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A task-based approach is employed to develop an analytical framework for ultrasound beamformer

design and evaluation. In this approach, a Bayesian ideal-observer provides an idealized starting

point and a way to measure information loss in practical beamformer designs. Different approxima-

tions of this ideal strategy are shown to lead to popular beamformers in the literature, including the

matched filter, minimum variance (MV), and Wiener filter (WF) beamformers. Analysis of the

approximations indicates that the WF beamformer should outperform the MV approach, especially

in low echo signal-to-noise conditions. The beamformers are applied to five typical tasks from the

BIRADS lexicon. Their performance is evaluated based on ability to discriminate idealized

malignant and benign features. The numerical results show the advantages of the WF over the MV

technique in general; although performance varies predictably in some contrast-limited tasks

because of the model modifications required for the MV algorithm to avoid ill-conditioning.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4960607]
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I. INTRODUCTION

The goal of any ultrasonic beamformer is to generate a

narrow pulse-echo beam uniformly over the imaging field.1

The delay-and-sum (DS) beamformer is still widely used for

scanning in weakly scattering media because it offers a good

balance of performance, robustness and computational cost.

It aligns the signal energy received on individual transducer

elements by delaying when each time series is applied,

according to the geometric distance from the transducer ele-

ment to a point target. Appropriately delayed and summed

waveforms increase the coherence, which improves the echo

signal-to-noise ratio (SNR) and the lateral resolution for

one-dimensional (1-D) arrays in proportion to the effective

aperture size. However, the DS beamformer does not attempt

to correct for the distortions and blurring imposed by the

ultrasound beam and correlations among the received wave-

forms, which reduce image quality.

Advances in low-cost high-performance computing

make computationally intensive beamformers more practi-

cal. Among them, the MV beamformer has been comprehen-

sively investigated and found to improve image quality by

several research groups.2–7 The method selects receive-

channel filters that preserve the desired input signal while

minimizing interference and noise at the output. It was first

derived by Capon for narrowband signals in seismology,8

and then expanded by Frost to broadband signals for sensor

arrays.9 Recently, a Wiener filter (WF) beamformer has been

developed and applied to ultrasound imaging using the mini-

mum mean-square error (MMSE) criterion.10,11 It comprises

a MV beamformer followed by a Wiener post-filter.12,13 The

WF beamformer is shown to enhance the contrast resolution

over the MV especially under low echo SNR conditions.

There is also a matched filter (MF) beamformer that maxi-

mizes the echo SNR of data.14 It preserves axial resolution

and increases the imaging depth penetration.15 Because each

beamformer is optimized with respect to different criteria,

there remains a broader question of how to predict and com-

pare their performance in achieving diagnostic objectives.

Performance of an ultrasonic beamformer can be

assessed based on the resolution of the resulting image.

However, there are usually trade-offs among such images

and none individually can characterize all the potential value

of a particular algorithm. The solution to this ambiguity is to

evaluate each image based on its usefulness in the task for

which it has been acquired. This leads us to a task-based
approach for evaluating imaging systems.16 Developing

such an analytical framework for evaluating ultrasound

beamformers is one of the main subjects of this study.

In the task-based approach, the system is evaluated

through the performance of an observer, who infers the object

as having a disease or non-disease feature based on the gener-

ated image. The observer can be an expert human or an algo-

rithm evaluating criteria based on decision theory.17

Prominent among the latter is the Bayesian ideal observer—
often referred to simply as the ideal observer (IO)—that com-

bines all available information to make the decision and thus

achieves optimal performance. Major limitations of the IO are

the computational complexity and the requirement for com-

plete statistical knowledge of the data under consideration,

which is unavailable in clinical environments. However, the

IO is well suited for controlled simulation studies, to investi-

gate new technologies and processing methodologies where

the underlying system is known.a)Electronic mail: nqn20@cam.ac.uk
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Previously, we developed the IO analysis while searching

for improved sonographic lesion-discrimination performance.

We proposed several post-array-summation echo-signal filters

that were shown in human observer studies to improve detect-

ability for a panel of tasks related to breast lesion diagno-

sis.18,19 In that work, we modeled pulse-echo image

formation as a linear transformation of object scattering fol-

lowed by the addition of acquisition noise. We characterized

the RF data using multivariate Gaussian processes. The IO

test statistic was related to the task of discriminating cancer-

ous features. It was derived from the log likelihood ratio
between the probability density functions (pdfs) of the two

classes: benign and malignant. This test statistic has guided us

in designing echo-signal filters that approximate ideal strate-

gies in the sense of maximizing observer performance on the

task being undertaken. We also extended the IO analysis for

investigating beamforming strategies to individual transducer

elements.20 We divided each beamformer into two steps, com-
pression and processing. Both are irreversible and any infor-

mation loss in either one of them cannot be recovered. By

analyzing the structure of the likelihood ratio, we found that

the MF is the optimal operator to preserve task-relevant infor-

mation in the compression step. Combining this with earlier

work on post-processing,18 we formed a beamforming strat-

egy that minimizes the information loss during the whole

transformation from pre-beamformed RF data to the final

B-mode image.

In this paper, we use a single decision variable based on

the log-likelihood ratio to derive the post-filtering algorithms as

well as the optimality of matched filtering in the compression

step.18,19 This unification allows us to derive two popular

beamformers, the MV and WF, as approximations of the gen-

eral Bayesian strategy, and compare them by analyzing the con-

ditions in which each of these approximations hold. Since these

approximations may reduce the potential theoretical advantages

of the idealized algorithms, we evaluate the beamformers along

with other beamforming strategies on a panel of discrimination

tasks using Monte Carlo methods. Our numerical treatment

considers the ideal case where the system is linear-shift-invari-

ant (LSI), and the spatiotemporal pulse-echo impulse-response

function for each transducer element is known, as are the statis-

tical properties of the scattering and acquisition noise.

Performance comparisons of the beamformers applied to lesion

imaging tasks are conducted by using observer studies in a

manner that generates evaluation metrics equivalent to receiver

operating characteristic (ROC) analysis.17

Section II provides background information that intro-

duces the Bayesian ideal observer applied to simple two-

class discrimination tasks. Section III considers each of the

beamformers as different approximations to this idealized

Bayesian strategy. In Sec. IV we describe a numerical com-

parison of the beamformers and present the results. Finally,

Sec. V draws the conclusions.

II. BACKGROUND

A. System modeling

The ultrasound image formation process is depicted in

Fig. 1. The system is described as a device that transfers

diagnostic information from the object being scanned to

the final B-mode image. The process is partitioned into the

acquisition and display stages, denoted by H and O,

respectively.24,25 The acquisition stage, where information

from the object is recorded as RF signals, includes pulse

transmission and echo reception, up to and including the

beamforming operator B. The display stage includes any

post-summation data filtering, envelope detection, scan

conversion, and gray-scale mapping leading to the final

B-mode image.

For each pulse-echo sequence, a subaperture of the lin-

ear array is active for both transmit and receive. Time-series

waveforms received on the transducer elements are recorded

and then mapped back to the spatial domain to form two-

dimensional RF echo data. We use the operator Ha (Fig. 1)

to represent the process of using the subaperture to transmit

and only one element a to receive. If we assume operator Ha

FIG. 1. Diagram of the image formation process, leading to the B-mode image. Each waveform ga is recorded from the same scattering object f but from the

perspective of Ha, the pulse-echo system response for the ath aperture element. Independent noise na is added to each waveform. The echoes are combined in

beamformer B, acting as a linear filter to generate gB ¼ Btg. Applying operator O to gB and reordering results in a B-mode image. Pre-beamformed echo data

is necessary to evaluate new and existing beamforming algorithms in the ideal observer framework.
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is linear-shift-invariant (LSI),26 the entire process can be

modeled as a linear convolution in the spatial domain,

haðx; tÞ �x f ðxÞ, where f ðxÞ is 2-D function modeling point

scatterers of the weakly scattering medium and haðx; tÞ is the

pulse-echo impulse response for receiving element a.

By sampling in time with a uniform interval T and lexi-

cographical reordering,18 we form an M � 1 echo-waveform

vector gaðmÞ ¼ gaðmTÞ given by the matrix product Haf ,

where f is an N � 1 column vector re-arranged from the

two-dimensional sampled version of f ðxÞ; Ha is a matrix of

M�N. The first row of Ha is a sampled version of the pulse-

echo impulse response, haðx; tÞ. Other rows are shifted ver-

sions of ha, such that convolution ðha � f Þ is equivalent to

Haf. For LSI systems, Ha is a circulant approximation to a

block-Toeplitz matrix that facilitates fast matrix-vector prod-

uct computations.18,19 The measurement equation is

ga ¼ Haf þ na; (1)

where na is white Gaussian acquisition noise, having size

M � 1, zero-mean and covariance Rn.

The set of pre-beamformed echo waveforms required to

form one image frame is expressed as

g ¼

g1

..

.

ga

..

.

gA

2
66666664

3
77777775
¼

H1

..

.

Ha

..

.

HA

2
6666664

3
7777775

f þ

n1

..

.

na

..

.

nA

2
6666664

3
7777775
¼ Hf þ n; (2)

where g has size MA� 1 and H is MA�N. Thus, the pre-

beamformed RF data can be considered as the output of a

noisy linear transformation of the scattering object.

Beamforming operator B combines all RF signals from

active elements into a single beamformed RF signal, gB,

given by gB ¼ Bg. If B is a linear operator, we can represent

it as a matrix B, and gB ¼ Bg. The final B-mode image b is

obtained from gB through the display stage, b ¼ OgB. For

simplicity, we assume some operators, such as low-pass fil-

tering, axial downsampling and lateral interpolation, do not

alter the information available in the envelope signal and are

ignored. Thus, the display stage includes only the demodula-

tion which is a nonlinear process.

B. Discrimination tasks

By ignoring coherent scattering, we represent sono-

grams as spatial patterns of varying incoherent scattering

strength.27 For fully developed speckle, f is modeled as a

zero-mean, stationary, multivariate normal process, where

the lesion feature is encoded in the covariance matrix.

Specifically, we generate f by multiplying a 2-D random

field by an echogenicity map Si
28 that carries specific fea-

tures for a benign (i¼ 0) or malignant (i¼ 1) class. Thus, f

has a Gaussian distribution with the covariance matrix given

by Robj;i ¼ r2
objðIþ SiÞ, where Si is re-arranged into the

matrix diagonal to provide the spatial patterns characteristic

of the lesion features.18 In our analysis, we select features

from the BIRADS atlas that are sought by radiologists in

sonographic examinations when discriminating malignant

from benign breast lesions.29 We use these features to create

binary discrimination tasks by defining a malignant S1 and

benign S0 matrix pair for each task [see Fig. 3(c)]. Observers

examine RF or B-mode data sets paired, one from each class,

and are asked to classify objects as benign (class 0) or malig-

nant (class 1) based on the data.

In particular, we study five tasks: task 1 involves

detecting a low-contrast hypoechoic lesion versus a no-

lesion background; task 2 requires discrimination of an

elongated eccentric lesion from a circular lesion; task 3 is

to discriminate a soft, poorly defined boundary from a well-

circumscribed boundary; task 4 requires discrimination of

spiculated boundary irregularities from a smooth circular

boundary; and task 5 involves discriminating a very weakly

scattering hypoechoic interior from an anechoic (cyst-like)

lesion interior. Tasks 1 and 5 challenge the system to image

large-area diagnostic features (feature area � speckle cor-

relation area)24 while tasks 2–4 relate to lesion boundary

features. Task 5 is unique in that it presents the only large-

area, high-contrast lesion feature. Tasks with higher com-

plexity features in clinical examination may be synthesized

from these five elementary tasks. In each task, the differ-

ence between the two features, DS ¼ S1 � S0, is defined as

the task contrast that the system delivers to observers of the

data. Increasing the task contrast makes the features more

obvious to observers. Observers are made fully aware of all

visual task features; this is known as the signal-known-

exactly condition.

C. Ideal observer

Our IO analysis begins with standard methods in statisti-

cal detection theory.30 By assuming that g is a random

process with known or measurable distributions, the

Neyman-Pearson criteria points to the log-likelihood ratio
(LLR) as the appropriate discriminator of data between two

classes 0 and 1 when the prior probabilities are equal.30 The

LLR classifies the object by comparing the probability of

observing g in each class. We can use the probability density

of the data given class i, to make comparisons using the LLR

test. The LLR rejects the hypothesis that data belongs to

hypothesis 0 in favor of hypothesis 1 when scalar test statis-

tic k exceeds threshold t. By denoting piðgÞ as the pdf of g

under class i, the IO based on the LLR is given by

k gð Þ ¼ ln
p1 gð Þ
p0 gð Þ

> t: (3)

The observer performance is measured using ROC anal-

ysis. At each selected threshold t, the true-positive fraction

PDðtÞ and false-alarm fraction PFðtÞ are calculated by PDðtÞ
¼ PrfkðgÞ > tji ¼ 1g and PFðtÞ ¼ PrfkðgÞ > tji ¼ 0g. By

sweeping through the possible range of t, both PDðtÞ and

PFðtÞ range from 0 to 1. The ROC curve is generated by

plotting PDðtÞ against PFðtÞ, and the area under the curve

(AUC) is adopted as the observer performance. The LLR

test is optimum in the sense that it is guaranteed to yield the
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largest true-positive fraction when classifying data into two

classes for any fixed value of false-positive fraction. Thus, it

achieves the largest AUC and serves as the upper-bound per-

formance for each of the diagnostic tasks.17

D. Calculation of the test statistic

By modeling imaging data g as a noisy linear transfor-

mation of f, we find the pdf of g under class i is the zero-

mean multivariate normal, given by

pi gð Þ ¼
1

2pð ÞMA=2
det Rið Þ1=2

exp � 1

2
gtR�1

i g

� �
; (4)

where

Ri ¼ r2
objHðIþ SiÞHt þ Rn: (5)

The covariance matrix now is both nonstationary and

nondiagonal because of correlations introduced by the sys-

tem matrix H. For Gaussian noise, we have Rn ¼ r2
nI. From

Eq. (4), the test statistic of the ideal observer viewing pre-

summed echo data (Fig. 1) is18

k gð Þ ¼
1

2
gt R�1

0 � R�1
1

� �
g; (6)

where terms independent of g have been discarded without

influencing performance as measured using ROC analysis.19

The test statistic of (6) is well defined but the matrix

inverses are difficult to calculate because of the large size,

MA�MA, of the Ri matrices. Let us examine the matrix size

for a 1-D linear array with a typical pitch of 0.245 mm that

scans an imaging region of 30� 30 mm2. Sampling echoes

in time at 50 MHz is equivalent to sampling in range with a

spatial interval of 0.0154 mm (sound-speed c¼ 1540 m/s).

By shifting one element for each scanline, M ¼ 30=0:0154

axial pts � 30=0:245 scanlines ¼ 238; 500. With A¼ 64-ele-

ment active aperture, we have MA ’ 1:53� 107. Thus Ri is

too large to be inverted straightforwardly.

To compute the test statistic, we apply the power-series
expansion to each inverse.31 We first decompose each matrix

into stationary and non-stationary components,

Ri ¼ Rs þ DRi ;where Rs ¼ r2
objHHt þ Rn (7)

is the stationary component that represents the background

area for both classes of data. Stationary matrices can be

quickly inverted using Fourier techniques.17 DRi ¼ r2
objHSiH

t

is the non-stationary component that represents the task fea-

tures relating to class i.
To incorporate the non-stationary term into the inver-

sion, R�1
i is factorized18

R�1
i ¼ R�1=2

s ðIþ R�1=2
s DRiR

�1=2
s Þ�1R�1=2

s ; (8)

and the quantity in parentheses is expanded in a power series,

ðIþR�1=2
s DRiR

�1=2
s Þ�1¼

X1
k¼0

ð�R�1=2
s DRiR

�1=2
s Þk: (9)

This sum converges if the magnitude of each of the eigenval-

ues of R�1=2
s DRiR

�1=2
s is less than one.31 We have rearranged

R�1
i so that now only the stationary matrices R�1=2

s are

inverted in the expansion and Fourier techniques can be

applied. Depending on task complexity, the sum will con-

verge using from just a few, to more than 100, terms and the

test statistic calculation is accomplished.

E. Performance metrics

In the context of two-alternative forced choice (2AFC)

methods, the IO performance or the area under ROC (AUC)

can be measured as follows. We calculate ki ¼ kðgjiÞ for

each pair of g’s generated under each class i¼ 0 and i¼ 1.

From a large number of pairs of g’s, the AUC is measured by

the proportion of correct responses Pc, i.e., Pc ¼ Prðk1 > k0Þ
¼ AUC.17 The AUC is then converted to a detectability index
dA using

dA ¼ 2erf�1ð2AUC� 1Þ; (10)

where erf�1 is the inverse error function. In a 2AFC study,

the AUC ranges from 0.5 to 1 thus dA ranges from 0 to1. It

is a measure of the task-relevant information available in the

echo RF data.24,25

III. BEAMFORMERS AS APPROXIMATIONS
TO BAYESIAN STRATEGY

A. Post-filtering strategies at low contrast

Previously, we showed that if the objective is to increase

diagnostic information in the final B-mode image, then

Wiener filtering is an optimal strategy to apply to the RF

echo signal before demodulation.18 This result was derived

by assuming that the data comprises low-contrast features

(Si ’ 0) and is already DS beamformed. We now summarize

this derivation as it has had a significant influence on our

approach to beamformer design.

The IO analysis developed on the DS beamformed data

gDS, still includes the same Eqs. (4)–(9) leading to the calcu-

lation of the test statistic. However, the sizes of correspond-

ing vectors and matrices are much smaller as they are for

compressed data. For convenience, we still use the same

notation for the test statistic k and the matrices H; Ri; Rs,

and I, but note that they have different dimensions.

First, we truncate the power series expansion in Eq. (9)

at the first term to obtain

ðIþ R�1=2
s DRiR

�1=2
s Þ�1 ’ I� R�1=2

s DRiR
�1=2
s : (11)

Substituting into (8), we have

R�1
0 � R�1

1 ’ r2
objR

�1
s HDSHtR�1

s ; (12)

where DS¢S1 � S0 is the task contrast. This approximation

holds for the low-contrast discrimination task, or

diagðS0;1Þ � 1. Combining with (6), the first-order approxi-

mation of the test statistic is given by
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k gDSð Þ ’
1

2
WgDSð ÞtDSWgDS; (13)

where W¢robjH
tR�1

s , which may be recognized as a form

of Wiener filtering.

Equation (13) suggests that the WF should be applied to

RF data for two reasons. First, it shows that the IO makes an

optimal decision based on the task contrast from the Wiener

filtered data WgDS, hence W only suppresses noise and

information that is unrelated to the task. Second, if the imag-

ing system is perfect (i.e., no noise and no blurring), the gen-

erated data gDS is a scaled copy of the scattering object f . In

that case, the test statistic is given by kðfÞ ¼ 1=ð2r2
objÞf tððI

þ S0Þ�1 � ðIþ S1Þ�1Þf . By using the same low-contrast

approximation, we have kðfÞ ¼ 1=ð2r2
objÞf tDSf. There is

thus significant equivalence between WgDS and f even when

the underlying system becomes realistic. This interpretation

is valid when the approximation in (11) is accurate, which

only holds for low-contrast tasks. We have shown previously

that the WF enhances observer performance including sub-

jective assessment by individuals.18,19

In Sec. III B, we start by separating a beamformer into

compression and processing steps and show that matched fil-

tering can provide an effective operator to compress pre-

summed echo data. A similar result has been presented in

our recent study but based on the likelihood ratio.20 In this

paper, we use a test statistic based on the LLR in (6). This

helps us to unify the derivations of both compression and

processing into the same analysis of a decision variable that

leads us to the array-processing techniques found in

literature.12

B. MF beamformer

We apply the matrix-inversion lemma in Appendix D to

each data covariance matrix given in (5) to obtain

R�1
i ¼ R�1

n � r2
objR

�1
n HððIþ SiÞ�1 þKnÞ�1

HtR�1
n ;

(14)

where

Kn¢r2
objH

tR�1
n H: (15)

Matrix Kn plays an important role in our analysis; its trace is

the echo SNR and its off-diagonal elements describe point-

reflector correlations among the receive-channel echo

signals.

Further defining Wi¢ðIþ SiÞ�1 þKn, the test statistic

becomes

k gð Þ ¼
r2

obj

2
gtR�1

n H W�1
1 �W�1

0

� �
HtR�1

n g: (16)

This step reveals the first routine of the IO. Under white

Gaussian noise, Rn ¼ r2
nI, the term HtR�1

n g can be recog-

nized as matched filtering on the RF data. Because

gtR�1
n H ¼ ðHtR�1

n gÞt, the IO combines the pre-summed g

vector with the MF, squares and multiplies it by W�1
1 �W�1

0

to form the variable on which the classification decision is

based. Since optimal performance can still be achieved after

this irreversible step, all of the relevant information must be

contained in Htg. We name this operator the MF

beamformer.

Comparing to Eq. (13), however, the derivation is still

incomplete because W�1
1 �W�1

0 is not the task contrast DS.

Previously, we showed that there was loss of information in

B-mode images after matched filtering if nothing further was

done.20 Thus, we continue to explore the closed-form of

kðgÞ from (16) to find an appropriate subsequent operator to

apply to MF beamformed data.

C. MV beamformer

Assuming Kn in Eq. (15) is nonsingular (not a good

assumption, as we will see), we apply the matrix inversion

lemma to Wi ¼ Kn þ ðIþ SiÞ�1
to find

W�1
i ¼ K�1

n �K�1
n ðIþ Si þK�1

n Þ
�1

K�1
n : (17)

Substituting (17) into (16), we have

k gð Þ ¼
r2

obj

2
gtR�1

n HK�1
n U�1

0 �U�1
1

� �
K�1

n HtR�1
n g;

(18)

where Ui¢Iþ ðK�1
n þ SiÞ. Up to this point, the equation is

exact. Applying the power series and retaining just the first

term as we did in Eq. (11), we get the approximation

U�1
i ’ I� ðK�1

n þ SiÞ and U�1
0 �U�1

1 ’ S1 � S0 ¼ DS:

(19)

Consequently, (18) becomes

k gð Þ ’
1

2
gt

MVDS gMV ; (20)

where gMV ¼ Bt
MVg and

Bt
MV¢robjK

�1
n HtR�1

n ðMV–BFÞ
¼ ðrobjH

tR�1
n HÞ�1

HtR�1
n : (21)

In Appendix A, we show that Eq. (21) is essentially the

same as the Frost beamformer, given by9

Bt
F ¼ ðrobjH

tR�1
g HÞ�1

HtR�1
g ; (22)

where Rg is either R0 or R1, the power of the output data.

The Frost beamformer in Eq. (22) decorrelates the data by

minimizing its power while preserving the main signals.

Thus, it is equivalent to the whitening process in Eq. (21)

that minimizes noise only.

The Frost beamformer was designed for broadband
data. It jointly decorrelates the data among transducer ele-

ments in both the spatial and temporal domains. In our anal-

ysis, the source of spatial and temporal correlations can be

seen by examining the system matrix H, constructed from

the pulse-echo spatiotemporal impulse response.26
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We show that the MV beamformer Bt
MV follows the

ideal observer strategy exactly to the point where the approx-

imation of Eq. (19) is made. Equation (20) performs well

when K�1
n is small, and the deviation of the task-area vari-

ance from the surrounding region, Si, is small. In Sec. III D,

we form a better first-order approximation to the inverse of

Ui.

D. WF beamformer

In Eq. (18), we express Ui ¼ Us þ Si, where Us ¼ I

þK�1
n is the task-independent stationary covariance term

for the region in the object surrounding task area Si. This

reassociation of terms leads to a different approximation

than that made in the MV beamformer derivation. Using

Eqs. (8) and (9) and retaining just the first-order term in the

expansion, the covariance inverse is

U�1
i ¼ U�1=2

s ðIþU�1=2
s SiU

�1=2
s Þ�1U�1=2

s

’ U�1
s �U�1

s SiU
�1
s ; (23)

so that

U�1
0 �U�1

1 ’U�1
s DSU�1

s ¼ðIþK�1
n Þ
�1DSðIþK�1

n Þ
�1;

(24)

and the task matrix is diagonalized. Substituting (24) into

(18), the test statistic becomes

k gð Þ ’
r2

obj

2
gtR�1

n HK�1
n IþK�1

n

� ��1
DS

� IþK�1
n

� ��1
K�1

n HtR�1
n g

¼
r2

obj

2
gtHX�1

s DSX�1
s Htg

¼ 1

2
gt

WFDS gWF ; (25)

where

X�1
s Ht¼ðIþK�1

n Þ
�1

K�1
n HtR�1

n ¼ðr2
objH

tHþr2
nIÞ�1

Ht :

The last form assumes Rn ¼ r2
nI. Also gWF ¼ Bt

WFg for

Bt
WF¢robjX

�1
s Ht ðWF–BFÞ

¼ robjðr2
objH

tHþ r2
nIÞ�1

Ht; (26)

which is the WF beamformer for Gaussian acquisition noise.

Here matched and regularized inverse filters are applied to

each receive channel before summation to restore coherence

and spatial resolution.

E. Comparing MV and WF

The differences between Bt
MV and Bt

WF are the corre-

sponding approximations made in (19) and (23), respec-

tively. To explore this aspect more deeply, we need the

Fourier transform of positive-definite Kn. That is, ~Kn

¼ FKnF�1 where F is the 2-D discrete Fourier-transform

(DFT) matrix. Spectral values at each spatial frequency are

eigenvalues of Kn under the conditions we are considering.

Their magnitude must remain less than one for the approxi-

mations to remain valid. Violations of this condition lead to

poor beamforming performance.

First, consider the MV approximation of (19). Kn

describes the echo-signal energy within and between receive

channels divided by the acquisition-noise energy. Therefore
~Kn is akin to an echo-SNR frequency spectrum. When the

echo SNR is high, the approximation works well provided

feature contrast via maxðSiÞ is low. However, at frequency

channels where the noise energy exceeds the signal energy,

the magnitude of the eigenvalues of ðK�1
n þ SiÞ in (19)

exceed one. When this occurs, low-rank approximation

methods can reduce the rank of the matrix appropriately, as

we show in Appendix B. Without these approximations, the

MV beamformer can be unstable.

Next consider the WF approximation of (23). The eigen-

values of ðIþK�1
n Þ
�1=2DSðIþK�1

n Þ
�1=2

must be small for

this approximation to hold. Hence the frequency spectrum of

ðIþK�1
n Þ
�1=2

is the controlling factor. At high echo SNR,

the factor is approximately one, so as long as jDSj is small or

low contrast features, the approximation is valid. At low

echo SNR, ðIþK�1
n Þ
�1=2

is always small. Although both

beamformers require low contrast features, MV also requires

high echo SNR while WF can tolerate low echo SNR condi-

tions. The superior performance of WF over MV in a low

echo SNR condition was observed by Nilsen and Holm in

their study.10

IV. NUMERICAL STUDY

A. Simulation

We performed a numerical study where the pulse-echo

spatiotemporal impulse response at each transducer element

is generated using the Field II program.21,22 The simulation

is based on the parameters of the ULA-OP ultrasound sys-

tem23 (developed at MSD Laboratory, Universit�a degli Studi

di Firenze, Florence, Italy). A linear array probe (LA523,

Esaote spa, Florence, Italy) was used. This linear array has

192 elements each of dimensions 0.215� 6.0 mm2 separated

by a 0.03 mm kerf. There are 64 elements active in each

transmit and receive cycle. A 20-mm transmit/receive focal

length was used. In elevation, the aperture is weakly focused

using an acoustic lens with a focal length of 20 mm. A three-

cycle excitation voltage is applied to generate an ultrasound

pulse with center frequency at 6.0 MHz and a 40% pulse-

echo bandwidth. The RF echo signals were sampled at 50

Msamples/s, resulting in an axial sampling interval of

0.0154 mm. In the lateral direction the beam is stepped by an

element pitch of 0.245 mm. However, we remove the need

for interpolation in the display stage by generating impulse

responses with lateral spacing 0.049 mm. The impulse

responses are used to construct matrix Ha at each received

channel a and the overall system matrix H. The noise vari-

ance r2
n was adjusted so that the echo SNR for the DS beam-

formed RF signals is 24 dB.
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B. Beamforming implementation

Beamformers were applied to each data set before dis-

playing the result as B-mode images. Under the circulant

assumption for each Ha, the MF, MV, and WF beamformers

are easily implemented using a 2-D DFT technique.18

Because HtH can be ill-conditioned, the MV beamformer

requires an approximation to improve its robustness. In this

work, we use a reduced-rank approximation to for the imple-

mentation. This is equivalent to projecting the data into a sta-

ble subspace before performing the decorrelation function of

the MV beamformer.32 The eigenvalues of the matrix HtH

are calculated and normalized to the largest eigenvalue. We

retain eigenvalues above the level of �38 dB. This threshold

is selected by visually balancing the MV performance

among the five feature tasks. In our simulations, the percent-

age of pulse energy contained in the discarded sub-threshold

eigenvalues is less than 0.05% of the total and is assumed to

be negligible. However, the reduced-rank approximation

also slightly changes the system matrix, H, which can influ-

ence the predictions from the analysis.

We also implement the strategies developed in previous

studies,18,20 and compare them to the MV and WF beamform-

ers. Specifically, we apply the WF to the DS beamformed and

MF beamformed data. We name the first combination the

DS-WF beamformer. The second combination, using the WF

and MF is analyzed in Appendix C. It is equivalent to the WF

beamformer but requires some modification to avoid HtH

being ill conditioned. By using the same reduced-rank approxi-

mation adopted in the MV implementation, this beamformer

can serve as a transitional step between the MV and full-size

WF beamformers. We name it the matched Wiener (MW)

beamformer.

Examples of B-mode image pairs for task 4 are shown

in Fig. 2. Different combinations of beamforming strategies

were applied to the same set of simulated receiver-channel

echo data. The variance profiles of task 4 are shown in the

fourth column of Fig. 3(c). The task is designed for discrimi-

nating between the regular (circular) and the irregular shape

(spiculate) lesions. The results show that the advanced beam-

formers make the features easier to discriminate than in the

image pair generated by the DS beamformer. But the image

pair generated by the MF beamformer, where there is com-

pression without any filtering, offer no gain in discrimina-

tion. The improvements are quantified using observer

efficiencies as presented in Sec. IV C.

C. Observer efficiency

Since each task is designed for a specific feature, we

place them on a common scale using an object contrast fac-

tor, defined by

FIG. 2. Examples of image pairs (linear scale) for task 4 [spiculate (top row) vs circular (bottom row)] using the same receive-channel echo data after applying

beamformers in various combinations. MF is without post-summation filtering (step 1 only); DS-WF is Wiener filtering after DS beamforming; MW is Wiener

filtering after MF beamforming.

FIG. 3. Observer efficiencies measured for the beamformers illustrated in Figs. 2 are plotted (log-scale) in (a) and (b) with five discrimination tasks. Note that

the log-scales in the two plots are different from each other. (c) Variance profiles are shown for five tasks.
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C ¼
X

j

j½DS�jjj: (27)

We assume that the sample intervals in the lateral and

axial directions of the variance profiles are the same for

every task. In Eq. (27), ½DS�jj is element j on the main diago-

nal. The factor C takes values in the range from 0 to 1.

Increasing C makes the features more obvious to observers.

The observer efficiency is used to measure the loss of

information as it is transferred from the pre-beamformed RF

data to the final B-mode image. It can be used to quantify the

performance of each beamformer on the five lesion-feature

tasks.20 The task-relevant information in the beamformer

output is measured through the observer performance. First,

we compute the proportion of correct responses, Pc, for the

IO via Eq. (4) operating on pre-summed echo data. It is cal-

culated in a 2AFC Monte Carlo study involving 2000 image

pairs for each evaluation reported. Similar to our earlier stud-

ies,18–20 we measure the information available in the B-mode

images using the Smith-Wagner (SW) observer.33,34 The test

statistic is given by18

kSWðbÞ ¼ btDS b; (28)

where b is the column vector of a B-mode image acquired

with a particular beamformer. The SW observer is an approx-

imation of the IO on B-mode images for task 1 and its perfor-

mance is highly correlated to that of human observers.33,34 In

this study, we use it to approximate the IO on B-mode images

for all five tasks. We measure the SW observer performance

also in terms of the proportion correct Pc by applying the

observer to B-mode image obtained with different beam-

formers. The standard observer efficiency is then given by

g ¼ ðdA;I=dA;SWÞ2; (29)

where dA;I and dA;SW are the detectability indices converted

from the performance of the ideal and SW observer calcu-

lated with the same object contrast factor. As Pc 7!1, how-

ever, the dA approaches infinity making the calculation

unstable. Thus, we modify the calculation using the object

contrast factors.18 We proceeded by adjusting the contrast

CSW for each task until the SW observer achieved Pc ’ 0:8.

We then reduced the contrast until the ideal observer also

achieve the same Pc to find CI. The observer efficiency is

given by

g ¼ ðCI=CSWÞ2: (30)

The efficiency has error bars calculated by assuming the

correct proportion follows a binomial distribution with mean

p¼Pc. The standard deviation of Pc is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpð1� pÞ=nÞ

p
where n is the number of sample (n¼ 2000).

This error then is propagated through the task contrast to the

efficiency calculation in (30).18,19

D. Results and discussion

Figures 3(a) and 3(b) display the efficiencies of the

beamformers for discriminating malignant from benign

features in tasks 1–5 where the variance profiles are shown

in Fig. 3(c). In all tasks, the DS has the lowest efficiencies,

between 0.71% and 19.05%. The MF gives small improve-

ments on each task. Applying the WF to both DS and MF

beamformed data, the observer efficiencies of DS-WF and

MW have substantial improvements for all tasks especially

for task 1 which is the low-contrast detection. Between

them, the efficiencies of the MW is higher. The results indi-

cate a better match when using the MF for compressing pre-

beamformed echo data.

Although the MF combines all task-relevant informa-

tion available in pre-summed RF data, it delivers only small

improvements in the efficiency. This can be explained by

examining the corresponding covariance matrices Wi in

(16). They are non-diagonal suggesting that both magnitude

and phase components are retained. As the phase term is

removed during demodulation, there is loss of information

in the B-mode image. This loss can be partially recovered

by applying the corresponding WF before envelope

detection.

The efficiencies of MV and WF beamformers are plot-

ted and compared in Fig. 3(b). The figure also includes the

MW plot as an intermediate case between the MV and WF.

Compared to the MF beamformer, derived from the IO anal-

ysis without a filtering step, both WF and MV are substan-

tially more efficient for all the tasks. In task 1, the WF

efficiency reaches 94%. Between the WF and MV beam-

formers, the WF is better in tasks 1–4, but has lower perfor-

mance in task 5 (13.79% vs 15.61%). We note that the MV

is implemented with a reduced-rank approximation that

slightly changes the system model. Thus, we compare it to

the MW which is the WF implemented with the same modi-

fications. Over the five tasks, the MW has efficiencies that

are equivalent or higher as predicted. Between the MW and

the WF, the WF has higher efficiencies in tasks 1–4, but

lower in task 5. This is because the reduced-rank approxima-

tion decreases the ability of the system to transfer high

spatial-frequency information into the image. While this loss

decreases the WF beamformer effectiveness in tasks 1–4, it

provides an advantage for task 5 where the high-frequency

channels are occupied mostly by noise. Thus, the observed

improvement of the MV over the WF in task 5 comes from

the reduced-rank approximation. We note that the MW is the

optimal beamforming strategy suggested in our previous

study.20 This shows one of the advantages of the analysis

where we unify the derivations of compression and filtering

into the same framework using the log-likelihood ratio,

which leads us to the derivation of the full-size WF

beamformer.

We show in our analysis that the WF offers improve-

ments under low echo SNR conditions. To verify the

advantage of the WF, we investigate the efficiencies of WF

and MV over variations in the echo SNR. Figures 4(a)

and 4(c) plot the MV, MW, and WF efficiencies with echo

SNR of 32 dB and 16 dB for tasks 2–5. We also extract

those for echo SNR of 24 dB from Fig. 3(b) and plot them

in Fig. 4(b). The results are on a linear scale and ranged

from 0% to 30%. The efficiencies measured for task 1 are
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out of this range (from 80% to 100%), and are excluded

from the figures.

At high echo SNR of 32 dB, the MV and MW efficien-

cies are almost the same as each other. They are both lower

than the WF efficiency in tasks 2–4, but higher in task 5

because of the system modification. This means that the reg-

ularization through echo SNR applied to the MW does not

have much impact on the beamformer performance. At low

echo SNR of 16 dB, however, the MV performance is lowest

on all four tasks, especially on task 5 (2.94%). This indicates

the instability of the MV at this noise level. Meanwhile, the

MW and WF efficiencies are on par to each other. In this

echo SNR condition, the reduced-rank approximation does

not much affect the beamformer performance. More regular-

ization is needed to avoid ill-conditioning for the MV.

In Fig. 4, we note the beamformer efficiencies are higher

at lower echo SNRs. This shows that efficiency is not the

same as, or even proportional to, the beamformer perfor-

mance. Efficiency is calculated using the object contrast fac-

tor CI, which at ideal performance reaches 80%. At lower

echo SNR, a higher CI is needed. Although the CSW is also

higher, the efficiency, as calculated through the ratio

between the two object contrast factors, is increased even

when the beamformer performance is reduced.

V. SUMMARY AND CONCLUSION

The main contribution of this paper is to provide a new

statistical framework for evaluating and comparing ultra-

sound beamformers. We have explored a general Bayesian

strategy for beamforming and shown how a number of popu-

lar algorithms are adapted to the task in different ways. We

have shown how approximate forms of covariance-matrix

inverses lead to filters that are equivalent to each of these

popular beamforming algorithms; and that they are optimal

with respect to MV or MMSE criteria but not necessarily for

all object features. In these derivations, we separated the

measurement properties of the system from the task to derive

a filter that is applied to the pre-summed echo-signal vector

g. Each of the filter expressions that we found provide a pre-

scription for the weights (magnitude and phase) to be applied

to individual receive-channel data before summation and

any post-summation filtering.

In our analysis, we have expressed the MF beamformer

in terms of a compressing step plus additional filters that

form a processing step. This leads to the derivation of a log

likelihood measure of performance and reveals the link to

the MV and WF beamformers. In the presence of acquisition

noise, the filtering derivations require some approximations

and, as a result, the output quality was found to vary with

echo SNR, spatial resolution, and task contrast. In our frame-

work, the WF is derived as a better approximation to the

ideal strategy than that being used for deriving the MV

beamformer. Further analysis has shown the MV beam-

former is based on an unregularized solution of the inverse

problem. It is unstable with noisy data and requires approxi-

mations to improve the robustness. Those based on the WF

are the least sensitive to low echo SNR instabilities because

of their natural regularization.

We have employed the SW model observer specifically to

focus on evaluation of image formation processes in the trans-

fer of task information. This is the objective of beamforming,

although a comprehensive clinical-efficacy study would

include human observers studies and clinical cases. Note that

the SW observer was developed as an approximation of the

ideal observer for low-contrast detection. Its performance was

also highly correlated to human observer performance on that

task.34 However, these properties are unlikely to perform opti-

mally for the other high-contrast discriminations. This limita-

tion motivates further investigation in the future.

The WF beamformer is derived under the assumption of

low-contrast features for the breast lesion. Among the five

tasks related to breast cancer diagnosis, it offers the least

improvement over the DS beamformer in high-contrast fea-

ture discrimination (hypoechoic/anechoic). In the future, we

therefore wish to develop a new approximation to relax this

constraint.

The MV beamformer derived in our framework is for

broadband signals, which jointly decorrelates data in both the

spatial and temporal domains. We have shown how its poten-

tial benefits in transferring high-frequency information to the

final images can be completely negated by model modifica-

tions required during implementation. Investigating an

implementation that maintains the advantages of MV beam-

forming will therefore also be a topic for future research.
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FIG. 4. Efficiency comparisons for WF and MV beamformers with variations of echo SNRs. The results, excluding task 1, are plotted using a linear scale.
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APPENDIX A: THE FROST ALGORITHM

Frost described a linearly constrained least mean-

squares algorithm under conditions where the signal and

noise statistics are unknown and estimated from the data

(an adaptive algorithm).9 We applied his time-domain

approach using our pulse-echo constraints, and assuming

known statistics, to show how it relates to the ideal-

observer formalism described in Sec. III C. The goal of the

Frost beamformer is to minimize output power while

decorrelating and condensing the echo signals. Given the

beamformed echo signal is Btg ¼ BtHf þ Btn, the output

power is minimized by finding Bt that minimizes

E 1
2

gtBBtg
� �

¼ 1
2

trðBtRgBÞ, while being subject to the con-

straint robjB
tH ’ I. Matrix Rg can be either R1 or R0 in our

IO analysis depending on the class where the imaging data

is considered.

Applying the method of Lagrange multipliers, we form

a cost function C involving undetermined Lagrange matrix

K,

C Bð Þ ¼ tr
1

2
BtRgBþ Kt robjH

tB� I
� �� �

: (A1)

Taking the gradient of (A1) with respect to B and setting the

result to zero,

@C Bð Þ
@B

¼ RgBþ robjHK ¼ 0; (A2)

we obtain B ¼ �robjR�1
g HK. Hence,

robjH
tB ¼ I ¼ �r2

objH
tR�1

g HK; (A3)

and

K ¼ �ðr2
objH

tR�1
g HÞ�1 ¼ Kt: (A4)

Thus,

BF ¼ B ¼ R�1
g HðrobjH

tR�1
g HÞ�1: (A5)

Equation (A5) is the well-known form of the Frost beam-

former found in the literature.9,12 As Rg is equal to Ri (i is

either 0 or 1), we have

R�1
g ¼ ½r2

objHðIþ SiÞHt þ Rn��1; (A6)

Applying the matrix-inversion lemma (Appendix D) to the

right-hand side and simplifying the expression, we are able

to obtain

R�1
g H ¼ R�1

n HH�1; (A7)

HtR�1
g H ¼ HtR�1

n HH�1; (A8)

where

H ¼ ðIþ SiÞ½ðIþ SiÞ�1 þ r2
objH

tR�1
n H�: (A9)

Combining (A7), (A8), and (A9) with (A5), we find

BF ¼ R�1
n HðrobjH

tR�1
n HÞ�1: (A10)

The BF in Eq. (A10) is identical to Bt
MV in Eq. (21). Thus,

we have shown that the Frost beamformer derived in the lin-

early constrained MV approach is equivalent to the MV

beamformer derived in our IO analysis.

APPENDIX B: IMPROVING ROBUSTNESS

If matrix Kn is poorly conditioned, it may not be possible

to apply the matrix-inversion lemma as in Eq. (17). In this

Appendix, we modify our derivations in Secs. III C and III D

to improve the robustness of the analysis under these condi-

tions. For this purpose, Kn is modified using a diagonal-load-

ing/regularization approach12 to ensure the matrix remains

positive-definite, Kn;e¢r2
objH

tR�1
n Hþ eI; where e! 0þ. It

is sufficient to add a small Gaussian random perturbation to

the pulse-echo point-spread-function so that Kn becomes

invertible.

Following the treatment leading to (16), the test statistic

is now

k g; eð Þ ¼
r2

obj

2
gtR�1

n H W�1
1;e �W�1

0;e

	 

HtR�1

n g; (B1)

where Wi;e ¼ ðIþ SiÞ�1 þKn;e for i¼ 0,1, and kðg; eÞ ! kðgÞ
as e! 0þ. Since Kn;e is now invertible, applying the matrix

inversion lemma to W�1
i;e yields

W�1
i;e ¼ K�1

n;e �K�1
n;e ðK�1

n;e þ Iþ SiÞ�1
K�1

n;e : (B2)

Substituting (B2) into (B1), we have

k g; eð Þ ¼
r2

obj

2
gtR�1

n HK�1
n;e U�1

0;e �U�1
1;e

	 

K�1

n;e HtR�1
n g;

where Ui;e ¼ IþK�1
n;e þ Si: (B3)

Method 1: Applying the series expansion of (9) to (B3),

where I is separated from K�1
n;e þ Si, we obtain the

approximations

U�1
i;e ’ I� ðK�1

n;e þ SiÞ and U�1
0;e �U�1

1;e ’ DS: (B4)

Using R�1
n ¼ r�2

n I and Eq. (B4), (B3) becomes

k g; eð Þ ’
r2

obj

2
gtH r2

objHHt þ er2
nI

	 
�1

DS

� r2
objH

tHþ er2
nI

	 
�1

Htg; (B5)

and, in the limit,

k gð Þ ¼ lim
e!0þ

k g; eð Þ ¼
1

2r2
obj

gt Hþð ÞtDS Hþg; (B6)

k gð Þ ’
1

2
gt

PIDS gPI:
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Hþ ¼ lime!0þ ½ðHtHþ er2
nr
�2
objIÞ

�1
Ht� is the pseudo-inverse

of the system matrix17 and ðHþÞt is its transpose. Also,

gPI ¼ Bt
PIg, where Bt

PI ¼ r�1
objH

þ is a scaled, reduced-rank

version of the MV beamformer that accommodates

ill-conditioned matrices.35 Comparing Bt
PI with Bt

MV in

Eq. (21), we see they are essentially equivalent when

Rn ¼ r2
nI, except for the regularization offered by the pseu-

doinverse operator. For implementation, Bt
MV also needs to

be regularized to avoid ill-conditioning. These approxima-

tions to the ideal-observer strategy lead to a regularized

MV beamformer, without the requirement that Kn is

invertible.

Method 2: Alternatively, we can separate (B3) accord-

ing to Ui;e ¼ ðIþK�1
n;e Þ þ Si. Following the technique

shown in (23), where now U�1
s ¼ IþK�1

n;e , we use the first-

order approximation

U�1
i;e ’ ðIþK�1

n;e Þ
�1 � ðIþK�1

n;e Þ
�1

SiðIþK�1
n;e Þ
�1:

(B7)

Consequently,

U�1
0;e �U�1

1;e ’ ðIþK�1
n;e Þ
�1DSðIþK�1

n;e Þ
�1; (B8)

and substituting (B8) into (B3), we obtain

k g; eð Þ ’
r2

obj

2r4
n

gtH Kn;e þ Ið Þ�1DS Kn;e þ Ið Þ�1Htg:

(B9)

In the limit of e! 0þ; r2
nðKn;e þ IÞ ! r2

objH
tH þr2

nI ¼ Xs,

and therefore, (B9) becomes

k gð Þ ’
r2

obj

2
gtHX�1

s DSX�1
s Htg; (B10)

k gð Þ ’
1

2
gt

WFDSgWF:

gWF ¼ Bt
WFg is the beamformed RF echo signal in (26) that

results from the WF beamformer BWF.

Each linear beamformer is represented in the ideal-

observer analysis as a filter which is applied to the set of

received echo signals in the beam, and results in the summed

RF echo signals. The MV must be regularized when Kn is

not full rank, whereas the WF beamformer is naturally regu-

larized by the acquisition noise in the data. Specifically, K�1
n;e

appears as a factor in (B5) for the MV beamformer while

ðKn;e þ IÞ�1
appears as a factor in (B9) for the WF beam-

former. Thus, we expect the WF beamformer to be more

robust than the MV beamformer.

APPENDIX C: MW BEAMFORMER

In this appendix, we derive the closed-form of the

MW beamformer, which involves Wiener filtering after

using the MF to compress the pre-summed echo data gMF.

By multiplying both side of Eq. (2) with a MF BMF ¼ Ht,

we obtain

gMF ¼ Htg ¼ HMFf þ nMF; (C1)

where HMF ¼ HtH and nMF ¼ Htn.

The WF applied to gMF has the form W ¼ robjH
t
MF R�1

s;MF

[see Eq. (12)], where Ht
MF ¼ HtH and Rs;MF is the stationary

part of the data covariance matrix. From the definition of the

stationary part given in Eq. (7) for the gDS, we form the corre-

sponding matrix for gMF, given by

Rs;MF ¼ r2
objHMFHt

MFþ r2
nHtH¼HtHðr2

objH
tHþ r2

nIÞ :
(C2)

The WF implementation requires the inversion of Rs;MF.

It means that HtH must be nonsingular. Under this assump-

tion, the term HtH inside R�1
s;MF can be eliminated with Ht

MF

outside. Thus, the WF becomes

Ht
MFR�1

s;MF ¼ ðr2
objH

tHþ r2
nIÞ�1: (C3)

The filter is applied to gMF ¼ Htg, which gives us the

WF beamformer in Eq. (26). However, it requires model

modifications for a nonsingular HtH. By using the same

reduced-rank approximation adopted in the MV implementa-

tion, the MW beamformer serves as a transition step between

the MV and the WF.

APPENDIX D: MATRIX-INVERSION LEMMA

Woodbury and others proposed the following identity

for arbitrary matrices A; B; C, and D,12,36

ðAþ BCDÞ�1 ¼ A�1 � A�1BðC�1 þ DA�1BÞ�1
DA�1:

The stipulation is that A and C be nonsingular.
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