracted.

1.3 Some previously presented rheological models

Viscoelastic imaging parameters are selected from the parameters of rheological models applied to

time-varying strain estimates. Model parameters summarize material properties of multiphasic poly-

meric media such as hydrogels and breast stroma. The best rheological models for our application

yield just a few imaging parameters that are descriptive of the deformation physics and are also

directly connected to the biology of disease. We found that a biphasic poroviscoelastic theory origi-

nally proposed by Mark [17, 18] and later modified by Suh and DiSilvestro [19] for articular cartilage

could be adapted to reasonably represent the material behavior of hydrogels [16] and breast stroma

[20]. The various components of the medium are grouped in two phases: a solid phase, consisting

of a collagenous ECM with associated glycoproteins [21] and cells, and a fluid phase consisting of

a viscous interfibrillar liquid. Gelatin hydrogels are structurally simpler than stromal tissues. Gels

have a collagenous aggregate matrix of denatured type I collagen with electrically charged molecular

side chains. The charged side chains act to “structure” nearby water molecules in a manner similar
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to the function of glycoproteins in stroma. Thus the fluid viscosity varies depending on matrix

density and structure.

In both tissues and gels, the solid matrix forms an ensemble of different size channels or “pores”

through which fluid moves when the medium is loaded. However, the solid matrix itself behaves

viscoelastically by virtue of the numerous hydrogen-bonded cross links between matrix fibers. The

strain response of a hydropolymer medium subjected to a step stress (creep experiment) has been

described by a generalized Kelvin-Voigt model consisting of the sum of many real exponential func-

tions [22, 16]. While such a model is easily adaptable to random pore sizes and variations matrix

cross-link strength, it requires at least two parameters for each Voigt unit to fully represent the

mechanical response. The dimensionality of this straightforward model is very large.

We described a method for reducing the dimensionality of the generalized Kelvin-Voigt model

by applying singular-value decomposition methods [23]. Imaging parameters were selected from the

largest eigenvalues of the creep curve and hence represented the dominant features of the polymer

response. Because the compliance loss spectrum from breast stroma [20] and hydrogels [16] classifies

these media as amorphous, weakly cross-linked polymers with distinct solid and fluid spectral re-

sponses [22], a two component Kelvin-Voigt model was proposed. Parameters were then associated

with the two phases. However, spectral separability of the phases depends significantly on boundary

conditions. For the unconfined, uniaxial compressions usually applied in static strain imaging tech-

niques, overlap of the bimodal response was often observed. Clearly, we need a rheological model

that considers the continuous nature of mechanisms governing the slow relaxation of polymers. In

experimental situations where no clearly dominant mechanistic components emerge from creep data,

the rheological model should provide a concise set of model parameters for imaging.

1.4 History of Fractional Derivatives

In the last few decades, several papers have been devoted to the definition of concise models involv-

ing fractional calculus approaches that would represent this complex VE response while retaining

diagnostic contrast and physical interpretation [24, 25, 26, 27, 28]. Indeed, because the Fractional

Derivative (FD) of a function depends on its whole time history, and not on its instantaneous be-

havior, they are perfectly suited for the description of materials with memory, such as polymers or

tissues.

Viscoelastic models based on fractional derivatives (FD) were introduced by Sloninsky in 1967

3



[29] to find a parsimonious representation for complex media. The mechanical responses predicted

by such models were found to be consistent with Rouse’s molecular theory of polymers by Bagley

and Torvik [24]. Schiessel and Blumen [30] derived hierarchical mechanical analogs to fractional

derivative elements and models by assembling numerous springs and dashpots (elastic and viscous

terms, respectively) in series and parallel. FD models of increasing complexity were proposed [27] to

model the rheological behavior of synthetic polymers as well as biological cells and tissues [26, 28, 31].

Indeed, because the fractional derivative of a function depends on its whole time history and not on

its instantaneous behavior, they are perfectly suited for the description of materials with memory,

such as polymers or tissues. Originally, FD models appeared as purely phenomenological models, but

others recently contributed statistical, physical, and mathematical justifications for FD applications

[32, 33, 34]. My first goal in this thesis is to review the extensive literature on Kelvin-Voigt fractional

derivative (KVFD) rheological models for the study of hydropolymers mechanical behavior and

develop imaging methods that can be interpreted in terms of the biphasic properties.

Previous studies related to fractional derivative rheological models often consisted of blindly

fitting FD models to the viscoelastic responses of various materials without either justifying the

use of such model or analyzing the physical meaning of the results. On the contrary, we begin

here by reviewing how fractional derivatives arise naturally from slowly varying distributions of

exponential relaxations (Kelvin Voigt units) in the VE response. We then apply a three-parameter

KVFD model to represent the dynamic behaviors of hydrogels and in-vivo breast tissues. Images of

the corresponding FD parameters for simulated hydropolymers, experimental phantoms and in-vivo

breast tissues are generated and interpreted in terms of the stiffness and fluidity of the material.
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Chapter 2

Modeling relaxation and creep
with Fractional Derivatives

2.1 Power-law model of relaxation

In a stress-relaxation experiment, the force response of a sample to a known applied deformation

is measured versus time. The FD model assumes that the polymer network undergoing viscoelastic

relaxation can be modeled by the linear superposition of many elementary viscoelastic (Maxwell)

units. The incremental change in stress for the n-th viscoelastic element as a function of time, dσn(t),

increases in proportion to the incremental change in strain, dεn(t), and decreases in proportion to

the time increment according to the equations

dσn(t) = E′ndεn(t)− E′n
ηn

σn(t)dt

or σ̇n(t) = E′nε̇n(t)− 1
τn

σn(t) where σ̇n(t) =
dσn

dt
. (2.1)

E′n and ηn are, respectively, the elastic modulus and viscous coefficients and τn = ηn/E′n is the

viscoelastic time constant for the unit. The first term on the right side of Eq. 2.1 is the elastic stress

response and the second term is the viscoelastic stress response.

Taking the one-sided Laplace transform of Eq. 2.1 and solving for stress, we find

σ̃n(s) =
E′nτn

1 + τns
sε̃n(s) . (2.2)

Finally, applying the convolution theorem to find the inverse Laplace transform of Eq. 2.2, we obtain

σn(t) =
∫ t

0
dt′En(t− t′) ε̇n(t′) , (2.3)

where we assume each Maxwell unit is linear, time-invariant, and initially at rest. The modulus

En(t) describes material properties of the n-th polymer component through two constants, E′n and
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τn, via

En(t) = E′n e−t/τn .

The relaxation modulus for the polymer is the sum of contributions from all N units [34],

E(t) =
N∑

n=0

E′n e−t/τn , (2.4)

where unit constants are assumed to vary slowly with n. This interdependency can be modeled

recursively with two scaling parameters a and b:

E′n = bE′n−1 = bnE′0 (2.5)

τn =
τn−1

a
=

τ0

an
(2.6)

Combining Eqs (2.4) – (2.6) we obtain

E(t) = E′0

N∑

n=0

bne−ant/τ0

= E′0

N∑

n=0

eF (n,t) , (2.7)

where F (n, t) = n ln b− ant/τ0.

It is observed with polymers that the time dependence of the elastic modulus E(t) is a power

law. Let n0 indicate the viscoelastic unit where eF (n0,t) is maximum and let us assume that the

material constants E′n and τn from sequential units vary slowly and monotonically. Consequently

the unit responses are highly correlated, and F (n, t) is well represented by a second-order Taylor

series expansion about n0.

F (n, t) # F (n0, t) +
(n− n0)2

2

(
∂2F

∂n2

)

n0

, (2.8)

since (∂F
∂n )n0 = 0. Combining the definition of F (n, t) in Eq (2.7) with its first derivative being zero,

we find that

n0 =
ln(ατ0)− ln t

ln a
where α =

ln b

ln a
. (2.9)

We restrict the range of acceptable model constants a and b to those producing physical models

of elastic moduli with power-law form. Realistic models require τn > 0 for all n; therefore Eq (2.6)
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gives a > 0. E′n must be positive and remain finite, consequently 0 < b < 1. In order for eF (n0,t) to

exist and be a maximum for all t, E′n and τn must vary in opposite ways. For example, experiments

show that E(t) decreases with time. If E′n decrease with n, then τn must increase with n to obtain

a power-law form. From this relation, we can derive that 0 < a < 1. These bounds on model

constants have been experimentally verified [35]. The power-law assumption also does not permit a

to approach 1; that is, from Eq (2.7),

lim
a→1,N→∞

E(t) =
E′0

1− b
e−t/τ0

is a pure exponential. Regardless, we note that α is defined for the range of constants 0 < b, a < 1.

We now posit that a continuum of viscoelastic units contributes to the elastic modulus, E(t).

Therefore N → ∞. A continuum model is consistent with the hypothesis that the viscoelastic

response of the collagen matrix results from relaxation of hydrogen bonds having a continuous

spectrum of bond strengths [22]. Combining Eqs (2.7) – (2.9), we follow Kawada [34] to obtain the

power-law form,

E(t) # E′0

∞∑

n=0

e
F (n0,t)+

(n−n0)2

2

(
∂2F
∂n2

)

n0

= E′0

N∑

n=0

eα(ln(ατ0)−ln(t)−1)− (n−n0)2

2 α(ln a)2

= E′0 eα(ln(ατ0)−1)t−α
N∑

n=0

e−α(ln a)2
(n−n0)2

2

# E′0 eα(ln(ατ0)−1)

√
2π

ln a ln b
t−α

# Φ t−α , (2.10)

where all time-independent factors are collected into Φ. On a log-log scale, E(t) is a straight line

with slope −α and intercept lnΦ. Applying unitless parameters, we find the alternative form

E(t)
E1

=
1

Γ(1− α)

(
t

τ

)−α

, (2.11)

where E1 is the scaled modulus for unit n0, τ is a characteristic relaxation time constant, and Γ is

the Gamma function for non-integer arguments.

We numerically summed the decaying responses of 1000 exponentials for E′0 = 1 and various

values of a, b and τ0. We compared them to the corresponding analytical models defined by Eq.
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(2.11) and obtained the results displayed in Fig. 2.1. As pointed out earlier, the data do not follow

the model in cases where a is too close to 1, which corresponds to all the exponentials having very

similar characteristic times. In the same way, the model disagrees with the numerical sum when

τ0 is too large compared to the observation time. Indeed, the time constants, as defined by our

model, can only increase. When τ0 is too large, the behavior of the sum, at short times, is given by

the initial exponential. These limitations are however of little interest since they are related to the

definition of the model, and not to real data. Indeed, for real experiments, the time constants can

generally be assumed as widespread and the model holds, as can be seen in Fig. 2.1.c.

2.2 Fractional Derivatives

Power-law viscoelastic responses suggest properties of self-similarity and memory, which are the fea-

tures described by fractional derivatives. The Riemann-Liouville definition of a fractional derivative

operator applied to function f is

aD−γ
t (f) ! 1

Γ(γ)

∫ t

a
dt′f(t′)(t− t′)γ−1 . (2.12)

Combining Eqs (2.3), (2.11) and (2.12), the net constitutive equation may be written as

σ(t) =
E1τα

Γ(1− α)

∫ t

0
dt′(t− t′)−α dε(t′)

dt′

=
E1τα

Γ(γ)

∫ t

0
dt′(t− t′)γ−1 dε(t′)

dt′
for γ = 1− α

= E1τ
α

0D−γ
t

(
dε(t)
dt

)
by definition of aD−γ

t (f)

= E1τ
α

0Dα−1
t

(
dε(t)
dt

)

= E1τ
α dα−1

dtα−1

(
dε(t)
dt

)

σ(t) = E1τ
α dαε

dtα
(2.13)

Eq (2.13) is more intuitive when expressed in the radial frequency domain, ω. Applying the

Fourier derivative theorem we find

σ(ω) = E1τ
α(iω)αε(ω) , (2.14)
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Figure 2.1: Comparison of the numerical and modeled sum of exponentials according to time in the
log-log space (where a power-decaying function is a straight line) for different values of a and τ0. In
a) is shown the sum of exponentials and its approximation by a power decay when a→ 1. As stated
previously in that case, the sum of exponentials remains an exponential and the approximation is
false. In b), τ0 is one fifth of the whole observation time, which is too long to approximate the sum
by a power decay at low times where one exponential clearly dominates. Finally, a more general
case is displayed in c) for a = 0.2, b = 0.55 and τ0 << observation time. An offset, most likely due
to the approximation of the constant in Eq 2.10, appears, but the slopes of both curves are similar,
which shows that a large sum of exponentials may be modeled by a power-decaying function.

9



from which the complex modulus is defined as

E∗(ω) ! σ(ω)
ε(ω)

= E1(iωτ)α , (2.15)

and the complex compliance as

D∗(ω) ! ε(ω)
σ(ω)

= [(iωτ)α E1]
−1 . (2.16)

Eqs (2.15) defines FD units referred to as “spring-pots” because of their ability to combine large

assemblies of Maxwell or Voigt (exponential) units to predict non-exponential relaxation and creep

behavior, respectively. Advantages of this model include just three parameters, α, τ , and E1, and

a straightforward physical interpretation. When α → 0 the fractional unit behaves like a Hookean

spring, when α → 1 it behaves as a Newtonian dashpot. For intermediate values of α, it behaves as

a viscoelastic material. Though a spring-pot could be modeled by a hierarchical assembly of springs

and dashpots [30], our goal here is to keep a concise feature space. However, a spring-pot alone

cannot model the relaxation and creep responses typically observed in polymers, which can plateau

over time, and thus the model must be expanded further.

2.3 KVFD models for relaxation and creep

As illustrated in Fig. 2.2, a spring-pot alone cannot model a physical behavior. Adding a spring in

parallel with the spring-pot unit (see Fig. 2.3) however allows for the relaxation plateau observed

experimentally. This is the Kelvin-Voigt Fractional Derivative (KVFD) model given by,

σ(t) = E0ε(t) + E1τ
α dαε(t)

dtα
, (2.17)

and consisting of elastic and viscoelastic terms. E0 and E1 may have different values, however we

can define τ ′ such that τ ′ =
(

E1
E0

)α
τ which transforms the previous equation into

σ(t) = E0ε(t) + E0τ
′α dαε(t)

dtα
. (2.18)

This form is convenient when expressing the time domain behavior in response to a step stimulus.

Considering stress-relaxation data, where a uniaxial compressive step strain is applied to a sam-
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Figure 2.2: Typical stress and strain step response of a Fractional-Derivative element. In (a), a
typical normalized stress response to a step strain is given. Notice that as time increases, the
material’s stress tends to 0. In (b), a typical normalized strain response to a step stress is given.
Notice that in this case, the material keeps responding to the stress and rearranging. Both responses
are non-physical.

ple, we have ε̇(t) = ε0δ(t) and from Eq (2.18)

σ(t)
ε0

= E(t) = E0 +
E0

Γ(1− α)

(
t

τ ′

)−α

. (2.19)

Because we measure strain ultrasonically and not stress, we usually conduct creep experiments to

image viscoelastic properties. In these experiments, a constant step stress is applied to the sample.

Schiessel et al. [36] showed that the compliance expression for the KVFD model corresponding to

the modulus expression in Eq (2.19) is

ε(t)
σ0

= D(t) =
1

E0

(
t

τ ′

)α

Eα,1+α

(
−

(
t

τ ′

)α)
(2.20)

where E is a type of hypergeometric function known as the generalized Mittag-Leffler function [37]
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Figure 2.3: Mechanical analogues to the polymer network and associated KVFD model. Though any
material could be modeled as an assembly of springs and dashpots in series and parallel as presented
in [36] and shown here, our goal is to keep as few parameters as possible, which is achieved by the
use of the KVFD unit (on the right) in which the spring-pot is represented as a triangle.

and defined by:

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
for α, β > 0 . (2.21)

Figure 2.4 displays the modeled time behavior of compliance according to Eq. (2.20) for values of

α from 0.2 to 0.8 in steps of 0.2. Lower values of α induce quick responses of low amplitude while

higher values are responsible for slower reactions exhibiting greater net strain. These two types of

behavior respectively describe more elastic and more viscous materials.

The more complex expression for compliance in the time domain, as compared with relaxation,

is a consequence of the following relation between D(t) and E(t) [38]:

∫ t

−∞
E(t− t′)D(t′)dt′ = t . (2.22)

Computation is simplified by transforming Eq. (2.18) into the Fourier domain resulting in the
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Figure 2.4: Modeled strain versus time from Eq. (2.20) shown for different values of α and constants
E0 = 1 Pa and τ ′ = 10 sec. A unit step stress is assumed so D(t) = ε(t). When α is low, the
maximum amplitude of the creep is lower but the material strains faster, which is typical of stiff
or elastic media. On the opposite, a high α causes a slower response of larger amplitude, which is
typical of more viscous materials.

following expression of the complex modulus

E∗(ω) = E0 + (iωτ ′)αE0

= E0

(
1 + (eiπ/2ωτ ′)α

)

=
(
E0 + E0τ

′α cos
(πα

2

)
ωα

)
+ iE0τ

′α sin
(πα

2

)
ωα . (2.23)

The loss modulus, which describes the deformation energy dissipated as heat, is given by the imag-

inary part of the complex modulus:

&E∗(ω) ! E′′(ω)

= (ωτ ′)αE0 sin
(απ

2

)
. (2.24)

Plotting lnE′′(ω) versus ln ω, we find a linear function with positive slope α. Curve fitting is

therefore significantly faster in the frequency domain than in the time domain.

As stated earlier, strain and not stress is measured experimentally. Hence, the loss modulus
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E′′(ω) must be derived from the compliance using

E′′(ω) = &E∗(ω)

= & 1
D∗(ω)

. (2.25)

It must also be noted that the KVFD unit only characterizes part of the polymers’ response to

a step stress. The viscoelastic response of polymers can be seen as the superposition of 3 elements

[16]: a purely elastic initial response, accounted by a spring associated to the KVFD unit in series

as shown in Fig. 2.3 and which we do not study here, a viscoelastic response, modeled here by the

KVFD unit, and a flow element (responsible for a linearly increasing slope when t→∞). Here, the

initial elastic response and flow terms are removed in order to focus on the KVFD unit response.

The viscoelastic response of the material is then modeled with as few as three parameters. By

imaging the values of α, E0 and τ ′ for hydropolymers or in-vivo tissues, we intend to display with

only a few frames their relevant viscoelastic characteristics.
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Chapter 3

Imaging viscoelastic parameters α,
E0 and τ ′

3.1 Processing technique

3.1.1 Strain data acquisition

Ultrasonic data were acquired to estimate viscoelastic parameters during creep experiments as illus-

trated in Fig. 3.1. A linear array transducer was used to apply a step force at the top surface and

maintain it constant while ultrasonic RF echo frames were recorded. A Siemens Sonoline-Antares

system with an ultrasonic research interface was used for all experiments. A VF10-5 linear array

transducer transmitted broadband 8 MHz pulses. Echo frames are recorded beginning immediately

prior to the application of a 1 s ramp load (∼ 4N) at rates between 1 and 4 fps for up to 2000 s. The

frame rate was set on the Antares system by a waveform generator that triggered the ECG module

on the scanner. Because scanner memory was limited, there is a few-seconds gap between groups

of 60-100 RF frames as memory contents were downloaded to disk. For clinical breast scanning the

frame rate was fixed at 13 fps for a 10-20 s acquisition time. The frame rate for RF echo simulations

(described below) was adjusted between 0.01 and 10 fps as required by the material parameters

selected for the finite element analysis (FEA) to properly sample the creep curves. Sampling issues

and deconvolution of the strain series to estimate compliance spectra were detailed in [20].

A time series of strain images was formed from the RF echo frames off line by applying a multi-

resolution cross-correlation strain algorithm [11]. For each pixel in the spatially-registered strain

image series pictured in Fig. 3.1, we plotted the computed strain values versus time to obtain a

creep curve. As described previously [23], we applied a preprocessing step to the strain data that

eliminates purely elastic and purely viscous effects, thus isolating the viscoelastic creep response,

e.g., Eq (2.20). Applying Eqs (2.19), (2.24) to creep curves, we used Fourier methods to estimate

the viscoelastic parameters for all data except the in vivo breast data. The frequency range in the

loss spectrum plotted on log-log axes that exhibits a linear response was selected for analysis.
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Figure 3.1: Illustration of the ultrasonic data acquisition and fit process. From a time series of
RF echo frames, a time series of strain images are formed and processed to generate KVFD model
parameter images, among which the α image.
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3.1.2 Processing technique

The equations in chapter 2 show that the viscoelastic parameters E0, τ ′ and α may be estimated in

the frequency domain from either the loss modulus E′′(ω) or the loss compliance D′′(ω) depending

on whether stress relaxation or creep experiments are employed. Estimates can be obtained directly

from time domain data at considerably greater computational cost. Time-domain processing is

preferred for short duration strain acquisitions (in vivo breast data) because of lower noise and

parameter estimation uncertainty.

In the Fourier domain, the estimated values of the three parameters of the KVFD model obtained

from the fit are however correlated. As stated earlier, a linear fit may be performed in the log-log

domain over a user-defined frequency range on the loss modulus. This fit provides an estimate for α

and ln(τ ′αE0 sin
(

απ
2

)
). The remaining necessary information to approximate the three unknowns is

extracted from the time domain strain curve using σ0
ε∞
≈ E0. If the acquisition time is long enough,

this value can be estimated and a third equation is obtained, which allows us to estimate the KVFD

parameters from a simple linear fit. This once again justifies the need for long acquisition times

when processing data in the Fourier domain.

Strain curves may be directly fitted to Eq (2.20) to estimate the model parameters in the time

domain. In that case, the fitting is non linear and leads to a unique solution but requires a signifi-

cantly higher processing time. In order to limit it, the algorithm is initialized at the values obtained

from the Fourier domain processing. Because of its computational cost, the time domain fitting

is generally limited to small data sets, and cannot typically be used to obtain parameter images.

We therefore focus this chapter on the Fourier domain processing of the data and on the two most

important fitting parameters.

The first critical parameter is the frequency range over which the fit is performed. When rep-

resenting the loss modulus in the log-log space, a straight line appears and the model clearly fits

over part of the bandwidth. It was however pointed out in [26] that the KVFD model doesn’t

hold at high frequencies (typically above 102 rad.s−1). Moreover, a high frequency processing noise

interfered considerably with our experimental data, as can be seen in Fig. 3.2. We therefore limited

the fitting area to the frequency range over which the noise is minimum and the loss modulus linear

in the log-log space, i.e. [0.03 to 0.3] rad.s−1 for simulation data, and to [0.1 to 0.6] rad.s−1 for

experimental phantom or tissue data.

Parametric noise was reduced by averaging creep curves from a local neighborhood of strain

pixels before parameter estimation. Hence, another critical element is the size of this spatially
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Figure 3.2: Curve-fitting results on a simulated loss modulus. At very low and very high frequency,
we observe processing noise. However, in the frequency range we typically use for real data, we
obtain a relatively good fit of the analytical model to the processed data. The modeled parameters
are α = 0.85, τ ′ = 100 s and E0 = 1 Pa, and the sampling period 0.1 s.

averaging window which is correlated to the size of the companding window used to compute the

strain. A companding window of 256 pixels leads to smoother strain curves than windows of 64

pixels only, but strain images obtained via the former have also lost spatial resolution and further

spatial averaging is limited. Thus, spatial averaging reduces image noise at the cost of parametric

spatial resolution. An example of an α image using a 27×49 pixels spatial averaging window is

shown in Fig. 3.1, top right.

The viscoelastic part of the strain curve is then transformed to the frequency domain in order for

the loss modulus to be fit to Eq. (2.24) with a least-squares algorithm in a user-defined frequency

range. This range depends on the noise level of the loss modulus and on the acquisition time. The

fitting parameters are then assigned to the center pixel of the window and images of α(x, y), E0(x, y)

and τ ′(x, y) are obtained.

3.2 RF echo simulations with deformation

We simulated ultrasonic RF echo signals from uniformly scattering media with spatially varying vis-

coelastic properties. The goal was to discover how spatial variations in material properties influence

spatial variations in estimates of E0, τ ′, and α.

2-D random scattering fields were generated in Matlab! to facilitate simulation of RF echo

frames with fully-developed speckle such as those from uniform graphite-gelatin phantoms [16]. The
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scattering field was numerically generated so that the coordinate of each scatterer was preserved as a

floating-point value. Corresponding to the scattering field was a meshed map of viscoelastic material

properties that was used in a Finite Element Analysis. Displacements from the FEA output were

used to reposition each scatterer in the scattering field to simulate continuous spatial deformation.

The resulting scattering field was convolved with an ultrasonic pulse-echo impulse response typical

of the Siemens Antares system data. Details of the RF echo simulations are provided elsewhere [39].

ABAQUS! commercial FEA software was used to simulate deformations of the scatterer field.

The software allows the modeling of a biphasic poroviscoelastic medium with spatial heterogeneities

in which the strain response to a load is determined by a viscoelastic solid matrix and fluid flow

through the porous solid matrix. The viscoelastic nature of the solid matrix phase is specified using

the relaxation constants of the discrete shear relaxation spectrum g1 and g2 and associated time

constants τ1 and τ2. The normalized shear modulus of the matrix is modeled as

g(t) =
G(t)
G0

= 1 + g1e
−t/τ1 + g2e

−t/τ2 .

Other FEA model parameters are the elastic modulus, Em, and Poisson’s ratio, νm, of the porous

solid matrix phase. Finally, the fluid-flow-dependant viscoelastic behavior is specified by the hy-

draulic permeability, k, of the fluid movement through the porous matrix.

We simulated echo data from the central axial plane of a cylindrical phantom assuming axisym-

metric deformation. The meshed field included an 8-node plane strain porous element (CPE8P) in

ABAQUS. A uniform compressive stress of 100 Pa was applied to the top surface, the side surfaces

were unbounded and the bottom surface permitted no vertical displacement. Top and bottom sur-

faces were traction-free. The medium contained a circular inclusion that varied only in mechanical

properties from its background. The material property values of the background and inclusion for

two FEA simulations are given in Table 5.1. Derivatives of the interpolated FEA displacements

provided us with ideal time series of strain images, referred to here as object strain frames, while

RF echo data were generated by displacing scatterers according to the FEA and processed with the

MRCC algorithm in order to obtain strain frames sequences, referred to as ultrasonic strain frames.
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3.3 Gelatin imaging phantoms

3.3.1 Contrast from gelatin concentration

A 5-cm cubic graphite-in-gelatin phantom block containing a stiff cylindrical inclusion was imaged

in this study [23]. This phantom contained a 5.5% background concentration by weight of type-A

animal-hide gelatin. Embedded within the block was an 8-mm-dia inclusion with a concentration of

8% gelatin. Throughout the phantom, graphite powder (3% concentration by weight) was added to

generate ultrasonically tissue-like scattering and absorption. Also 0.1% by volume formaldehyde was

added as a chemical cross linker. The balance of the phantom material was distilled water. Although

the inclusion provided little ultrasonic contrast, it generated contrast in viscoelastic features. The

higher gelatin concentration of the inclusion created a stiffer more solid polymer that relaxed slower

than its background.

3.3.2 Contrast from pH

Two additional 5-cm graphite-in-gelatin blocks were constructed. Both were made of 8% type-B

gelatin throughout. However, during gelation, a linear track of acidic fluid was injected in one block

and a basic fluid track in the other. Acids or basis applied during gelation have been shown to weaken

the polymer structure by causing a charge imbalance during polymerization, which respectively

causes a softening or stiffening of the material. With these phantoms, we expect to see little

ultrasonic contrast and significant viscoelastic contrast from the fluid injection sites. The goal is

to use α images to see how pH affects the liquid-solid components of the hydrogel. pH effects are

thought to play an important role in the elasticity image contrast of cancer.
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Chapter 4

Discussion of the algorithms
performances

We previously presented two fitting algorithms: One involving a time domain fit of the material’s

strain curves, and one performing the fit on the loss modulus in the Fourier domain. In order to

present clearly the advantages and drawbacks of each technique depending on the main character-

istics of the data, we performed several simulations and observed the effects of changes in the data

set characteristics and processing parameters. The results of these simulations are discussed here.

4.1 Effects of changes in the data acquisition time

For this section, we generated creep curves according to Eq. (2.20). The values of E0 and τ ′ were

fixed, respectively, at 10 Pa and 2 s and the data sampling rate was 10Hz. Curves were generated

for values of α going from 0.1 to 0.9 by an 0.1 step. For each value of α, data were generated for

a total acquisition time of 2000 s and then cropped in order to obtain data sets of length 10, 20,

200, 500, 1000 and 2000 s. The frequency range over which the FD fit is performed was optimally

defined by visual inspection separately for each data set. Finally, we considered three noise settings

for the simulated strain curves: One where no noise is added, one where the standard deviation

of the noise is 1/10-th the standard deviation of the simulated strain, and one where the standard

deviation of the noise is 1/2-th the standard deviation of the simulated strain. For each processing

technique (Fourier domain (FD) or time domain (TD) fit) and noise level (0,1/10-th and 1/2-th) we

then plot the output value of each of the KVFD parameter (αout,E0,τ ′) versus the input value of

αin. This section presents and analyzes the results observed.

4.1.1 Influence on α

Fig. 4.1 presents the output value of α (αout) obtained from the Fourier domain fitting of the data

versus the input value of α (αin) for various levels of noise. Without noise, the algorithm appears

to perform better when the value of αin is low. As αin increases, the experimental curves deviate
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from the ideal relationship between the input and output value of α (αout = αin). The maximum

deviation appears for the smallest acquisition time and is close to 26% of the input value. Because

the FD fit is performed in the log-log space, values at high frequencies tend to have more weight

in the linear fit than values at low frequencies. Here, the frequency range over which the fit is

performed might be slightly too large and encompass some of the noisy values we observe at high

frequency. This noise might be sufficient to overestimate already large slopes, but not smaller ones.

We also notice that as the acquisition time increases, the experimental relationship between αin

and αout becomes closer to the ideal relationship. Indeed, as will be confirmed in the next sections,

the FD algorithm performs significantly better as the total data acquisition time increases. Large

acquisition times mean more points within the frequency range over which the data can be fit, hence

more accuracy.

As shown by Fig. 4.2, this is not the case for the time domain processing. In that case, the

accuracy appears to be globally better when the total acquisition time is smaller and αin is large.

Indeed, up to αin = 0.4, the output values of α generally present large deviations. Though this is

counter intuitive, we believe this is due to the numerical estimation of the Mittag-Leiffler function

in the curve-fitting program based on [40]. Moreover, the time fitting algorithm is non-linear and

might be affected by the large number of data samples. Finally, the program is initialized at the

values obtained from the FD fit to limit the computation time. Hence, the time domain fit might

be affected by the deviation present in the FD fit output as αin increased. This could explain why

the largest acquisition time gives globally better results than those observed for 200 to 1000 s. In

any case, the processing time for this technique is considerably increased.We therefore reserve this

algorithm for very small data sets.

Finally, for both algorithms, as the noise increases in the data, the accuracy on the parameter

value decreases. This could be expected, and justifies the use of a spatially averaging window to

decrease the level of noise in the creep curves.

4.1.2 Influence on E0

As can be seen in Fig. 4.3, the output value of E0 given by the Fourier domain fit gets closer

to 10 Pa (its input value) as αin increases. The value of E0 is estimated for the Fourier domain

fit according to σ0/εtotal acquisition time, assuming that εtotal acquisition time → ε∞. Hence, as the

acquisition time increases, this approximation, as well as the estimated value of E0, become more

accurate. We showed earlier at short times that when α is small, the material creeps faster but also
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less than when α is large. At infinity however, the amplitude of the creep does not depend on α.

Hence, when we estimate E0 as being 1/ε(2000) in this case, we tend to overestimate it when αin is

small. As αin increases, the estimation gets closer to the input value and the algorithm’s accuracy

increases.

The estimated values of E0 obtained from the time domain fit (see Fig. 4.4) appear more erratic,

probably because of the influence of the initialization and of the estimated value of αout, which tends

to be wrong for large acquisition times. It can however be noticed that better results are observed for

short acquisition times and large values of αin, which is the typical setting for which this processing

technique is used.

As could be expected, the presence of noise decreases the overall accuracy of the algorithms.

Though we did not consider it here, one way to decrease the influence of the noise on the estimation

of E0 may be to consider the average value of the amplitude of the creep at the largest available

times and not only one value. The choice of the averaging window however becomes an issue and

we might underestimate the creep once again by averaging over a time period too long.

4.1.3 Influence on τ ′

As can be seen in Fig. 4.5, the output value of τ ′ gets closer to 2 s (its input value) as αin increases.

The value of τ ′ extracted from the FD fit is correlated with the values of E0 and αout. We showed

earlier that when αin is low, E0 tends to be overestimated. Hence, the value of τ ′ compensates for

this effect and its output value is lower than its input value when αin is low. As αin increases, the

algorithm becomes more accurate regarding E0 and consequently regarding τ ′. When the acquisition

time is too short, the value of αout becomes less accurate. Hence, the values of τ ′ obtained from the

FD fit also tend to be less accurate.

Similar trends can be observed with the time domain fit in Fig. 4.6. This proves that the

initialization of the TD fit by the FD fit estimation affects this processing technique. The estimates

of α and E0 obtained from the TD fit for short acquisition times and large values of αin were however

very accurate, which explains why the performances of the TD fit are good when αin is above 0.6

both for the shortest and longest acquisition times.

To conclude, it has been seen in this section that for large total acquisition times (above 1000 s)

and for values of αin typically above 0.6, the FD algorithm leads to very little error in the estimation

of each of the KVFD parameter, even with the largest level of noise. Similarly, the TD fit leads to

better performances when αin is above 0.6 but for short acquisition times. These settings correspond

23



to the experimental ones for which these algorithms are respectively used.

4.2 Effects of changes in the fitting frequency range

For this section, we again generated creep curves according to Eq. 2.20. Similarly as in the previous

sections, the values of E0 and τ ′ were fixed, respectively, at 10 Pa and 2 s and the data sampling

rate was 10Hz. Curves were generated for values of α going from 0.1 to 0.9 by an 0.1 step. For each

value of α, data were generated for a total acquisition time of 2000 s and then fit in the Fourier

domain. Four different frequency ranges were used to fit the data in the Fourier domain: [0.01−0.1],

[0.05−0.5], [0.1−1] and [0.5−5] rad.s−1. Finally, the level of noise was adjusted, as in the previous

section, for each data set. We again considered three cases: One where there is no noise, one where

the standard deviation of the noise is 1/10-th the standard deviation of the simulated data, and one

where the standard deviation of the noise is 1/4-th the standard deviation of the simulated data.

As in the previous section, for each level of noise (0,1/10-th and 1/4-th) we then plot the output

value of each of the KVFD parameter (αout,E0,τ ′) versus the input value of α (αin) for each frequency

range. This section presents and analyzes the results observed.

4.2.1 Influence on α

As can be seen in Fig. 4.7, the relationship between αin and αout is never ideal. However, a well-

chosen frequency range, such as [0.05− 0.5] rad.s−1, may lead the output value of α to be closer to

the input value. When the frequency range is too low or too high, the output value of α strongly

deviates from the input value. Once again, we see that as the noise in the simulated time domain

data increases, the algorithm’s accuracy decreases.

4.2.2 Influence on E0

As can be seen in Fig. 4.8, the output value of E0 gets closer to 10 Pa (its input value) as

αin increases. As presented earlier, the value of E0 is estimated for the FD fit according to

σ0/εtotal acquisition time. The frequency range chosen for the fit therefore doesn’t affect the value

of E0. We however previously showed that the value of αin as well as the level of noise influence the

accuracy of the output value of E0. This is confirmed by Fig. 4.8.
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4.2.3 Influence on τ ′

As shown previously and pictured in Fig. 4.9, the output value of τ ′ gets closer to 2 s (its input

value) as αin increases since the estimation of E0, and consequently τ ′, becomes more accurate.

When the fitting frequency range is too high (starting at [0.1 − 1] rad.s−1 here), the accuracy on

αout, hence on τ ′, decreases.

To conclude, for a frequency range similar to the one we used ([0.03 to 0.3] rad.s−1 for simulation

data and [0.1 to 0.6] rad.s−1 for experimental phantom or tissue data), and for values of αin similar

to those observed in hydropolymers (typically above 0.6 in both phantoms and breast tissues), the

FD algorithm leads to very little error in the estimation of each of the KVFD parameter, even with

the largest level of noise.

4.3 Global comparison of the two processing techniques

We simulated strain curves with various acquisition times and sampling period and performed on

them both the Fourier and time domain fits. We measured the time needed to perform each fit

and the mean squared error between the original data and those generated according to the fit

parameters. This gave us, for each processing technique, an estimate of its computational cost and

performances under various conditions. This may help decide what processing technique is the most

appropriate for a considered data set. Fig. 4.10 and 4.11 show the resulting normalized accuracy over

processing time ratios for the Fourier and time domain processing, as well as the difference between

them. When the difference is positive, the Fourier domain processing has a better accuracy/cost

ratio than the time domain processing, while a negative value implies the opposite. For any strain

data sets, a simple mapping on this grid presents the best choice in terms of processing technique.
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(a)

(b)

(c)

Figure 4.1: Output vs input value of α given by the Fourier domain fit for different total acquisition
times and levels of noise. In a), no noise is added to the simulated strain curves and the best overall
performances of the FD algorithm are observed when the acquisition time is the largest. We can
see that when the acquisition time is too small the accuracy of the algorithm decreases, especially
for high values of αin, which is what can be expected in gelatin or breast tissue samples. In b) and
c) we can see that as the noise increases, the global accuracy decreases.
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(a)

(b)

(c)

Figure 4.2: Output vs input value of α given by the time domain fit for different total acquisition
times and levels of noise. In a), no noise is added to the simulated strain curves and the best
performances of the time domain algorithm are observed when the acquisition time is the smallest.
We can see that as the acquisition time increases, the accuracy of the algorithm decreases, with the
exception of the case where the acquisition time is 2000 s. This may be due to the non-linearity of
the algorithm and to its initialization with the Fourier domain fit output values. In b) and c) we
can see that as the noise increases, the global accuracy decreases.
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(a)

(b)

(c)

Figure 4.3: Output value of E0 given by the Fourier domain fit vs input value of α for different
total acquisition time and levels of noise. In a), no noise is added to the simulated strain curves
and the performances of the FD algorithm improve both as the acquisition time and αin increase.
Indeed, the initial value of E0 given to the fit is proportional to the inverse of the creep amplitude
at infinity, estimated here as the amplitude at the largest available time. As the total acquisition
time increases, this approximation, hence the estimation of E0, become more accurate. In b) and
c) we can see that as the noise increases, the accuracy slightly decreases.
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(a)

(b)

(c)

Figure 4.4: Output value of E0 given by the time domain fit vs input value of α for different total
acquisition time and levels of noise. In a), no noise is added to the simulated strain curves and the
performances of the time domain algorithm appear slightly erratic. For the display, we limited the
estimated value of E0 to 20 Pa, i.e. twice its input value. As for the FD fit, the estimation accuracy
seems to improve as αin increases, but the best results are on the contrary observed for short total
acquisition times. In b) and c) we can see that as the noise increases, the global accuracy decreases
and the estimation performances become even more versatile.
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(a)

(b)

(c)

Figure 4.5: Output value of τ ′ given by the Fourier domain fit vs input value of α for different
acquisition times and levels of noise. In a), we once again notice that when no noise is added, the
performances of the algorithm improve as the acquisition time and αin increase. This is due to the
correlation between the values of E0 and τ ′ given by the fit. In b) and c) we can see again that as
the noise increases, the global accuracy decreases though the algorithm seems less affected by the
noise when αin is large.
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(a)

(b)

(c)

Figure 4.6: Output value of τ ′ given by the time domain fit vs input value of α for different
acquisition times and levels of noise. In a), b) and c), we notice that for any level of noise, the
overall performances tend to increase as αin increases. The corresponding performances are the
best when the acquisition time is the smallest, though the largest acquisition times also lead to high
accuracy. This is most likely due to the initialization by the FD fit, which performs better for larger
acquisition times.
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(a)

(b)

(c)

Figure 4.7: Output vs input value of α for different fitting frequency ranges and levels of noise. In
a), no noise is added to the simulated strain curves and the best performances of the FD algorithm
are observed when the fitting frequency range is [0.05 − 0.5] rad.s−1 which is the closest to the
frequency range used for experimental data. We can see that when the frequency range is too low,
or, worse, too large, the accuracy of the algorithm decreases. In b) and c) we can see that as the
noise increases, the global accuracy decreases. However, when the fitting range is better chosen,
the fit seems less affected than when it is too extreme, as illustrated by the results for the [0.5− 5]
rad.s−1 frequency range.
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(a)

(b)

(c)

Figure 4.8: Output value of E0 vs input value of α for different fitting frequency ranges and levels
of noise. In a), no noise is added to the simulated strain curves and the performances of the FD
algorithm are similar for all the frequency ranges. Indeed, the initial value of E0 given to the fit is
proportional to the inverse of the creep amplitude at infinity, which doesn’t change. The accuracy
however increases with αin. Indeed, we previously noticed at short times that when α is low, the
material strains less but quickly. Hence, when we assume the creep amplitude at infinity to be
the creep amplitude at 2000 s, we underestimate σ0/E0 = 1/E0 here. The lower the input value
of α, the more overestimated the output value of E0. As α increases, the initial estimation of E0

improves and tends to the input value. In b) and c) we can see that as the noise increases, the
accuracy slightly decreases.
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(a)

(b)

(c)

Figure 4.9: Output value of τ ′ vs input value of α for different fitting frequency ranges and levels
of noise. In a), we once again notice that when no noise is added, the overall performances of
each frequency range are similar, though the highest frequency range gives poor results when αin

is low. We also notice that the accuracy increases as α increases. This is due to the correlation
between the values of E0 and τ ′ given by the fit. We previously showed that when α is low, E0 is
overestimated. In compensation, τ ′ is underestimated. As αin increases, the values of E0 and αout

get more accurate, and so does the value of τ ′. In b) and c) we can see again that as the noise
increases, the global accuracy decreases though the algorithm seems less affected by the noise when
the frequency range is relatively low ([0.05 − 0.5] rad.s−1) than when the frequency range is high
([0.5 − 5] rad.s−1). (Notice that we restricted the values of τ ′ to [0; 10] s for this display but some
of the values obtained were originally higher)
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(a)

(b)

Figure 4.10: Quality/price ratios for the Fourier and time domain processing algorithms according to
the strain data acquisition time and sampling period. It can be seen in a) that it is more interesting
to use the Fourier domain processing when the acquisition time is large, and the sampling period
relatively low. However, its quality/price ratio is very low when the acquisition time is low. On
the other hand, the corresponding graph in b) confirms that the time domain processing performs
relatively better when used on data with short acquisition times and any sampling period.
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(a)

(b)

Figure 4.11: Comparison of the Fourier and Time domain algorithms performances. a) shows the
difference of normalized fit accuracies between the Fourier and time domain algorithms. Notice that
both algorithms have similar accuracies across most of the acquisition time and sampling period
considered. However, the Time domain algorithm is much more reliable when the acquisition time
of the data is short and the sampling period large, i.e. when we have very little data. In b) is
displayed the difference between the quality/price ratios of the Fourier and time domain processing
algorithms according to the strain data acquisition time and sampling period. As hinted by Fig.
4.10, the difference is positive, meaning that it is better to use the Fourier domain processing, when
the acquisition time of the data is large. However, the difference is negative, meaning that it is
wiser to use the time domain processing, when the acquisition time of the data is small. Here, b) is
intended to show that though the lower computational cost of the Fourier domain algorithm might
lead to higher quality/price ratio with very low accuracy values, it is not the case here and the TD
fit is indeed reliable when the acquisition time is long enoughfig422.
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Chapter 5

Results

Here, we present and analyze the α, E0 and τ ′ parameters values and images for simulated and

experimental phantoms as well as in-vivo breast tissue data.

5.1 Stiff inclusion image simulations

Two different software phantoms simulations are conducted in this section. Our primary goal here

is to generate two phantoms according to well-known and well interpretable physical characteristics

(such as the permeability k or Poisson’s ratio νm), to image the corresponding KVFD parameters

and to analyze and correlate them with the physical input parameters. The second goal was to

prove that materials could be differentiated based on their KVFD parameter values.

For each simulation, a stiff circular inclusion is positioned in a soft background material. Vis-

coelastic model parameters for these two simulations are listed in Table 5.1. In the first simulation,

the phantom is made such that its inclusion reacts to the applied force as a material stiffer than its

background. The inclusion indeed presents a higher elastic modulus, Em, and a large permeability

constant, k, to allow for fast fluidic motion. The solid matrix’s relaxation time constants are also

lower in the inclusion to allow for a quick viscoelastic response. In the second simulation, the inclu-

sion’s elastic modulus, Em, is also higher than in the background. However, the other parameters

responsible for the viscoelastic response of the phantom, such as the Poisson’s ratio, permeability, or

characteristic time constants, are similar inside and outside the inclusion. This means that the sec-

ond phantom presents different initial elastic responses in the inclusion and background but similar

viscoelastic responses.

From the FEA presented in section 3.2., we generate displacement maps for each phantom as a

function of time. FEA displacement fields are processed to generate object strains and the object

parametric images observed in Fig. 5.1. These maps are also used to model the displacements of

random scattering fields and RF waveforms are generated to simulate echo signals from a linear
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array. The ultrasonic parametric images obtained from these RF echo simulations are shown in Fig.

5.2. The average KVFD parameters estimated from the images presented in Fig. 5.1 and 5.2 are

listed in Table 5.2. The object strain images present very little noise and could be immediately

processed. However, the simulated RF echo images in themselves presented a relatively high level

of noise, that was amplified by the MRCC processing needed to obtain the ultrasonic strain frames

sequence. A companding window of 256 pixels was used, and the resulting strain images were

post-processed with both an averaging and median filters to decrease the level of noise in the creep

curves.

These strain image sequences were then processed by our algorithm in order to extract the KVFD

parameters. For the object strain data, a spatially averaging window of only 3x3 pixels was used,

while the processing of the ultrasonic data required the use of a 27x49 pixels averaging window, as

depicted in Fig. 3.1. The KVFD parameter images, as well as a typical strain image extracted from

the strain sequence after post-processing when necessary, are respectively presented in Fig. 5.1 and

5.2.

As expected from the simulation’s input parameters, the object and ultrasonic strain image

sequences present a significantly lower strain ε in the inclusion. The initial elastic response being

mostly linked to the elastic modulus Em and to the Poisson’s ratio νm of the solid matrix, this is no

surprise. Because of the inverse proportional relation between the amplitude of the creep and the

KVFD parameter E0, the E0 images for both simulations present higher values in the center.

With no further inspection, one may conclude that both phantoms have similar properties.

Indeed, their strain images look almost identical and present similar values across time. Looking at

the KVFD parameter images however provides more information on the viscoelastic properties of

these two phantoms and uncovers the differences between them.

In the first simulation and for both types of processing the α images (Figs. 5.1 and 5.2) present

significantly lower values in the inclusion, which indicates a stiffer, more elastic material and is

consistent with the simulation’s input. Indeed, as stated earlier, the amplitude of the creep is lower

in this region and the time constants smaller which is typical of elastic materials and modeled with

low values of α. In the second simulation however, very little contrast can be observed on the alpha

images, whatever the processing. The average values of α inside and outside the inclusion are similar

(see Tables 5.1 and 5.2) and relatively high, which indicates that the inclusion and background in

simulation (2) share similar viscoelastic properties and are relatively viscous.

In the second simulation, there is also very little contrast to be observed in the τ ′ object and
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ultrasonic parametric images, though contrast magnitude is reduced in the later. In the first simu-

lation however, the τ ′ images change depending on the processing. For the object strain sequence,

τ ′ is lower in the inclusion, which indicates a fast fluidic motion as hinted by the simulation’s vis-

coelastic parameters. The contrast is however inverted in the ultrasonic parametric image. The

values observed in the background are similar to those observed with the object data, but the values

observed in the inclusion are higher. We attribute this artefact to the FD processing technique. In-

deed, as stated earlier, the estimated values of E0, τ ′ and α are correlated. The spatially averaging

window needed to process the data here is much larger for the ultrasonic data than for the object

data. This means that strain curves from the inclusion have been averaged with strain curves in

the background, causing an increase of the creep amplitude. This is most likely responsible for the

lower values of E0 that can be observed in the inclusion for the ultrasonic data. Hence, τ ′ increases

in order to compensate for the decrease of E0 in order to fit the data correctly. This might also

explain why the values of α observed in the ultrasonic data are slightly different from those observed

with the object data.

Our first goal here was to show that the KVFD parameter values were linked to physical pa-

rameters of the material and could describe its viscoelastic characteristics with very few features

and images. Our second objective was to show that phantoms, or more generally regions, could be

differentiated only based on their KVFD parameter images. Processing the object as well as the

ultrasonic data enabled us to achieve both of these goals and showed that the viscoelastic character-

istics of simulated hydropolymers may be represented with only three parameters. The next section

will show that similar results may be extracted from the experimental study of hydropolymers.

Em Inclusion 13500 13500
(Pa) Background 4500 4500
νm Inclusion 0.45 0.47

Background 0.47 0.47
k Inclusion 50× 10−11 25× 10−11

(m.s−1) Background 5× 10−11 25× 10−11

g1, τ1(s) Inclusion 0.02, 1 0.02, 5
g2, τ2(s) 0.04, 5 0.04, 25

Background 0.08, 20 0.06, 5
0.16, 100 0.12, 25

Table 5.1: FEA simulation parameters for the two simulations. For both phantoms the initial elastic
response indicates that the inclusion is stiffer than the background. In the second simulation, the
viscoelastic properties of the inclusion and background, modeled by k, νm and the time constants
τ1 and τ2, are similar. This is not the case in the first simulation, where these parameters differ.
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Object parametric images
Simulation # (1) (2)

α Inclusion 0.621± 0.002 0.810± 0.002
Background 0.959± 0.002 0.813± 0.001

E0 Inclusion 1221± 1 1564± 2
(Pa) Background 261± 2 378± 2
τ ′ Inclusion 21± 1 15± 1

(sec) Background 63± 2 18± 1
ε0 Inclusion 0.70 0.72

(%) Background 1.22 1.32
ε∞ Inclusion 0.78 0.79
(%) Background 1.61 1.61

Ultrasonic parametric images
Simulation # (1) (2)

α Inclusion 0.49± 0.01 0.95± 0.02
Background 0.89± 0.02 0.93± 0.04

E0 Inclusion 458± 6 544± 5
(Pa) Background 265± 2 350± 4
τ ′ Inclusion 150± 12 16.4± 0.1

(sec) Background 67± 2 19.8± 0.3
ε0 Inclusion 0.65 0.73

(%) Background 1.21 1.31
ε∞ Inclusion 0.81 0.82
(%) Background 1.59 1.60

Table 5.2: Average KVFD model parameter values (α, E0 and τ ′) estimated in the inclusion and
background for the object (top) and ultrasonic (bottom) parametric images displayed in Fig. 5.1
and 5.2.

5.2 Gelatin phantoms

5.2.1 Higher concentration inclusion phantom

A gelatin phantom with a high concentration of gelatin in the inclusion (8% by weight as opposed

to 5.5% in the background) was built according to the technique presented in section 3.3.1 and

processed according to the method described in section 3.1.2. Because of the high level of noise

present in the strain data, we had to post-process the data with both an averaging and median filter

which significantly smoothed the strain curves and frames. This allowed us to obtain the KVFD

parameters at each one of the strain image’s pixel with a spatially averaging window of 17x17 pixels.

These parameter images are presented in Fig. 5.3.

As could be expected, the strain image extracted from the strain frame sequence indicates that

the inclusion strains less than the background. Indeed, it has been previously observed that a high

concentration of gelatin stiffens the phantom. This explains the significantly higher elastic modulus
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E0 observed in this parameter image. The α parameter image presents lower values in the inclusion,

which confirms its higher stiffness. Finally, the values of τ ′ are higher in the inclusion, which may

indicate a fluidic motion slower in the inclusion than in the background. Indeed, the inclusion

contains more gelatin molecules that might trap and retain the water molecules. In that case, a

longer time may be needed for water to move. However, the processing artefact observed in the first

simulation of the previous section might also be responsible for this contrast.

Indeed, simulation (1) in the previous chapter was intended to show characteristics similar to

those observed in this experiment. We can therefore compare the contrasts observed in the KVFD

parameters for purely simulated data (Fig. 5.1), for simulated RF echo frames processed with the

MRCC algorithm (Fig. 5.2) and finally for purely experimental data (Fig. 5.3). The trends observed

in the strain frames, E0 and α images are similar, and the values of α observed in the experimental

case are within the range of these observed in the simulation. The values of τ ′ are however slightly

higher than what could be expected, while the values of E0 are lower than in the simulation. This

tends to show that the processing artefact does affect the data, though both the gelatin concentration

and processing technique might affect the value of τ ′ here.

These results suggest that the KVFD model parameters may be used to concisely represent the

main VE properties of not only simulated but also experimental phantoms.

Parameter Inclusion Background
α 0.60± 0.04 0.76± 0.01
E0 246± 2 140± 1
τ ′ 83± 10 38± 1

Table 5.3: Average KVFD model parameter values (α, E0 and τ ′) in the inclusion and background
for the experimental phantom presented in section 4.2.1)

5.2.2 Acidic and basic inclusion phantoms

The ultimate goal of this work is to differentiate between benign and malignant tumors based on

the KVFD parameter values. Micro-environmental changes are generally associated with a breast

tumor’s development and may affect the VE properties of these tissues and consequently the KVFD

parameter values, allowing the differentiation of the mass. Among these are pH changes.

Two gelatin phantoms (isoelectric pH 5.6) were injected, respectively, with acidic and basic

solutions during polymerization according to the technique presented in 3.3.2. These pH changes

are thought to affect the gelatin matrix arrangement [41], provoking a softening of the medium
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in presence of an acid, and a stiffening with a basic injection. Hence, the strain image sequences

obtained for these phantoms with inclusions polymerized at pH 4.6 (Fig. 5.4a) and 6.6 (Fig. 5.4b)

show that an acidic fluid injection leads to a softening of the inclusion, while a basic one stiffens the

center of the phantom.

An experimental artefact linked to the injection causes a bright central region to appear in the

strain images for both phantoms (see Yapp [41]). Moreover, a relatively high noise is present in the

data, which prevented us from displaying the KVFD parameter images. For some regions however,

the level of noise was lower and we display in Fig. 5.4 the average KVFD parameter values in regions

located inside and outside the inclusion for both phantoms.

These confirm what was previously observed. Indeed, E0 is lower in the acidic inclusion and

higher in the basic one, which is consistent with the strain values observed in both cases. The study

of α confirms the matrix changes following the inclusion. Indeed, the average value of α is lower in

the basic than in the acidic inclusion, which indicates that it is more elastic than the background

gelatin at its isoelectric point (pH= 5.6) or at pH= 4.6. The values of τ ′ suggest that water moves

more rapidly in the basic than in the acidic inclusion, which may be due to the higher number of

charges present in the later as observed by Yapp [41].

Though only pH changes were considered here, several modifications appear within a tumor’s

micro-environment during its development. These might induce changes in the viscoelastic properties

of the tumor and tumor area. These results show that the KVFD parameter images may reflect

such environmental changes around a tumor mass, hence providing clues to differentiate between

tumor types.

5.3 In-Vivo breast tissue data study

In chapter 3, we compared the performance vs cost ratios of the Fourier and time domain processing

techniques for various experimental parameters. We showed that for total acquisition times lower

than 200 s, the use of the time domain fit is recommended. For the previous simulations and

experiments, the total acquisition times were between 1800 and 5000 s. We had largely enough data

to use the Fourier domain processing, hence to quickly obtain reliable KVFD parameters estimates.

However, in this section, the data were acquired over less than 180 seconds. We therefore performed

a time domain fit to the KVFD model.
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5.3.1 Average gelatin phantom and breast tissue responses

Previously, we observed the viscoelastic properties of simulated and experimental hydropolymers. In

this section, our goal is to compare the KVFD parameter values in gelatin phantoms and in in-vivo

normal breast tissue. Because the noise in such experimental data is generally high, we spatially

averaged the creep curves obtained for a phantom and tissue region. The resulting two curves were

fit, in the time domain, to Eq. (2.20) as shown in Fig. 5.5. For comparison, the Fourier domain

fitting algorithm was also used to fit the data to the KVFD model for frequencies ranging from 0.02

to 0.2 rad.s−1. As the reader may see, both fits give similar results.

The corresponding KVFD model parameters appear in Table 5.4. The values of E0 are signifi-

cantly lower than these observed previously. However, this might be due to the lack of data. Indeed,

E0 is estimated from ε∞ which is, in this case, estimated from ε(180). The data are therefore most

likely too short to estimate E0, hence to estimate τ ′ since both parameters’ values, estimated from

the fits, are correlated.

Though we may not be able to trust the values of E0 and τ ′, the values of α are consistent with

previous observations [20]. It can indeed be seen that α tends to be higher in breast tissue than in

gelatin, which means that breast tissues have a less elastic and more fluidic response than gelatin

phantoms. The KVFD parameters may therefore also be able to represent the main viscoelastic

characteristics of in-vivo breast tissues.

KVFD model Gelatin Phantom Breast Tissue
Parameter TD fit FD fit TD fit FD fit

α 0.543 0.536 0.830 0.800
E0 16.6 14.6 22.9 22.3
τ ′ 59.3s 54.7s 15.4s 15.2

Table 5.4: KVFD approach parameter values (α, E0 and τ ′) obtained from average gelatin and tissue
responses. The TD fit corresponds to a time domain fitting of the strain curve to Eq. (2.20), and
the FD fit to the fitting of the loss modulus in the Fourier domain to Eq. (2.24). Both processings
give similar results, though the Fourier domain fitting is significantly faster.

5.3.2 Cancer patient data

In the previous section, we showed that KVFD parameters could be extracted by a time domain fit

from in-vivo breast tissue strain data. The next step would be to image KVFD parameter images

for breast tissues and to differentiate tumors. Though we were not able to obtain such results, we

present in this section KVFD parameters from several normal and tumorigenic breast tissue regions.
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Clinical ultrasonic data were previously obtained for breast cancer patients with non-palpable

and biopsy-confirmed benign and malignant tumors [42]. These data were only acquired over 10

to 20 seconds. We therefore used a time domain fit. However, the important level of noise and

short acquisition time strongly affect the KVFD model parameters values observed. Indeed, E0 is

initialized at a value inversely proportional to ε(10) which is obviously very different from ε∞. In

any case 10 seconds is a little too short to estimate the material’s behavior. This considerably affects

the values we obtain and the parameter images appear really noisy. Though we therefore cannot

use these images to differentiate the types of tumors, we can however get estimates of the typical

KVFD model parameter values in breast tissues with more confidence than in the previous section

and believe that better parameter images could be extracted for longer data sets.

Table 5.5 shows that τ ′ values are generally larger in lesions than in the background, and that

E0 values in the benign lesions are much larger than those in the corresponding background re-

gions. Conversely, lesion and background values for E0 are more similar in malignant tumors. This

observation is consistent with the histological view of benign lesions having a solid, elastic nature

because of their dense concentration of normal collagen. Non-palpable malignant lesions, on the

other hand, retain a more fluidic viscoelastic response even with increases in collagen density be-

cause of differences in the ECM proteins. These observations are contradicted by the values of α.

For all parameters, more data sets with longer acquisition times are needed to draw any conclusions

about diagnostic value.

Simulation # (1) (2) (3) (4) (5)
α Lesion 0.81± 0.03 0.95± 0.07 0.89± 0.03 0.78± 0.02 0.99± 0.03

Background 0.73± 0.09 0.86± 0.04 0.91± 0.05 0.79± 0.02 0.820± 0.005
E0 Lesion 88± 6 140± 5 78± 6 51± 4 90± 8

(Pa) Background 45± 5 50± 2 106± 4 49± 6 28.1± 0.6
τ ′ Lesion 1.6± 0.3 1.5± 0.2 2.6± 0.4 1.8± 0.2 2.23± 0.05

(sec) Background 0.6± 0.3 0.7± 0.2 1.4± 0.04 1.9± 0.1 0.87± 0.02

Table 5.5: Average KVFD model parameter values (α, E0 and τ ′) in the lesion and background of
2 benign and 3 malignant breast tumors.
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Simulation (1)

Simulation (2)

Figure 5.1: KVFD model images obtained for the strain image sequences generated from derivation
of the interpolated FEA displacements: Object parametric images. Two simulated phantoms with
VE properties given in Table 5.1 are compared using the KVFD approach. Elastic strain (ε, top
left) and elastic modulus (E0, bottom left) images for both simulations appear similar while the α
(top right) and relaxation time (τ ′, bottom right) images show significant contrast differences in
the two simulations. In simulation (1), the α image shows that the inclusion is more elastic and
less fluidic than the background, whereas the inclusion and background have similar viscoelastic
responses in simulation (2). Lower values of τ ′ in the inclusion in simulation (1) and not in (2)
indicate differences in fluid motion. 45



Simulation (1)

Simulation (2)

Figure 5.2: KVFD model images obtained for the strain image sequences generated from simulated
echo data of two deformed FEA phantoms: Ultrasonic parametric images. These images give results
similar to those observed in Fig. 5.1. The parameter images show significant contrast in simulation
(1) but the inclusion disappears in the α and τ ′ images from simulation (2). In simulation (1), a
processing artefact is responsible for the inverted contrast of the τ ′ image.
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Figure 5.3: KVFD parameter images for an experimental gelatin phantom with a stiff inclusion of
diameter 8 mm: The blurring effect is due to the expanded size of the spatially averaging window
needed to decrease strain noise. The values observed for E0 show that the inclusion region creeps
less than the background region. The α image displays lower values in the inclusion, which indicates
that it is more elastic than the background. The τ ′ image indicates a slow fluidic response of the
center of the polymer, which may be due to its higher concentration of gelatin (trapping water
molecules). The average parameter values inside and outside the inclusion are given in table 5.3.
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Figure 5.4: Typical strain images obtained for two type-B gels respectively injected in the inclusion
with an acidic and basic solution during polymerization and corresponding average KVFD parameter
values in two regions. In a), a strain frame of the acidic inclusion phantom is displayed. The
inclusion appears brighter, which is consistent with α being higher in the inclusion and indicating
a more viscous material. In b), the basic inclusion appears darker in the strain image, which is
consistent with the smaller value of α in the inclusion indicating a more elastic region.
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Figure 5.5: Average creep response observed in an experimental phantom (a) and in breast tissue
(b) fit in the time domain to Eq (2.20). The corresponding KVFD model parameters are given in
Table 5.4.
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Chapter 6

Conclusion

In this thesis, we proposed applications of fractional derivatives to rheological modeling in order

to reduce the feature space for materials characterization and thus provide parameters for imaging.

After mathematically justifying the use of fractional derivatives, we imaged and analyzed the three

parameters of the KVFD model for simulated and experimental hydropolymers as well as in-vivo

breast tissue data. We showed that regions with significantly different viscoelastic responses are

easily detected with this method and may be differentiated provided the data acquisition time is

long enough and strain noise is limited. Though we were not able to consistently differentiate non-

palpable breast tumors in patient data, we identified typical parameter values and were able to show,

based solely on the three parameters of the model, that breast tissues are significantly more viscous

than hydropolymers with faster internal fluidic motions than gelatin phantoms. We were also able

to differentiate an acidic region from a basic one in gelatin as well as two simulated phantoms, and

thus consider a similar technique, with improved image quality, to be very promising for tumor

differentiation. However, the correlation between the values of E0 and τ ′ derived from the fit and

the effect of spatial averaging on these parametric images is an issue that needs to be addressed.

Such processing artefact may affect the contrast in parametric images and lead the observer to the

wrong conclusion. Though one parameter µ = E0τ ′α may be defined, as in previous studies [31], to

represent the combined effects of the three KVFD parameters, the physical analysis of the FD model

would become very challenging. Since it has been seen here that the value of α is uncorrelated to

the other parameters and mainly unaffected by the spatially averaging window while still retaining

a large amount of diagnostic information, future work may focus on the analysis of this parameter.
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