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The task-based framework, previously developed for beamformer comparison [Nguyen, Prager,

and Insana, J. Acoust. Soc. Am. 140, 1048–1059 (2016)], is extended to design a new beamformer

with potential applications in breast cancer diagnosis. The beamformer is based on a better approxi-

mation of the Bayesian strategy. It is a combination of the Wiener-filtered beamformer and an itera-

tive process that adapts the generated image to specific features of the object. Through numerical

studies, the new method is shown to outperform other beamformers drawn from the framework, but

at an increase in computational cost. It requires a preprocessing step where the scattering field is

segmented into regions with distinct statistical properties. Segmentation errors become a major lim-

itation to the beamformer performance. All the beamformers under investigation are tested using

data obtained from an instrumented ultrasound machine. They are implemented using a new time

delay calculation, recently developed in the pixel-based beamforming studies presented here, which

helps to overcome the challenge posed by the shift-variant nature of the imaging system. The effi-

cacy of each beamformer is evaluated based on the quality of generated images in the context of

the task-based framework. The in vitro results confirm the conclusions drawn from the simulations.
VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4985187]
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I. INTRODUCTION

A task-based approach has been used to evaluate and

optimize medical imaging systems,1 including ultrasound

imaging.2,3 In the approach, systems perform diagnostic
tasks by transporting information from the objects being

examined to the observers who make decisions. The frame-

work exploits the Bayesian ideal observer—simply known

as the ideal observer (IO)—to analyze the image formation

process. This combines all relevant information, including

prior knowledge of the scanned object, the system model,

and statistical properties of the data, to make the best possi-

ble decision for a given task. The ideal observer, therefore,

provides the upper bound for diagnostic performance of the

imaging instrument. It is usually used in theoretical analysis

or simulation, where a model of visual detection is available,

to identify promising approaches that are worth investigating

in clinical studies.

The IO was first applied to ultrasound imaging for

detecting small, low-contrast lesions in breast cancer diag-

nosis by Smith, Wagner, and their colleagues.4,5 It was

shown how properties of the transducer and features of the

object influence the speckle and thus the ability of the

instrument to detect the lesion. As a result, the ideal

performance can be quantified and related to the number of

speckles found inside the lesion. However, non-linear pro-

cesses, such as demodulation and amplitude compression,

are involved in the generation of B-mode ultrasound

images. It is therefore difficult to obtain a stochastic model

that directly relates the backscattered sound field to the

pixels in the B-mode image. For the IO test statistic to be

calculated, Smith and Wagner adopted several significant

assumptions. First, speckle spots rather than pixels were

used to determine the statistical properties of the data. The

framework was also confined to the focal zone where

speckle spots are most independent. The system was

assumed to be linear shift-invariant without noise and only

low-contrast lesions were considered. Despite these limita-

tions, the analysis provided design criteria that guided sub-

sequent work in speckle reduction,6 beamformation,7 post-

processing,8 and transducer selection.9

Modern ultrasound instruments have an ability to digi-

tize and store all echo data received at individual transducer

elements.10 This allows us to develop an alternative frame-

work in the radio-frequency (RF) domain, where the echoes

can be modeled as a linear transformation of the scattering

object.11 It simplifies the complexity of the joint probability

distributions on the image pixels and relaxes some of the

limiting assumptions involved in the IO development. Such

an analysis becomes increasingly relevant as ultrasound

high-end products have greater flexibility to change theira)Electronic mail: nqn20@cam.ac.uk
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configuration for data processing so as to provide patient-

specific performance.

In the first part of the study,12 hereafter referred as

Paper I, we developed an IO analysis applied to pre-summed

RF data for beamformer comparisons. Through a combina-

tion of power series expansion13 and the matrix inversion

lemma,14 we showed how two popular beamformers,

Minimum Variance (MV) and Wiener-filtered (WF), could

be viewed in a task-based framework as approximations to

the ideal strategy. These beamformers were compared to

each other by analyzing the conditions when each approxi-

mation holds. They were evaluated numerically on a panel

of five tasks related to key features of a breast lesion in can-

cer diagnosis. Both analytical and numerical results show

that the WF outperforms the MV, especially in low echo sig-

nal-to-noise ratio (SNR) conditions. The results also showed

the substantial improvement of the WF over the standard

delay-and-sum (DS) beamformer. In the task involving dis-

criminating high-contrast features, however, the improve-

ment was least. This was explained by the fact that the

approximations, used to derive both MV and WF, were

based on low-contrast features of the object. Hence these

beamformers become less effective when applied to tasks

that have relevant information encapsulated in high-contrast

features.

In this paper, we present a beamformer that is designed

to reconstruct valid images for a wider range of tasks that

includes those with large signal heterogeneities. It is derived

from an approximation of the IO that relaxes the low-

contrast assumption for the object.15 Similar to the WF and

MV, we develop the new beamformer under the linear-shift-

invariant (LSI) assumption for the imaging system. We also

assume that the pulse-echo impulse-responses and noise

power are known. As in Paper I, the resulting beamformer is

numerically evaluated on the same panel of five tasks related

to breast sonography. We then implement the beamformers

on data acquired from an ultrasound system by imaging a

tissue-mimicking phantom. The implementations face a

challenge posed by the shift-variant nature of the real ultra-

sound imaging system. We show how this issue can be

resolved by combining each of the beamformers with a new

time delay calculation, recently developed in our pixel-based

beamforming studies.16,17

The remainder of the paper is organized as follows.

Section II summarizes the main components of the IO

analysis. We then present the first-order approximation

that is still accurate with high-contrast features from

which the new beamformer is drawn. This beamformer,

along with the WF and MV derived in Paper I, is evalu-

ated using Monte-Carlo studies in Sec. III. The beam-

formers are then applied to data generated under more

realistic conditions, including the shift-variant data, in

Sec. IV. The results are discussed in Sec. V with some

concluding remarks in Sec. VI.

II. METHODS

We first summarize the background that leads to the IO

analysis, including the two approximations of the IO test

statistic for deriving the MV and WF beamformers. Details

are provided in Paper I. We then show how the IO frame-

work can be extended to form a new ultrasound beamformer.

A. Signal modeling

By assuming the ultrasound imaging system is linear,

we can model the two-dimensional (2-D) RF data frame at

each receive channel as a noisy linear transformation of the

scattering object in the spatial domain. Stacking them

together, we form an expression to generate pre-summed RF

data g for one imaging frame as

g ¼ Hf þ n; (1)

where H is the overall system matrix, f is a vector of the

scattering object, and n is the Gaussian noise with variance

r2
n; n � Nð0; r2

nIÞ. By further assuming the system is linear-

shift-invariant (LSI), matrix H is a cascade of block-Toeplitz

matrices that characterize the data generation at receive

channels. In our study, we approximate these as the corre-

sponding circulant matrices to facilitate fast matrix-vector

product computations.18

The beamformer applied to pre-summed RF data g is a

filtering and summation process, characterized by matrix B.

The beamformed data are given by gB ¼ Btg. The B-mode

image b is generated through demodulation, b ¼ OgB. Our

goal is to find a beamformer B that maximizes the task infor-

mation transferred from channel data to the B-mode image.

In the task-based analysis, the information is measured

through the performance of the ideal observer.2,3

B. Ideal observer

The development of the IO is based on modeling the

scattering object f as a zero-mean multivariate-normal

(MVN) process, f � MVNð0;RobjÞ. The covariance matrix

is given by Robj ¼ r2
objðIþ SiÞ. It contains a component Si

that carries the benign or malignant feature underlying the

ith class (i¼ 0 indicating benign and i¼ 1 for malignant).

Task contrast is defined as the difference between the two Si,

i.e., DS ¼ S1 � S0.

By passing the scattering object vector f through the

linear transformation of Eq. (1), we obtain the RF data vector

g which is also MVN distributed, g � MVNð0;RiÞ.
Covariance matrix Ri, however, is a non-diagonal matrix

because of the correlations among samples introduced by H.

It is given as

Ri ¼ r2
objHðIþ SiÞHt þ r2

nI : (2)

The test statistic of the IO acting on g is defined through

the log-likelihood ratio

k gð Þ¢ln
p1 gð Þ
p0 gð Þ

 !
’ 1

2
gt R�1

0 � R�1
1

� �
g; (3)

where the second expression is obtained by eliminating

terms unrelated to data g. A larger value for this scalar

variable indicates a greater likelihood for condition 1 than
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condition 0. The IO that adopts this strategy uses the data to

gain the maximal performance in the sense that it achieves

the greatest area under the receiver operating characteristic

(ROC) curve for each of the discrimination tasks.

Although the IO test statistic is well defined, its calcu-

lation is not straightforward because of the need to invert

both of the Ri. In Paper I, we showed how this calculation

can be accomplished by using power-series expansions.

Hence, the IO performance can be measured numerically

using two-alternative forced choice (2AFC) methods.18

The area under the ROC (area under curve: AUC) is mea-

sured as follows. We generate a large number of pairs of

RF data g, and calculate ki ¼ kðgjiÞ for each pair of g’s

generated for each class i¼ 0 and i¼ 1. At each pair, we

set a response o equal to 1 if k1 > k0 and equal to 0 other-

wise. By taking the average all of the responses, the AUC

can be estimated based on the proportion of correct Pc, i.e.,

Pc ¼ Prðk1 > k0Þ ¼ AUC.

C. Beamforming derivations

The IO combines echo data from individual channels to

make the best decision for each task, thus, optimal beam-

forming strategies are hidden in the closed-form expression

of the test statistic. Through the matrix inversion lemma, we

explore the IO test statistic and show how the MV and WF

beamformers emerge as approximations of this strategy.

Details of the derivations are provided in Paper I (Secs. III C

and III D). The first approximation, used to derive the MV

beamformer, is given by

k gð Þ ’
1

2
gtBMVDS Bt

MVg; (4)

where

Bt
MV ¼ ðrobjH

tR�1
n HÞ�1

HtR�1
n : (5)

Since gtBMV ¼ ðBt
MVgÞt, Eq. (4) suggests that the ideal per-

formance can be achieved by matching the MV beamformed

data Bt
MVg squared with the task difference DS. Thus, the

MV beamformer captures some important components of

the IO and can filter out other information that is irrelevant

to the task. It indicates the MV beamforming should be

applied to the RF data g.

The WF beamformer is derived using a second approxi-

mation given by

k gð Þ ’
1

2
gtBWFDS Bt

WFg; (6)

where

Bt
WF ¼ robjX

�1
s Ht and

Xs¢r2
objH

tHþ r2
nI : (7)

The term robjX
�1
s Htg is recognized as a Wiener-filtered

beamformer applied to the data g. Similar to (4), Eq. (6) sug-

gests the application of the WF beamformer to g.

For the approximations to be accurate, both require Si

’ 0 which happens in low-contrast tasks. Consequently, the

beamformers may become less effective when they are

applied to a task with high-contrast features. In Sec. II D, we

develop an approximation that relaxes this requirement from

which we derive a new ultrasonic beamformer.

D. Iterative Wiener beamformer

We start from Eq. (16) in Paper I in which we use the

matrix inversion lemma to convert the test statistic in (3) into

k gð Þ ¼
r2

obj

2
gtR�1

n HK�1
n U�1

0 �U�1
1

� �
K�1

n HtR�1
n g; (8)

where Ui¢Iþ ðK�1
n þ SiÞ and Kn¢r2

objH
tR�1

n H.

For the power series expansion to be applied, we sepa-

rate U1;0 into sum and difference components of both data

classes, given by

Ua ¼ IþK�1
n þ

1

2
S1 þ S0ð Þ ¼ IþK�1

n þ Sa

and DU ¼ 0:5 S1 � S0ð Þ ¼ 0:5DS; (9)

where Sa ¼ 0:5ðS1 þ S0Þ. The covariance matrices are

divided into U1;0 ¼ Ua6DU, from which we can decom-

pose the matrix inversions into

U�1
1;0 ¼ U–1=2

a ðI6U–1=2
a DUU–1=2

a Þ�1U–1=2
a : (10)

Applying the power series to the terms in parentheses

and truncating at the first term, we obtain

U�1
1 ’ U�1

a �U�1
a DUU�1

a ;

U�1
0 ’ U�1

a þU�1
a DUU�1

a : (11)

For the approximations in (11) to be accurate, we only

need DU, or DS, to be small while the feature contrast Si still

can be high. By substituting them into (8), we have

k gð Þ ’
r2

obj

2
gtR�1

n HK�1
n U�1

a DSU�1
a K�1

n HtR�1
n g

¼
r2

obj

2
gtHX�1

a DSX�1
a Htg; (12)

where Xa¢Xs þ r2
objH

tHSa.

Similar to the derivations of the MV and WF, (12) sug-

gests that the beamformer X�1
a Ht should be applied to data g.

To see how X�1
a Htg is close to f , we perform a similar deri-

vation for the case of a perfect imaging system (i.e., g � f

with no noise and no blurring), and obtain the approximation:

k fð Þ ¼ 1

2r2
obj

f t Iþ S0ð Þ�1 � Iþ S1ð Þ�1
� �

f

’ 1

2r2
obj

f t Iþ Sað Þ�1DS Iþ Sað Þ�1
f : (13)

Equation (13) equates the role of ðIþ SaÞ�1
f to

robjX
�1
a Htg in (12). Thus, the suggested beamformer is given by
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gB ¼ Bt
IWg where Bt

IW¢robjðIþ SaÞX�1
a Ht : (14)

The major difference of Bt
IW from the WF bemformer

Bt
WF in (7) is between the Xa and Xs matrices. Under the circu-

lant assumption for each of the block Toeplitz matrices that

assemble H; Xs can be inverted by using a Discrete Fourier

Transform (DFT) technique. The matrix Xa, however, includes

an additional nonstationary term r2
objH

tHSa, thus, cannot be

inverted easily. For robjX
�1
a Htg to be calculated, we use

another power series expansion by re-writing X�1
a as

X�1
a ¼X�1=2

s ðIþX�1=2
s r2

objH
tHSaX

�1=2
s Þ�1X�1=2

s : (15)

Applying the expansion to the term in parentheses, we have

robjX
�1
a Htg

¼robjX
�1=2
s

X1
k¼0

�r2
objX

�1=2
s HtHSaX

�1=2
s

� �k
 !

�X�1=2
s Htg

¼
X1
k¼0

�r2
objX

�1
s HtHSa

� �k
 !

robjX
�1
s Htg: (16)

Equation (16) yields the iterative formula for calculating

robjX
�1
a Htg:

qjþ1 ¼ �r2
objX

�1
s HtHSaqj and

pjþ1 ¼ pj þ qjþ1; (17)

which is initialized with q0 ¼ p0 ¼ robjX
�1
s Htg.

The iteration in (17) begins with the WF beamformed

data, then adds higher-order terms of Sa until the calculation

converges. We name Bt
IW the Iterative Wiener (IW) beam-

former. It combines the WF beamformer with an iterative

process for tuning the image based on the average variance

map, Sa. For a low-contrast task Sa ’ Si ’ 0 so the itera-

tions do not add much information to the generated image

and the IW reduces to the WF beamformer.

The IW beamformer is similar to the iterative Wiener
filter we developed for DS beamformed RF data.15 This was

a combination of the Wiener filter19 with an iterative process

that tuned the contrast inside the breast lesion. For the beam-

former in the present paper, a major difference is that the

data processing is extended to the transducer elements. Echo

signals from individual channels are combined using a

Matched filter before being further processed. The derivation

of the Matched filter in the task-based framework was pre-

sented in our previous studies.12,20 Another advance in this

paper is the implementation of the beamformer on experi-

mental data, in Sec. IV, where the underlying system is not

known precisely.

III. OBSERVER STUDY

A. Observer efficiency

We evaluate and compare the IW to other beamformers

using a panel of five tasks, described in Paper I. The tasks

represent five typical BIRADS features in breast cancer

diagnosis. We recall that Task 1 involves low-contrast detec-

tion while Tasks 2–5 are require high-contrast discrimina-

tion. Specifically, Task 2 relates to discrimination of an

elongated eccentric lesion from a circular lesion; Task 3 is

about discrimination of a soft, poorly defined boundary from

a well-circumscribed boundary; Task 4 requires discrimina-

tion of a spiculated boundary from a circular boundary; and

Task 5 involves discriminating a very weakly scattering

hypoechoic interior from an anechoic (cyst-like) lesion

interior.

Beamformer performance is assessed through a combi-

nation of the IO and Smith-Wagner (SW) observer over the

five tasks. The SW observer was developed by Smith and

Wagner4,5 with the test statistic

kSWðbÞ ¼ btDS b: (18)

This observer can be used to approximate the ideal

observer applied to B-mode images for detecting low-

contrast lesions (Task 1). In our study, we use it to

approximate the ideal observer for the other four tasks as

well. The observer performance ranges from 0.5 to 1. The

difficulty of the task is controlled through the object con-

trast factor given by

C ¼
X

j

j DS½ �jjj; (19)

where DS is the task contrast. The observer efficiency is cal-

culated using12

g ¼ ðCI=CSWÞ2; (20)

where CI and CSW are the contrast factors for the IO and SW

observers to achieve Pc ’ 0:8. As the IO performance is a

measure of task-relevant information, the efficiency quanti-

fies the information loss during the transformation from the

pre-beamformed data g to the B-mode image b.

B. Data generation and beamformer computation

Under the LSI assumption, the pre-beamformed data are

generated from convolutions between the scattering object

and the pulse-echo impulse response for each channel, i.e.,

the element point-spread-function (psf). These functions are

simulated by using Field II21,22 with parameters extracted

from the ULA-OP ultrasound system.10 This device uses

a linear array of 192 elements, each with dimensions

0.215 mm� 6.0 mm, separated by a 0.03 mm kerf. There are

64 elements active in each transmit and receive cycle. A 20-

mm transmit/receive focal length was used. In elevation, the

aperture is weakly-focused using an acoustic lens with a

focal length of 20 mm. A three-cycle excitation voltage is

applied to generate an ultrasound pulse with center fre-

quency at 6.0 MHz and a 40% pulse-echo bandwidth. The

RF echo signals were sampled at 50 Msamples/s, resulting in

an axial sampling interval of 0.0154 mm. In the lateral direc-

tion the beam is stepped by a lateral spacing of 0.049 mm.

The noise variance r2
n was adjusted so that the echo SNR for
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the DS beamformed RF signals is 24 dB. This is matched to

the echo SNR calibrated at the focal depth of the ULA-OP

system. The point-spread-functions are generated by scan-

ning a point-scatterer at the focal depth of 20 mm.

The MV is implemented with the reduced-rank approxi-

mation of HtH to avoid ill-conditioning. We normalize the

eigenvalues of HtH to the largest value and retain those above

the level of �38 dB.12 The WF beamformer can be calculated

with the full-size HtH because of its natural regularization. To

generate the IW image, the iterative process requires that either

Sa is known or can be estimated from the data. Recall that Si

is a variance map defining the spatial extent of a diagnostic

lesion feature and Sa is the average template for the benign

and malignant features of a given task.

To be practical, we estimated Si from the generated data

by using a segmentation based on a Markov random field

(MRF) model of the envelope image described previously.15

The assumption is that each Si has only two values corre-

sponding to inside and outside the lesion area. The algorithm

was originally developed for segmenting standard B-mode

images.23 In our study, we found that the best segmentation

results were obtained by analyzing B-mode images produced

by the Wiener filtered beamformer. Figure 1 illustrates the

segmentation of the high-contrast cases (malignant class) in

Tasks 2–5. The variance map used to generate the image is

also shown in each sub-figure for reference.

Examples of envelope image pairs generated by each of

the beamformers for Task 5 are shown in Fig. 2. The

beamformers are applied to the same set of simulated data.

In the figure, the image pair obtained by the IW beamformer

offers the best discrimination between the contrasts insides

the two lesions.

C. Numerical results

Figure 3 displays the observer efficiencies of the beam-

formers for discriminating malignant from benign features in

Tasks 1–5. The DS has the lowest efficiency in all tasks.

Both the WF and MV beamformers help to increase the effi-

ciency in all the tasks. Compared to DS, the WF offers more

than a fivefold improvement in Tasks 1–4. However, in Task

5, the increment is only about a factor of two (13.79% versus

7.21%). This is because the WF derivation is based on a

low-contrast approximation. In this task, the MV has higher

performance (15.61% versus 13.79%). However, that

improvement comes from the reduced-rank approximation

during the MV implementation.12

The IW beamformer, which is the WF beamformer

combined with an iterative process, offers an efficiency in

Task 5 of 35.80%, a fivefold improvement compared to the

DS. This iterative approach also helps to increase the effi-

ciency in the other tasks (Tasks 2–4), even if there are errors

in the corresponding segmentations. The IW performance is

limited primarily by these errors and the computation time.

A brief discussion of the computational complexity for each

beamformer is provided in Sec. V.

FIG. 1. Illustrations of the segmentation for Tasks 2–5 (high-contrast tasks). The segmentation is performed on Wiener-filtered B-mode (WF B-mode) images.

The segmented results are shown with the corresponding variance maps for reference.

FIG. 2. Examples of image pairs (linear scale) for Task 5 [hypoechoic (top row) versus anechoic (bottom row)] using the same receive-channel echo data after

applying beamformers in various combinations. DS is delay and sum; MV is the minimum variance; WF is the Wiener-filter; and IW is the Iterative Wiener.

The variance profiles of Task 5 are on the right of the figure.
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IV. EXPERIMENTAL IMPLEMENTATION

In this section, we apply the beamformers to echo data

acquired from the ULA-OP system by scanning a tissue-

mimicking phantom. The system parameters were nomi-

nally the same as those used in the simulation, described in

Sec. III B.

A. Shift-invariant approximation

Conventional dynamic focusing is still the most popular

method used to perform the spatiotemporal mapping and

generate 2-D RF data. It reconstructs the frame line-by-line.

One line is reconstructed at the center of the beam for each

each transmit-receive sequence. The resulting RF data are

the output of a linear shift-variant process.24 The psfs that

we use to characterize the data generation are only constant

within small depth ranges. Thus, applying the derived beam-

formers to data generated with conventional dynamic focus-

ing results in sub-optimal performance because of the LSI

assumption. To implement our beamformers with a more

accurate model, the image region can be divided into small

patches. Beamforming is performed locally with the element

psfs updated for each patch. This scheme was used in our

work to apply the Wiener filter to the dynamic focused

data.25 It should be noted that the computation required to

implement this increases significantly when it is extended to

individual transducer elements.

Recently, we have developed pixel-based beamforming

algorithms to improve ultrasound image resolution. The

method generates the 2-D RF data frame pixel-by-pixel and

data are collected from the received waveforms by using a

coherent time delay. The generated B-mode images have an

average speckle sizes in the near- and far-field as good as

that at the focal depth.16,17 In this study, we employ this

coherent time delay to form 2-D RF data frames at each

received channel before applying the beamformers. This

allows us to construct beamformers with a single transmit

focus configuration that have uniform point-spread-functions

across the whole image.

For a comprehensive evaluation, we compare these

beamformers to the delay-and-sum approach based on the

coherent time delay. We name this method the coherent pixel-

based delay-and-sum (CPB-DS) beamformer to differentiate

it from conventional dynamic focusing. The CPB-DS beam-

former and coherent time delay calculation are briefly

summarized in the Appendix. Similar to our previous stud-

ies,25,26 we construct the beamformers by using the psfs sim-

ulated with Field II program. Errors between the actual and

simulated psfs, as well as those caused by the assumption of

the circulant matrices, are treated as measurement noise of

the system.

B. Evaluation metrics

We evaluate the beamformers through the quality of the

generated images, measured using spatial resolution and

contrast ratio.27 The spatial resolution can be calculated

from the width of the response to a single scatterer or by

using the average size of speckle spots in the B-mode image,

given by4,5

Sx ¼
ð1
�1

CX xð Þ
CX 0ð Þ

dx; (21)

where CXðxÞ is the spatial auto covariance function (ACF)

for the RF data, dx is the sampling interval 2-D vector, and

x ¼ ðz; xÞ. For each generated image, we calculate the coher-

ence lengths Scz and Scx in the axial and lateral directions,

respectively.

The contrast ratio between a lesion and the background

is quantified by28

CR ¼ Iout � Iinffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
out þ I2

in

p ; (22)

where Iin and Iout are the mean intensities (in decibels)

measured inside and outside the lesion, respectively. The

contrast ratio (CR) has a value of 1 for perfect contrast, and

a value of 0 for no contrast between the lesion and back-

ground. The background kernel is selected to have the same

area as the lesion. To minimise the effect of variations in the

attenuation and diffraction of the ultrasound, we choose the

kernel as a circular ring enclosing the lesion.

C. Simulation study

We first apply the beamformers to data simulated by

Field II that models the ULA-OP ultrasound system. We ran-

domly place 30 000 equally strong point-scatterers in a 2-D

imaging region of 12 mm� 31 mm (axis versus lateral direc-

tions). Those suspended inside a lesion have their amplitudes

suppressed by 90%. The lesion is a circle 5 mm in diameter,

located at a depth of 20 mm. The numerical phantom also

has six highly scattering points distributed at three depths of

17.5, 20, and 22.5 mm. There are two at each depth, 1 mm

apart. The transmit beam is focused at 20 mm. Data are

generated by superposing signals echoed back from the scat-

terers, thus, it includes the shift-variant nature of the system.

The MV beamformer is calculated using a low-rank approxi-

mation where the threshold level is set at �22 dB, selected

by maximizing the CR calculated on the MV beamformed

B-mode. The WF beamformer is calculated with a noise

level set at 5% of the peak amplitude of the data. These

FIG. 3. Observer efficiencies measured for the beamformers illustrated Fig.

2 are plotted (log-scale) for the five discrimination tasks.
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parameters are selected manually based on visualization of

the generated images. When implementing the IW algo-

rithm, only one image of the object is available (either

benign or malignant), so we use Si as approximation for Sa.

Therefore, to estimate the variance profile, Sa, we apply a

segmentation algorithm to the corresponding WF B-mode

image and then measure the statistics of the two resulting

regions.

Imaging results generated with beamformers are shown

in Figs. 4(a)–4(d). The CPB-DS is displayed in image (a),

while those with the MV, WF and IW beamformers are in

Fig. 4(b)–4(d), respectively. Compared to the CPB-DS, the

MV and WF B-mode images have higher spatial resolutions.

However, the MV beamformed image has much lower con-

trast than that generated with the CPB-DS beamformer. The

lesion contrast only shows substantial improvements with

the IW beamformer. For detail comparison, we plot in Fig. 5

sections crossing through the pairs of scatterers in both lat-

eral and axial directions. At each depth, we measure the full

widths at half maximum (FWHM) and summarize the aver-

age in Table I, along with the CR calculated on each image.

Compared to the MV B-mode image, the WF B-mode

has similar spatial resolution in the lateral direction, but

offers some improvements in the axial direction. The WF

also has a CR on par with the CPB-DS B-mode image.

Through the iterative process, the IW B-mode offers the best

lesion contrast while maintaining the smallest FWHMs,

drawing on the underlying WF algorithm. The iterative pro-

cess accurately accounts for the different statistical proper-

ties inside and outside the lesion area.

D. Phantom study

We apply the beamformers to data acquired from the

ULA-OP system by scanning a tissue-mimicking phantom

(manufactured by the Department of Medical Physics,

University of Wisconsin, Madison, WI). The manufacturer-

reported speeds of sound ranging from 1538 to 1551 m/s and

the attenuation coefficient slope is 0.2 dB cm�1MHz�1. The

object contrast in the lesion versus background is �24 dB at

7 MHz. The phantom contains circular targets, 5 mm in

diameter, positioned around a depth of 23.5 mm. The trans-

mit beam is focused at 20 mm. The MV beamformer is

calculated with a �21 dB threshold level for the low-rank

approximation of HtH, also selected by maximizing the

lesion contrast on the MV B-mode image. The WF beam-

former is implemented with a noise level set at 8% of the

peak amplitude of the data. The envelope images with differ-

ent beamformers are shown in Figs. 6(a)–6(d).

Similar to the simulation study, the images generated

with MV and WF show improvements in spatial resolution

over the CPB-DS, measured in term of average speckle size.

A big difference from the simulation study is that the WF

B-mode image has the CR much lower than that of the

CPB-DS, indicating the reduced performance of the WF

beamformer on experimental data. The IW still has the best

performance in both spatial resolution and contrast ratio.

However, the shape of the segmented lesion is quite poor

compared to that in simulation. In the experiments, the phan-

tom lesion has a soft boundary which violates the two-level

assumption of the segmentation algorithm.

To assess the extent to which uniform spatial resolution

has been achieved over the imaging region, we measure the

average speckle size in the generated B-mode images at the

focus and in the far-field regions. The focal region ranges

from 17.5 to 22.5 mm, while the far-field ranges from 22.5

to 27.5 mm. The speckle size in the near-field is affected by

the quadratic phase factor, so we do not calculate it on this

region. The quadratic phase factor and its effects have

already been discussed in previous work.29,30 The calculated

average speckle sizes and CRs are summarized in Table II.

FIG. 4. Simulated images of a numerical phantom with six point-targets and an idealised lesion, 5 mm in diameter. The images are generated with different

beamformers, including (a) CPB-DS, (b) MV, (c) WF, and (d) IW. The images are log-compressed and displayed with a dynamic range of 60 dB.
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V. DISCUSSION

In both the information-theoretical framework and the

experiments, the IW beamformer is shown to have the best

performance measured in terms of the image quality met-

rics. The high quality of the IW beamformed B-mode

image comes from the combination of all the information

available in the imaging context and backscattered signal.

This includes detailed knowledge of the underlying system

and task features, i.e., patient-specific information, to

guide the decorrelation process. This requirement for task-

specific information leads us to use image segmentation

before the beamformer calculation. In the situation where

the task information is known exactly, we find that the

observer efficiency can reach 100%. Thus, segmentation

errors are the main factor that limits the IW beamformer

performance.

For fast computation, we implement a segmentation that

is based on a two-level model. The resulting IW shows

improvements on observer efficiencies across all discrimina-

tion tasks, but it offers the highest improvements in Task 5

where the efficiency is almost three times better than for the

WF beamformer. This can be explained by the fact that any

segmentation errors mainly affect the lesion edges, whereas

the additional information obtained from the iterative pro-

cess helps to determine the contrast inside the lesion which

encodes the key feature of the task. The other tasks involving

lesion edge discrimination would benefits more from the

IW if we were to introduce a more efficient algorithm for

segmentation.

TABLE I. FWHM and CR measured on the simulated images.a

Beamformer

Average FWHM (in axial)

at depth (mm)

Average FWHM (in lateral)

at depth (mm)

CR17.5 20 22.5 17.5 20 22.5

CPB-DS 0.30 0.29 0.30 0.31 0.28 0.31 0.56

MV 0.23 0.23 0.23 0.22 0.21 0.23 0.48

WF 0.21 0.21 0.21 0.22 0.21 0.23 0.55

IW 0.21 0.21 0.21 0.22 0.21 0.23 0.81

aWavelength k ¼ c=f0 ¼ 0:257 mm.

FIG. 5. The beam profiles for pairs of scatterers at depths of (a) 17.5 mm, (b) 20 mm, and (c) 22.5 mm. The graphs show the lateral response of the scatterers

on the left, and two columns of axial responses on the right. The legend in the lateral response of (a) is also relevant to all the other plots. The beam profiles of

the IW are the same as those of the WF beamformer, therefore, are not plotted in the figure.
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In experiments, we use the coherent time delay to gener-

ate the 2-D RF frame as the first step of implementing these

beamformers. The imaging results, obtained with the CPB-

DS method based on this time delay calculation, have similar

speckle sizes across the imaging region. In effect, the result-

ing 2-D RF data frame can be viewed as the output of a LSI

system. We can therefore proceed to design the beamformers

based on this assumption. This allows for fast computation

and a compact representation of the imaging system in the

beamformer analysis.

Compared to the simulation study, improvements

offered by the MV, WF, and IW in the experiments are

reduced, especially in relation to the lesion contrast of the

WF beamformed images. This comes from errors caused by

a mismatch between the simulated and actual psfs of the sys-

tem. The MV beamformed image has lesion contrast similar

to that from the WF beamformer. This is explained by the

low-rank approximation that is used when implementing the

beamformer. It helps to reduce errors in modeling that affect

the generated images. The experimental results could be

improved if we were to measure the element psfs by calibra-

tion with hydrophones or using some sort of tomographic

reconstruction algorithm.31 Such methods are, however,

beyond the scope of this paper.

Our beamformers are developed based on tasks in breast

cancer diagnosis, hence, the temporal resolution or computa-

tional time is not a key metric in the evaluation of perfor-

mance. Nevertheless, we briefly discuss the computational

complexity of each beamformer. We take the active aperture

to have size A (A¼ 64), the DS beamformer therefore involves

OðAÞ arithmetic operations. By using the circulant assumption

for the transfer matrix, the WF and MV beamformers are cal-

culated using (fast) Fourier transforms, which are applied to

pre-summed RF data at each of the transducer elements.

This involves a data vector with an M–dimension.12 Thus,

the computational complexity of WF and MV are both

OðAM log ðMÞÞ. From Eq. (17), we see that the computation

of the IW beamformer is given by OðKAM log ðMÞÞ, where K
is the number of iterations. Yet, this still does not include the

computation required for the segmentations. Computational

analysis of the segmentation algorithm is beyond the scope of

the present paper. In the Monte Carlo study, the IW requires

up to 15.55 s, but most of the time is spent on the segmenta-

tion. Meanwhile, other beamformers require approximately

0.17 s for their calculations. The execution times are all mea-

sured using MATLAB (Mathworks Inc. Natick, MA) on

a desktop PC (Windows 7, 64-bit system, Intel
VR

CoreTM

i7-4770, and 8 Gb Memory).

VI. CONCLUSION

We have extended our task-based framework to develop

the Iterative Wiener beamformer to improve the visual dis-

crimination of BIRADS features, considered as critical signs

in breast cancer diagnosis. The new beamformer is derived

through an approximation of the ideal strategy that better

adapts to high-contrast features of the scanned objects. As a

result, the IW can maintain the high spatial resolution of the

WF beamformer while preserving image contrast through an

iterative process. Both numerical and experimental results

show improvements from the IW beamformer over other

FIG. 6. Images of experimental data acquired with the ULA-OP system by imaging a lesion generated with different beamformers, including (a) CPB-DS, (b)

MV, (c) WF, and (d) IW. The images are log-compressed and displayed with a dynamic range of 40 dB.

TABLE II. Performance of beamformers on experimental data measured

with image quality metrics.a

Beamformer

Average speckle size

on focal region

Average speckle

size in far-field

CRScz (mm) Scx (mm) Scz (mm) Scx (mm)

CPB-DS 0.44 6 0.020 0.43 6 0.030 0.43 6 0.010 0.45 6 0.030 0.56

MV 0.32 6 0.020 0.31 6 0.010 0.30 6 0.015 0.32 6 0.020 0.46

WF 0.29 6 0.015 0.29 6 0.010 0.28 6 0.010 0.31 6 0.010 0.47

IW 0.29 6 0.015 0.29 6 0.010 0.28 6 0.010 0.31 6 0.010 0.67

aAzimuthal resolution kf ]¼ 0.33 mm.
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approaches, but at a cost of additional computation that is

required for image segmentation.

We have also transformed the beamformers, derived in

the theoretical framework, to practical implementations on an

ultrasound open system by using the coherent time delay cal-

culation. This allows us to calculate the beamformers with a

convenient LSI approximation, which reduces the computa-

tional load. The experimental results show that the advanced

beamformers achieve improvements over the DS method.

Compared to the performance observed in simulation, how-

ever, we find the errors in system modeling can compromise

the improvement offered by each beamformer. The greatest

challenge when applying this framework in a clinical envi-

ronment is to estimate accurately the imaging system impulse

response functions. These functions are difficult to determine

for many reasons such as phase aberrations, imperfection in

transducer fabrication, and other system artefacts. When full

information about these functions is available, the IO formal-

ism enables us to design beamformers to make best use of it.

Similarly, our approach enables the incorporation of prior

patient-specific knowledge into the image processing to

increase the diagnostic value of the resulting images.

The IW combination can be useful as prior information

becomes increasingly important in breast cancer diagnosis. It

may also support the emergence of multimodality systems in

medical practice where prior information for ultrasound

image processing is obtained from other modalities. We are

striving to develop beamformers that are fast and robust

across a wide spectrum of clinical features, and yet can adapt

when necessary to special conditions. This statistical analy-

sis provides a framework for that development.
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APPENDIX: CPB-DS

The CPB-DS beamformer uses the coherent time delay

to collect data for individual imaging pixels. This time delay

calculation was developed by using field pattern analysis.

Details of the background and calculation are provided in

recent papers.16,17

By analyzing the pressure field observed at each imaging

point P, we found that the transmit wave-shape incident at

the point can be described by two spherical pulses that corre-

spond to the minimal and maximal distances from the point

to the transmit aperture (assuming the sound-speed, c, is con-

stant). This is a generalization of the time delay calculation

in the virtual source element approach32 that remains valid in

regions where the virtual source approach is not applicable.

The two pulses have opposite phases and their magni-

tudes varying depending on the position of the imaging

point. Figures 7(a) and 7(b) plot two different positions of

point P versus the cross-sectional view of the transmit beam.

By taking the delays at each transmit element into account,

we model the aperture as an arc centered at the focus F with

radius R0. We also denote d as the focal depth, and R1 and

R2 as distances from P to the edges of the arc. From F, we

divide the imaging plane into four regions, denoted from (I)

to (IV) clockwise, using the limited angle a from the virtual

source approach.33

Let the arrival times of these pulses be str
p;1 and str

p;2. For

P in region (I) [Fig. 7(a)], we have

str
p;1 ¼

d � a

c
and str

p;2 ¼
Rmax

c
� str

0 ; (A1)

where Rmax ¼ maxðR1;R2Þ. These results include a lag s0

which is the time between the activation of the first

(outermost) and the last (center) elements, given by str
0

¼ ðR0 � dÞ=c. In this region, the first pulse, str
p;1, dominates

the transmit wave-shape.

For P in region (III), the arrival times of these pulses are

given by

str
p;1 ¼

Rmin

c
� str

0 and str
p;2 ¼

d þ a

c
; (A2)

where Rmax ¼ minðR1;R2Þ. In this region, the second pulse,

str
p;2, dominates the transmit wave-shape.

For P in region (II) [Fig. 7(b)], we have

str
p;1 ¼

R1

c
� str

0 and str
p;2 ¼

R2

c
� str

0 : (A3)

The result is the same as for P in region (IV) except that

now R1 and R2 are, respectively, the maximal and minimal

distances from P to the arc. In regions (II) and (IV), the two

pulses have similar magnitudes.

FIG. 7. The cross-sectional view of a focused beam used for the transmit time delay calculations.
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On the basis of the arrival times of the two pulses, we

extract two echo signals from the receive waveform, rp;1 and

rp;2. These echos are combined linearly to generate data rp

for the CPB-DS beamformer, rp ¼ a1rp;1 þ a2rp;2. The coef-

ficients ða1; a2Þ are selected as follows.

For P in region (I), ða1; a2Þ¼ (1, 0) as the first pulse

dominates the transmit wave-shape. For P in region (III),

ða1; a2Þ¼ (0, �1) as the second pulse dominates the wave-

shape. This is similar to the strategy in the virtual source

approach except for the minus sign associated with the data,

rp;2, from the second pulse. This minus sign is necessary in

order to combine the two pulses with opposite phase that we

found in our field pattern analysis. For P in region (II), we

select ða1; a2Þ as

a1 ¼
jxb � xpj
jxb � xaj

and a2 ¼ �
jxa � xpj
jxa � xbj

; (A4)

where xa; xb, and xp are the position vectors of A; B, and P

[see Fig. 7(b)]. Notice the minus sign for a2, again, to

account for the phase opposition between the two pulses.

The combined data rp are superposed over all received

channels and across all transmits to generate the CPB-DS

beamformed data. In Secs. IV C and IV D, we show on both

simulated and experimental data the CPB-DS generates a B-

mode image that is artefact-free and has uniform speckle

across the imaging region.
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