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An Adaptive Filter to Approximate the Bayesian
Strategy for Sonographic Beamforming

Nghia Q. Nguyen*, Craig K. Abbey, and Michael F. Insana

Abstract—A first-principles task-based approach to the design
of medical ultrasonic imaging systems for breast lesion discrim-
ination is described. This study explores a new approximation
to the ideal Bayesian observer strategy that allows for object
heterogeneity. The new method, called iterative Wiener filtering,
is implemented using echo data simulations and a phantom study.
We studied five lesion features closely associated with visual
discrimination for clinical diagnosis. A series of human observer
measurements for the same image data allowed us to quanti-
tatively compare alternative beamforming strategies through
measurements of visual discrimination efficiency. Employing
the Smith–Wagner model observer, we were able to breakdown
efficiency estimates and identify the processing stage at which
performance losses occur. The methods were implemented using
a commercial scanner and a cyst phantom to explore development
of spatial filters for systems with shift-variant impulse response
functions. Overall we found that significant improvements were
realized over standard B-mode images using a delay-and-sum
beamformer but at the cost of higher complexity and computa-
tional load.

Index Terms—Breast sonography, ideal observer, image quality,
iterative Wiener filter, task-based design.

I. INTRODUCTION

T HE computational speed and configuration flexibility of
current digital beamformers now make it realistic to con-

sider implementing more complex alternatives to the current
standard of delay-and-sum (DS) beamforming [1], [2]. Adap-
tive [3], [4], minimum error [5], and inverse operator [6] beam-
forming strategies are a few of the methods now being explored
for their ability to improve spatial and contrast resolution while
preserving the echo signal-to-noise ratio (SNR) [7], [8]. Beam-
forming refers to any modification of the amplitude and phase of
transmitted and received array-element RF signals applied be-
fore envelope detection. This includes any pre- and post-sum-
mation filtering. Beamforming is primarily responsible for de-
termining the spatial impulse response of the imaging system
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that ultimately limits the diagnostic information presented to ob-
servers.

This research uses task-based methods to assess adap-
tive sonographic signal processing techniques applied to
channel-summed radio-frequency (RF) echo signals. The tasks
used for the study are chosen to represent features used to dis-
criminate malignant from benign lesions in breast sonography.
Our approach utilizes performance in these discrimination tasks
to find optimal signal processing strategies.

Task based assessment of performance uses probabilistic
models of tissue properties and the subsequent acquisition of
signals as the basis for task performance [9], [10]. The ideal
observer makes use of the statistics to optimally perform a
detection, discrimination or more complex task [11], [12]. For
this study, multivariate Gaussian models are used to represent
RF data from malignant and benign classes [13], [14], and the
optimal test statistic—the ideal Bayesian observer—is derived
from the ratio between probability density functions (pdf) of
the two classes. The ideal observer operating on echo signals
provides an upper bound for task performance against the other
observers, including trained humans. Thus it provides a mea-
sure of the efficiency for transferring diagnostic information
through the image formation process. Our contribution has been
to analyze the log-likelihood ratio computed for key diagnostic
features of breast cancer diagnosis, and interpret the results as
optimal strategies for transferring diagnostic information from
echo signals into sonograms.

A practical challenge to computing ideal-observer test statis-
tics is high dimensionality. The process requires inversion of
two large covariance matrices. Brute-force inversion methods
are rarely fruitful, so iterative methods are often necessary. In
the initial presentation of this method, it was shown how these
large covariance matrices could be partitioned into stationary
and nonstationary components in order to expand the matrix in
a power series [14]. A key theoretical finding of the analysis was
that the first-order power series approximation is equivalent to
a stationary Wiener deconvolution filter applied to the channel-
summed RF signals. The resulting envelope images yielded a
measurable improvement in performance when the task was dis-
criminating low-contrast lesion features. However, performance
was reduced for high-contrast lesions, even if the discrimina-
tion task is itself low contrast, specifically when observers were
asked to discriminate anechoic and hypoechoic lesions. These
previous findings suggested that, for imaging situations where
there are large signal heterogeneities, filters must adaptively
tune to the echo statistics wherever there is diagnostic informa-
tion.
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Fig. 1. Graphical representation of the process to generate sonographic images. B-mode images are formed using conventional delay-and-sum beamforming,
whereas WFB-mode images include an additional Wiener filtering step applied before envelope detection.

This paper describes an adaptive filter that better matches the
optimal processing of the ideal observer. A binary segmentation
is used to modify the Wiener filter to local statistics. Observer
performance results show enhanced performance for all five of
the diagnostic features examined when compared with the DS
beamformer but with additional computational overhead. The
concepts are demonstrated on a commercial system by imaging
a tissue-mimicking phantom where results include a realistic,
shift-variant model for the system impulse response.

II. METHODS

A. Numerical Modeling

The process of image formation is depicted graphically
in Fig. 1. Incoherent tissue scattering is considered to be a
zero-mean Gaussian process represented by the function ,
where represents spatial position. We approximate the con-
tinuous scattering function by a vector of sampled points .
The imaging system maps object into an echo data vector

. Image formation in pulse-echo ultrasound is well approxi-
mated by a linear transform under the first Born approximation
[15]. Specifying the system by matrix , we approximate
the continuous-space-to-discrete-time linear operator [16].
For the purposes of this work, are the channel-summed RF
signals that comprise the A-lines before envelope detection.
B-mode image data, denoted by the vector of pixel values ,
are obtained from through a nonlinear transform involving
demodulation and scan conversion. We denote this process by
the nonlinear operator .

In this work, the vectors and represent data in the scan
plane of a 1-D linear array transducer. We will concentrate on
the effect of filtering the RF echo signals before envelope detec-
tion. This can be thought of as applying a filtering operator

before envelope detection. These processes are summarized by
the equations

and either

where the additive component represents the system noise,
modeled by an independent Gaussian process . Since

is approximated by the matrix , the first equation can be
written in terms of a matrix multiplication, given by

(1)

For the purpose of simulation, object vectors should be simu-
lated numerically by generating with very high sampling fre-
quencies for mimicking a convolution of analog signals. The
output data is then downsampled to get the pixel size of a com-
mercial system. In that case, and are not the same length and

is a rectangular matrix of dimensions , where
. However, for a band-limited impulse response and fixed echo

SNR, convolving before or after downsampling gives the same
simulation results. Therefore, and can be the same length,
which results in a square matrix for . The th row of is the
spatiotemporal impulse response that yields . Rows con-
tain different impulse responses when modeling a shift-variant
system. However, under the assumption of shift invariance,
is a block-Toeplitz matrix, which provides advantages for com-
putation.

We chose sampling intervals for 2-D signals that were
0.02 mm in range (corresponding to 40 Msample/s rate and
sound speed mm ) and 0.2 mm in cross range
(corresponding to the array pitch). The data were reordered to
obtain column vectors for , , and in (1). The final B-mode
image is interpolated in cross range to render images for
display with a square 0.02 mm pixel size. The interpolation
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does not alter the information content of the envelope image,
but mimics the final step of demodulation from RF data to
B-mode images in ultrasound imaging systems.

We will consider a variety of discrimination tasks in which
objects are associated with one of two classes, “Benign” (class
1) or “Malignant” (class 2). All task information is contained in
the covariance of the object vector since we consider only inco-
herent scattering. The object covariance matrix is nonstationary,

, where is the variance of a Gaussian process
and is a deterministic diagonal matrix for the th class of data.
The diagonal elements of specify the relevant object com-
ponents that define each class. For example, the “echogenicity
map” in Fig. 1 shows the diagonal elements of (the class, ,
is arbitrary in this case) plotted as a 2-D image. In this case the
covariance matrix defines a circular hypoechoic lesion.

B. Pulse-Echo Impulse Response

Pulse-echo impulse responses were generated by the Field II
program [17], [18]. System features were modeled after the
VF10-5 linear array probe on the SONOLINE Antares System
(Siemens Medical Solutions, Mountain View, CA). The array
had 192 elements of dimensions mm separated by a
0.02 mm kerf, an element pitch of 0.2 mm, and a 96-element ac-
tive aperture on transmit and receive. The f/2 in-plane aperture
had a 40-mm transmit/receive focal length. In elevation, the f/5
aperture had a focal length of 25 mm. We applied a two-cycle
excitation voltage and measured a 53% pulse-echo bandwidth
about a 7.0 MHz center frequency. RF waveforms were sam-
pled at 40 Msample/s. The system matrix was assembled
from modeled impulse responses for this system. Except where
noted, one matrix was used to both simulate and filter echo data.

C. Discrimination Features

Consultation with a radiologist yielded a panel of five breast
lesion features used for sonographic diagnosis [14], which
is based on the BIRADS atlas [19]. Features became visual
discrimination tasks by defining a malignant and benign
matrix pair for each. Listed in order of malignant and benign,
Task 1 involved detecting a low-contrast hypoechoic lesion
versus a no-lesion background; Task 2 required discrimination
of an elongated eccentric lesion from a circular lesion; Task 3
was discrimination of a soft, poorly defined boundary from a
well-circumscribed boundary; Task 4 required discrimination
of spiculated boundary irregularities from a smooth circular
boundary; and Task 5 involved discriminating a very weakly
scattering hypoechoic interior from an anechoic interior. Tasks
1 and 5 challenge the system to image large-area diagnostic
features while 2-4 define lesion boundary features. Task 5 was
distinct in that it was the only lager-area, high-contrast lesion
involved in a discrimination task. Variance maps of the five
tasks were graphically illustrated ([14, Fig. 2]).

D. Wiener Filtering [14]

Multivariate normal processes remain multivariate normal
following linear transformations. Thus, passing the object
through the noisy linear transformation in (1) results in another

Gaussian process for each class. The class covariance matrix
for the RF data is given by

(2)

The zero-mean MVN process characterizing under the two
class hypotheses are

(3)

The covariance matrices still capture all the relevant statistics of
task performance, but now they are not diagonal because of the
influence of the imaging system via .

The test statistic quantifying the ideal-observer response is
given by the log-likelihood ratio [14], [20]

(4)

where is the probability density function for the data
given the th condition. A larger value for this scalar variable
indicates a greater likelihood for condition 2 than condition 1.
An observer who adopts this strategy uses the data to maximize
the area under the receiver operating characteristic (ROC) curve,
and thus is referred to as the ideal observer for each of the dis-
crimination tasks.

For shift-invariant approximated by a circulant matrix,
we can separate each matrix into stationary and non-stationary
components, respectively . Expanding the
matrices in a power series and truncating after the first term we
have [14]

(5)

Consequently the linear approximation to (4) is

(6)

The factor indicates that a Wiener filter is applied to
the echo signal. However the filter depends on the stationary co-
variance , which does not contain task information (see the
Appendix). We named this the stationary Wiener filter to differ-
entiate it from the adaptive filter described in the next section.
An envelope generated by first Wiener filtering RF data is re-
ferred as a WFB-mode image.

E. Iterative Wiener Filtering

When the echo SNR varies significantly in the field of view,
as it does for the high-contrast lesions in Task 5, a stationary
filter cannot be tuned to all regions simultaneously. This
section describes a filter that adapts to spatially-varying echo
SNR conditions.

Instead of separating covariance matrix components into sta-
tionary and nonstationary components, we form average and
difference components, respectively

(7)
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Fig. 2. (a) Segmentation of a WFB-mode image (linear scale). (b) Comparison
of segmentation results (gray levels) to the echogenicity map � (white ellipse).

where

As with the stationary filter, we expand the matrices in a power
series and truncate after the first term to find

(8)

The linear approximation to is now

(9)

Equation (9) suggests that the filter be applied to the
echo data, where the average covariance between two states
is applied instead of the stationary background covariance.
The advantage of this change is to allow the signal strength to
vary significantly within any one image provided differences
between compared images remain small. The task specificity
is designed into this beamformer. A disadvantage of (9) is that

is the covariance matrix of a nonstationary process, so we
cannot use Fourier techniques to quickly compute its inverse.

The power series approach may be applied to decom-
pose into stationary and non-stationary components,

, yielding an iterative formula for
given by

and

(10)

The iterative scheme is initialized by .
Equation (10) begins with the stationary Wiener filter, and it-
eratively converges to using the power
series inverse approximation for . We refer to the result as
the iterative Wiener filter and to the images as IWFB-mode im-
ages. Twenty iterations were required to achieve an incremental
change 0.01%. Thus IWFB-mode images can adapt to the task

as specified by provided that is known. and are es-
timated through image segmentation as we now describe.

F. Segmentation

We adopted a segmentation algorithm that makes use of a
Markov random field (MRF) model. The core of the method
is the adaptive clustering algorithm proposed by Papas [21] as
applied to B-mode image data to be segmented into two regions:
lesion and background. For as the pixel value at location

, determine the region , where indicates lesion or
background. We employ the maximum a posteriori (MAP) rule,
which seeks to iteratively maximize the posterior probability
density, . From Bayes’ theorem, is proportional to
the product of the prior density of the region process, , and
the likelihood density for finding gray level given region ,

(11)

where is a normalization constant. Applying the MRF model,
we assume prior is given by a Gibbs density [22], [23],
while likelihood has a Gaussian distribution with mean

and variance . The algorithm “adapts” to the image data
by updating and after each iteration.

Ashton et al. [24] successfully applied the algorithm to
segment ultrasound B-mode images despite the Rayleigh
pdf of B-mode speckles. They decomposed the image data
into multiple resolution layers, and then invoked the central
limit theorem to assume pixel values at the lowest level were
described by a Gaussian pdf. Segmentation was applied at suc-
cessively higher resolution layers through a computationally
intensive process.

Our approach is to segment the logarithm of WFB-mode
pixels instead of B-mode images. Because Wiener filtering
reduces pixel correlation, we find log WFB-mode pixels are
well represented by a Gaussian pdf, allowing to be quickly
and effectively segmented. Fig. 2 shows an example where a
two-region WFB-mode image was segmented. Comparing the
segmented image to the original echogenicity map we can ob-
serve the segmentation errors that will reduce the effectiveness
of IWFB-mode processing. Segmentation errors are primarily a
problem for tasks involving discrimination of lesion boundary
features.

The pixel whitening effects of the Wiener filter allow us to
use WFB-mode pixels to coarsely estimate object background
variance . is found by measuring the mean-square image
value inside the lesion and dividing it by .

Fig. 3 shows example images processed three different ways.
The effects of iterative Wiener filtering on discriminability are
subtle, yet the changes in contrast resolution have a significant
effect on human observer performance for Task 5 as shown
below. First, we briefly summarize observer metrics.

G. Assessing Performance: Human and Ideal Observers

The visual discrimination performance of trained human ob-
servers was evaluated using the two-alternative forced-choice
(2AFC) method under signal-known-exactly conditions [25],
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Fig. 3. Examples of (a) B-mode, (b) WFB-mode, and (c) IWFB-mode image
pairs used for 2AFC studies of Task 5 (linear scale). The right side is illustrated
for the variance profiles for Task 5 including � (malignant), � (benign), and
the difference � � � .

[26]. Observers viewed two simulated images during the
trial of a given task, . Images were placed side-by-side, one
with a “benign” lesion feature, , and the other with the
corresponding “malignant” feature, . Observers were in-
formed of all feature parameters such as amplitude and location.
After a training period, observers viewed 400 randomized image
pairs per study and were asked to identify the simulated image
with the malignant feature in each pair to measure the propor-
tion of correct responses, . The correctness of each response
was immediately indicated to each observer. The echo SNR ap-
plied was the value computed experimentally using phantoms.
The ratio of signal and noise power integrated over the signal
bandwidth was 32 dB.

There were five observers for each task. Each participated in
three sequential studies involving the same RF data to obtain
estimates from viewing B-mode, WFB-mode, and IWFB-mode
images. Studies were performed for the five tasks involving dif-
ferent features of breast cancer sonography.

The visual discrimination performance of the ideal observer
was evaluated using simulated RF data drawn from the same
distributions and study conditions applied to humans. For each
study (five tasks three processing schemes), 2000 pairs of RF
data were processed to compute test statistics, . If is
an RF frame for condition , then the score for trial is

The step function equals 1 for positive arguments and 0 for neg-
ative arguments and the net scores yield estimates.

Further details of human and machine observer experimental
design, including observer training, viewer conditions, Monte

Fig. 4. Proportion correct for human observer studies involving three forms of
signal processing as illustrated in Fig. 3 and the five diagnostic tasks described
in Section II-C. Error bars indicate standard errors.

Carlo methods, and the object contrast factor, can be found in
[14].

The efficiency of human observer discrimination with respect
to the ideal observer is [27]

(12)

where is the contrast factor for a feature and subscripts and
refer to values obtained from human and ideal observers. Pilot

studies were used to find contrast settings between 0.7 and 0.8
in order to avoid ceiling and floor effects (since is always
between 0.5 and 1) and to remain in the region of high precision
for 2AFC experiments [26].

We can gain additional insights about information flow
through the image-formation/decision-making processes by
also measuring the Smith–Wagner observer response. Smith et
al. [13] described a test statistic acting on B-mode image data
as

(13)

and showed it was ideal for low-contrast lesion detection,
our task 1. In the following application, we assume the
Smith–Wagner (SW) observer is a reasonable approximation
to the ideal observer acting on B-mode images for the other
tasks. Measurements of yield values, so (12) can be
expanded to

(14)

may be interpreted as the efficiency by which information
is transferred from the RF data into image data, while
is the efficiency by which humans extract information from im-
ages. Separating the efficiency factors allows us to track sources
of diagnostic information loss.

III. OBSERVER PERFORMANCE MEASUREMENTS

Human observer studies were conducted at the Vision and
Image Understanding Lab, UCSB, using methods described
previously [14]. Five observers participated in 15 studies each
after successfully completing a training regimen. Each study



NGUYEN et al.: AN ADAPTIVE FILTER TO APPROXIMATE THE BAYESIAN STRATEGY FOR SONOGRAPHIC BEAMFORMING 33

Fig. 5. (a) Human observer efficiencies for three beamformers, � from (14). (b) SW observer efficiency, � . (c) Human efficiency relative to the SW observer,
� . Values in (a) equal the product of corresponding values from (b) and (c). Note that the ordinate scaling of relative efficiency axis is changed among the
figures.

involved one observer viewing 400 image pairs from which
the proportion correct, , was found. Results averaged over
five observers are charted in Fig. 4 for five tasks and three
beamformers.

Examples of B-mode images, WFB-mode images, and
IWFB-mode images used in human observer studies are shown
in Fig. 3 where the images are generated under the shift-in-
variant assumption for the impulse response. The function
is generated with fixed-focused for both transmitting and
receiving, and without any apodization as we described in Sec-
tion II-B. Although the image simulations of Fig. 4 involve a
more realistic impulse response than that of our previous study
[14], the rank order of values for B-mode and WFB-mode
images was preserved. Viewers of IWFB-mode images per-
formed about the same as those viewing WFB-mode images for
Tasks 1-4. However performance was significantly improved
using IWFB-mode images for Task 5. Iterative filtering is able
to adapt to the local statistics of the signal in a way that a
stationary filter cannot. Segmentation facilitates the inclusion
of task-specific information to enhance performance.

Data from Fig. 4 were applied to (14) to find the discrimina-
tion efficiencies plotted in Fig. 5. From Fig. 5(a), we find that hu-
mans are most efficient at low-contrast lesion detection (Task 1)
and least efficient at discriminating smooth from spiculated le-
sion boundaries (Task 4). Fig. 5(b) shows that the greatest loss
of information occurs during the process of converting RF sig-
nals into images, nearly an order of magnitude, and that spatial
filtering is most effective at preserving information at this stage
of the process. Fig. 5(c) suggests that humans are most effective
at extracting task information from B-mode images and least ef-
fective using WFB-mode images. Human accessibility to infor-
mation is between these two levels when IWFB-mode images
are viewed. We have no explanation for the greater accessibility
for B-mode images, however, we note that the S-W observer was
designed to address Task 1. Its behavior for other tasks has not
been studied.

It is interesting to see that the efficiency of transferring in-
formation from RF signals to image data is lowest for Task 3,
Fig. 5(b), where viewers are challenged to discriminate soft and
sharp lesion boundaries. Yet viewers have the least accessibility
to information about lesion spiculation, i.e., Task 4 in Fig. 5(c).
Recall that the point-wise product of curves in Fig. 5(b) and (c)
give the net human visual efficiency summarized in Fig. 5(a).

Iterative Wiener filter performance is limited primarily by the
accuracy of the segmentation algorithm that identifies image
features (see Fig. 2). In situations where exact details of le-
sion features are known, i.e., we have a priori, the iterative
Wiener filter provides near perfect ideal-observer performance
for all five tasks, i.e., , and thus segmentation limits the
transfer of diagnostic information from object into RF data .
We were able to apply a two-level segmentation algorithm be-
cause for all tasks, except Task 3, involved just two levels of
object scattering. Clinical studies where regional scattering het-
erogeneity is greater will require segmentation of image data
with more than two intensity levels.

IV. EXPERIMENTAL IMPLEMENTATION

A. Line Spread Function

Filtering was applied to echo data acquired from a Siemens
Sono-line Antares system with a VF10-5 transducer. System
parameters were nominally the same as those applied to echo
simulations from Section II-B. Data are recorded without ap-
plying time-gain-compensation. We still use fixed-focused for
both transmitting and receiving at 40 mm and no appodization.
The configuration helps show the dependence of the speckles
upon the image depth and the improvement when Wiener fil-
tering. The system was used to image a cyst phantom (Model
#539, ATS Laboratories, Bridgeport, CT). The manufacturer-re-
ported speed of sound in the phantom is 1450 m/s and the atten-
uation coefficient slope is 0.5 . The DS beam-
formed echo SNR in the phantom was measured to be 32 dB
near the 40-mm focal length.

The Wiener filter was developed using the measured line-
spread function (lsf), which is the pulse-echo impulse response
integrated over the elevational axis. The line scatterers are of
0.12-mm-diameter nylon monofilament. Since phantom objects
are 2-D (line and cylinder inclusions oriented to give point and
circular targets in the scan plane), the lsf is most appropriate to
use in the system matrix of the Wiener filter.

The lsf varied with depth as shown in the B-mode image of
Fig. 6(a), which is used to investigate the shift-variant impulse
responses for Wiener filtering. For the shift-invariant impulse re-
sponse, is assumed as a circulant matrix for experiment data
and composed from a single lsf recorded from a line scatterer po-
sitioned at the 40-mm focal length. For the shift-variant impulse
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Fig. 6. Log-compressed images for a line target phantom measured using the Siemens Sono-line Antares system at 7 MHz. (a) B-mode image. (b) WFB-mode
image with shift-invariant impulse response assumed. (c) WFB-mode image with shift-variant impulse response assumed and the multi-lsf filter applied. (d) The
plots of three lateral lines (normalized) across the target at the depth of 37 mm, in which plot A is for the B-mode image in (a), plot B is for the WFB-mode image
in (b) with shift-invariant impulse response, and plot C is for the WFB-mode image in (c) with shift-variant impulse response.

response, is composed from five lsf’s recorded at regular in-
tervals between 34 and 45 mm depths (the depth of isoplanatic
patches are 2 mm, see the Appendix). Applying the method de-
scribed in the Appendix below, a Wiener filter for a shift-variant
system was formed. To reduce lsf noise to negligible levels for
filter development, we recorded and time-averaged 1000 frames
from stationary line scatterers.

Fig. 6(b) and (c) shows WFB-mode images for filters made
assuming shift-invariant and shift-variant systems, respectively.
While the impulse response of the B-mode image in Fig. 6(a)
is strongly depth-dependent, the WFB-mode image in Fig. 6(b)
shows improved spatial resolution near the 40 mm focal length.
However, the shift-variant filter used in the image of Fig. 6(c)
demonstrates a more uniform and improved spatial resolution.
Nevertheless, deconvolution remains incomplete because of
low-level side-lobe energy.

B. Cyst Phantom Experiment

The same two Wiener filters were applied to an 8–mm-di-
ameter, anechoic, circular target in the phantom that was po-
sitioned at a depth of 40 mm. The B-mode image is shown
in the upper-left corner of Fig. 7, where speckle is large and
nonuniform over the plane. Average speckle size is reduced
in the WFB-mode image (upper right) filtered by only one lsf

recorded at 40 mm depth. However, speckle is not spatially uni-
form, and the cyst boundary is distorted because the RF data
is filtered with an unmatched lsf. The WFB-mode image gener-
ated with multiple shift-variant lsf’s (bottom left) has a more cir-
cular boundary and uniform small speckle, but at the cost of in-
creased computation (see Appendix). Finally, the corresponding
IWFB-mode image (bottom right) has enhanced contrast and is
able to most clearly represent a cyst-like target. Segmentation
errors tend to erode the margin and suggest a more complicated
boundary than the simple circle we know is present.

V. DISCUSSION AND CONCLUSION

The ideal observer approximation is extended to improve vi-
sual discrimination for high-contrast features by introducing an
iterative Wiener filter. IWFB-mode images decorrelate speckle,
as do WFB-mode images, but are able to better preserve contrast
resolution for contrast-limited tasks, e.g., Task 5. The human-
observer performance studies show that IWF provides the same
high discrimination level as the stationary WF for a low-con-
trast large-area detection task (Task 1), and three boundary dis-
crimination tasks (Tasks 2-4). However, IWF significantly im-
proves efficiency for a high-contrast large-area task (Task 5),
where echo nonstationarity from object heterogeneity degrades
the stationary WF. The improvement in performance comes at
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Fig. 7. Images of a cyst-like, 8-mm circular target centered at a 40 mm depth
for a commercial system (linear scale). Standard B-mode image (upper-left),
WFB-mode image with shift invariant� (upper-right), WFB-mode image with
shift variant� (lower-left), and IWFB-mode image (lower-right).

the cost of approximately five-fold increase in computational
load (IWFB-modes require 20 s on a dual-core PC, 2.13 GHz
Processor, 2G RAM).

The deconvolution methods improve feature discriminations
because the density of independent image samples available to
observers increases as the average speckle area is reduced. The
additional information is helpful for contrast-limited large-area
Tasks 1 and 5 as well as those involving resolution-limited edge
discrimination, Tasks 2–4. The Wiener filter produces signifi-
cant improvements when the impulse response is known exactly
and the image data are from a wide-sense stationary distribution.
It fails when the assumptions are violated, as occurred with the
Wiener filter in Task 5, and yet is robust enough for use with
commercial systems. Performance improves across all five tasks
for IWFB-mode images because we added task-specific infor-
mation in filter development when it was necessary. We strive
to develop beamformers that are fast and robust across the wide
spectrum of clinical features, and yet can adapt when necessary
to special conditions. The ideal observer approach provides a
framework for that development.

The use of realistic imaging pulses in image simulations, as
provided by Field-II, resulted in a generally lower observer ef-
ficiency when compared to results from sonograms simulated
with Gaussian pulses (compare Fig. 5(a) above with Fig. 7(a)
from [14]). The reduction results from lower feature contrast
generated using the less-compact Field II pulses.

Human visual discrimination efficiency for the five lesion fea-
tures considered is less than 10% for B-mode imaging. Spatial
filtering was found to improve the transfer of object information
into the image data, but it reduces somewhat the ability of hu-
mans to access the information. Thus there is a potential role for
image processing of the final envelope image to increase acces-
sibility. Note that the Smith–Wagner observer [13] was devel-

oped as the ideal observer for Task 1 but is unlikely to perform
optimally for other tasks.

Task performance of spatial-filter beamformers is improved
significantly by including any shift variance in the pulse-echo
impulse response in the filter as seen in the phantom experi-
ments. The greatest challenge when applying this method in
the clinical environment is to estimate accurately the pulse-echo
impulse response for the Wiener filter. However, it is very dif-
ficult to measure this impulse response function for commer-
cial systems, because it is affected by phase abberations, imper-
fection of transducers, and undesirable artifacts inside the sys-
tems. In this research, we found that a line-spread function can
be used to develop Wiener filters in place of the impulse re-
sponse when imaging cylindrical objects. Accurate estimation
of point-spread functions throughout the field will be needed to
improve clinical imaging. Loss of visual discrimination from an
inaccurate point-spread function is also an interesting topic and
motivates further study.

For any pulse-echo experiment, the most effective pro-
cessing—from perspectives of both an optimal Bayesian
observer (information transfer) and from psychophysically
measured human observer performance—requires detailed
knowledge of the system impulse response to decorrelate RF
signals and thereby reduce the effects of speckle in the resulting
image.

APPENDIX A
SHIFT-VARIANT IMPULSE RESPONSE

This appendix provides an expansion of the shift-invariant
methodology to include depth-varying impulse responses in iso-
planatic regions. We divide the field into small regions (patches)
along the beam axis within which the impulse response is shift
invariant. The expression for RF data becomes

(A-1)

where is the number of patches along the depth of field, is
a block Toeplitz system matrix constructed from the th impulse
response , and is the scattering vector for the object
in patch . is a diagonal matrix of 1s corresponding to patch

such that

(A-2)

for identity matrix . Also . Although are
block Toeplitz matrices, is not.

The covariance matrices for in (2) becomes

(A-3)

with the decision variable given in (4). Separating the covariance
matrices as into background and task-specified components, we
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obtain, respectively

(A-4)

Truncating the power series expansion after the first term, we
obtain the linear approximation

(A-5)

where

(A-6)

Noting that for , , and (A-6) becomes

(A-7)

Substituting (A-7) into (A-5) we obtain

(A-8)

Thus for the Wiener filter

(A-9)

and

(A-10)

Since for ,

(A-11)

The Wiener filter for a shift-variant system has the form of a
shift-invariant system but is composed of a partial sum of block-
Toeplitz matrices, and is the covariance of a nonstationary
process. Consequently Fourier techniques cannot be applied to
calculate inverse .

To implement the filter, we note that multiplication of the co-
variance inverse by vector can be found by solving the linear
equation . Since is a symmetric matrix, the equa-
tion can be solved by using the gradient conjugate approach
[28]. Thus the Wiener filter can be derived under more realistic
conditions at the cost of computation time.
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