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a b s t r a c t

Mechanical properties of soft biological materials are dependent on the responses of the two

phases of which they are comprised: the solid matrix and interstitial fluid. Indentation tech-

niques are commonly used to measure properties of such materials, but comparisons between

different experimental, and analytical techniques can be difficult. Most models relating load,

and time during spherical indentation are based on Hertzian contact theory, but the exact lim-

itation of this theory for soft materials are unclear. Here, we examine the response of gelatin

hydrogels to shear and indentation loading to quantify combined effects of the solid, and fluid

phases. The instantaneous behavior of the hydrogels is different for each test geometry, and

loading rate, but the relaxed response, measured by the relaxed modulus, is the same for all

tests, within 17%. Additionally, indentation depths from 15% to 25% of the radius of the spher-

ical indenter are found to minimize error in the estimate of relaxed modulus.

© 2015 Published by Elsevier Ltd.
1. Introduction

Quantitative measurements of mechanical properties of

soft materials, such as tissues, are important in understand-

ing the material response to loads, and deformations. For ex-

ample, elasticity imaging relies on differences in the elastic

stiffness of healthy, and diseased tissues to produce contrast

for tumor detection and diagnosis (Greenleaf et al., 2003). In

addition to the elastic properties, time-varying viscoelastic

properties can also be useful in imaging creep tests where

an applied load is held and the material is imaged over time

(Greenleaf et al., 2003). Mechanical properties are also im-

portant in tissue engineering, and cell cultures where cells

are known to sense and respond to the material with which

they are in contact. The viability of cells in culture is greatly

influenced by the effective stiffness of their extra cellular ma-

trix (ECM) (Augst et al., 2006). A quantitative understanding
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of the mechanical properties of the ECM would help in un-

derstanding the cellular response of the mechanical environ-

ment.

The complexity of biological systems makes quanti-

tative mechanical testing of such systems difficult. In-

homogeneities, irregular geometries, and difficulty in the

isolation/extraction of tissue samples are just a few of the

factors that affect mechanical measurements on these mate-

rials. Simplified systems, such as hydrogels, that mimic some

of the mechanical properties of biological systems are use-

ful to study basic material behavior. Tissue engineering and

cell culture studies rely on the use of scaffold materials, of-

ten hydrogels (Dubruel et al., 2007; Fischback et al., 2007), on

which cells are grown. Hydrogels are often used in bioimag-

ing studies (Hall et al., 1997; Khaled et al., 2006; Han et al.,

2003) as phantoms before more complicated systems, like

tissue samples with tumors, are examined.

Indentation techniques are widely applied in the charac-

terization of biological materials, and have received consid-

erable attention over the last several years (Chen et al., 2007;

Darling et al., 2006; Darling et al., 2007; Mahaffy et al., 2000;

Mattice et al., 2006; Mooney et al., 2006; Krouskop et al.,

1998; Wellman et al., 1999; Samani et al., 2007). Although
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the experiment is simple, effects of the thickness of biologi-

cal samples, loading and boundary conditions need to be iso-

lated when geometry-independent properties are sought. In

the analysis of indentation data of biological materials, an

incompressible, elastic material model using Hertzian con-

tact theory is often assumed (Dimitriadis et al., 2002; Hayes

et al., 1972). As a result of this assumption, a single param-

eter is found to describe the behavior, the Young’s modu-

lus, E (though sometimes, μ, the shear modulus is used).

For spherical indentation of a semi-infinite elastic medium,

Hertz calculated the contact pressure at the surface of the

medium by approximating the spherical contact surface as a

paraboloid (Hertz, 1881). The approximation is valid for small

indentation depths compared to the radius of the spherical

indenter. At larger depths the increasing difference between

the contact area of a spherical versus parabolic indenter for

the same indentation depth results in an increasing bias in

the estimation of the elastic modulus from the experimental

load-displacement data. An acceptable limit on the depth of

indentation for Hertzian theory to be valid is not well un-

derstood for poroviscoelastic materials. It is envisaged that

the validity of the semi-infinite assumption depends on the

radius of the indenter, and thickness and width (in-plane di-

mensions) of the medium.

Many soft materials cannot be adequately characterized

by a single parameter such as a modulus due to their in-

herent viscoelastic nature. The correspondence principle, in

which elastic parameters in an elastic solution are replaced

by the analogous viscoelastic differential or integral func-

tions, is often used to determine the theoretical viscoelastic

solution. For viscoelastic indentation problems, the analysis

often begins with the elastic Hertz solution (Lee and Radok,

1960; Oyen, 2005; Cheng et al., 2005; Mattice et al., 2006;

Darling et al., 2006; Mahaffy et al., 2000), and thus the vis-

coelastic indentation solutions are subject to the same re-

strictions as the Hertz solution. Recently, creep (Oyen, 2005;

Cheng et al., 2005), load relaxation (Cheng et al., 2005; Mat-

tice et al., 2006), and microrheology tests (cyclic loading)

(Mahaffy et al., 2000) with a spherical indenter geometry

have been used to study the viscoelastic response of soft ma-

terials. These time-dependent or frequency-dependent tests

provide a good insight into viscoelastic behavior, but add

complexity since there could be possible environmental ef-

fects on the sample during the length of test time, and also
Table 1

Example modulus measurements (average ± standard deviation) on three types of b

analysis. The average modulus varies greatly between studies, even when the experi

Type of tissue Experiment Experiment de

Adipose Sinusoidal, flat punch indentation 0.1 Hz, 5% prec

Adipose Flat punch indentation Varying rates, s

Adipose Sinusoidal, flat punch indentation

with FEA

0.1 Hz, precond

Normal glandular Sinusoidal, flat punch indentation 0.1 Hz, 5% prec

Normal glandular Flat punch indentation Varying rates, s

Normal glandular Sinusoidal, flat punch indentation

with FEA

0.1 Hz, precond

IDC Sinusoidal, flat punch indentation 0.1 Hz, 5% prec

IDC Flat punch indentation Varying rates, s

Intermediate grade

IDC

Sinusoidal, flat punch indentation

with FEA

0.1 Hz, precond
require specialized equipment. For example, creep and load

relaxation tests that last longer require environmental con-

trol for biological materials such as tissues or cell cultures.

Similarly, microrheological tests that can be conducted over

a wide range of frequencies, require sophisticated instru-

mentation, and synchronization to achieve accurate results.

Hence, a simple, and quick test that probes the viscoelastic

behavior of soft biological tissue would be ideal. The qua-

sistatic indentation test can be conducted on a simple load

frame, and in a short testing time. This inherent characteris-

tic of the indentation test potentially eliminates the need for

specialized equipment or environmental control. Addition-

ally, when indentation load-displacement data is analyzed

with an appropriate viscoelastic model, the time-dependent

material behavior can be estimated.

Modulus values for soft tissues have been estimated in the

literature using varying experimental techniques, and anal-

yses. To illustrate this variation, Table 1 contains the esti-

mated elastic modulus values from current literature of three

types of human breast tissue; adipose tissue, normal glandu-

lar tissue, and infiltrating ductal carcinomas (IDC). The exper-

imental method, and test variables, such as strain rate, pre-

strain, and frequency, are indicated. It can be seen that, even

when similar experimental techniques are used, there can be

differences of nearly an order of magnitude between mea-

sured modulus values. These discrepancies emphasize the

difficulty in comparing the moduli estimated using different

analyses, and test methods.

In this work, we estimate the relaxation modulus of

gelatin hydrogels using common experimental methods for

comparison between experiments, and we examine the bias

in the Hertzian theory, and its effect on the estimated ma-

terial modulus. Time-dependent moduli estimated from a

shear stress relaxation experiment, stress relaxation, are

compared with moduli estimated from two types of inden-

tation tests, load relaxation, and quasistatic indentation. The

instantaneous moduli, and relaxed moduli estimated from

each type of experiment used in this study are compared to

examine the short and long time effects, respectively, of the

geometry of the specimen, load application, and rate of load-

ing. The quasistatic indentation experiment is explored in de-

tail using a standard linear solid material model to estimate

a viscoelastic, time-dependent modulus. The limitations of

the Hertz solution for elastic indentation are explored to seek
reast tissue from different studies using various indentation techniques, and

ments are similar (e.g. frequency = 0.1 Hz).

tails N Elastic modulus (kPa) Ref.

omp. 40 18 ± 7 (Dimitriadis et al., 2002)

train = 0.01 26 5 ± 3 (Chadwick, 2002)

itioned 71 3 ± 1 (Selvadurai, 2004)

omp. 31 28 ± 14 (Dimitriadis et al., 2002)

train = 0.01 7 18 ± 9 (Chadwick, 2002)

itioned 26 3 ± 1 (Selvadurai, 2004)

omp. 32 106 ± 32 (Dimitriadis et al., 2002)

train = 0.01 25 47 ± 20 (Chadwick, 2002)

itioned 21 20 ± 4 (Selvadurai, 2004)
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similarities between the predicted moduli from elastic, and

viscoelastic models.

2. Experimental methods and analysis

Three experiments, shear stress relaxation, indentation

load relaxation, and quasistatic indentation, are performed

on gelatin hydrogel specimens. Based on the geometry

(spherical indentation, and shear) and type of loading (ramp-

hold, and ramp), an analytical model is determined for

each of these experiments. The analytical models relate

the stress or load on the material with time, resulting in

time-dependent material moduli (relaxation moduli) for the

shear stress relaxation, indentation load relaxation, and qua-

sistatic indentation experiments. Best-fit model parameters

are found through curve fitting to experimental data, and the

relaxation moduli from each experiment are compared. In

addition to experiments, simulated data from finite element

analysis (FEA) of the quasistatic, spherical indentation of an

elastic medium is used to determine the bias due to the in-

herent geometric assumption in the elastic Hertzian contact

solution. The details of the preparation of materials, the ex-

perimental methods, the analytical models, and the elastic

FEA are given in the following sections.

2.1. Gelatin preparation

Three different concentrations of gelatin hydrogels are

prepared for two types of samples used in the experiments.

Two batches, totaling 400 ml each, are prepared identically

for the three concentrations. Type B gelatin powder (Rous-

selot, Dubuque, IA) is measured by weight for 4%, 6%, and

8% concentration gelatin and is mixed with the appropri-

ate amount of deionized water, 95.9%, 93.9%, and 91.9%, re-

spectively. The beakers with the gelatin mixture are covered,

placed in a 60 °C water bath for 70 min, and stirred every

15 min. The beakers are removed from the heated water bath

and are allowed to sit at room temperature (approx. 23 °C)

for 5 min before 0.1% formaldehyde is added as a chemical

crosslinker. The beakers are placed in a 25 °C water bath,

and the mixture is stirred continuously to cool it to approx-

imately 27 °C. The gelatin is then poured into two types of

mold, covered, and allowed to gel at room temperature for

24 h before testing.

Shear, and indentation experiments require specimens

with differing geometries, although samples are prepared

such that the thermal history, and therefore material proper-

ties are nearly identical. The indentation samples are cylin-

ders 44.5 mm in diameter, and 26–27 mm in height, while

the smaller rheometer samples are 25 mm in diameter, and

2–5 mm in height. To remove the effect of cooling rates in

samples of different volumes, the gelatin mixture is poured

into plastic molds when it is near room temperature for all

concentrations. The molds are covered with an acrylic plate

with a polymer mold release (Pol-Ease 2300, Polytek Devel-

opment Corp. Easton, PA). The plate serves to create flat top

surface for the specimen, and prevents desiccation before

testing and the mold release lubricates the test surface of

the specimen. The indentation specimens are tested in the

mold with only the top surface open to air. For the rheometer

specimens, mold release is applied to all the mold surfaces to
ensure that the gelatin hydrogel can be removed completely

and placed into the rheometer fixture.

2.2. Shear stress relaxation experiment

Shear experiments are conducted on an AR-G2 rheome-

ter (TA Instruments, New Castle, DE, U.S.A.). Gelatin speci-

mens are tested in a parallel plate fixture, 25 mm in diam-

eter. Cyanoacrylate (Rawn America, Spooner, WI, U.S.A.) is

used to bond the gelatin hydrogel to the upper and lower

fixture surfaces to prevent slippage during experimentation.

At least three specimens for each gelatin concentration are

used in the stress relaxation experiments. The specimens are

displaced to 5% strain over a 1 s ramp, and then held for

1800 s. Gelatin hydrogels are observed to have properties

that change with time (Orescanin et al., 2009), and steady-

state properties are not reached after 24 h. Thus, the duration

of the relaxation experiment is optimized to estimate the re-

laxation parameters while reducing the total testing time for

all specimens. The stress-time data are collected at 61 sam-

ples/s in the beginning of the experiment, and the sampling

rate decreases throughout the experiment to a final acquisi-

tion rate of 0.03 samples/s at the end of the experiment.

A third order, generalized Maxwell model is used to char-

acterize the behavior of the gelatin hydrogel in the shear

stress relaxation experiments. For an applied step in strain,

the stress relaxation behavior,

σ(t) = σ0 + σ1 e−t/τ1 + σ2 e−t/τ2 + σ3 e−t/τ3 (1)

results in a shear relaxation modulus of the form

GSR(t) = G0 + G1 e−t/τ1 + G2 e−t/τ2 + G3 e−t/τ3 (2)

where G0 is the instantaneous modulus and Gi are the modu-

lus amplitudes associated with time constants, τ i. Although,

the applied step in strain is a convenient theoretical assump-

tion it is difficult to achieve during experimentation. The ap-

plied strain, εa, occurs over a finite ramp time, tR. Model pa-

rameters for a ramp load are

G0 = σ0/εa (3)

Gi = σi/(RCFi εa), i = 1 − 3 (4)

RCFi = τi

tR

(
e

tR
τi − 1

)
(5)

Ramp correction factors, RCFi, adjust the modulus ampli-

tudes to account for the difference between the assumed

step in displacement and the actual ramped displacement

(Mattice et al., 2006; Oyen, 2005; Oyen, 2005; Oyen, 2006).

The data analysis of the stress relaxation experiment in-

volves curve-fitting a modified data set with constant sam-

pling rate. The original data is modified by eliminating data

points from the beginning of the experiment, and interpolat-

ing between points at the end to produce a data set that has

a constant sampling rate of approximately 0.5 samples/s. The

constant sampling rate of the modified data set allow for ac-

curate curve fitting for the entire duration of the experiment.

The model in Eq. 1 is used to fit the stress data using Mathe-

matica (Wolfram Research, Urbana, IL, U.S.A.). The model pa-

rameters for stress relaxation are used to determine parame-

ters for the relaxation modulus, G(t), by Eqs. (3)–(5).
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Fig. 1. Schematic of spherical indentation with parameters.
2.3. Indentation load relaxation experiment

Indentation experiments are performed on a TA.XTplus

Texture Analyzer (Stable Micro Systems Ltd., Surrey, U.K.) us-

ing a 1 kg load cell and a spherical-tip indenter that is 5 mm

in diameter. The vertical position of the indenter tip is cali-

brated to accurately determine the height of the gelatin hy-

drogels. Then, the specimens are centered below the indenter

tip. To create a nearly frictionless contact between the spher-

ical indenter probe, and the gelatin hydrogel, polymer mold

release is applied to the spherical probe surface prior to test-

ing. The indenter tip is lowered gradually until it contacts the

surface of the specimen, which is critical to the accuracy of

the experimental data. In the indentation load relaxation ex-

periment, the indenter tip is displaced at the rate of 1 mm/s

to the desired indentation depth of 1 mm, and then the po-

sition is held while the load relaxation data are captured for

1800 s. Load-time data are collected at a rate of 10 samples/s.

The analytical framework for the indentation load relax-

ation experiment was presented by Mattice et al. (Mattice

et al., 2006), and is briefly outlined here for a spherical in-

denter of radius, R, and a ramp time, tR. The indentation ge-

ometry is shown in Fig. 1. To model the indentation-load re-

laxation for an applied ramp-hold displacement, Mattice and

coworkers assumed the following relaxation model for the

indentation load,

PLR(t) = P0 + P1 e−t/τ1 + P2 e−t/τ2 + P3 e−t/τ3 (6)

based on a modulus relaxation function, GLR, of the form of

Eq. (2). Here, PLR is the time-dependent load on the inden-

ter, P0 and G0 are the instantaneous load and modulus pa-

rameters, and Pi and Gi are the load relaxation and modulus

parameters associated with time constants τ i. The force re-

sponse to an applied step in displacement during indentation

relaxation of an incompressible material,

Pstep(t) = 8
√

R
δ3/22G(t) (7)
3

is used to approximate a relationship between Pi and Gi:

G0 = P0

2δ3/2
max

(
8
√

R/3
) (8)

Gi = Pi

2δ3/2
max

(
RCFi 8

√
R/3

) , i = 1 − 3 (9)

Here, δ is the time-varying indentation depth, and δmax is the

maximum value. These expressions account for the geometry

of indentation, and contain the adjustments needed for the

ramp load, where the ramp correction factors are the same

as in Eq. (5).

After completing the experiments, the data are analyzed

by performing curve-fitting using Mathematica. The initial

load ramp response is removed from each data set, and the

load data are shifted such that the peak load occurs at time

t = 0 s. The assumed model from Eq. (6) is fit to the load-time

data using a least squares fit algorithm to determine load pa-

rameters, Pi. Material parameters, Gi, are found using Eqs. (8)

and (9), and are averaged for all samples of the same gelatin

concentration.

2.4. Quasistatic indentation experiment

Quasistatic indentation is also performed using TA.XTplus

Texture Analyzer with the same initial steps to determine

contact as the indentation load relaxation experiment. A sin-

gle indentation cycle is performed to a depth of 2 mm for the

quasistatic indentation experiments. Experiments are con-

ducted with an indenter tip speed of 0.01 mm/s, and load-

displacement data are collected at 2 samples/s using Tex-

ture Exponent software (Stable Micro Systems Ltd.). For each

gelatin concentration, at least 4 samples are tested.

Following the approach of Mattice et al. (Mattice et al.,

2006), we used one-dimensional viscoelastic theory to de-

scribe the viscoelastic response due to spherical indentation

loading using the three-element, standard linear solid (SLS)

model. The SLS model is composed of a Voigt element (spring

and dashpot in parallel) in series with a free spring. Boltz-

mann’s superposition principle, usually written in terms of

stress, and strain is modified to relate load, and displace-

ment of indentation based on the geometry of the experi-

ment. Based on Hertzian contact mechanics, the load as a

function of time for an indentation displacement history, δ(t),

is shown to be

PQS(t) = 16
√

R

3

t

∫
0

G(t − τ) d
(
δ3/2(τ )

)
(10)

for an indenter of radius, R. The shear relaxation modulus for

the SLS model of an incompressible material was derived and

found to be,

GQS(t) = G0

[(
G0

G0 + G1

)
e− (G0+G1)t

η + G1

G0 + G1

]
(11)

where G0 is the shear stiffness of the free spring, and G1 and

η are the shear stiffness, and shear viscosity of the spring and

dashpot, respectively, in the Voigt element.

Here we evaluate the integral in Eq. (10) similar to the

work of Lee and Radok (Lee and Radok, 1960) using a

constant-velocity indentation, δ(t) = vt , and the relaxation
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modulus in Eq. (11) to determine the time-dependent inden-

tation load,

PQS(t) = 8G0

√
Rv3

G0 + G1

[
2G1

3
t3/2 + G0η

G0 + G1

t1/2

− G0η
3/2

(G0+G1)
3/2

√
π

2
e− (G0+G1)t

η Er f i

(√
(G0+G1)t

η

)]
,

(12)

where v is the velocity of indentation.

The indentation-load response based on the viscoelas-

tic SLS model, Eq. (12), is used to fit each set of load-

displacement data. The full indentation depth of 2 mm is

not used in curve fitting. Instead, the data are cut off at vari-

ous depths (0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 1.0 and 1.5 mm), and

curve fitting is performed eight times for a single experimen-

tal specimen. The information gathered from the best fit pa-

rameters at the different indentation depths is used to gain

insight into the growing bias at larger indentation depths due

to limitations in the Hertzian theory. The parameters are av-

eraged for all samples of the same gelatin concentration at

each indentation depth.

2.5. Finite element analysis of quasistatic indentation

experiment

The quasistatic indentation of an elastic incompressible

material is simulated using FEA, and the predicted results

are compared with those obtained from an analytical solu-

tion assuming a Hertzian contact. The material parameters

used in the FEA for the incompressible material are elastic

modulus, Em = 7395 Pa, and Poisson’s ratio ν = 0.5. FEA

is performed in ABAQUS (ABAQUS manual, 2007) FEA soft-

ware using CAX4R, 4-node axisymmetric finite element with

a reduced integration method. Investigations on the inden-

tation of biological materials (Mooney et al., 2006; Olberd-

ing and Suh, 2006) as well as porous materials such as soils

(Selvadurai, 2004) recommend the radius of the material to

be greater than about 10 times the contact radius at the max-

imum depth of indentation for a semi-infinite assumption to

be valid. Hence, in this study, the axisymmetric model is cho-

sen with a radius of 500 mm, and a height of 500 mm to

simulate the semi-infinite incompressible medium. The ra-

dius of the spherical indenter is assumed to be 2.5 mm, same

as that used in the indentation experiments. The spherical

indenter is modeled as a rigid analytical surface, and a fric-

tionless contact is assumed between the indenter, and the

material interface. The axisymmetric boundary condition is

enforced along the central axis, and the surfaces have bound-

ary conditions corresponding to a semi-infinite medium. The

center of the spherical probe is displaced along the cylin-

der axis (z-axis) at the same rate of indentation that is ap-

plied during the quasistatic indentation experiments. The in-

denter is displaced to a depth of 1.5 mm into the material

in 0.01 mm increments, to simulate load-displacement data

from 0 to 1.5 mm indentation. The Hertz solution for elastic

indentation,

P(t) = 16 G
√

R

3
δ3/2 (13)
is used to curve fit the FEA data in MATLAB to predict the

elastic shear modulus, G, as a function of indentation depth.

The predicted values of G are compared with the value input

into the FEA, Gm = Em/3 = 2465 Pa.

3. Results

The three analytical viscoelastic models (Eqs. (1), (6), and

(12)) are independently fit to the respective experimental

data from stress relaxation, indentation load relaxation, and

quasistatic indentation experiments, as previously described.

The chosen models are sufficient to predict the behavior of

the gelatin hydrogels in all three concentrations, and are

valid for the entire duration of the experiments. An exam-

ple of stress relaxation data along with the corresponding

best fit model is shown in Fig. 2(a) for hydrogels with dif-

ferent gelatin concentrations. Representative load-time data

for the indentation load relaxation experiments are shown in

Fig. 2(b). Representative load-displacement data for inden-

tation up to δ = 0.4 mm in the quasistatic experiments are

shown in Fig. 2(c) with the corresponding best fits.

The relaxation moduli determined from the different ex-

periments are compared and contrasted to understand the

material behavior under the various loading conditions. The

parameters estimated from the experimental data lead to

time-varying functions for relaxation modulus for the three

experiments. The analytical models for each experiment are

different, with its respective set of parameters. Thus, the re-

laxation functions for each experiment are also different. Ex-

ample relaxation functions for the three models are com-

pared in Fig. 3 for 8% gelatin hydrogel. It is seen in Fig. 3(a)

that the instantaneous modulus at time t = 0 is different for

each experiment, but the relaxed moduli nearly converge at

long times, in Fig. 3(b). Two values that can be easily com-

pared between the three experimental techniques are the

zero time (instantaneous), and long time (relaxed) moduli of

the hydrogels. The averaged instantaneous, and relaxed mod-

ulus values are reported in Table 2 by gelatin hydrogel con-

centration for the three experiments.

Fig. 4 illustrates the difference between the elastic

Hertzian solution (based on a parabolic indenter), and an FEA

simulation of spherical indentation on an elastic medium. As

evident from this Fig. 4, the experimental data up to inden-

tation depths of δ/R = 0.15 should be used in estimating the

modulus as there would be a larger estimation error beyond

this when using the Hertzian solution. The bias due to the

geometric approximation of the Hertz solution is plotted in

Fig. 5 for comparison with similar viscoelastic data.

The quasistatic indentation experiment is analyzed at

multiple indentation depths to examine the effect of depth

on the predicted material modulus. To compare trends in the

results from different concentrations of hydrogels with dif-

ferent stiffness, the relaxed modulus from the quasistatic,

GQS
∞ (see Eq. (11)), experiment is normalized by the relaxed

modulus from the shear stress relaxation experiment, GRS∞ .

The shear stress relaxation experiment is assumed to be the

most reliable measure of the relaxed modulus of the hy-

drogels. Thus, a normalized modulus of 1 indicates perfect

agreement between the two tests. Additionally, the inden-

tation depth is normalized by the radius of the indenter to

allow generalization of the results to all indenter sizes. The
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Fig. 2. A single, representative raw data set from each type of experiment with corresponding model fits for 4, 6, and 8% gelatin.

Fig. 3. Examples of the relaxation modulus for each of the three time-dependent experiments conducted on 8% gelatin hyrdogel, where (a) shows the short-time

relaxation behavior especially for the quasistatic test which relaxes very quickly, and (b) shows the long time behavior with relaxed modulus plateaus.
normalized relaxed modulus, obtained from curve fitting ex-

perimental data to different depths, is plotted as a function

of the normalized indentation depth for the three gelatin hy-

drogel concentration in Fig. 5(a–c).

The effect of indentation depth on the normalized modu-

lus from the quasistatic indentation experiment is similar for
all three concentrations of gelatin hydrogel. At small inden-

tation depths (δ/R < 0.16), there is much scatter in the nor-

malized modulus, both at a single indentation depth (indi-

cated by large error bars), and across the different depths (in-

dicated by scatter in the average value at different depths). At

a normalized depth of δ/R = 0.16, the error bar size stabilizes
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Table 2

The instantaneous modulus, and the relaxed modulus from the different tests on 4, 6, and 8% gelatin hydrogels. Instantaneous modulus values

vary greatly, however the relaxed modulus values from different tests show some agreement within a single concentration, with the modulus

from quasistatic indentation approximately 20% higher. N is the number of samples tested, and all modulus units are in Pa. ∗Note: Quasistatic

indentation parameters correspond to an indentation depth of δ = 0.4 mm.

Gelatin concentration Test N G(t = 0) Average ± std. dev. G (t → ∞) Average ± std. dev.

4% (1) Shear stress relaxation 4 752 ± 61 563 ± 29

(2) Indentation load relaxation 3 870 ± 45 616 ± 5

(3) Quasistatic indentation∗ 4 2673 ± 463 677 ± 19

6% (1) Shear stress relaxation 4 1504 ± 94 1144 ± 95

(2) Indentation load relaxation 2 1878 ± 52 1335 ± 47

(3) Quasistatic indentation∗ 4 4341 ± 1841 1458 ± 29

8% (1) Shear stress relaxation 3 3037 ± 127 2340 ± 81

(2) Indentation load relaxation 4 3425 ± 63 2395 ± 88

(3) Quasistatic indentation∗ 4 10038 ± 1994 2868 ± 88

Fig. 4. Difference between the elastic Hertzian solution, and elastic FEA

simulations of spherical indentation. The parabolic indenter assumed in

Hertzian theory results in higher contact forces compared to the spherical

indenter used in FEA at large indentation depths.
to the smallest random error value, and the bias is approx-

imately within the amount of that random error. For com-

parison, the estimated elastic shear modulus, G, from curve

fitting to FEA data is included to show the trend of decreasing

modulus estimates with increasing indentation depth.

4. Discussion

Two types of loading of gelatin hydrogels are examined,

pure torsional shear, and spherical indentation, to find ma-

terial properties that can be compared between individual

tests. Pure shear testing is chosen because in biphasic hydro-

gels it is assumed that shear loading isolates the solid ma-

trix behavior of the material (Hayes and Bodine, 1978). A test

that probes the matrix material properties alone allows sep-

arate examination of an additional viscoelastic mechanism

caused by the flow of interstitial fluid under other loading

conditions. Gelatin hydrogels loaded in indentation demon-

strate an initial stiffness that is higher than that observed

when they are loaded in shear. The greater initial stiffness

observed in indentation experiments is seen in the instanta-

neous modulus values, G(t = 0), listed in Table 2. For each

gelatin hydrogel concentration, the instantaneous moduli
extracted from the two indentation experiments are higher

than those obtained from the shear experiments. The inden-

tation loading produces both shear and hydrostatic strains

within the hydrogel, and therefore it probes a combined stiff-

ness of the two phases arising from the biphasic behavior.

Unlike the instantaneous modulus, the relaxed modulus

of a hydrogel is a property that depends only on the solid

matrix material behavior, and not on the experiment. When

a load is initially applied to a biphasic hydrogel, the intersti-

tial fluid may be pressurized locally causing the material to

appear stiffer. As time passes, the fluid slowly redistributes

throughout the hydrogel, and some fluid may even exude

out of the hydrogel. While the fluid pressure decays, the vis-

coelastic solid matrix also relaxes. After the initial loading,

the material eventually reaches a relaxed state. The stiffness

of the material in a relaxed state, or relaxed modulus, can be

considered as the elastic stiffness after any poroviscoelastic

effects have decayed.

Comparisons of the relaxed moduli extracted from the

shear stress relaxation experiment with those obtained from

the indentation load relaxation and quasistatic indentation

tests show good agreement, as seen in Table 2. The differ-

ences between the shear stress relaxation and load relaxation

experiments is less than 17%, while the difference between

the shear stress relaxation, and quasistatic indentation ex-

periments is larger, with the modulus estimated from qua-

sistatic indentation experiments being 20–28% above those

estimated from shear stress relaxation experiments. The er-

ror in the relaxed modulus predicted from the quasistatic

experimental data is attributed to a simplified material be-

havior assumed when choosing the material model, and pos-

sible effects of varied applied strains in the different experi-

ments. The material model used for quasistatic indentation

is a three-element standard linear solid, but the other ex-

periments require a higher order model to accurately capture

the material behavior. Unfortunately, due to the complexity

of performing curve fitting with a function containing mul-

tiple exponential decays, curve fitting with a more accurate,

higher order model was not performed in this study.

The quasistatic test yields a relaxed modulus that is pro-

portional to that of the shear relaxation test. The relaxed

modulus of hydrogels therefore is a value that can be com-

pared directly between the three experiments studied here.

With the ultimate goal of studying tissues or cell cultures,

the relaxed (long-time or low frequency) material response
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Fig. 5. Bias and random error in the normalized relaxed modulus. The relaxed modulus from a quasistatic indentation test, GQS
∞ , is normalized by the relaxed

modulus from the shear stress relaxation test, GSR
∞ , in order to compare trends between the different concentration of gelatin hydrogel. The average values of GSR

∞
for 4, 6, and 8% gelatin hydrogel are 563 Pa, 1144 Pa, and 2340 Pa, respectively. Error bars are ±1 standard error.
may be the most relevant to the study of cell behavior, since

most cellular processes that occur naturally are governed by

statistical mechanics and occur over minutes or hours.

In quasistatic indentation testing, the depth of indenta-

tion relative to the size of the indenter affects the modulus

estimation. Estimates of the time-dependent modulus made

at small indentation depths (δ/R < 0.15) result in a large scat-

ter between the relaxed modulus measurements for each

concentration of gelatin hydrogel, as shown by the large error

bars in Fig. 5. The random error in the modulus at these small

indentation depths comes from the uncertainty in the con-

tact point, and from the instrumentation noise, which can be

high when compared to the measured force for these small

indentation depths. Dimitriadis, and coworkers found a simi-

lar trend of a large distribution in the estimated modulus val-

ues at small indentation depths during the nanoindentation

of thin elastic films (Dimitriadis et al., 2002). With increased
indentation depth (δ/R > 0.15), the scatter in the estimated

relaxed modulus is reduced when compared to scatter in the

modulus estimates at smaller depths, indicating less sensitiv-

ity of the modulus predictions to the noise in the force mea-

surement at larger indentation depths.

The bias in the estimate of modulus using Hertzian-based

solutions is due to the geometric assumption that the inden-

ter is parabolic instead of spherical. For an elastic medium,

the estimated shear modulus via curve fitting decreases with

increasing indentation, as seen by the trend line for the elas-

tic FEA data in Fig. 5. While a linear trend is not necessar-

ily expected for the bias in estimated modulus, for the range

of depths considered, it seems appropriate. The viscoelastic

solution for quasistatic indentation is based on the elastic

Hertz solution, so a similar geometric assumption is inherent

in the SLS indentation solution. As expected, the increasing

indentation depths in the viscoelastic materials also cause
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a decreasing estimate of the relaxed modulus. The decreas-

ing trend is clearly seen at normalized indentation depths

greater than 0.15, when the random error in the measure-

ment has decreased. The slope of the visible bias (beyond

δ/R = 0.15) is close to that of the elastic FEA trend line, sup-

porting geometric dependence, and material independence

of the bias.

Knowing that the estimate of the relaxed modulus is sub-

ject to random error at small indentation depths, and a bias

at larger depths, the two types of error must be balanced to

arrive at a valid material modulus. Here, the optimal nor-

malized indentation depth is chosen to be δ/R = 0.16 (or

δ = 0.4 mm). For the hydrogels in this study (shear modu-

lus in the range from 600 Pa to 2400 Pa), an acceptable range

for normalized indentation lies approximately between

δ/R = 0.15 and δ/R = 0.25. In this range of normalized in-

dentation depths, the bias due to the geometric assumption

of the Hertzian elastic solution gives an error approximately

less than 8%.

In general, the error in the estimate of modulus grows

with decreasing material stiffness, and therefore decreasing

gelatin hydrogel concentration. The trend of increasing error

can be seen in Fig. 5(a–c) by the size of the error bars for

each gelatin hydrogel concentration. For a given indentation

depth during quasistatic indentation experiments, the softer

hydrogels produce much smaller forces than the stiffer hy-

drogels. The resolution of the 1 kg load cell used in indenta-

tion experiments is 0.01 g or 10−4 N. For small indentation

depth (δ < 0.2 mm) on 4% gelatin hydrogel, the force resolu-

tion was 10% of the peak force. As a result, the sampling rate

for the quasistatic indentation on 4% gelatin hydrogel speci-

mens was increased to 10 samples/s to improve the reliability

of curve fitting especially at small indentation depths.

The most reliable methods for estimating viscoelastic ma-

terial properties generally involve uniform stress (or strain)

that is held constant over time, but with biological materi-

als an idealized test is not always possible. Of the experi-

mental methods examined here, shear stress relaxation is the

ideal choice, as it utilizes both uniform strain, and long test

times to produce the best estimate of the material behavior.

In addition, the pure shear application of strain eliminates

the effect of the interstitial fluid on the measured properties.

Thus, the time- dependent modulus describes the solid ma-

trix behavior. The indentation load relaxation experiment is

a second choice after the shear test, as it does not apply uni-

form strains, but does examine the material behavior over

a long period of time. Indentation relaxation is best when

the geometry of a material does not allow a stress relaxation

test. When shorter test times are necessary, and the geom-

etry does not permit other testing methods, the quasistatic

indentation test is preferred. For example, often 3D cell cul-

tures have small geometries, are confined to well plates, and

the gel properties change with time if the test environment

(e.g. temperature) is not controlled. For the 3D cell culture

application, the quasistatic indentation test is advantageous

over the indentation load-relaxation, and the shear stress re-

laxation tests.

The main limitation of the two theoretical models for

indentation described in this work is the assumption that

the specimen is semi-infinite in height and width. The

indentation specimens were 44.5 mm in diameter and
26–27 mm high, which was nearly semi-infinite for the in-

dentation depths considered. In the work by Dimitriadis et

al. (Dimitriadis et al., 2002), a thickness correction term for

spherical indentation of an elastic medium was developed.

Although the specimen height is very close to being semi-

infinite according to Dimitriadis, the force response is cor-

rected in the analysis of the quasistatic indentation data to

get a more accurate estimate of modulus. In another study

using a punch indenter, a minimum ratio of indenter to con-

tainer diameter of 1:10 was established to eliminate edge ef-

fects (Mooney et al., 2006). The ratio of 5 mm-diameter in-

denter to the 44.5 mm-diameter container is close to that

limit, but the indenter in this study is spherical in shape.

With spherical indentation, a smaller contact area occurs

at indentation depths less than the indenter radius, so the

edges of the specimen should not affect the experimentally

measured force. To study specimens that are significantly

smaller than those in this work, for example hydrogels for

cell cultures, geometric corrections would be necessary. The

Dimitriadis correction accounts for a certain range of sam-

ple heights, and another correction by Chadwick (Chadwick,

2002) can be applied for very thin specimens. However, to

the best of our knowledge no correction for indentation data

has been found to account for radial boundaries when the

indenter, and sample are of the same order of magnitude in

size. To utilize quasistatic indentation tests to measure the

modulus of small cell culture hydrogels, further investigation

into geometry corrections is necessary.

5. Conclusions

The geometry of loading applied to a hydrogel has a dra-

matic effect on the response of the two phases within the

hydrogel. By applying a shear load to a specimen, the solid

matrix response can be isolated, since no fluid flow is in-

duced. Other types of loading, including indentation, probe

a combined response of both phases to varying degrees. A

clear consequence of the build-up of interstitial fluid pres-

sure is a higher instantaneous modulus value measured for

indentation tests over that of shear tests. The instantaneous

modulus is therefore not a good measure of material behav-

ior since the values are test dependent. A better quantity to

assess the true behavior of hydrogels is the relaxed modulus.

The relaxed modulus from a load relaxation test is shown to

agree within 17% of the relaxed modulus from a shear stress

relaxation test. Relaxed modulus measurements from qua-

sistatic indentation tests are found to be consistently higher

than those from shear relaxation experiments. The relaxed

modulus is only dependent on the elastic behavior of the ma-

trix, not on the rate or geometry of applied load.

A reliable estimate of relaxed modulus from quasistatic

indentation requires the viscoelastic analysis of small inden-

tation depths relative to the radius of the indenter. Beyond

approximately 15% of the indenter radius, increasing inden-

tation depths cause a growing bias in the modulus estimate.

At the same time, noise in the measured force and uncer-

tainty in contact lead to larger errors in the modulus estimate

at small depths. Therefore, to avoid significant random errors

and minimize the error due to the bias, an appropriate in-

dentation depth must be chosen for analysis. In this study for

gelatin hydrogel ranging from 600 Pa to 2400 Pa in stiffness



184 K.S. Toohey et al. / Mechanics of Materials 92 (2016) 175–184
(relaxed modulus), and a load resolution of 0.01 g, the accept-

able normalized indentation depth was δ/R = 0.15 – 0.25.
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