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Objective Assessment of Sonographic Quality I:
Task Information

Nghia Q. Nguyen, CraigK. Abbey, and Michael F. Insana*

Abstract—In this paper, we explore relationships between
the performance of the ideal observer and information-based
measures of class separability in the context of sonographic
breast-lesion diagnosis. This investigation was motivated by a
finding that, since the test statistic of the ideal observer in sonog-
raphy is a quadratic function of the echo data, it is not generally
normally distributed. We found for some types of boundary dis-
crimination tasks often required for sonographic lesion diagnosis,
the deviation of the test statistic from a normal distribution can
be significant. Hence the usual relationships between performance
and information metrics become uncertain. Using Monte Carlo
studies involving five common sonographic lesion-discrimination
tasks, we found in each case that the detectability index from
receiver operating characteristic analysis was well approximated
by the Kullback–Leibler divergence , a measure of clinical task
information available from the recorded radio-frequency echo
data. However, the lesion signal-to-noise ratio, , calculated
from moments of the ideal observer test statistic, consistently
underestimates for high-contrast boundary discrimination
tasks. Thus, in a companion paper, we established a relationship
between image-quality properties of the imaging system and in
order to predict ideal performance. These relationships provide a
rigorous basis for sonographic instrument evaluation and design.

Index Terms—Breast imaging, detectability, ideal-observer anal-
ysis, image quality, Kullback–Leibler divergence.

I. INTRODUCTION

I MAGING systems are devices that transport information
from objects being examined to observers of the image who

make decisions. Wagner [1] approached the assessment of data
quality by first partitioning the image formation process into ac-
quisition and display stages (Fig. 1). The sonographic acquisi-
tion stage, where patient information is recorded as radio-fre-
quency (RF) echo signals, is governed by instrumentation vari-
ables including pulse transmission and echo reception proper-
ties up to and including beamforming. The sonographic dis-
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play stage includes any postsummation data filtering, envelope
detection, scan conversion, and gray-scale mapping leading to
final B-mode presentation.
The performance of the imaging system depends fundamen-

tally on the task, i.e., the reason for acquiring data. We can mea-
sure task performance at either stage of image formation by cal-
culating the scalar-valued test statistic of the ideal observer [2].
That calculation requires expression of the visual task in terms
of the likelihood functions. Likelihood functions are conditional
probability densities defining two data classes; e.g., normal and
abnormal. By tracking the information at different stages of
image formation, losses can be evaluated and the instruments
are reconfigured to maximize information transfer [3]–[6].
Wagner and Brown [3] proposed the system performance

metric , the signal-to-noise ratio for the ideal observer,
which is composed of moments of the test statistic. They
expanded for low-contrast tasks into a Fourier basis
that separated properties of the instrumentation from the diag-
nostic features. Their integral expression for included
a quantity known as the noise equivalent quanta (NEQ) that
is composed of frequency-dependent factors defining contrast
resolution, spatial resolution, and acquisition noise. Further, in
situations where the test statistic is normally distributed,
equals the detectability index found from the area under
the receiver operating characteristic (ROC) curve (AUC) of
the ideal observer. Thus, ideal task-based performance became
predictable by measuring the sensitivity of the instrument in
the spatial frequency channels of a diagnostic feature. These
relationships allow imaging systems to be designed to maxi-
mize delivery of specific clinical information, and they form
the foundation for medical image quality assessments [2], [7].
Smith et al. [8] applied similar approaches to display-stage

sonography to derive an ideal observer test statistic for low-con-
trast lesion detection in B-mode imaging. To manage the non-
linear display-stage processes, stringent limiting assumptions
were imposed to find in the image domain. The assump-
tions included no acquisition noise, shift-invariant focal-zone
impulse responses, and speckle spot sampling rather than pixel
sampling, which limited the analysis to the detection of large-
area low-contrast lesions. They discovered how properties of
the transducer, lesion contrast, and speckle influence lesion de-
tectability. Their ideal-observer analysis of B-mode image data
guided subsequent work in speckle reduction [9], beamforma-
tion [10], and postprocessing [11].
As an alternative to working in the echo-envelope domain of

the display stage, we have applied the ideal-observer approach
to the study of RF echo signals in acquisition-stage sonography
(Fig. 1) [12]–[14]. RF echo-signal analysis is practical since
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Fig. 1. (a) Illustration of sonographic system model and image quality assessment analysis. We study binary decision tasks where the signal (lesion-feature con-
trast) is known exactly (SKE) and the random background (speckle and acquisition noise) is known statistically (BKS). Instrument properties that influence the
acquisition and display components of the imaging system are listed. (b) Variance profiles are shown for five visual tasks, including low-contrast detection (Task
1), eccentricity (Task 2), hard/soft boundary (Task 3), spiculation (Task 4), and hypoechoic/anechoic (Task 5). specifies lesion contrast and geometry, while

indicates the task contrast.

many systems provide users with RF echo frames. More fun-
damentally, acquisition-stage analysis enables the use of linear-
system models that reduce the limiting assumptions required
in B-mode analysis. Measuring observer performance at both
stages has allowed us to track the efficiency of information flow
through the entire image formation process [12]–[14].
The goal of this paper is to define task information for breast

sonography and find its relationship to ideal-observer perfor-
mance. These results are the motivation for further study, in a
companion paper [15], where we derive a spatial-frequency-do-
main expression analogous to NEQ that forms a basis for sono-
graphic system design and objective evaluation.

II. IDEAL OBSERVER AND PERFORMANCE METRICS

This section briefly summarizes the components used to de-
fine the performance of the ideal observer at simple two-class
discrimination tasks. These components are applied in later
sections to derive a link between performance and the Kull-
back–Liebler divergence, an information-theoretic measure of
class separability. Additional background on the application of
ideal-observer analysis to sonography can be found in previous
publications [8], [12], [14].

A. Echo Models

Vector represents all of the RF echo data from one 2-D
image frame. For the purpose of this work, it consists of sampled
scan lines created by beamforming over each transmit/receive
sub-aperture, all concatenated into a single column vector for
computational convenience. The RF data are modeled as a noisy
linear transformation of a 2-D scattering object. We will repre-
sent the continuous object function by a set of sampled points
, also arranged as a column vector, under the assumption that
this spatial sampling is well above the pass band of the imaging
system. The RF echo signal is related to the object through a
noisy linear system [17]

(1)

where is the imaging system matrix and vector represents
signal-independent acquisition errors in the RF echo signal. The
th element of is modeled as zero-mean white Gaussian noise
with distribution . The acquisition noise vari-
ance is adjusted to produce an echo signal-to-noise ratio, ,
of 32 dB in the background regions surrounding lesion features.

With total RF signal samples and total object function
samples, is with rows composed of shifted pulse-echo
spatial sensitivity functions and columns composed of the asso-
ciated point-spread functions [17]. In this study, the pulse-echo
impulse responses are generated using Field II acoustic simu-
lation software [18], [19] from parameters selected to model a
1-D linear array on the Siemens Antares system [20]. For com-
putational convenience, the impulse response is assumed to be
shift invariant throughout the frame. A B-mode image vector
is produced when nonlinear display-stage operator is applied
to the echo signal, [17]. Dimensions of and are
usually different, and is reordered to form a 2-D image array
for viewing.

B. 2-D Features and Discrimination Tasks

Physicians look for specific sonographic features when de-
tecting and diagnosing cancerous breast lesions [16]. For sim-
ulation studies designed to optimize signal acquisition and pro-
cessing, we have developed a panel of simple visual tasks based
on the features used to detect and classify malignant and benign
masses. Each feature imposes different statistical properties on
the object vector , as described below, depending on whether
it is a member of the malignant or benign class. Task 1 requires
detection of a low-contrast hypoechoic lesion, and Tasks 2–5 in-
volve discriminating subtle features representing low- and high-
contrast lesions [see Fig. 1(b)].
Task difficulty is controlled by changing the feature param-

eter associated with each task. For example, in Task 1 the feature
parameter controls the reduction in scattering intensity within a
fixed lesion area. When this parameter is increased, a more ob-
vious hypoechoic lesion is simulated, resulting in higher detec-
tion performance. Observers are made fully aware of all visual
task features.

C. Object Contrast

In this section, we briefly explain why object contrast in
pulse-echo sonography is modeled as a zero-mean random
field with a variance that changes spatially according to the
backscatter intensity [23]. As compressional ultrasound waves
travel through glandular breast tissues, most of the wave energy
is absorbed. A small portion of the transmitted pulse energy
is backscattered at surfaces of tiny regions in tissue where
the acoustic impedance varies. The scattered waves energy is
coherently detected by the transducer and beamformed to give
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. Tissue structures of greatest interest for lesion discrimination
are the microvasculature, cell nuclei, and extracellular protein
fibers composed of collagen and elastin [21]. Many of these
structures are poorly organized and smaller than the ultrasonic
wavelength, and thus soft tissues are often modeled as diffuse,
weakly-scattering random media (Rayleigh scatterers) that
generate incoherent backscatter [22]. Sonographic contrast is
generated locally as the disease process modifies the size and
density of tissue scatterers and/or interstitial fluid pressure.
In reality, tissues also contain specular and other coherent

scattering components that we recognize in sonograms as gross
anatomical features. We assume in our study that the backscat-
tered energy from these components is negligible compared
with the incoherent scattering energy.
We model breast lesions in 2-D as areas of lower scatterer

number density (smaller object variance) within a uniformly
scattering background. For object scattering function ,
the geometric shape of a simulated lesion is generated by mul-
tiplying a spatially uniform variance by a lesion-feature tem-
plate, , such as those illustrated in Fig. 1(b). Mathe-
matically, we have ,
which is rearranged to form column vector . The covariance
matrix for a nonstationary, multivariate-normal object vector

is , where is the iden-
tity matrix and is a diagonal matrix rearrangement of
sampled at the same points as the object. Lesion shape and con-
trast are defined by . To generate the two classes of data needed
for observer testing, we generate and to represent, re-
spectively, the benign and malignant features diagrammed in
Fig. 1(b) for five tasks related to lesion diagnosis.

D. Ideal Observer

Since represents one frame of the RF echo data recorded
from , the covariance matrix of is found by passing
through the linear imaging operator and adding acquisition
noise. For the th class of data, where , we find

(2)

Denoting the MVN echo-data density , where

the ideal observer operating on of unknown class is given by
the log-likelihood ratio [2]

(3)

Reducing (3) and eliminating terms unrelated to because
they do not modify discrimination performance, it was shown
that [12]

(4)

This scalar test statistic is quadratic in [24] because the task
feature is encoded in covariances via . Superscript de-
notes vector/matrix transpose.
In the two-alternative forced choice (2AFC) experiments

used in our study, two sets of data are presented to the observer

at the same time; is drawn from and from
[2]. Equation (4) is used to compute and , and the
larger of the two values is assigned class . The decision is
correct when and otherwise incorrect.

E. Performance Metrics

Let represent the probability density of
when class is true. In Monte Carlo evaluations, these den-

sities are estimated from histograms of the measurements ob-
tained after a power series is applied to (4) to compute the in-
verse covariance matrices. The degree of overlap between
and is one measure of the separability between
and . The probabilities of detection and false alarm

at decision threshold are functions of [25]

(5)

An ROC curve plots as a function of for all threshold
values . Noting that and as

, the area under the ROC curve is [6]

(6)

AUC is the probability that randomly drawn values of , given
that the signal is present, will be larger than those when the
signal is absent. It is a scalar with values between 0.5 and 1.0,
and it equals the proportion of correct responses resulting
from a 2AFC experiment [25]. An observer adopting the ideal
strategy of (4) will maximize AUC to achieve maximum dis-
crimination performance [2]. Another measure of class separa-
bility, suggested by Wagner and Brown, is the signal-to-noise
ratio for the ideal observer [3] that is obtained from moments
of

(7)

where and are the means and variances of con-
ditioned on data class being true. is labeled detectability
index in the psychophysical literature [7], [25].
Detectability index , however, is defined directly from

AUC using the expression [6]

(8)

where denotes the error function and is its in-
verse. Under normality, the three metrics are simply related,

, but over difference ranges,
corresponds to [7].

is defined the same way for non-normal since remains
monotonic with AUC, but its interpretation as a signal-to-noise
ratio may be compromised depending on the degree of devia-
tion from normality.
For sonography, (4) shows that has a quadratic form

. The distributions are difficult to char-
acterize other than to say they are the difference between two
correlated generalized- distributions each with degrees-of-
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Fig. 2. (Left) The ROC curve displays as a function of . The shaded
area is . (Right) Corresponding plots of and are
shown as functions of the decision threshold . The area between these
two curves equals the Kullback–Leibler divergence, . These data are from one
of the Monte Carlo studies displayed in Fig. 3.

freedom [24], [26]. Applying the central-limit theorem to a gen-
eralized distribution, the rule of thumb is that it will approx-
imate a normal distribution when . We do not have a rule
for except to say each is approximately normal when there
are many independent data samples within the feature region to
be detected.

III. TASK INFORMATION

Our intuition leads us to believe that performance and class
separability are related. It should be possible to predict the per-
formance of the ideal observer for quadratic tasks based on the
information contained in echo data if class separability is a
surrogate for .
The Kullback–Leibler divergence J quantifies the expected

information in needed to discriminate in favor of one class
over the other [28]. is an information measure of class sep-
arability. It makes no assumptions about the forms of or

, and we will show that it equals under normality. is
a scalar SNR-like quantity defined as [31]

(9)

where the integration is over the sample space of the data.
To relate and AUC, we show in Appendix A that for the

ideal observer defined in (3)

(10)

This equation offers a graphical approach to measuring from
ideal-observer responses whenever and can be
found. Consider Fig. 2 that illustrates (10) and compares that
area with another area . Both plots, which are
generated from the same measurement data, show areas that in-
crease with greater class separability and both depend on
and . From (6), it is straightforward to show that

(11)

Comparing (10) and (11), we see that the relationship between
and AUC depends on . Areas and each quantify task

information but in different coordinate systems.
The relationship between and AUC is simple if is a

normal density. Barrett [6] showed that if is normal for

either class, the other must be normal with the same variance.
Further .
By using a Taylor series expansion of , we show inAppendix B
that the normality condition allows to be expressed in terms
of moments of

(12)

which reduces to (9) when you apply the Barrett relations stated
above (12). From (8), we find that normality ensures that

(13)
These relations hold for any imaging modality where a test
statistic derived from likelihood ratios is normally distributed.
When normality cannot be assumed, the relationship between
AUC and may still be determined, but numerically using
(10). In the next section, we conduct Monte Carlo studies
involving the five breast-lesion tasks described in Section II-B
and Fig. 1(b). From those data, we compare performance
metrics , , and to probe the effects of deviations
from normal on their agreement.

IV. MONTE CARLO STUDIES

A. Numerical Results

The main challenge to calculating from (9) is computing
matrix inverses and determinants. Many of the difficulties are
avoided using (10), since determinants enter the expressions for

and as additive constants in the log-likelihood ratios.
Their influence is to shift both curves in Fig. 2 (right) along
by the same interval, and therefore they do not affect the area
calculation.

, , and were each estimated numerically from
2AFC observer studies. Studies included simulations of 2000
realizations of echo-data pairs generated per contrast for each
task. Histograms of and composed from the 2000
measurements formed estimates of and , respec-
tively. was computed from AUC by applying (8).
was found from moments of via (7), and was found from
(4) using up to 250 terms in the series expansions of so that
values converged within 0.001%. was computed numerically
from (10) using and that were estimated from
histograms of . To control for case variability, we used the
same RF echo data pairs to calculate the three figures of merit
at each feature contrast. Plots of the results for the five tasks
are found in Fig. 3.
We tested the significance of differences among metrics ,

and as follows. First we assumed AUC follows a bi-
nomial distribution, where , , so that
the standard error is about 2% of the mean value

. The corresponding standard errors in are about 3%
for as found by combining the information
above with (8). For each task, the range
corresponded to ; we avoided
since . Not knowing the error distributions for and

, we applied bootstrappingmethods [29] (resampling with
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Fig. 3. Comparisons of metrics , , and for the five visual tasks illustrated in Fig. 1. Each of the three curves in a graph are plotted as a function of
task contrast. The legend in the plot of Task 5 applies to all plots. Error bars indicate .

replacement) to the ideal-observer 2AFC responses to estimate
the corresponding standard errors for . Frommeans
and standard errors of the three metrics, we computed their
95% confidence intervals. Two metrics are considered equiv-
alent when their confidence intervals overlap.
Fig. 3 results show that the three metrics are clearly equiva-

lent for large-area Tasks 1 and 5. Consequently, in these cases,
are well represented by a normal density. In Tasks 2 – 4,

however, diverges from and with differences up to
14.5% for Task 2. Although the metrics are statistically equiv-
alent for Task 3, agreement is at the limits of the criteria. Task
areas, displayed in Fig. 1(b) as , are largest for Tasks 1 and 5,
smallest for Tasks 2 and 4, and in between for Task 3. In all five
tasks, values are statistically equivalent to . We attribute
observed differences to sampling and numerical integration er-
rors. Thus for the visual tasks considered, is more closely
approximated by than .

B. Normality Condition

Test-statistic normality plays a central role in equating task
information with observer performance. When densities
are normal, the imaging operator is linear, and is a linear
function of , e.g., in standard mammography, the resulting test
statistic density is normal and the performance metric re-
lations of (13) hold. In common sonographic situations, is
normal, is a linear operator, but is a quadratic function
of , which results in being generally non-normal. Nev-
ertheless from the data of Fig. 3 we see that for large-area tasks,
those where the feature area is large compared to the average
speckle-spot area, the central-limit theorem applies and
are approximately normal. In boundary discrimination tasks 2
and 4, where task areas are smallest, there are too few indepen-
dent data samples provided to the ideal observer to assume the
central-limit theorem applies. In that situation, we found that

underestimates ideal performance given by .
To demonstrate the effects of task area on normality, we re-

peated the Monte Carlo experiments of Fig. 3 twice; in Experi-

ment 1, lesion contrast was reduced and feature area increased
to roughly maintain similar overall performance via AUC. In
Experiment 2, lesion contrast was increased as feature area de-
creased. For example, a larger feature area in Task 2 is obtained
by greater elliptical eccentricity in , and, in Task 4, each sim-
ulated spiculation in is longer. In Experiment 1, we expect
the three metrics to be exactly equivalent since larger task areas
increase the degrees-of-freedom over that found in the data of
Fig. 3. In Experiment 2, we expect the performance metrics will
diverge more than in Fig. 3 as smaller task areas reduce the de-
grees-of-freedom. Note that lesion contrast, defined as ,
is fixed within an experiment but different between the two ex-
periments, while task contrast, which is proportional to , re-
mains an independent variable as indicated in the plots.
The results of both experiments are displayed in Fig. 4. Ex-

periment 1 results are shown in the top row (low lesion contrast,
large task-contrast area). The three metrics tightly converge for
both tasks, and a histogram of the test statistic results for class
0 data appears to fit a normal pdf (quantile–quantile plots are
linear with correlation coefficient ). Experiment 2
results (high lesion contrast, small task-contrast area) can be
found in the bottom row of Fig. 4. The three metrics diverge,
even at low task-contrast values, as the histogram of test-statistic
measurements deviates from normal (quantile–quantile plots fit
a linear model with .) Large deviations from normal
show that ideal-observer performance, via and , are
underestimated relative to task information. However, is
clearly more affected than .
Equation (9) defines the task information contained in echo

data, while (10) shows that we can measure this information
using ideal-observer analysis from estimates of the probabilities
of detection and false alarm . Although it is not imme-
diately obvious how to design the best diagnostic system based
on these results, there are clues. Performance is increased by
providing observers with as many independent samples of the
task as possible. This condition is achieved by increasing spa-
tial resolution to minimize the echo-data correlation area, i.e.,
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Fig. 4. Two experiments were conducted to compare the metrics , , and for Tasks 2 and 4. In all cases task contrast, i.e., , was varied as indicated
by the abscissas. However, in Exp. 1 (top row), lesion contrast, , within each image was set to a low value (10%) while the spatial extent of the feature
was expanded to provide a task area larger than that of the data in Fig. 3. In Exp. 2 (bottom row), lesion contrast was set to a high value (99%) while the spatial
extent of the feature was reduced to provide a task area much smaller than that of data in Fig. 3. The goal was to keep overall performance rough equivalent to
the comparable data in Fig. 3. The upper right histogram is for the test-statistic of Task 4 from low lesion-contrast measurements, specifically , along with
a Gaussian curve having the same sample mean and variance. The lower right histogram is for the test statistic of Task 4 from high lesion-contrast measurements
along with the same Gaussian curve. The legend applies to all plots, and error bars denote one standard error. Note that the range of object contrast changes between
plots to draw the reader’s attention to differences.

produce fine speckle patterns. Task features clearly stand out
from the noise as contrast resolution and echo SNR increase. In
a companion paper, we discover how these features manifest as
coupled instrument parameters that may be adjusted to maxi-
mize diagnostic performance.

V. CONCLUSION

A designer’s goal is to maximize observer performance. We
found that the contrast mechanism of an imaging modality
will fundamentally influence the ideal observer’s strategy and
performance. In sonography, where the test statistic is a
quadratic function of the echo signal , can have a non-normal
distribution for small-area discrimination tasks. Yet, even for
the high-contrast boundary-discrimination problems examined,
class separability in the recorded RF echo data, as measured by
, closely approximates ideal performance via . However
the deviation of from and was significant. We
conclude that the assessment of sonographic quality should be
based on or its surrogate but not on .
In a companion paper [15], we derive the acquisition infor-

mation spectrum (AIS) for sonography from a spatial frequency
expansion of in a manner analogous to the generalized noise
equivalent quanta (GNEQ) spectrum that has been so useful for
designing radiographic systems [7]. AIS describes how instru-
ment properties couple to clinical task spectra to predict ideal
performance.

APPENDIX A
RELATION OF TO THE AREA BETWEEN DETECTION

AND FALSE-ALARM CURVES

This appendix derives (10) that relates the to the area be-
tween the detection and false-alarm probability curves as func-

tions of the decision threshold. Integrating by parts the right-
hand side of (10) provides us

(A1)

To evaluate the first term on the right-hand side of (A1), we
apply the Chernoff bound under the assumption of finite mo-
ments to obtain [30]

(A2)

where is themoment-generating function for the th class
of data, given by [6]

(A3)

in which is the pdf of the test statistic underlying
class .
For , since the decrease in is

much faster than the increase in , remains un-
changed, therefore, . Similarly, , and

as .
For , by changing variable to , the first term

on the right-hand side of (A1) can be written as

(A4)

By noting that is also a log like-
lihood ratio and , therefore, the Chernoff bound still
can be applied to and . Hence, we have

as .
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Thus, there is only the second term left in right-hand side of
(A2). Combining with

(A-5)

the right-hand side of (A1) becomes

(A6)

in which the last expression is obtained by changing the variable
in the integral from to . Because is the density condi-
tioned on the data class being true, the integral can be written
as

(A7)

Combined with the definition of in (9), we obtain (10).

APPENDIX B
RELATION BETWEEN AND MOMENTS OF

In this section, we relate to the moments of the log likeli-
hood ratio under a normal distribution for . We invoke
the exponential family of distributions [31]

(B1)

for . is defined as the moment-generating
function for [6], but in (B1) it serves as a normalization
constant for pdf .
Denoting as another exponential family for under-

lying each for data , it can be shown that if is
normally distributed, all distributions of are necessarily
normally distributed with the same variance [6].
The moment-generating function underlying

can be written as

(B2)

in which the second expression is obtained by combining with
(B1). The corresponding characteristic function for is

(B3)

Comparing (A3) and (B3) gives us

(B-4)

Replacing and combining with (B4), we obtain

(B5)

Taking the inverse Fourier transform of (B5), we have

(B6)

(B6) shows a relation among distributions of family . Let
given have a normal density

(B7)

where and are the mean and vari-
ance. Substituting (B7) into (B6), we have

(B8)

where is a moment generating function
[2]. Thus, is also normal with variance .
This result is consistent with the findings of Barrett et al. [6];

it describes a general property of any distribution in the family
of including .
To derive (12), we apply the cumulant-generating function

[2], [6]. Taking its first derivative we obtain

(B9)

Combining with (B1), the second expression in (B9) is recog-
nized as , the conditional mean of underlying [6]. By
denoting , we obtain

(B10)

Taking the derivative of (B10), we have

(B11)

The integral in (B11) is the secondmoment of given .
Therefore

(B12)

Equation (B12) means that for or
is a continuous and strictly monotonic function in that range
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of 0 to . We define the Kullback–Leibler divergence
between and as

(B13)

At , , the divergence defined in (9).
From (B13), is also considered as a function of . De-

noting , we apply a second-order Taylor series
expansion of at to obtain

(B14)

where is some value between 0 and . The last term of (B14) is
obtained by combining with the property of which is con-
tinuous and strictly monotonic in the range of . Derivatives
of are given by

(B15)

With , we take the derivative of both sides
to have . Since is a
constant, so that and the second line of
(B15) becomes

(B16)

Evaluating other derivatives of at , we have

(B17)

Thus or in (B13) is simplified to

(B18)

At , we have

(B19)

With , , and , we obtain (12).
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