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The influence of spatial diversity in acoustic scattering properties on estimates of the effective scat-

terer diameter (ESD) applied to soft biological tissues is investigated. This study is based on two-

dimensional simulations of scattering media, beginning with random distributions of simple disk

structures where all scattering features are known exactly. It concludes with an analysis of histology

maps from healthy and fatty rabbit liver. Further, the liver histology is decomposed using an ortho-

normal basis to separate acoustic scattering at various spatial scales and observe how it influences

ESD estimates. Overall, the goal is to quantitatively interpret ESD results for diagnostic assess-

ments despite wide variations in tissue scatterer properties. VC 2017 Acoustical Society of America.
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I. INTRODUCTION

Ever since the basic sources of acoustic scattering in soft

tissues were first identified,1 many investigators have worked

to discover how ultrasonic scattering features might serve as

sensitive biomarkers of early disease.2–11 The long history of

safe use, relatively low cost, and the phase-sensitive nature

of detection make ultrasonic methods well suited for the task

of noninvasive histological assessment. However, the rela-

tionship between echo spectra and the tissue structure from

which they arise is complicated by histological variability.

Pathology is defined by the changes in cellular function

and histology caused by a disease process. Parametric models

of pulse-echo ultrasound offer in vivo alternatives to light

microscopy of fixed biopsy samples when the parameters

describe spatially averaged features of in situ cellular architec-

ture. The elements of parenchymal tissues that interact with

sound waves at diagnostic imaging frequencies are close-

packed polydisperse cells and associated structures. Incident

wave energy is partially reflected at any spatial fluctuation in

mass density and bulk compressibility.12 The spectrum of

reflecting structures at the 5–45 lm size scale includes micro-

vascular networks, individual cells, and cell nuclei.1,6

Because mass density and compressibility are rela-

tively uniform within soft parenchymal tissues, acoustic

scattering from parenchymal tissues is weak, i.e., backscat-

ter coefficients2,13 range between 10�6 and 10�3 cm�1 sr�1.

Consequently, echographic contrast is primarily determined

by regional variations in the concentrations and sizes of

cell-based structures relative to the wavelength of sound,

k0, near the pulse transmission frequency f0 ¼ c=k0 at the

compressional sound speed c. For symmetric scatterers of

radius a, the sensitivity of the echo signal to that reflector

is indicated by the ratio of scatterer circumference to wave-

length, 2pa=k0 ¼ ka, where k is the wave number. Scatterer

size can be measured with minimal prior information

regarding reflector shape and orientation using spectral

methods4,8,10,14–16 when the propagation medium is com-

posed of randomly positioned monodisperse structures at

pulse-echo frequencies near ka¼ 1,7,17 e.g., unclotted red

blood cells18 near 60 MHz. However, soft tissues are com-

posed of polydisperse structures. Thus, when interrogated

by broadband pulses, echo signals from tissues comprise a

broad range of ka values each with a different contribution

to the measured echo. Unequal weighting means the aver-

age scatterer size measured from tissue echo spectra is not

the average size seen histologically.

This report uses echo simulations to investigate the

accuracy of a biased metric that has shown diagnostic util-

ity,16,19–21 the effective scatterer diameter (ESD).8,10 In the

long-wavelength limit, where ka� 1, the echoes are weak-

est as reflectors interact with sound as point targets. We will

show that ESD measurement bias at ka� 1 stems primarily

from noise in the echo spectrum. Conversely, more reflective

tissue structures that contribute in the short-wavelength

limit, at ka� 1, require significant prior knowledge about

fine-scale histological properties to avoid ESD bias. Despite

measurement bias and the effects of polydisperse scatterers,

we will show that ESD measurements can be effectively

interpreted for histological changes in space and time.

We first summarize ESD measurement techniques from

pulse-echo backscattered spectra. The standard approach

assumes tissues are a weakly-interacting isotropic random

media. Echo signals recorded for spectral analysis are mod-

eled as wide-sense stationary processes convolved with shift-

invariant acoustic pulses in white Gaussian acquisition noise.

Spatially averaged echo power-spectral density estimates are
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influenced by properties of the pulse, the spatial distribution

of tissue reflector sizes, and noise. The ESD measurement

process describes tissue structure by fitting a measured echo

spectrum for a region to a model spectrum parameterized by

a characteristic size.9 Reflectivity and concentration of tissue

scatterers modify the overall magnitude of the echo spectrum.

However, a weighted sum of scattering functions defined by

the spatial autocorrelation of tissue impedance fluctuations

having sizes near ka ’ 1 determines the spectral shape.4,7

The general approach is to model histology by its spatial

autocorrelation function to infer the average size of structure

contributing to the echo spectrum. This method has been

widely applied to measurements in monodisperse10,14,16,22–24

and polydisperse biological media.15,17,25

Our study is an exploration of ESD measurements from

simulated two-dimensional (2-D) scattering media and sound

pulses. Initially, the scattering fields are weakly-reflecting,

cell-sized disks with known sizes and random positional dis-

tributions. Later, we replace the random disk fields with

rabbit-liver histology to introduce 2-D tissue-like structural

complexity to the scattering field. To evaluate contributions

from diverse and dense histological structures at various size

scales, we first filtered a basis decomposition of liver histol-

ogy images before simulating echo signals. We then applied

structure-function filtering to the simulated echo signal to

minimize coherent scattering effects.26 These two filters

allow us to uncouple and isolate cellular components based

on reflector size to measure the contribution of each to ESD

measurements.

Echo-signal simulations were analyzed using a 2-D scat-

tering theory to make the task computationally realistic. We

first approached a three-dimensional (3-D) simulator using a

2-mm cubic volume of tissue. Each histology image was

sampled at 0.46 lm in two in-plane dimensions of the histol-

ogy image and 3 lm in thickness, generating a data array

with 1:3� 1010 elements. 3-D convolutions were manage-

able because the 2-D outputs were downsampled by a factor

of 42 along the beam axis and 220 laterally to match com-

mon commercial-system sampling intervals of 0.019 mm

axially (40 Msamples/s sampling rate) and 0.1 mm laterally

(pitch of a linear array). However, direct full-field 3-D basis

decompositions required diagonalization of matrices of size

1020 � 1020, well beyond memory capacity. Piecewise 3-D

decompositions required more than 24 h on a multi-core lap-

top. In contrast, 2-D in-plane histological decompositions

were computed in less than two hours, realistically enabling

the analysis of hundreds of data sets for this study.

Our results suggest that polydisperse tissues interrogated

by broadband pulses generate echo-signal spatial covariance

matrices of low rank with respect to ESD measurements.

Consequently, measurement bias does not adversely affect

spatial variations in ESD. While bias affects absolute mea-

surements, ESD bias does not modify relative measurements

that determine scatterer-size image contrast.

II. METHODS

A. Backscatter coefficient model

A general expression for the modeled backscatter coeffi-

cient is8,12

rbðkÞ ¼ �njUð2kÞj2; (1)

which assumes an incident plane wave of unit intensity and

wave number k ¼ 2p=k. The squared magnitude of the scat-

tering amplitude,

jU 2kð Þj2 ¼ k3

4p2

ð
A

dr0 c r0ð Þ e�iK�r0
����

����
2

; (2)

approximates a 2-D scattering field by assuming a random

spatial distribution of scattering cylinders with axes aligned

perpendicular to the incident field.12 cðr0Þ describes the vari-

ation in acoustic impedance relative to the surroundings as

disk-shaped cross sections of the cylinders (Fig. 1). Disks

are located at vector position r0 relative to a reference point

on the receive aperture of a transducer. K is a scattering

vector describing the momentum transfer; its magnitude is

jKj ¼ 2k for backscatter. �n is the number of scatterers per

measurement area A, which for weakly scattering random

media yields a completely incoherent scattering field. That

is, the net backscattered power is a linear summation of

backscattered powers from each scatterer in A.

We can take advantage of the polar symmetry for plane

waves normally incident on discrete cylinders of radius a by

combining Eqs. (1) and (2) to give the 1-D integral equation

parameterized by a,

rbðk; aÞ ¼ �nk3

ð1
r¼0

dr r cðr; aÞ J0ð2krÞ
����

����
2

; (3)

FIG. 1. 2-D impedance maps simulating

random placements of discrete fluid-disk

scatterers to validate the acoustic meas-

urements. (a) In a fluid disk of radius a,

the impedance inside and outside the disk

are z and z0, respectively. Incident plane

waves at location r0 from the detector are

scattered depending on properties at posi-

tion r0 þ r. (b) Simulated impedance

field where fluid-disk diameters are nor-

mally distributed with mean l ¼ 30 lm

and standard deviation r ¼ 9 lm.
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where J0ð�Þ is a zeroth-order Bessel function. Below, we

introduce disk functions for cðr; aÞ in Eq. (3) to simulate

backscatter coefficients for random 2-D media characterized

by scatterers having characteristic size a. We measure ESD

by comparing Eq. (3) with measured backscatter coefficients

(MBSCs) that are computed from Monte Carlo simulations

now described.

B. Monte Carlo echo simulation

For echo simulations, 2-D object scattering field parame-

terized by size a is denoted f 0ðx; y; aÞ or simply f 0ðx; yÞ. f 0 is

a specific field composed of randomly positioned c functions.

Echo signals g(x,y) are recorded from objects assuming a lin-

ear shift-invariant (LSI) measurement system given by the 2-

D convolution gðx; yÞ ¼ ½h � �f 0�ðx; yÞ.27 The LSI pulse-echo

impulse response is a Gaussian-modulated sinusoid,

h x; yð Þ ¼ exp � 1

2

x

rx

� �2

þ y

ry

� �2
 !" #

sin k0xð Þ; (4)

where rx, ry are pulse-width parameters of the Gaussian

envelope along the axial and lateral axes, respectively. For

temporal transmission frequency f0, the corresponding radial

spatial frequency is k0 ¼ 4pf0=c. “Axial” and “lateral”

refer to directions along and perpendicular to pulse propaga-

tion, respectively. We set rx ðmmÞ ¼ 0:5=ðf0 ðMHzÞÞ. For

example, a 10 MHz pulse profile has rx ¼ 0:05 mm (58%

axial bandwidth28). We also set ry ¼ 2:5rx ¼ 0:125 mm.

Pulse profile h and object scattering function f 0 are each

sampled uniformly on the symmetric interval Dx ¼ Dy
¼ 0.00046 mm. Consequently, the spatial axes are x ¼ pDx
and y ¼ qDy for integers 1 	 p 	 P and 1 	 q 	 Q, where

P�Q is the size of f 0½p; q�, a symmetrically sampled copy of

f 0ðx; yÞ.
Simulated echo data are sampled more coarsely than the

object and pulse functions. We always sample echo signals

along the lateral axis on the interval Dy0 ¼ 0:1 mm. This is a

common pitch for linear-array transducers in this frequency

range that often determines the distance between adjacent

axial lines of sight in images. Axial sampling was varied

depending on f0. For pulse frequencies between 7 and 18

MHz, echoes were sampled on the interval Dx0 ¼ 0:02 mm

corresponding to a 38.5 Msamples/s temporal rate. For

pulses in the range 18–27 MHz, Dx0 ¼ 0:01 mm correspond-

ing to a 77 Msamples/s temporal rate. At 27–45 MHz, Dx0

¼ 0:0067 mm corresponding to a 115 Msamples/s temporal

rate. Variable rates were applied to minimize both aliasing

and computations for each pulse frequency range.

The echo field gðx0; y0Þ was computed for integers p0; q0

at discrete locations x0 ¼ p0Dx0; y0 ¼ q0Dy0 using the 2-D

convolutional sum,

g p0; q0½ � ¼
XP

p¼1

XQ

q¼1

h p0 � p; q0 � q½ � f 0 p; q; a½ �;

where 1 	 p0 	 P0 and 1 	 q0 	 Q0: (5)

No acquisition noise was introduced.

C. Estimation of MBSC and ESD

The MBSC is computed from the ratio of two power

spectral density functions. First, we find one-dimensional

(1-D) axial power spectral density in a region of interest and

average the results laterally. Specifically, for forward short-

time Fourier-transform operator F , we have from Eq. (5)

ð1=P0Q0Þ
PQ0

q0¼1 jF x0 fg½p0; q0�gj2. Second, we find the axial

power spectral density along q0c, the center line of the deter-

ministic sound pulse, ð1=P0ÞjF x0 fh½p0; q0c�gj2. The ratio

yielding the measurement is

MBSC kð Þ ¼ 1

Q0

XQ0
q0¼1

jF x0 fg p0; q0½ �gj2

jF x0 fh p0; q0c½ �gj2

for kmin 	 k 	 kmax: (6)

The denominator minimizes the influence of the pulse spec-

trum on the shape of the echo spectrum in the numerator. In

this way, MBSC is comparable to the linear model rb in Eq.

(3) that assumed incident plane waves at frequencies in the

discrete measurement bandwidth, kmin 	 k 	 kmax. Clinical

systems with shift-varying impulse responses can be normal-

ized using a reference-phantom technique for implementing

ESD measurements.29

ESD is estimated25 from parameter a, which minimizes

the following objective function over the measurement

bandwidth,

ESD ¼ 2a for arg min
a

Xkmax

k¼kmin

wðk; aÞ � w0ðaÞ
� �2

; (7)

where

w k; að Þ ¼ log
MBSC kð Þ

S kð Þ � rb k; að Þ

 !
and

w0 að Þ ¼ 1

K

Xkmax

k¼kmin

w k; að Þ: (8)

MBSC in Eq. (6) does not include all frequency-independent

scaling factors that makes it directly comparably to rb in Eq.

(3). Nevertheless, subtracting w0ðaÞ within the minimization

of Eq. (7) yields accurate ESD estimates for weakly scatter-

ing media. The measurement bandwidth given by 0:8f0 was

found reliable because of the lack of acquisition noise in the

simulations. For example, the fit range in Eqs. (7) and (8) for

a 10 MHz pulse with 58% pulse bandwidth is 6–14 MHz

(kmin¼ 7.8 mm�1 and kmax¼ 18.2 mm�1).

The backscatter coefficient model of Eq. (3) assumes

incoherent scattering from sparse random media. As scat-

terer density increases, a nonrandom phase relationship

develops among scattering sites that adds a coherent scatter-

ing component to the echo signal. Coherent scattering modi-

fies the shape of the echo spectrum in ways not accounted

for by the model. To avoid ESD bias, we corrected MBSC

estimates in Eq. (8) for phase correlations in f 0 using struc-
ture function S(k).
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The structure function was developed by Han and

O’Brien26,30 from the original work of Twersky.24 S(k) mini-

mizes coherent scattering by reshaping the echo spectrum to

reduce phase correlations. (See Appendix B.) Our simula-

tions provided values of r0j for the jth scatterer in a 2 mm

� 2 mm (4347� 4347 pixels) field of disks. Equation (B1)

was applied to ten regions, and the results summed and fitted

with high-order polynomials to find S(k).

D. Form factor

We now estimate ESD by comparing measured and

modeled backscatter coefficients as shown in Eq. (6).10 The

original method further reduced the MBSC(k) and rbðkÞ
spectra to eliminate all frequency-dependent influences

except for that caused by finite-size scatterers near ka¼ 1.8

These reduced spectra are the scattering form factors defined

as the Fourier transform of the spatial correlation function of

f 0. In the Results section, Sec. III, we show measured and

modeled form factors as a means of interpreting ESD mea-

surement errors.

E. Modeling fields of 2-D structures

Our simulation study progressed in stages to control for

sources of ESD measurement error. First, the accuracy and

precision of the ESD measurement technique were verified

using sparse and dense monodisperse disks. Then the roles

of size variability and compound scatterer structures on ESD

measurements were examined. Once the influences of num-

ber density and size diversity were individually explored

under controlled conditions, we studied 2-D histological

images of healthy and fatty liver (FL) samples. Details of

each echo simulation are given below.

1. Scattering from monodisperse disks

We first generated 2-D fields of non-overlapping, ran-
domly positioned, identical, disk scatterers. Figure 1(a) illus-

trates a 30 -lm-diameter fluid disk positioned within a fluid

medium. ESD estimates are generated (Sec. II C) from

broadband echo data simulated from fields of these disks

(Sec. II B). The scattering model for a fluid disk is a 2-D ver-

sion of the 3-D fluid-sphere model introduced by Anderson22

and adopted in our work.8 The term “fluid” refers to simple

monopole/dipole scattering without shear-wave mode con-

version. Random fields of weak scatterers31 contain on the

order of 5–10 disks per 2-D pulse area, which is dense

enough to generate “fully developed” speckle in a sonogram

but sparse enough to assume phases of echoes generated by

disk scattering and received at the transducer surface are

approximately uniformly distributed between 0 and 2p. The

result is incoherent scattering from the 2-D equivalent of a

cloud of scatterers.12 Increasing the disk number density, we

were able to gradually increased the coherent scattering con-

tribution from the same 30-lm fluid disks.

The c function from a disk of radius a with acoustic

impedance z inside the disk and z0 outside the disk is

cðr; aÞ ¼ 2z0=z� 2 if 0 < r 	 a
0 if r > a;

�
(9)

where r is radial position in the sound field relative to the disk

center [Fig. 1(a)]. To mimic cell properties, we assume weakly

scattering disks, i.e., z0=z ’ 1, of diameter 2a ¼ 30 lm and

z0; z ¼ 1:5; 1:7 MRayl. (See Appendix A for details about

transferring histology images to impedance maps.)

Applying Eq. (9) to Eq. (3) we find the modeled back-

scatter coefficient,

rb k; að Þ ¼ 4�nk3 z0

z
� 1

� �
a2J1 2kað Þ

2ka

 !2

¼ �nk3a4c2 r; að Þ
J1 2kað Þ

2ka

� �2

; (10)

where J1ð�Þ is a first-order Bessel function. Our observations

of MBSC from these scattering media shown in the Results,

Sec. III, suggest an area fraction of non-overlapping disks

less than 10% may be considered random with minimal

coherent scattering. The criterion for this assessment is a

structure function that is approximately unity over the mea-

surement bandwidth (discussed below). For area fractions

greater than 10%, there is an increasingly significant

coherent-scattering contribution not accounted for by rb.

2. Scattering from random polydispersed disks

We studied randomly positioned fluid disks with a dis-
tribution of diameters about a mean diameter of 30 lm, e.g.,

Fig. 1(b).25 We also considered random fields of disks drawn

from a narrow, normal probability density function (pdf) of

diameters, 2a 
 Nðl; r2Þ truncated to ensure a> 0. For

example, Fig. 1(b) illustrates a normal distribution of disk

diameters where 30 69 lm and the ratio of standard devia-

tion to mean is r=l ¼ 0:3. Incoherent scattering from a ran-

dom field of polydispersed disks25 gives rb as a sum of

echoes from disk area density nj at radius aj,

rb k; að Þ ¼ k3
X

j

�nja
4
j c

2 r; ajð Þ
J1 2kajð Þ

2kaj

� �2

: (11)

In Sec. III A, we test the approximation to Eq. (10)

given in when disk size is distributed. We show it provides

estimates consistent with Eq. (11) for r=l < 0:5.

3. Scattering from concentric disks

Random fields of concentric fluid disks23 were investigated.

Figure 2(a) illustrates one 10 -lm-diameter disk positioned con-

centrically within a 30-lm-diameter disk, while Fig. 2(b) illus-

trates a 2-D random field of these compound structures.

For the weakly scattering concentric disks illustrated in

Fig. 2,

cðrÞ ¼
2z0=z1 � 2 if 0 < r 	 a1

2z0=z2 � 2 if a1 < r 	 a2

0 if r > a2:

8><
>: (12)
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We set 2a1; 2a2 ¼ 10; 30 lm and z0; z1; z2 ¼ 1:5; 1:7; 1:6
MRayl to simulate scattering from cell structures. The corre-

sponding backscatter coefficient is

rb k; a1; a2ð Þ ¼ 4�nk3 z0

z1

� z0

z2

� �
a2

1J1 2ka1ð Þ
2ka1

 

þ z0

z2

� 1

� �
a2

2J1 2ka2ð Þ
2ka2

!2

: (13)

Notice rb is now parameterized by two diameters, 2a1 and

2a2. For compound scatterers such as concentric disks, size

parameter a in Eq. (7) becomes a vector, a ¼
� a1

a2

	
, as indi-

cated by Eq. (13). Now the objective function undertakes an

exhaustive 2-D search for two parameters.

4. Histology and impedance maps of rabbit liver

High-resolution microscopy images of rabbit-liver his-

tology are used to model 2-D tissue scattering. The assump-

tion is that cellular structures absorb histological stains

during slide preparation in proportion to their protein or

nucleic acid concentration that also determines the acoustic

impedance of a structure. 3-D histology images were

successfully applied in an echo data simulator to provide

acoustic signatures similar to those measured experimentally

in 3-D living tissues.32 The current study examines 2-D his-

tology as a computationally efficient method for identifying

cellular structures described by acoustic ESD estimates; we

are not attempting to simulate the experimental tissue scat-

tering results that were the focus of previous studies.32–34

Liver samples were extracted at necropsy, chemically pre-

pared with formalin and sliced on a microtome into 3 lm

layers. Each sample is stained using hematoxylin and eosin

(H&E) to indicate the distribution of protein structures in the

slice plane.32 Hemalum is taken up by cell nuclei, while eosin-

ophilic structures, primarily cell membranes and fibers, are

stained in proportion to their protein concentration. Each his-

tology sample was imaged and digitized using a NanoZoomer

HT slide scanner (NanoZoomer 2.0-HT; Hamamatsu,

Hamamatsu City, Japan) sampled to give 0.46 lm/pixel. The

red and blue channels of the red-green-blue (RGB) microscopy

image, which contain all the relevant information, were com-

bined into gray-scale images. The red and blue channels of

each pixel in the histology images were converted to imped-

ance (2-D Z maps) using a methods described by Mamou

et al.32 and summarized in Appendix A. In Sec. III D, we eval-

uate the utility of applying the extra step of using impedance

maps in echo simulation versus direct use of histology maps.

Liver histology from two groups of New Zealand white

rabbits were examined: healthy and FLs.35 Examples of the

histology from both are shown in Fig. 3. FL cells are charac-

terized by an accumulation of weakly staining lipids within

hepatocytes (steatosis) that increase the average cell size and

can displace the nuclei toward the cell wall. FL samples

were obtained from rabbits fed a fatty diet for six weeks,

while healthy liver tissue samples were obtained from a con-

trol group fed a healthy high-fiber diet.

The greatest distances between opposing cell walls and

nuclear boundaries were measured optically along the verti-

cal and horizontal image axes. Sizes of both structures were

averaged for 100–120 of each cell type to set ground truth for

ESD measurement comparisons. Healthy hepatocytes were

found to have an average diameter of 25.1 6 3.5 lm, while

FL hepatocytes were 20% larger swelling to 30.9 6 4.9 lm.

FIG. 2. 2-D impedance maps were simulated using random placements of

discrete fluid-disk scatterers to validate the acoustic measurements. (a)

Concentric fluid disks of radii a1 and a2 have corresponding impedance val-

ues z1 and z2. (b) Simulated impedance field where 10-lm disks locations

are concentrically placed within 30-lm disks.

FIG. 3. (Color online) Images of rabbit

liver histology. Image (a) is an exam-

ple of a healthy liver while (b) is a FL.

The scale bar indicates 50 lm.
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Healthy liver-cell nuclei were estimated to be 9.5 6 1.5 lm, a

value slightly (but not significantly) larger than the value

8.7 6 1.4 lm found for FL liver cell nuclei. Since the images

are of 2-D slices through 3-D tissue structures, average

in vivo sizes are likely to be somewhat larger than values

listed here.

F. KL decomposition

Disk scatterers in the calibration studies are well defined

discrete structures. However, cells and nuclei in tissue histol-

ogy are more complex. Histology slides are formed from sli-

ces through cell bodies that present variable distributions of

whole and partial somatic structures. Because ESD measure-

ments are most sensitive to structures of size near the center

wavelength of the pulse,7,17 we need a method of sorting

through cell histological structures. By systematically elimi-

nating elements while comparing ESD estimates, we can

identify the most influential scattering structures from

histology.

For this task we apply the Karhunen-Loève (KL)

decomposition of the spatial covariance matrix of histology

data, Rf . It is known that sonographic brightness is deter-

mined by the properties of Rf (Ref. 27) that capture informa-

tion about impedance correlations. To estimate Rf , we

subdivided sampled large-field images of object scattering

functions f 0½p; q� as shown in Fig. 4. This original P�Q
matrix of real values, i.e., f 0 2 RP�Q, is divided into B�B
blocks. Each block is lexicographically reordered into an

M � 1 column vector, where M ¼ B2. Repeating this process

for all N blocks in the original matrix f 0, we form a reordered

matrix of the same echo data, f 2 RM�N .

Let �f (f bar) be a 1� N row vector of average imped-

ance values, where the nth element is the mean value in the

block corresponding to a column in f, i.e., ½�f �n ¼ �f n ¼ ð1=
MÞ
PM

m¼1 fmn. Further let ~f (f tilde) be an M�N matrix equal

to f except that �f n has been subtracted from each value in the

nth column, i.e., for the nth column ½~f �n ¼ ½f �n � �f n. This

process subtracts the block mean from the impedance data in

the corresponding block.

The spatial covariance matrix Rfn for the nth block

of the impedance map is defined as the ensemble average

of the outer product of each of the N column vectors Rfn

¼ Efð½f�n � �f nÞð½f�n � �f nÞ
Tg, where superscript T denotes

matrix transpose. For wide-sense stationary media,

covariance matrices for all blocks are approximately equal.

Therefore, we can apply the practical approximation via spa-

tial averaging,

Rf ’ ~f ~f
T
; (14)

provided the two assumptions hold true. First, f must be a

stationary random process where spatial averaging over

blocks closely approximates ensemble averaging (ergodic-

ity). Second, we must be willing to limit the analysis to tis-

sue structures on the size of the block and smaller. For

example, the 100� 100 pixel block size used in our study

limits backscattered echoes to structures smaller than 46 lm

(with pixel size of 0.46 lm), on the order of the cell size.

These are reasonable assumptions for our analysis purposes.

Please note that inter-cellular structures can contribute to the

simulated echo signal, necessitating use of the structure

function in Eq. (7), but were not a factor in object decompo-

sition and filtering described below.

The KL expansion of Rf (equivalent to principal-

component analysis (PCA) or Hotelling transformation36) is

conveniently obtained using eigenanalysis,37

Rf ¼ VDVT : (15)

D is a diagonal matrix of the eigenvalues of Rf sorted in

descending order, and V is a matrix where columns are the

corresponding eigenvectors. For a 100� 100 block size, D

and V are each M�M, where M ¼ 104. The KL transforma-

tion of ~f , labeled y, is another M�N matrix,

y ¼ VT~f : (16)

Combining Eqs. (14)–(16), we find yyT ¼ D where y2
m

¼ Dmm are the eigenvalues of Rf .

Scattering structures can be systematically discarded by

setting some eigenvalues to zero. For example, we find yj by

setting Dmm¼ 0 for jþ 1 	 m 	 M to reduce the rank of Rf .

Applying the inverse KL transformation

~f j ¼ Vyj (17)

and adding �f n to matrix columns with nonzero eigenvalues

we find f j. The reduced impedance map, f 0j, is a reshaped

version of f j computed by reversing the process outlined in

Fig. 4 via the reshape MATLAB function (MATLAB and

Statistics Toolbox, The MathWorks, Inc., Natick, MA).

We vary threshold index j from M (no reduction in scat-

tering structure) to 1 (max reduction) to discard increasing

amounts of the tissue impedance structure, generally from

the finest structures to the coarsest, with minimal distortion

of the remaining components.38 We then apply map f 0j in

echo simulations as described Sec. II B. As j varies and ESD

values change, we can infer the influence of lost structures

on the shape of the echo spectrum. At any point in the analy-

sis, computing f 0M�j�1, i.e., zeroing the first j eigenvalues of

Rf , allows visualization of the structures that have been

removed from the histology or Z maps, e.g., Figs. 12(b) and

12(e).

FIG. 4. The impedance map is represented by P�Q matrix f 0. It is reshaped

into M�N matrix f for use in Eq. (14) to compute the covariance matrix.

Data “blocks” are given by the columns of f.
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We keep track of the discarded structures through two

quantities. First, percent eigenenergy is defined via Eq. (18)

to be

E ¼

Xj

m¼1

y2
m

XM
m¼1

y2
m

� 100; where 1 	 m 	 M (18)

and j is a threshold integer. The discarded eigenenergy per-

centage is 100� E. We used a data block size of 100� 100

so there are always M ¼ 104 eigenvalues. The second quan-

tity that we track is j, the number of eigenvalues included in

the scattering object for the range 1 	 j 	 M. The number of

discarded eigenvalues is M � j.

III. RESULTS

A. Disk-scatterer calibrations

For the disk scatterers described in Sec. II E, we simu-

lated echo signals at pulse center frequencies up to 45 MHz

(Sec. II B) and estimated ESD [Sec. II C, Eq. (7)] for sparse

(7% area fraction) and dense (28% area fraction) disk fields.

Each point in the plots of Figs. 5–7 is an average of ten sim-

ulations using statistically independent realizations of the

random object data. The search range applied for the 30-lm

disks was set at 0–60 lm; all estimates for the ten trials fell

inside this range. Error bars indicate 61 standard error for

N¼ 10. For all results, the fractional pulse bandwidth was

fixed at 58%; consequently, for example, 15 MHz pulses

have three times the bandwidth of 5 MHz pulses.

1. Sparse monodisperse disks

ESD estimates for sparse random fields of 30-lm-diameter

disks are shown in Fig. 5(a). The horizontal dotted line is the

diameter of the disks in the object function used to simulate

echo signals. The dashed and solid curves are ESD estimates

with and without the structure function correction, respec-

tively. Estimates are obtained without the structure function

by setting SðkÞ ¼ 1:0 in Eq. (8). The central frequency of the

pulse indicated on the lower horizontal axis is matched to the

corresponding values of ka on the upper axis. Results with

and without the structure function agree above 10 MHz, sug-

gesting the medium is random with minimal coherent scatter-

ing contributions when the disk density is set to a 7% area

fraction. The structure function tends to bias ESD estimates

high at pulse frequencies below 10 MHz.

The error bars indicate ESD estimates are precise for ten

trials when ka> 0.8. Generally, estimates are expected to be

most accurate with ka from 0.8 to 1.7,17 However, the lack of

fine-scale structural information within disks allows a fluid-

disk model to well represent this scattering medium even at

higher frequencies. For 0:8 < ka < 1, uncorrected ESD esti-

mates [S(k)¼ 1] range from 30 lm to 29.2 lm. For ka> 1.2,

ESD ’ 31 lm. These results validate the method for measur-

ing ESD from 2-D echo data.

2. Dense monodisperse disks

Repeating the study above for fields of 30–lm-diameter

disks having a 28% area density, we find the results of Fig.

5(b). The dashed and solid lines are ESD estimates with and

without the structure function correction, respectively, as in

Fig. 5(a). The solid line indicates that effects of coherent

scattering appear strongest in the long-wavelength limit at

ka< 1.2. In this range, the model almost completely failed to

represent the echo spectrum. These effects indicate that

dense media cannot be considered random as coherent scat-

tering influences are significant. Application of the structure

function allows use of the backscatter coefficient models

for random media in Eqs. (2), (3), and (5). Corrected esti-

mates (dashed line) compensate the spectrum for coherent

scattering and, as a result, ESD measurements match values

obtained from sparse random fields above 12 MHz. Again,

for ka< 0.8, the structure function biases ESD estimates

high.

3. Sparse polydisperse disks

This section explores the influence on ESD estimates of a

narrow size distribution of sparse disk scatterers. Equation (10)

FIG. 5. (a) ESD estimates from a sparse (7% area fraction) field of 30-lm

fluid disks. (b) ESD estimates from a dense (28% area fraction) field of

30-lm fluid disks. Solid and dashed line are ESD estimates before and after

structure function correction, respectively. The dotted line indicates the sim-

ulated disk diameter. Estimates are made for center pulse frequencies

between 7 and 45 MHz; the corresponding values of ka are listed on the

upper horizontal axis.
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shows disks are weighted by the fourth power of the radius,

suggesting that to first order, ESD estimates are biased by the

width of the diameter distribution. Referring to the monodis-

persed disk data of Fig. 5(a) at 16 MHz (ka ’ 1), we find

ESD¼ 29:260:5 lm for a random field of exactly 30-lm

disks. This value becomes the measurement in Fig. 6(b) at

standard-deviation-to-mean ratio r=l ¼ 0:0. Measurements

from simulated echo data at other values of r=l indicate that

broader distributions are indeed biased higher.

We found a simple way to predict ESD bias from the

size distribution. Figure 6(a) shows four weighted, normal

distributions of scatterer diameters, i.e., 2a 
 Nðl; r2Þ, each

with different r=l ratios and all with a fixed mean of 30 lm.

However, these probability densities are multiplied by the

factor ð2a=30 lmÞ2 at each diameter value as predicted by

the rb. We see from Eqs. (11) and (13) that rb is proportional

to k3a2 for cylinders.12 However rb is proportional to k4a3

for spheres,8,12 showing the model must be adjusted when

using 2-D versus 3-D scattering fields in the simulations.

The predicted influence on ESD measurements from a diam-

eter distribution is shown by the dashed line in Fig. 6(b)

while the corresponding measurements from echo signals

simulated using polydisperse disks is shown by the solid

line. This coarse approximation is reasonably predictive for

0 	 r=l 	 0:5, which includes the observed variability

among fatty and healthy liver cells seen histologically.

4. Sparse concentric disks

ESD estimates for randomly positioned concentric-disk

scattering fields are summarized in Fig. 7. Clearly the added

structural complexity challenges the accuracy of this estima-

tor. We applied the two-parameter backscatter coefficient

model from Eq. (13) and the two-parameter search via the

measurement approach in Eq. (7) to find these results. In Fig.

7(a), the ratio of outer- to inner-disk diameter is larger than a

factor of 2 (30 and 10 lm), and in Fig. 7(b) it is smaller than

a factor of 2 (30 and 20 lm). The search range for the outer

disk was set to 20–40 lm, while that for the inner disk was

5–30 lm. Search ranges were selected to reduce the compu-

tational load without biasing ESD estimates. Each point in

the plots of Figs. 7(a) and 7(b) is an average of at least 10 tri-

als drawn from 25 to 50 simulations of random object data.

Out-of-range searches were labeled as failed and excluded

from the average values plotted. Error bars indicate 6 1 stan-

dard error for N¼ 10. Extra simulations were needed to

obtain at least ten estimates within the search ranges of the

smaller disk.

Arrows in Figs. 7(a) and 7(b) indicate the 0:8 < ka < 1:0
ranges for the 10–30- and 20–30-lm-diameter compound-disk

scatterers. When the ratio of outer-to-inner diameters is greater

FIG. 6. (a) Weighted normal probability densities pð2aÞ � ð2a=lÞ2 for fluid-

disk scatterers. Although l ¼ 30 lm, the quadratic factor shifts the weighted

mean from 30 lm to 40 lm as r=l increases from 0.1 to 0.4. The legend

indicates the ratio of diameter standard deviation to mean for each curve. (b)

The solid line indicates ESD measurements versus r=l for a 16-MHz pulse.

The dashed line indicates the predicted results based on the weighted proba-

bility model.

FIG. 7. (a) ESD estimates are obtained from sparse 2-D fields of 10–30-lm-

diameter concentric disks, coarsely representing incoherent scattering from

liver cells and their nuclei. (b) ESD estimates are obtained from sparse 2-D

fields of 20–30-lm-diameter concentric disks. Error bars are standard errors

for ten trials made at pulse frequencies in the range 7–45 MHz. The horizon-

tal arrows indicate frequency ranges where 0:8 < ka < 1.
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than 2, as in Fig. 7(a), the estimator recognizes that two disk

sizes are present, even though both estimates are less accurate

when compared with scattering from fields of simple disks.

However, when the ratio of outer-to-inner diameters is less

than 2, as in Fig. 7(b), ESD estimates tend to merge at frequen-

cies above 18 MHz as the 2-D search for the optimal a1,a2 pair

does not provide distinct estimates. Note that ka1 ¼ 1 for the

10 lm disk at 49 MHz, which makes the accurate 10 lm esti-

mates below 16 MHz surprising and unreliable. We further

examined the effect of randomizing the location of the inner

disk within the outer disk (coincident but not concentric). We

found results (not shown) that are essentially equivalent to

those of the concentric disks found in Fig. 7.

Although the concentric-disk model shows some separa-

bility of the compound disks, we found no benefit in apply-

ing a simultaneous 2-D search for a1 and a2 as compared to

performing separate 1-D searches with single-disk models.

5. Summary of calibration studies

Overall, the calibration results from Figs. 5–7 suggest

that ESD estimates can accurately represent monodisperse

structures for ka> 0.8. As the true distribution of scatterer

sizes increases, ESD estimates depend on both the mean and

standard deviation of the distribution. Given some prior

knowledge of scatterer distributions, the effects of the size

distribution can be accounted for. When there is more than

one distinct size distribution, these structures can be sepa-

rately assessed with appropriate selection of pulse frequen-

cies provided scatterer sizes vary by at least a factor of 2.

Objects with sizes within a factor of 2 generate ESD esti-

mates somewhat larger than the average object size, which

can be predicted by applying an acoustic weighting factor.

Determining the size of 10-lm-diameter disks is very chal-

lenging below 45 MHz using a fluid disk model. Finally,

when the area fraction of scatterers is larger than about 10%,

ESD estimation accuracy is greatly improved with use of the

structure function to reduce coherent scattering effects on

the backscattered spectrum.

B. ESD for healthy liver and FL histologies

Based on the calibration results of Sec. III A, we now

consider ESD measurements made by processing echoes

simulated from liver histology images. ESD results for

healthy and FL data in Fig. 8(a) show subtle differences with

overall trends that vary significantly between 9 and 45 MHz.

The error bars for data in Fig. 8(a) are too small to see

clearly, so we replotted a portion of the data near ka ’ 1 in

Figs. 8(b) and 8(c) to show that error bars are minimum near

ka ’ 1. Error bars indicate 61 standard error from estimates

made on three disjoint tissue regions. The structure function

correction is applied to all of the tissue histology data

shown.

Section II E described light-microscopy measurements

of cell diameters where we found healthy rabbit hepatocytes

to be 25.1 6 3.5 lm. The calibration studies from Fig. 6

using polydispersed random disk media predicts ESD esti-

mates for healthy liver cells should be biased high at 26 lm

due to the narrow distribution of cell sizes (r=l ¼ 0:14).

ESD estimates from echo simulations in Fig. 8(b) gives

26.4 lm at 18 MHz where ka ’ 1, in close agreement with

distribution adjusted optical histology measurements.

Section II E also lists optical measurements that show FL

hepatocytes have size 30.9 64:9 lm. Figure 6 data predict

ESD estimates for these FL cells should be biased high at

32 lm. The ESD estimate in Fig. 8(c) is 31.5 lm at 15 MHz

where ka 
 1, also in close agreement. Looking blindly over

the data in Fig. 8(a), one is hard pressed to clearly say ESD

is able to discriminate healthy and FLs. However, liver his-

tology is reasonably consistent within a species, and so it

should be possible to select a pulse frequency near ka¼ 1

that targets the size of hepatocytes expected for a population.

Because cell and nuclear sizes are different by more than a

FIG. 8. (a) ESD estimates from healthy

and fatty rabbit liver histologies at

pulse frequencies between 9 and 45

MHz. (b),(c) ESD estimates from both

liver types in (a) are magnified to show

how the error bars are minimum near

ka 
 1 (arrows).
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factor of 2, echoes from these structures are not expected to

interfere in ESD measurements.

Estimating nuclear sizes is more difficult than estimat-

ing cell sizes, which was predicted by the calibration results.

At roughly 9 lm, ka¼ 1 for cell nuclei near a pulse center

frequency of 50 MHz. For a fixed 58% fractional bandwidth,

we need to sample echo signals at rates above 150 MHz to

avoid aliasing. Even more limiting is the high acoustic atten-

uation that reduces the penetration depth needed if these

measurements were made in vivo. Recall that our simula-

tions did not include tissue attenuation or acquisition noise.

The ESD estimates of nuclear size made at 40 MHz,

ka¼ 0.73, were 12.7 lm for healthy hepatocytes and

11.4 lm for FL hepatocytes. The optical measurement of

healthy cell nuclei is 9.5 6 1.5 lm and the distribution cor-

rected value is 9.8 lm. The optical measurement of FL

nuclei is 8.7 6 1.4 lm and the distribution corrected value is

9.0 lm. Although ESD measurements are about 30% higher

than corrected optical values, the rank order of cellular and

nuclear sizes is preserved.

1. Summary for tissue histology

ESD measurements from liver histology decrease with

pulse frequency. Where ka ’ 1, we find that ESD estimates

of cell sizes closely agree with optical measurements of the

average liver cell sizes if the measurements are adjusted for

the histological distribution in cell diameters. ESD estimates

of cell nuclear sizes are less accurate, generally biased about

30% high because of difficulties in achieving pulse frequen-

cies where ka ’ 1.

C. Form factor

In each of the studies summarized by Figs. 5–8, we find

that ESD estimates have high variance in the long-

wavelength limit, i.e., at ka< 1. To explore sources of this

uncertainty, we examine in Fig. 9 the relationship between

measured and modeled acoustic form factors.

Notice that the variance in measured form factor values

decreases with increasing frequency. Measured form factor

uncertainty is determined by that of the echo-signal power

spectral density on which they are based. We always simu-

lated data over the same depth range so the frequency resolu-

tion is the same for all pulse frequencies between 7 and

45 MHz. Increasing the axial sampling rate for higher-

frequency pulses extends the Nyquist frequency to reduce

aliasing. However, none of these factors affect form factor

uncertainty within the estimation bandwidth. That uncer-

tainty is largely determined by the number of independent

samples obtained across the lateral extent of the object, as

explained in the discussion, Sec. IV.

D. KL decomposition of liver-tissue structures

Given the complexity of tissue structures seen in Fig. 3,

we found them difficult to classify using one or several prob-

ability distributions. To sort through them systematically, we

first apply a KL decomposition of the histology images as

described in Sec. II F. This allowed us to “disassemble” and

discard elements of cell structures. We then reassemble

remaining components via Eq. (17), simulate echo signals,

and observe the effects on ESD measurements. The largest

eigenvalues of the tissue histology generally correspond to

eigenvectors representing coarse structures, while the small-

est eigenvalues correspond to fine-scale structures. While

eigenvectors are not the sinusoids of a Fourier basis, the

trends are similar.

In Fig. 10 we investigated the relationship between the

number of eigenvalues included in the scattering object and

eigenenergy percentage for both histology and impedance

images computed from the liver tissues of Fig. 3. We find

that the largest 20 eigenvalues of histology images (0.2% of

104 values over a 46-lm scale) carry 10% of the eigene-

nergy, whereas the largest 500 eigenvalues carry 70% of the

eigenenergy. Recognizable histological features are

described by 70% of the eigenenergy in fewer than 5% of

the eigenvalues.

FIG. 9. Best fit form factor for the fluid disk with scatterer diameters of

30 lm and 31 lm are shown in solid and dotted lines, respectively. The form

factors for echo data at pulse center frequency of 7, 16, and 40 MHz are cal-

culated and scaled. Model form factors at 2a ¼ 30 and 31 lm show how sen-

sitive the models are to a 1-lm-diameter difference.

FIG. 10. Measurements of the change in the number of eigenvalues out of

104 as a function of eigenenergy for histology images undergoing KL

decomposition. Results of analysis on histology images are compared with

those for the same data converted into impedance maps. Curves show that

the greater dynamic range of histology images over impedance maps (8 bits

versus 3 bits) results in the same eigenenergy being distributed over more

eigenvalues.
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Converting histology data into impedance maps (see

Appendix A) adds direct physical context to the object scat-

tering field, f 0. However impedance maps have a lower

dynamic range compared with histology images (3 bits ver-

sus 8 bits) resulting in more eigenenergy being placed into

fewer eigenvalues, as seen from Fig. 10. Finding no signifi-

cant difference between ESD estimates using histology

image data and impedance maps, we chose to use the former

to preserve the dynamic range of f 0.
Figure 11(a) displays ESD measurements versus eigene-

nergy for the two types of rabbit-liver histology.

Measurements made at 18 MHz for healthy hepatocytes and

at 15 MHz for FL cells keep ka ’ 1. Estimates are constant

for eigenenergy values greater than 25%, varying only when

E< 25%. Measurements made at 40 MHz in Fig. 11(a) target

cell nuclei for which ka ’ 0:73. ESD estimates at 40 MHz

are constant when the eigenenergy is greater than 40%. The

first changes we see below these thresholds are an increase

in ESD estimates as the remaining scattering structures are

blurred forms of histology. Further, we focused on one nor-

mal hepatocyte imaged at five eigenenergy levels in Fig.

11(b) and one fatty-liver cell at five eigenenergy levels in

Fig. 11(c) so that readers can visualize the effects of eroding

structures via the KL decomposition process.

The results of Fig. 10 show that fine-scale structures in

cells have little influence on ESD estimates. The disk cali-

bration studies show that for size differences greater than a

factor of 2, viz., where ka< 0.5 or ka> 2.0, we expect those

structures to have little influence on ESD estimates. Further,

we find that ESD measurements between 7 and 45 MHz are

sensitive to only the largest 200–700 eigenvalues out of

10 000. In comparison, the disks in the calibration studies

contained more than 90% of the eigenenergy in fewer than

100 eigenvalues. The rank of the spatial covariance matrix

formed from liver-tissue scattering functions is fairly small,

becoming still smaller once tissues are coupled to acoustic

pulses in the range of 7–45 MHz. For this reason, selecting

an ultrasonic pulse determines which specific tissue struc-

tures are sensed despite there being significant structural

diversity.

IV. DISCUSSION

Notice in Fig. 9 that variance in measured form factor

values decreases with frequency. Form factor uncertainty

reflects that of the echo-signal power spectral density.

Spectral uncertainty is largely determined by the number of

independent samples averaged across the lateral extent of

the object.

As pulse frequency increases, pulse length and width

decrease for fixed bandwidth and f-number. However, the lat-

eral sampling interval was fixed at 0.1 mm. Echo samples are

more correlated along the lateral dimension at lower frequen-

cies because the pulse volume is relatively larger. Significant

correlation among waveforms at a fixed depth reduces the

number of degrees of freedom available when averaging lat-

eral samples over a fixed total lateral extent during spectral

estimation. Also, since bandwidth scales with transmission

frequency, low-frequency pulses provide fewer points in the

ESD measurement bandwidth of Eq. (8). The combination of

fewer bandwidth points and greater uncertainty at each point

reduces the accuracy of ESD measurements at low pulse fre-

quencies relative to high frequencies.

Figure 9 also explains why ESD estimates improve as

pulse frequency increases for monodispersed disks when the

modeled form factor well represents scattering in the

medium. The combination of wide bandwidth and precise

spectral estimates allows fluctuations in the model function

to uniquely fit the data. In contrast, compound disks are not

FIG. 11. (a) ESD estimates for healthy liver and FL histology maps as a

function of the preserved eigenenergy. Heathy liver values are obtained

using 15-MHz pulses while FL values are obtained at 18-MHz to focus on

the cellular structures. 40 MHz pulses are applied for both healthy liver and

FL to focus on nuclear structures. Hepatocyte images from healthy (b) and

fatty (c) livers are reconstructed with 15% (top left), 25%, 40%, 70%, and

90% (lower right) of the total eigenenergy. In (b), arrows indicate the cell

membrane.
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well represented by the fluid-disk model function, and so

ESD estimates are not accurately estimated at ka> 1.

Attenuation and noise were not included in our simula-

tion in order to provide us with these specific insights.

Patient measurements always involve frequency-dependent

attenuation and acquisition noise, which reduce the echo

signal-to-noise ratio (SNR) in clinical studies at high fre-

quencies. To compromise, a pulse frequency near ka¼ 1

should be selected based on a priori knowledge of the class

of patient histology under investigation. Near ka¼ 1, one

expects the combination of moderate echo SNR and high

form-factor curvature to yield the most accurate and precise

ESD measurements. The exact choice of form-factor model

function limits ESD accuracy less than the presence of spec-

tral noise in a narrow measurement bandwidth.

To the extent that liver can be described as a normally

distributed ergodic process generating incoherent scattering

fields, the spatial covariance matrix provides a complete rep-

resentation of tissue structure.39 These assumptions are

essential for straightforward interpretation of ESD results.

KL decomposition also assumes the tissue scattering func-

tion f 0 is normally distributed. It diagonalizes the spatial

covariance matrix, which decorrelates f 0. The symmetry of

every covariance matrix ensures that eigenvectors are

orthogonal, but only if the scattering object is normally dis-

tributed can we also assume the eigenvectors are linearly

independent. Cellular structures uncouple in this way only if

f 0 can be expressed as a normal random process.

We examined the normality of histological data qualita-

tively by forming histograms of 106 image pixels from healthy

liver and FL data; see Fig. 12. Although neither is normally

distributed, clearly FL samples [Fig. 12(d)] deviate from nor-

mality more than healthy liver because of the large lipid con-

tent. In Figs. 12(b) and 12(e) we reconstructed images of 10%

eigenenergy for the smallest eigenvalues that we expected

to contain image noise. In Figs. 12(c) and 12(f) we blended

the 10% eigenenergy images with the corresponding 100%

eigenenergy images so that readers can see how some cell

FIG. 12. (a) Histogram of the 8-bit

gray-scale histology map for healthy

liver. The total number of pixels

included is 106. (b) Reconstructed

healthy liver histology using only the

smallest 10% eigenenergy. (c) The

result of (b) added in registration to the

faded (20%) histology map of Fig.

3(a). Comparing (b) and (c) allows

readers to visualize the discarded data

in light of the original histology. (d)

Histogram of the 8-bit gray-scale his-

tology map for FL. The total number

of histology image pixels included is

106. (e) Reconstructed FL histology

using only the smallest 10% eigene-

nergy. (f) The result of (e) is added in

registration to the faded (20%) histol-

ogy map of Fig. 3(b).
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structures do completely uncouple. In particular, we see nuclei

appearing in both images and a noticeable amount of the cell

wall structure in the FL image of Fig. 12(f). These results

show that the KL decomposition does not completely separate

cell components from smaller structures and noise as we

hoped. Nevertheless it does permit us to determine the rank of

the object covariance matrix contributing toward ESD esti-

mates. This was the point of data in Fig. 11(a).

Application of structure function S(k) in Eqs. (7) and (8)

minimized the coherent scattering effects from dense media on

the echo spectrum. Calibration results in Fig. 5(b) emphasized

the importance of S(k) for ESD measurements at low frequen-

cies. S(k) adjusts the echo spectrum when the phases from ech-

oes combined at the transducer surface are not uniformly

distributed. Wagner et al.31 showed that uniform echo phase dis-

tributions are a hallmark of normally distributed echo signals, g.

We then computed structure function using the method

of Han and O’Brien30 via Eq. (B1) except that we fit S(k)

results to an eighth-order polynomial to minimize phase

noise. The goodness of fit is routinely poorer below 20 MHz

where S(f) consistently overcorrects ESD estimates [see Fig.

5(a)]. Unlike in our simulations, exact locations of each

reflecting scatterer are unknown in vivo, in which case S(k)

is computed from statistical models of scatterer density.26

We note that hepatocytes in the selected regions of this study

are uniformly distributed with no vascular structures. Thus

only the coherent scattering among hepatocytes is consid-

ered in our simulations. Eliminating highly reflecting arterio-

les allowed us to focus the analysis on cellular scattering,

which is impossible experimentally in tissues.

Finally, we undertook this investigation in two dimen-

sions to maintain realistic memory requirements and compu-

tational loads. The 2-D scattering geometry changes the

backscatter models used in ESD estimation compared with

3-D analysis. We find no reason to expect lessons learned in

2-D simulations will not generalize to 3-D measurements.

V. CONCLUSIONS

Tissues present a very broad range of histological struc-

tures that could interact with ultrasound when measuring the

ESD. Applying imaging pulses in the 7–45 MHz frequency

range with a 58% bandwidth and using 2-D echo simulations,

we found that a narrow range of structures will be selected

near ka¼ 1 to contribute to the echo spectrum. Structures hav-

ing sizes within a factor of 2 of each other near ka¼ 1 contrib-

ute to the echo signal as a weighted linear sum, such that if the

object distribution is approximately known, ESD measure-

ments can be corrected for the acoustic weighting. If the range

of scatterer sizes exceeds a factor of 2, only those nearest

ka¼ 1 will influence ESD measurements. Based on calibration

measurements and KL-decompositional filtering of histology

images, we showed that accurate estimation of cell sizes is

possible, which is consistent with literature findings.10,11,16,35

However, accurate estimation of cell-nucleus sizes is unlikely

in vivo given the need for pulse frequencies near 50.

ESD measurements require operators to have some

knowledge of cell sizes for the target tissues if they are to

select frequencies giving ka ’ 1. When ka< 1, there is a

tendency to overestimate ESD and, when ka> 1, the tendency

is to underestimate ESD. Nevertheless, ESD measurement bias

is predictable and remains fixed, suggesting that rank order is

preserved in serial measurements in which scatterer sizes

change. Also, ESD bias is expected to have little influence on

ESD image contrast between regions in tissue of varying ESD.
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APPENDIX A: FROM HISTOLOGY IMAGES TO
IMPEDANCE MAPS

Each pixel in the histology image is composed of three

8-bit words indicating RGB colors. The green-channel value

was negligible. We use the MATLAB function rgbtohsv to con-

vert each RGB pixel to an array of M � 3 floating point val-

ues between 0 and 1 to indicate hue h, saturation s, and value

v (HSV), where v was negligible. Following the method of

Mamou et al.,32 we assigned a pixel to be “blue” (nuclear

material) if 0 	 h < 0:75 and “pink” (cytoplastic proteins) if

0:75 	 h 	 1. Then, for each pink pixel, we examined the s
channel and assigned that pixel to an impedance value of

1.45 MRayl (fat) if 0 	 s < 0:2, 1.5 MRayl if 0:2 	 s < 0:4,

1.6 MRayl if 0:4 	 s < 0:6, and 1.7 MRayl if 0:6 	 s 	 1.

For each blue pixel, we also examined the s channel and

assigned the pixel to an impedance value of 1.8 MRayl if

0 	 s < 0:4, 1.9 MRayl if 0:4 	 s < 0:6, and 2.0 MRayl if

0:6 	 s 	 1. The values of impedance stated above were

obtained from Ref. 40.

APPENDIX B: IMPEDANCE CORRELATIONS AND THE
STRUCTURE FUNCTION

This appendix describes the need for and the computation

of the structure function, S(k), as applied in Eqs. (7) and (8).

Generally, spatial correlations in acoustic impedance

within tissues may be broadly divided into short- and long-

range order, where wavelength of sound k is the reference

length. Short-range correlations (distances <2k) account for

the spatial extent of the average scatterer in a region. These

correlations are modeled by an acoustic form factor7,9 analo-

gous to those applied in other scattering problems.41

In contrast, long-range impedance correlations (distan-

ces >2k) describe the positional relationship among scatter-

ers. If the scatterer density is less than one per pulse area,

then echoes returning to the detector do not interfere and no

speckle is formed. The echoes are distinct copies of scatter-

ers interacting with the pulse. Now consider a medium in

which the scatterer density is high enough to generate echoes

that interfere at the detector surface but sparse enough to be

randomly distributed. In this context, “random” means phase

angles 2kr0j (for backscatter) within the summed factors e2kr0 j

are uniformly distributed between 0 and 2p. Since individual

echoes are uncorrelated, the echo spectrum is labeled inco-

herent and the backscatter coefficient is given by the
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differential scattering cross section per area for one scatterer

times N, the number of scatterers contributing.12 If the scat-

terer density increases so that the phases of interfering ech-

oes are not uniformly distributed, there will be a substantial

coherent scattering component and rb will no longer be sim-

ply proportional to N.

Assume we can measure the location of each scatterer rel-

ative to a reference point on the detector, r0. From this informa-

tion, Han and O’Brien30 calculated the structure function,

S Kð Þ ¼ 1

N

XN

j¼1

eiK�r0 j

�����
�����
2

; (B1)

that they showed describes the phase effects of dense/partially

correlated scatterer placement on the backscatter coefficient.

For backscatter K ¼ 2k and for random media SðkÞ ’ 1.

However, for partially correlated media S(k) deviates from

unity at frequencies in the measurement bandwidth.30
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