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1. INTRODUCTION

Elasticity imaging refers to a broad range of imaging and
signal processing techniques for the purpose of displaying
mechanical properties of tissue (1,2). A common feature of
each technique is the application of a mechanical force
stimulus and the use of a medical imaging device to track
the resulting tissue deformation. The applied forces can be
naturally occurring, e.g., pulsatile blood flow, or externally
applied. The role of the imaging device is to provide a time
series of images (or pre-image data) that track the move-
ments of tissue microstructures. Time series data are com-
bined to map the spatial and temporal distributions of the
deformation. Material properties of tissue are found from
relationships between forces and deformations. Phase-
sensitive imaging modalities—ultrasound, magnetic reso-
nance (MR), and optical—are most sensitive to motion;
they can track submicron-scale displacements with sub-
millimeter-scale spatial resolution. A simple view of elas-
ticity imaging is tissue palpation by remote sensing.

Physicians have known for thousands of years that tis-
sues frequently stiffen as diseases appear and progress,
e.g., liver cirrhosis, myocardial infarction, inflammation,
atherosclerotic plaques, and cancer. Consequently, manu-
al palpation will always be part of the physical examina-
tion. When a cancerous tumor forms, for example, edema
(excessive intracellular fluid) accumulates from early in-
flammatory responses and as lymphatic drainage is lost
with increasing hyperplasia (abnormal cell density and
structure). In addition, collagen production is upregulated
as mutated epithelial cells signal the surrounding connec-
tive tissues to prepare for neo-angiogenesis (new growth of
blood vessels). Edema, hyperplasia, and desmoplasia (ac-
tive fibrotic formation) can stiffen the affected tissues 50
times more than the surrounding regions (3) often before
other symptoms appear. Compared with x-ray imaging,
tissue stiffness provides much higher object contrast for
diagnosis.

Manual palpation is such a simple procedure that it is
recommended that women examine themselves routinely
for the first signs of breast cancer. Currently most cancers
found in patients younger than 45 years, a group that is
traditionally one of the hardest to diagnose, is through
breast self-examinations (4). During lumpectomies, sur-
geons will feel the tissues surrounding the surgical site to
search for smaller undetected lesions in the area. Lesions
that vary only in stiffness are undetected by traditional
imaging methods because imaging is generally insensitive
to mechanical stiffness unless elasticity imaging tech-
niques are first applied to the signals. Researchers study-
ing elasticity imaging methods are hoping to tap into a
vast underdeveloped potential of mechanical properties
for diagnosis.

This article reviews basic approaches to elasticity
imaging. An exhaustive list could be categorized based
on the imaging modality employed, the mechanical prop-
erty that is mapped into the image, the type of mechanical
stimulus applied, or the organ system and disease process
under investigation. Despite its brief two-decade history, a
concise and comprehensive review would be difficult to
complete and is perhaps premature. So we concentrate on
our experience applying ultrasonic strain imaging of qua-
si-static external deformations for breast cancer detection.
The next section begins with a specific example and fin-
ishes with a brief overview of the broader literature. Later
sections describe the physics of tissue deformation and the
fundamentals of static ultrasonic elasticity image recon-
struction. The breadth of approaches to elasticity imaging
is an indication of the broad range of opportunities for new
insights into biological mechanisms and medical diagno-
sis.

2. BACKGROUND

The physical principles of manual palpation (Fig. 1) are
reviewed to compare and contrast with those of static ul-
trasonic elasticity imaging (Fig. 2). First, we define some
terminology. Stress is the force per area (1Pa¼ 1N/m2); it
can be positive (compression) or negative (tension). Strain
is a unitless quantity of deformation; it is defined as the
relative change in length and is positive under compres-
sion and negative under tension (although the sign con-
vention is arbitrary). Stresses and strains are properties
of the tissue and the experiment. Elastic moduli (there are
many) strive to describe material properties independent
of the experiment. Young’s modulus E, for example, is the
ratio of uniaxial stress to corresponding uniaxial strain. It
has the units of stress. From the definition, materials with
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Figure 1. Manual palpation of a stiff circular inclusion is illus-
trated. Part (c) is a diagram of the displacement d and strain e
profiles as a function of depth along the x-axis through the center
of the inclusion.
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large E values deform relatively little when subjected to
large compressive or tensile forces—they are stiff.

2.1. Palpation and Static Strain Imaging Examples

Lesions are palpated by gently pressing fingertips into the
skin surface to deform the tissues below (Fig. 1a). Because
tissues are elastic, a restoring force develops that pushes
back against the fingers roughly in proportion to the de-
formation applied. This is Hooke’s law for elastic media,
which states that the stress s and strain e are linearly re-
lated through Young’s modulus (5)

s¼Ee: ð1Þ

As we will see, Equation 1 is a gross simplification of the
more complicated analysis required to accurately describe
this seemingly simple deformation experiment. Yet the
complexity is a rich source of information about tissues.

The induced stress at the skin surface is sensed by the
fingertips (Fig. 1b).1 Stiff regions that lie below the fingers
will deform very little, so the surface stress increases as
the tissues above and below the stiffness compensate by
deforming more. Unfortunately the magnitude of the
stress decays quickly with depth, so superficial lesions
are more readily detected with palpation. Also palpation
provides no depth resolution for locating the position of
lesions.

Elasticity imaging can improve on manual palpation by
combining the naturally high contrast for stiffness provid-
ed by the body with the high sensitivity, depth of pene-

tration, and spatial resolution for motion detection
provided by imaging modalities. Figure 2a illustrates a
simple ultrasound phantom elasticity experiment analo-
gous to the example in Fig. 1. An 8-mm-diameter circular
inclusion is embedded in a uniform gelatin block. Al-
though it has about twice the stiffness of the tissue-like
gelatin, the inclusion cannot be palpated from the top sur-
face. A linear array transducer is positioned at the top to
record an ultrasound frame of echo data. The transducer
is pressed into the top surface a distance of about 1–2% of
the total height of the block with the bottom surface held
fixed and the sides free to move, and then a second echo
frame is recorded. We track the movement of echoes to
measure the displacement field. Of course, the gelatin
block moves in three dimensions, so we try to control ob-
ject boundaries to keep as much of the motion as possible
in the imaging plane.

If successful, then the movement of ultrasonic echoes
can faithfully represent that of the tissue scatterers. The
displacements depicted by arrows in Fig. 2b were found
using finite element simulation software on a coarse grid.
The vertical component of displacement, which is also
along the axis of the ultrasound beam, is obtained from a
finely sampled grid and converted into grayscale to give
the vertical (axial) displacement image in Fig. 2c. The de-
rivative of displacement gives the strain image in Fig. 2d.
Strain is preferred over displacement for imaging because
of higher image contrast (compare Fig. 2c and Fig. 2d). We
built this phantom and performed the imaging experiment
described over a subregion surrounding the stiff inclusion
(6). The result is shown in Fig. 2e.

The central dark region in strain indicates a region of
low deformation and high stiffness. However, regions at
the top and bottom appear dark because we did not let
those surfaces slip during compression to show the effects
of boundaries. In clinical imaging, the skin surface is often
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Figure 2. Illustration of an ultrasonic elasticity
imaging experiment for the situation in Fig. 1.
Downward compression of the top surface in (a)
generates the displacement field in (b). Images
(c)–(e) are examples of predicted and measured
displacements and strains.

1Fingers sense stress more acutely than net force. For example, a
sharpened pencil pressed into your fingertip with a force of 1 N
will raise your attention much faster than an unsharpened pencil
at a force of 10 N because the smaller area contacting the skin
generates high surface stress.
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lubricated to allow the transducer to slip over the surface
during compression. Strain images can be interpreted as
the inverse of Young’s modulus (stiffness) via Equation 1,
only when the applied stress is constant throughout,
which it was not in Fig. 2.

Figure 1c illustrates how displacement dx(x) and strain
exx(x) develop along the x axis (the notation is described
below). The surface near the fingertips is displaced down-
ward by the amount d0. If the stiffness of the elastic tissue
was constant, we would observe a linear displacement
curve (dotted line) and the associated strain, given by the
derivative exxðxÞ¼ddx=dx, would be constant e0. However,
this medium is heterogeneous. Because stiff objects de-
form less than their surroundings, regions above and be-
low deform more to keep the total deformation at d0.
Taking the derivative, we find lower strain in the inclu-
sion and enhanced strain immediately surrounding the
inclusion. Contrast enhancement is also seen in the mod-
eled and measured strain images of Fig. 2 as a bright re-
gion surrounding the stiff inclusion.

3. CHOOSING FORCE STIMULUS AND IMAGING
MODALITY

The nature of the stimulating mechanical force deter-
mines which mechanical and geometrical properties of
the tissue contribute to image contrast. Stimuli may be
generalized as static (the example above) or dynamic.
Static methods employ forces that are suddenly applied
and held constant during imaging or allowed to slowly
vary in time with respect to the temporal sampling of the
imaging system, e.g., the frame rate. We imaged strain in
the example above; however, strain may also be combined
with stress estimates through constitutive equations (5) to
display a modulus (7) and thereby minimize boundary ef-
fects. The advantages of modulus imaging must be com-
pared with the extra computation time and any change in
image quality or interpretation that affects diagnosis.

The first studies to include elasticity imaging involved
measurements of deformations from slowly moving endog-
enous sources, like pulsatile blood flow (8,9). Later meth-
ods measured deformations from exogenous sources such
as compression plates for in vivo breast imaging (10) and
balloons for in vivo vascular (11) and prostate (12) imag-
ing. These methods are examples of static (or sometimes
quasi-static) elasticity imaging. The principal limitation of
static strain imaging is the strong influence of boundaries
on image contrast (e.g., Fig. 2d). Advantages include the
use of current image systems and the simplicity of the
calculation that allows high frame rates (commensurate
with color-flow imaging) with spatial resolution approach-
ing the intrinsic resolution of the host imaging modality.

In dynamic methods, tissues are stimulated with low-
frequency (100Hz) shear-wave vibrations. As surface vi-
brations travel into the body, ultrasound pulses are intro-
duced and echoes are recorded. The first methods
measured the amplitude (13) and phase (14) of the low-
frequency vibrations from the Doppler modulation fre-
quency of the ultrasound pulses to estimate viscoelastic
parameters of muscle and other soft tissues. The approach

became more practical for clinical investigations of tumor
imaging when color-Doppler systems were adapted to im-
age vibrations (15). Shear waves are attenuated in tissues
much more than compressional waves (ultrasound puls-
es), so it can be difficult to mechanically stimulate tissues
deep in the body. Continuous-wave (CW) shear vibrations
allow repeated measurements and temporal averaging
when the imaging signals are weak; yet some of the CW
vibrational energy can be reflected from boundaries and
form standing waves that interfere with image clarity.

Magnetic resonance elastography (MRE) can provide
distinct advantages over current ultrasonic imaging tech-
niques (16). As in dynamic ultrasound approaches, an ap-
plicator is coupled to the skin surface to introduce low-
frequency shear waves into the body. MR signals are used
to measure displacement distributions from traveling
shear waves in the tissue volume. Displacement waves
describe the wave speed from which shear modulus imag-
es are quickly computed. (For example, see text below
Equation 10.) MR methods have also been proposed to
image strain from static deformations (17). The principal
advantage over ultrasound is that MR provides finely
sampled image data from a tissue volume. Volume acqui-
sition reduces signal loss from tissues moving out of the
field, and it allows for a more complete estimation of the
strain tensor (18). Current disadvantages (compared with
ultrasound) include lower temporal resolution and higher
imaging costs. The future commercialization of two-di-
mensional ultrasound arrays suggests the acquisition of
volumetric ultrasound data may not be far away. Also,
phase array MR techniques are promising to improve MR
temporal resolution. So the advantages and disadvantages
of each modality vary as technology develops.

Very high frame rate ultrasound techniques (41000 f/s)
have been shown capable of imaging shear wave propa-
gation in real time (19). The advantage of this approach is
the possibility of using shear-wave pulses that locally
stimulate tissues. Localization of the stimulus eliminates
boundary effects and makes it possible to separate the in-
fluence of material elastic anisotropy from object shape,
thus increasing the feature space for diagnosis. Acoustic
radiation force impulse (ARFI) methods (20,21) use the
radiation force generated by a high-intensity compressio-
nal wave pulse at its focus to stimulate tissues with a force
‘‘impulse’’ in both time and space. Then conventional
broadband imaging pulses scan the medium to record
the movement. Like static methods for mechanical stim-
ulation, the elastic modulus of the medium contributes to
the object contrast. Unlike static methods, viscous effects
also play a major role in contrast, and the isolated ‘‘push’’
from the radiation force of the high-intensity pulse reduc-
es boundary effects significantly. The downside of very
high frame rate and ARFI approaches is that specialized
equipment is needed, and in the ARFI approach, the use of
high intensity pulses raises concerns about risks to the
transducer and patient.

Vibro-acoustic imaging (22) is another promising ap-
proach, particularly for locating calcified tissues in vascu-
lar plaques and tumors. Two co-axial CW ultrasound
beams tuned to slightly different transmission frequen-
cies generate a harmonic radiation force that oscillates
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tissue at the difference frequency near the focus. If stiff
tissues, like calcifications, are in the stimulated region,
they radiate sound energy at the difference frequency,
which is in the audible frequency range. Spatial resolution
depends on the co-axial pulse volume stimulating the tis-
sue, and image contrast depends on the mechanical prop-
erties of the tissue. Sensitivity and noise are affected by
the ability of audible sound to travel out of the body to be
detected by a microphone with a high signal to ambient
noise ratio. Because low-intensity beams stimulate the
tissues, bioeffects are not a major concern. However, it is
challenging to design transducers that deliver a highly
local radiation force that can be scanned electronically at
real-time frame rates.

There are many other exciting and promising ap-
proaches. For example, MR spin tagging methods are ap-
plied to evaluate the dynamics of the heart motion (23),
and ultrasonic strain rate imaging (sometimes called tis-
sue Doppler imaging) has been used for functional myo-
cardial assessment (24). Optical coherence tomography
can be applied like ultrasound to image displacement and
strain in atherosclerotic tissues but with much greater
motion sensitivity and spatial resolution (25). Others have
used optical tweezers to stressAU:1 individual DNA (deoxyribo
nucleic acid) molecules and optical microscopy to image
the displacement (26). The goal was to discover how mo-
lecular stiffness affects transcription and replication. An
excellent source of information about many elasticity
imaging approaches can be found in a special issue in
Physics in Medicine and Biology, vol. 45, June 2000. It of-
fers 300 pages of detailed descriptions. Recent reviews of
the physics (1) and engineering (2) of elasticity imaging
are also available.

4. FUNDAMENTAL EQUATIONS

Other aspects shared by all elasticity imaging methods are
the basic equations that describe (1) the displacement of
tissues by a mechanical stimulus and (2) the constitutive
equations that relate stress to strain. The underlying as-
sumptions are that tissues are a deformable continuum2

and that local displacements are small; e.g., ð@dx=@xÞ
n is

negligible for n41. The last assumption may seem difficult
to achieve considering that strain contrast increases with
the amount of applied deformation. However, if the image
data are acquired at a high frame rate while the forces are
applied, the instantaneous displacements between frames
can be accumulated (27), thus satisfying the assumption
for estimation purposes while still enhancing image con-
trast.

4.1. Constitutive Equations

To design elasticity imaging experiments and correctly in-
terpret the results, it is critically important to understand
how the stress loading of tissues and the measurement of
displacement or strain determine which material proper-
ties influence the elasticity image. Equation 1 is a very
simple constitutive equation that applies to infinitesimal
deformations of one-dimensional, elastic, isotropic media
where the strains vary linearly with stress. Although none
of these assumptions are strictly true in practice (5), they
may be reasonable to assume for some experimental con-
ditions.

Let’s extend the medium to three dimensions leaving
other assumptions in place. To do this we must recognize
that the elements of Equation 1 are tensors, and the gen-
eral linear relation is (28)

sij ¼Cijklekl: ð2Þ

The stress s and strain e tensors are second order (3 � 3
matrices) and symmetric if we avoid translation and ro-
tation of the tissues from the applied forces. Indices ijkl
are variables for the coordinate labels (xyz). For example,
sxy refers to the stress on a Cartesian surface with unit
normal given by the x-axis where the force is oriented
along the y-axis, i.e., a shear stress. Cauchy’s infinitesimal
strain tensors (5) are found from derivatives of the dis-
placement vector, exy ¼ 1

2
@dy
@x þ

@dx
@y

� �
. The fourth-order mod-

ulus tensor C contains elastic material constants that
characterize the medium. As s and e are symmetric, it
can be shown that C has at most 21 unique components
even if the medium is fully anisotropic. Using directional
cosines to define the isotropic axes of symmetry for all
three tensors in Equation 2, we find there are only two
unique terms: Cxxxx ¼ lþ 2G and Cxxyy ¼ l, where l and G
are Lamé constants described below. (Interested readers
are referred to Chapter 1 of Ref. 28 for detailed derivations
of modulus tensors given various material property sym-
metries.)

The three-dimensional version of Hooke’s law in Equa-
tion 2 simplifies for isotropic media:

sij ¼ l trðeÞdij þ 2Geij; ð3Þ

where tr(e)¼ exxþ eyyþ ezz is the trace of the strain matrix
that quantifies how much the volume of the medium
changes due to the applied stress and dij is the Kronecker
delta. Equation 3 is Navier’s equation for an isotropic
Hookean elastic solid (29). Strain may be separated into
two parts, eij ¼ e0ij þ e00ij, where e0ij ¼

1
3 trðeÞdij is the mean di-

lation or contraction of the volume and e00ij the deviation of
the deformation about the mean value. This decomposi-
tion allows the diagonal stresses of Equation 3 to be writ-
ten as

sij ¼ 3Ke0ij þ 2Ge00ij; for i¼ j; ð4Þ

where K ¼ lþ 2G=3. K is the bulk modulus that describes
how the medium volume changes under stress. G is the
shear modulus that quantifies how the medium shape

2Tissues are a volume of interconnected particles. Define a sur-
face area element DS somewhere in the volume where DF is the
force due to particles on one side of the surface that act on par-
ticles located on the other side. If the medium has mass density r
and stress s that can be defined as s¼ limDS small DF=DS, then the
medium is a material continuum (5).
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changes under the same stress. K and G are fundamental
properties of the medium, although the convenient sepa-
ration of strain into volumetric and shape components in
Equation 4 is only valid for infinitesimal deformations.
The numerical constants in Equations 3 and 4 develop
because of traditional definitions relating the bulk modu-
lus to isotropic pressure, p¼ �K trðeÞ, and the shear mod-
ulus to the amount of shear deformation g¼ 2exy, viz.,
sxy ¼Gg.

It is often more convenient to propose derived moduli
for the experimental geometry that are combinations of
fundamental moduli. With all of the elastic moduli in the
literature, it can be confusing to tell which are fundamen-
tal and derived. To illustrate a common derived modulus,
we return to the static strain experiment of Fig. 2 where a
compressional stress is applied to the top surface of a gel-
atin phantom along the x-axis, i.e., sxx. The stress and
strain matrices for this experiment are

s¼

sxx 0 0

0 0 0

0 0 0

2
664

3
775 and e¼

exx 0 0

0 eyy 0

0 0 eyy

2
664

3
775: ð5Þ

Notice that strain components in the yz-plane are equal.
The convenient derived quantities are Young’s modulus,
E¼ sxx=exx and Poisson’s ratio m¼ � eyy=exx. Isotropic me-
dia have two independent fundamental moduli, and so two
derived quantities are needed to characterize the medium
for this experiment. Substituting Equation 5 into Equa-
tion 3,

sxx ¼ lðexx þ 2eyyÞþ 2Gexx

0¼ lðexx þ 2eyyÞþ 2Geyy:
ð6Þ

Solving for sxx and exx, we can relate Young’s modulus and
Poisson’s ratio to the fundamental moduli E¼ 9KG

3K þG and
m¼ 3K�2G

6K þ 2G. It turns out that the bulk modulus is orders of
magnitude larger than the shear modulus in biological
tissues, KcG, so we can approximate E ffi 3G and
m ffi 0:5. Tissues are said to be ‘‘nearly incompressible,’’
meaning the volume change when you squeeze them is not
measurable. Lower G values mean that tissues do change
shape. Now we know that the strain images in Fig. 2 re-
flect shape deformations caused by spatial variations in
shear modulus (and, unfortunately, boundary effects).

The effects of boundaries are very important for static
deformations because they modify Equation 5. The fact
that we did not let the top and bottom surfaces in Fig. 2b
slide during compression or restrict movement of the lat-
eral boundaries had major influences on the stresses and
strains near the periphery. If we could measure the full
stress and strain tensors for each location, we could pro-
pose convenient derived quantities for imaging that could
be directly related to K and G. Insofar as tissues are in-
compressible and isotropic, exx measurements may be used
to infer the value of other strain components via m, but tell
us nothing about stress. As described, the strength of
MRE is its ability to measure displacements in three di-

mensions (17), so at least the full strain tensor can be
measured.

Material properties that affect compressional (ultra-
sonic imaging) wave propagation can also be identified
with these equations. As compressional3 plane waves
propagate along the x-axis, tissues compress and stretch
in high- and low-pressure regions along the x-axis. The
stress and strain matrices for these conditions are

s¼

sxx 0 0

0 syy 0

0 0 syy

2
664

3
775 and e¼

exx 0 0

0 0 0

0 0 0

2
664

3
775: ð7Þ

Derived quantities for this experiment are the wave mod-
ulus M¼ sxx=exx ¼K þ 4G=3 and stress ratio
syy=sxx ¼ ðK � 2G=3Þ=ðK þ 4G=3Þ (28). Because KcG,
M ffi K, and the stress is isotropic, syy=sxx ffi 1, which is
an important result for ultrasound-based elasticity imag-
ing. It tells us that sound propagation and tissue defor-
mation depend on different material properties of the
tissue. Although sound propagation depends on the bulk
modulus, deformations depend on the shear modulus. If
they were not independent, then deformations would alter
the echo signals and ultrasound would not be able to ac-
curately track tissue motion.

4.2. Equations of Motion

Equation 3 is often the launching point for the develop-
ment of elasticity imaging. For linear, elastic, isotropic
solids, K, G, and mass density r completely characterize
the mechanical properties. In regions where these values
are spatially homogeneous and the effects of gravity can be
ignored, the displacement vector d may be expressed as
(1,2)

Gr2dþ K þ
G

3

� �
rðr � dÞ¼ r

@2d

@t2
: ð8Þ

The dynamic response of the medium to the various me-
chanical stress and strain stimuli described in previous
sections can be found by considering the special cases of
Equation 8.

4.3. Compressional Wave Propagation

As we saw in the previous section, local pressures in com-
pressional waves are given by a symmetric stress tensor.
Consequently, the curl of the displacement vector, r� d, is
zero (30) so that r2d¼rðr � dÞ. Substituting this identity

3Particle motion is parallel to wave motion for compressional
waves. Particle motion is perpendicular to wave motion for shear
waves.
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into Equation 8

K þ
4G

3

� �
rðr � dÞ¼ r

@2d

@t2

r2d¼
1

c2
@2d

@t2
;

ð9Þ

where c¼ ððK þ 4G=3Þ=rÞ1=2 is the speed of a compressional
displacement wave. The response of the medium to a stim-
ulus may also be written as density waves but most often
appears in the literature as pressure waves (30).

4.4. Shear Wave Propagation

Shear waves are central to dynamic elasticity imaging
methods. They produce no dilation or contraction of the
medium, so the divergence of displacement, r � d, is zero
and Equation 8 reduces to

r2d¼
1

c2s

@2d

@t2
; ð10Þ

where cs ¼ ðG=rÞ1=2 is the speed of the shear wave. Again
we notice that KcG so that cccs. The large speed differ-
ence allows use of ultrasonic imaging to observe traveling
shear waves in dynamic elasticity imaging (19–21).

4.5. Step Compression

If we apply and hold a step compression, then in steady
state, the time derivatives and divergence of displacement
are both zero. Equation 8 reduces simply to Laplace’s
equation (1), r2d¼ 0. This tells us that displacements in
homogeneous media are linear functions of position, of the
form dxðxÞ¼ e0xþ d0 in one dimension (see Fig. 1c), and
thus strains are constant. If we examine Fig. 2d, we see
that compressed heterogeneous media do not give even
piece-wise linear displacements or constant regional
strains regardless of the boundary effects. The dark (stiff)
region in the center of the strain image is surrounded by a
bright enhancement. When material properties r, K, G
vary spatially, Equation 8 must be generalized to more
accurately predict displacement and strain patterns. Spe-
cifically, terms are added to Equation 8 that account for
the heterogeneities. Closed-form expressions to more ac-
curately predict the situations depicted in Figs. 1c and 2d
are available (31).

5. IMAGE FORMATION

The previous section outlined the physics of elastic defor-
mation to help readers understand the advantages and
limitations of different approaches to elasticity imaging.
This section discusses the basics of image formation spe-
cifically for static ultrasonic strain imaging. Reconstruc-
tion of elasticity images from dynamic stimuli and
modulus images from static stimuli is discussed elsewhere
(2,7,18).

Imaging strategies are based on models of signal for-
mation, which requires an understanding of how tissue

properties create the imaging signals (see ultrasonic imag-
ing) and how stress stimuli deform the tissue properties
(previous section). Common features of imaging algo-
rithms are described below.

5.1. Modeling Object Structures and Their Echo Signals (32)

Let fjðxÞ be the scattering function that describes the spa-
tial distribution of structures interacting with an ultra-
sound pulse to produce detectable scattered waves during
acquisition of the jth ultrasonic echo frame. This is a nat-
ural representation because tissue scattering is a contin-
uous function of three-dimensional position x. For
computer modeling purposes, however, it is convenient
to sample fjðxÞ and rearrange the values into a column
vector f j by lexicographical reordering.

Scatterer movement is observed by examining the
same tissue region during two or more instances in time.
Object functions present during the sequential acquisition
of echo frames are related by displacement vectors djðxÞ
that describe the movement of scatterers at each location.
In the continuous representation, we have
fjþ 1ðxÞ¼ fjðxþ djþ 1ðxÞÞ, and in the discrete representation,
f jþ 1 ¼Qjþ 1f j þ erjþ 1, where Q is a square matrix of dis-
placements in the tissue region occurring between frames.
The vector erjþ 1 represents registration errors caused by
sampling the continuous function.

Scanning the object with a linear imaging system rep-
resented by the operator matrix H, we acquire the follow-
ing radio-frequency (RF) echo signals gj:

gj ¼Hf j þ ej and gjþ 1 ¼HQjþ 1f j þ ejþ 1; ð11Þ

where ej ¼Herj þ eaj and eaj is a vector of acquisition errors,
e.g., quantization and amplifier noises. The imaging sys-
tem does not depend on when the data are acquired or the
amount of deformation and therefore has no subscript.
The vectors g are the RF echo signals recorded by the ul-
trasound scanner, not the B-mode image data. The objec-
tive in elasticity imaging is to estimate Q, which contains
the spatial distribution of displacements djþ 1ðxÞ; essen-
tially the map of arrows seen in Fig. 2b.

5.2. Estimating Displacements

To estimate Q, we seek a transformation of gj, given by the
operator matrix D, that makes the following statement
true:

gjþ 1 ¼Djþ 1gj

¼Djþ 1Hf j þ ej ¼HQjþ 1f j þ ejþ 1:
ð12Þ

The first line tells us to find a matrix D that displaces the
echoes of frame j so they match (are highly correlated
with) the echoes of frame jþ 1. The second line tells us this
will work perfectly (except for noise) only when the defor-
mation and imaging operators commute; i.e., we can find a
matrix D¼Q only when DH¼HQ. Unfortunately this
statement is not true in general. To see this, consider
that H is a blurring matrix where the rows are impulse

Shankar gk.ramu / Art No. ebs396 1^11

6 ELASTICITY IMAGING



responses (point spread functions) of the imaging system.
Deformed tissue structures of size below the spatial res-
olution of the image system are not faithfully represented
in the echo signal, so there is no deformation matrix D
that can be applied to the echo signal gj that allows the
right-side equality in the second line of Equation 12 to be
true. Equation 12 can be exact (except for noise) only when
H equals the identity matrix, i.e., when we use a perfect
ultrasonic imaging system where the shift-invariant im-
pulse response is a Dirac delta function. As with all imag-
ing techniques, we are most successful at imaging
displacements with the highest resolution imaging sys-
tems.

Undeterred by this fundamental limitation, we press
on assuming Equation 12 is reasonably accurate. In those
situations, displacements are estimated from RF echo
frames using constrained optimization; specifically, we
seek to define a matrix D0 that minimizes the objective
function (30)

D̂jþ 1 ¼ argmin
D0

ðk gjþ 1 �D0gj k
2 þ a k r k2Þ: ð13Þ

k � k is the norm of the vector, a is a constant, and r is a
roughness penalty vector and a function of displacement
(33). The approach is simple to explain. Find a displace-
ment matrix D0 that minimizes the first terms on the right
side of Equation 13 and yet is subject to the constraint
that the solution must be spatially smooth, the second
term. When you find D0 that minimizes this objective func-
tion, use it as the estimate D̂.

The simplest algorithm that follows this strategy is to
simply cross correlate subsections of gj and gjþ1 to find the
average local displacements (6,10,20,21). For small dis-
placements that remain in the scan plane, numerous cor-
relation-based techniques can be unbiased, precise
(satisfying the maximum likelihood criterion), and com-
putationally efficient. Interested readers are referred to
the general literature on time delay estimation for details
on the estimation problem (34). It can be shown that set-
ting a to zero in Equation 13, completing the square, and
discarding all but the single remaining cross term is
equivalent to finding the displacement that maximizes
the cross-correlation function (32). (Terms in g2j and g2jþ 1

express the energy of the signals in the two frames. They
do not change with deformation provided all motion is in

the scan plane, and therefore they can be discarded with-
out affecting estimates.)

To demonstrate the merits of regularization, i.e., using
the smoothness penalty term in Equation 13 by setting
a > 0, consider the phantom images in Fig. 3. This is a flow
phantom that has a stiff, solid central region and a soft
flow channel that cuts diagonally across. The 7-MHz B-
mode image in Fig. 3a shows both structures as low scat-
tering (hypoechoic). The correlation-based strain image in
Fig. 3b from Ref. 6 shows the central region to be stiff (low
strain) and the flow channel to be soft (high strain) as ex-
pected, although there is plenty of noise particularly near
the softer regions than deform to a greater extent. This
strain noise is caused by the low RF echo signal-to-noise
ratio AU:2in the flow channel, by echo decorrelation from mo-
tion smaller than the imaging pulse volume, and by some
out-of-plane scatterer movement. We increased a in Equa-
tion 13 as described in Ref. 33, which constrained the
space of possible displacement solutions to those that were
spatially smooth. The physics of tissue-like material de-
formations told us that very rapid oscillations in displace-
ment were nonphysical. The regularization term excludes
solutions to the objective function in Equation 13 that are
nonphysical. So the fast spatial fluctuations in strain are
treated as noise and eliminated. Regularization is dan-
gerous in imaging situations that are not well understood,
because prior knowledge is too incomplete to restrict the
solution space without incurring bias errors. Regulariza-
tion compromises the spatial resolution of strain estimates
to a degree (notice the flow channel in Fig. 3c is wider than
in Fig. 3a or b), but for many situations, the noise im-
provement makes it worth the effort.

6. SUMMARY

The objective of this article is to convince readers that
elasticity imaging has much to offer research in biological
sciences and medical diagnosis. Although current ap-
proaches impose stringent assumptions about the re-
sponse of tissues to mechanical stimuli and are forced to
create images with limited sensory information from the
imaging device, they nevertheless provide unique diag-
nostic information about structure and function. The di-
versity of approaches to elasticity imaging is testament to
the richness and importance of the topic.

(a) (b) (c)

B-mode Strain Strain

Figure 3. Images of an ultrasonic phantom with a
stiff circular inclusion and a soft flow channel. The
strain image in (b) was obtained from Equation 12
without regularization, i.e., a¼0, using the corre-
lation algorithm described in Ref. 6. The strain im-
age in (c) was also obtained from Equation 12 but
with regularization, a > 0, and using the optical
flow algorithm described in Ref. 33.
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Today many researchers apply the methods outlined
above to biological tissues in the hope of discovering the
range of information available for describing detailed bi-
ological processes. Eventually we may find that this sim-
ple material science analysis is insufficient; specifically,
imaging algorithms will need to be based on more realistic
(and complicated) constitutive equations than Equation 3.
Modifications might include use of finite stress and strain
tensors (29), quasi-linear or nonlinear viscoelastic theory
(5), and a fuller accounting of poroelastic and viscoelastic
effects (29,36). The natural analytical complexity that
adds to the feature space for diagnosis will continue to
be exploited as long as there is valuable new information
to be obtained.
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ABSTRACT

Basic principles and examples of elasticity imaging are
summarized. The chapter focuses on static ultrasonic
methods, and it discusses the advantages and limitations
of this approach in the context of dynamic methods and
alternative imaging modalities from the literature. We re-
view the physics of continuum deformations as a way to
evaluate various experimental approaches. A general
strategy for the design of ultrasonic elasticity imaging al-
gorithms for static deformations is also described. The ob-
jective is to summarize and critically assess a subset of
current approaches to this exciting new field.
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