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Coded Pulse Excitation for Ultrasonic
Strain Imaging

Jie Liu and Michael F. Insana, Member, IEEE

Abstract—Decorrelation strain noise can be significantly
reduced in low echo-signal-to-noise (eSNR) conditions us-
ing coded excitation. Large time-bandwidth-product (�30)
pulses are transmitted into tissue mimicking phantoms with
2.5-mm diameter inclusions that mimic the elastic proper-
ties of breast lesions. We observed a 5–10 dB improvement
in eSNR that led to a doubling of the depth of focus for
strain images with no reduction of spatial resolution. In high
eSNR conditions, coded excitation permits the use of higher
carrier frequencies and shorter correlation windows to im-
prove the attainable spatial resolution for strain relative to
that obtained with conventional short pulses. This paper
summarizes comparative studies of strain imaging in noise-
limited conditions obtained by short pulses and four com-
mon aperiodic codes (chirp, Barker, suboptimal, and Golay)
as a function of attenuation, eSNR and applied strain. Imag-
ing performance is quantified using SNR for displacement
(SNRd), local modulation transfer function (LMTF), and
contrast-to-noise ratio for strain (CNR�). We found that
chirp and Golay codes are the most robust for imaging soft
tissue deformation using matched filter decoding. Their su-
perior performance is obtained by balancing the need for
low-range lobes, large eSNR improvement, and short-code
duration.

I. Introduction

There is considerable recent interest in the use of com-
pressible transmission codes for medical ultrasonic

imaging. Under low echo-signal-to-noise-ratio (eSNR) con-
ditions, temporally coded excitation pulses provide dis-
tinct advantages. For example, they have been shown to
improve eSNR in vascular imaging with intravascular ul-
trasound (IVUS) arrays [1], in bone attenuation estimates
[2], in bubble-preserving, nonlinear contrast imaging [3],
in three-dimensional (3-D) imaging using parallel acquisi-
tion [4], and in very high frame rate 2-D acquisitions when
combined with spatial encoding [5]. Coded excitation pro-
vides greater penetration by increasing the average power
delivered to tissues without increasing peak power [6]–[8].

Our application is elasticity imaging. Specifically, the
interest is strain estimation for breast cancer detection in
which the visibility of small lesions is limited primarily
by decorrelation noise. Low eSNR reduces the coherence
between sequential echo frames acquired for correlation-
based displacement estimates [9]. As a result large dis-
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placement errors are generated that appear in strain im-
ages as a high-intensity noise known as decorrelation noise.
In this situation, longer correlation window lengths reduce
decorrelation noise for small tissue deformations at the
cost of slightly reduced axial resolution. Here we explore
applications of coded pulse excitation methods to strain
estimation in low eSNR conditions (<40 dB). The same
methods may be applied in high eSNR situations to im-
prove spatial resolution by allowing the use of higher car-
rier frequencies.

Coded excitation involves the transmission of long-
duration pressure pulses with a time-bandwidth product
(TBP) greater than 1. By coding the pulse on transmis-
sion, the received echo signals may be processed to com-
press (decode) the effective impulse response, and thus re-
store spatial resolution. If decoding is successful, eSNR
is amplified by a factor equal to the TBP without com-
promising contrast or spatial resolution. If decoding is in-
complete, the acoustic energy remains partially distributed
spatially, producing range lobes that reduce B-mode im-
age contrast. In strain imaging, range lobes increase decor-
relation noise, particularly in high strain-contrast regions
[10], thus negating the advantages of coded excitation. We
have applied coded excitation methods to simulated and
experimental phantom echo data to find which codes and
associated parameters improve the quality of strain esti-
mates.

O’Donnell [6] found that 15–20 dB improvements in
eSNR are possible for typical B-mode imaging situa-
tions. The factors that must be considered when applying
coded pulse excitation to B-mode imaging include eSNR,
frequency-dependent absorption, clutter from range lobes,
axial resolution, and frame rate (multipulse codes). In ad-
dition, we must add the effects of code distortion caused by
the physical deformation of the scattering medium to con-
sider applications in strain imaging. The goal is to trans-
late improvements in eSNR into improvements in displace-
ment and strain SNR while retaining acceptable levels of
strain image contrast and spatial resolution.

II. Methods

Each step in the formation of a strain image is discussed
below, from coded-pulse transmission through strain esti-
mation. The entire process is summarized in Fig. 1.

Strain is estimated by comparing echo frames recorded
before and after a deformation. The nth echo sample g′

j [n]
recorded in frame j arises from a one-dimensional (1-D)
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Fig. 1. Strain estimator using PM and FM coded pulse transmission.
Conventional pulse-echo methods are obtained by setting v[n] = δ[n].

random scattering function fj(x) through the continuous-
to-discrete integral transformation:

g′
j [n] =

∫ ∞

−∞
dxh(nT, x)fj(x) + e′

j [n], (1)

where e′
j [n] is a sample of the signal independent noise

vector and h(nT, x) is the shift-varying impulse response of
the system. Time t = nT is sampled on the interval T with
integer n. Arguments in brackets (parentheses) indicate
functions of discrete (continuous) variables; f and e′ are
wide-sense stationary (WSS) random processes.

A. System Impulse Response

1. Binary PM sequences: h(nT, x) for a phase-
modulated (PM) sequence has three components. First,
a code of length K bits is selected for properties related
to orthogonality (matched filter decoding) or low noise
amplification (inverse filter decoding) [11]. For example,
a K = 13-bit Barker code can be written as the hex-
adecimal number “00CA”. Converting to binary and then
remapping 1 → −1 and 0 → +1, the code sequence is
c̃[k] = [1 1 1 1 1 −1−1 1 1 −11 −11]. It is expanded in time
by the factor L to match the RF sampling rate using the
expression [12]:

c[n] =
∞∑

k=−∞
c̃[k]δ[n − kL],

where δ[n] is a Kronecker delta. Codes included in this
study are listed in Table I.

The second component is an L-bit base sequence b[n]
[8]. Its convolution with c gives the transducer excitation
voltage waveform for PM codes:

vPM [n] =
∞∑

k=−∞
b[n − k]c[k]

�
= {b ∗ c}[n].

TABLE I
Binary PM Codes Used in This Paper.

Code Length (bit) Hexadecimal

Barker 7 72
Barker 13 00CA

Suboptimal 32 FA6D48C7
Golay 8 12; 1D
Golay 32 121D12E2; 121DED1D

The form of the base sequence and its length deter-
mine the center frequency and bandwidth of vPM . For ex-
ample, our experimental conditions include f0 = 10 MHz
transducer resonant frequency, ∆f/f0 = 0.6 relative band-
width, and fs = 40 Msample/s sampling rate (T = 25 ns).
The integer expansion factor is L = fs/∆f = 7 and the
base sequence is b[n] = [1 1 −1−1 1 1 −1]. The period of
the base-sequence square wave is 4T = 1/f0 = 0.1 µs.
Also, it contains roughly three half cycles of the square
wave, so the bandwidth is 57%. Although the duration of
coded excitation voltage waveforms can be 5.58 µs (typ-
ical for K = 32-bit), the bandwidth is broad and conse-
quently these pulses have large time-bandwidth products,
TBP = K.

The third component is the pulse-echo impulse response
of the ultrasonic system hs(nT, x), a function of space and
time. The net impulse response is a convolution between
the voltage waveform and the system impulse response:

h(nT, x) =
∞∑

m=−∞
vPM [n − m]hs(mT, x)

= {b ∗ c ∗ hs}(nT, x).

All three components of the linear system are assumed
to be time invariant.

2. FM bursts: h(nT, x) for a linear frequency-
modulated (FM chirp) bursts [13] can be represented by
two components as illustrated in Fig. 1. The chirp volt-
age is:

vFM [n] = w[n] exp
(
i2π

(
f0nT + α(nT )2

))
, (2)

where α = ∆f/Tp is the frequency-ramp constant
in MHz/µs; w[n] is a Tukey window function [14]:

w[n] =⎧⎨
⎩

0.5
(

1 + cos
(

π
n−Np/4(1+β)

Np/2(1−β)

))
Np(1+β)

4 ≤
∣∣∣n − Np

2

∣∣∣ ≤ Np,

1 0 ≤
∣∣∣n − Np

2

∣∣∣ ≤ Np(1+β)
4

,

where Tp = NpT is the pulse duration and β ∈ [0, 1], such
that β = 0 is a rectangular window, and β = 1 is a Han-
ning window. Tp and β are selected to minimize range-lobe
amplitudes (−13 dB when β = 0 [15]) without excessively
broadening the main lobe. The ultrasonic system hs(nT, x)
is the same as for the PM codes.
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B. Echo Signals

The jth coded echo frame g′
j [n] is the reference or pre-

compression frame [see (1)], g′
j+1[n] is the postcompression

frame, and both are nonstationary random processes. We
assume all tissue motion occurs between frame acquisi-
tions. Echo frames can be “coherent” when the scatter-
ing functions for g′

j and g′
j+1 are related by a material

description of continuum motion (one-to-one mapping of
scatterers) [16]:

fj+1(x) = fj(x + d(x)),

where d(x) describes spatially varying scatterer displace-
ments resulting from an applied deformation force [17].

C. Pulse Compression

Appropriate filtering of the received echo signals min-
imizes the correlation length of g′

j if the code sequence
is well designed. We chose the matched filtering approach
[13], whereby, for PM codes, g′

j are convolved with the
matched filter c∗[−n] to produce a decoded echo signal gj

having a TBP that is approximately one:

gj[n] = φ̂cg′ [n]
�
=

∞∑
m=−∞

c∗[m − n]g′
j [m]

=

[ ∞∑
�=−∞

φcc[n − �]
∫ ∞

−∞
dxhsb(�T, x)fj(x)

]
+ ej [n], (3)

where hsb[n]
�
= (hs ∗ b)[n], φxy = E

{
φ̂xy

}
is the corre-

lation function between sequences x and y, and E{·} is
the expectation operator. ej [n] = φ̂ce′ [n] is a filtered noise
realization.

A code sequence is optimal when the range lobes are
the smallest possible [13]. For example, the PM Barker
code is optimal because φcc[n]/φcc[0] � 1/K for n �= 0.
Unfortunately, the maximum Barker sequence is 13 bits.
To achieve high eSNR, longer, suboptimal codes suggested
by others [11] also were examined. Optimal codes with long
sequences approximate the result φcc[n] � Kδ[n], so that
(3) reduces to:

gj [n] � K

∫ ∞

−∞
dxhsb(nT, x)fj(x) + ej [n]

= sj [n] + ej[n].
(4)

For Golay codes, K → 2K. Scatterer motion, attenu-
ation, and other common phenomena distort echo signals
and thus increase range lobes often with little effect on the
main lobe. In these situations, (3) rather than (4) more
accurately represents the filtered echo frames gj and gj+1.
Although (3) and (4) apply to PM codes, comparable re-
sults can be obtained for FM codes.

D. Strain Estimator

Decoded echo frames gj and gj+1 are segmented and
cross correlated to estimate local displacements using
methods described elsewhere [9]. Phantom data were com-
panded in 2-D prior to 1-D cross correlation to minimize
decorrelation. Companding was not applied while estimat-
ing displacements in 1-D echo simulations. And, longitu-
dinal strain estimates ε̂[n] are computed from the spa-
tial derivative of displacement along the direction of the
beam axis. In practice, we apply a finite impulse response
(FIR) differentiation filter hd [12] to displacement esti-
mates d̂[n] : ε̂[n] = {hd ∗ d̂}[n].

E. Quality Metrics

Coded excitation was adapted to strain imaging by se-
lecting code parameters that optimized the quality metrics
described below.

1. eSNR: Pulse compression improves eSNR by increas-
ing the echo signal energy more than the noise energy. To
quantify the change in eSNR for our shift-varying system,
we use (4) to find:

eSNR[n] = 10 log
(

φss[0, n]
φee[n]

)

= 10 log

(
E{|K

∫ ∞
−∞ dxhsb(nT, x)fj(x)|2}

E{|e[n]|2}

)

= 10 log

(
K2σ2

f

Kσ2
e′

∫ ∞

−∞
dxh2

sb(nT, x)

)

= 10 logK + eSNR′[n],

(5)

where σ2
f and σ2

e′ are the object and noise variances and
eSNR′ is the echo-signal-to-noise ratio for the conven-
tional, short-duration pulse assuming no attenuation. The
last form of (5) shows that eSNR for coded excitation is
nominally larger than eSNR′ by the amount 10 logK =
10 log TBP.

2. LMTF: Local modulation transfer function (LMTF)
is the normalized Fourier transform of the corresponding
local impulse response (LIR). The LMTF is adopted to
quantitatively evaluate the axial resolution of ultrasonic
strain imaging. The base sequence b(t) was selected to
match the transducer bandwidth in order to maximize the
acoustic power given the applied electrical power. As a re-
sult, we maximized eSNR at the cost of lengthening the
compressed pulse, hsb[n] = (hs ∗ b)[n]. In B-mode imaging,
longer pulses translate directly into a loss of axial resolu-
tion. However, in strain imaging, the effect on axial reso-
lution is not as obvious. The correlation window and pulse
lengths both factor into the determination of axial reso-
lution. In noise-limited strain estimation, the correlation
window is set several times longer than the axial pulse
dimension to suppress the effects of echo noise. The in-
creased eSNR with coded excitation permit use of shorter
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correlation windows, which could lead to comparable or
superior axial resolution for strain despite a longer pulse
length.

To test these ideas, we simulated nonstationary echo
signals that enabled measurement of the LIR for strain
estimates. The LIR is the output of the strain estima-
tor LIR(nT, x0) = ε̂[n] for a strain impulse input, i.e.,
ε(x) ∝ δ(x − x0). Axial resolution for different pulses was
compared using the normalized Fourier transform of the
corresponding LIR—LMTF—via methods described pre-
viously [17]:

LMTFx0 [k] =

∣∣∣∑N
n=1 E {ε̂ (nT, x0)} e−i2πkn/N

∣∣∣∑N
n=1 E {ε̂ (nT, x0)}

,
(6)

where N is the number of strain estimates in LIR. The
shift variant system response means that LIR and LMTF
vary with x0.

3. SNRd: The SNRd estimates SNRd [18] is found by
applying a known input displacement d(x) into our estima-
tor and measuring the output d̂[n]. For uniaxial compres-
sion applied to a homogeneous medium along the sound
beam axis, the input displacement increases linearly with
range. The figure of merit:

SNRd = 10 log
(
ρ2

d̂d
/

(
1 − ρ2

d̂d

))
, (7)

where:

ρ2
d̂d

=
1
N

N∑
n=1

φ2
d̂d

[0, n]

φdd[0, n]φd̂d̂[0, n]
,

reaches its maximum value of one when the input and es-
timates are identical; d̂ are computed from nonstationary
echo data. Although the corresponding correlation coeffi-
cients can vary significantly with depth, the simple uni-
axial deformation produced mean and variance measure-
ments that did not vary significantly. Consequently, values
were averaged as shown. The SNRd is an appropriate mea-
sure for results obtained from 1-D echo simulations.

4. CNRε: To include effects that alter lesion contrast
or any 2-D correlations that may exist among strain es-
timates, we adopted the contrast-to-noise ratio (CNR) to
evaluate applications of coded excitation to strain images.
Let ε̂t and ε̂b be the mean strains inside a lesion target and
in the surrounding background, respectively. Also let vart

and varb be the sample variances for the corresponding
regions. Then:

CNRε =
ε̂b − ε̂t√

(varb + vart) /2
. (8)

III. 1-D Simulations and Measurements

A. Echo Simulations

Object scatterers fj are simulated numerically in 1-D
using Monte Carlo methods [17]. The h(nT, x) is modeled
as a shift-varying pulse with center frequency 10 MHz,
fractional bandwidth 0.6, and frequency-dependent atten-
uation. The pulse lengths of the short pulse, chirp with
Tukey-window apodization, 32-bit Golay code, and 32-bit
suboptimal code at 60% bandwidth are 0.077 mm, 4.9 mm,
4.3 mm, and 4.3 mm, respectively. The total energy trans-
mitted is the same for all coding sequences. Each data
point presented is comprised of measurements from 100
independent echo waveform pairs. Each pair is individu-
ally processed to estimate displacement and strain then
averaged.

Two 1-D software phantoms were used to simulate echo
signals from deformed media with different strain patterns.
One provided a homogeneous strain along a 5-cm depth
to study SNRd in the ranges of eSNR′ = 10 to 60 dB,
attenuation coefficient slope = 0.1 to 0.9 cm/dB/MHz,
and applied strain 0.1% to 1%. The eSNR′ is measured
at the focal length of the aperture with no medium at-
tenuation. In situations in which the attenuation slope is
0.6 dB/cm/MHz, eSNR′ for our broadband system is re-
duced approximately 10 dB. The second software phantom
provides an impulse strain (step displacement). This phan-
tom is used to investigate the effects of the net impulse
response on axial resolution.

B. Echo Simulation Results

Fig. 2(a) shows SNRd for four different pulses as a func-
tion of eSNR′ using the homogeneous software phantom.
Other parameters are held constant. As expected, SNRd

increases with eSNR′. Coded pulses provide the greatest
improvement over the short pulse at low eSNR′. The chirp
and Golay pulse performances are nearly equal.

We fixed eSNR′ at 40 dB then studied the effects of in-
creasing the slope of the frequency-dependent attenuation
coefficient using the homogeneous software phantom. Re-
sults are summarized in Fig. 2(b). The SNRd values fall
with increasing attenuation slope for all pulses, and the
decline is much greater for the short pulse. Our simulation
verified that coded pulse excitation (especially for chirp
and Golay) significantly reduces strain noise in highly ab-
sorbing tissues.

Fig. 3(a) shows SNRd for all pulses as a function of ap-
plied strain using the homogeneous phantom. Values were
found to decrease with compressive strain. For small defor-
mation, SNRd was greater for the chirp and Golay pulses
than the short pulse. For deformations greater than 0.7%,
SNRd for the chirp and Golay pulse are about 2 dB less
than the short pulse.

As demonstrated in Figs. 2 and 3(a), chirp and Golay
pulses have similar performances for SNRd, but the sub-
optimal coded pulse is consistently inferior.
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Fig. 2. (a) SNRd for short pulse (dotted line), chirp pulse (solid line), 32-bit suboptimal code (dashdot line), and 32-bit Golay code (dashed
line) are shown as a function of eSNR′. Attenuation coefficient slope is 0.6 dB/cm/MHz. (b) SNRd for all pulses are shown as a function
of attenuation coefficient slope. eSNR′ is 40 dB. The correlation window length was 1.23 mm, and the applied strain was 0.5% for all
measurements.

Fig. 3. (a) SNRd for all pulses are shown as a function of applied strain. The correlation window length is 0.62 mm. (b) SNRd for chirp
pulse as a function of pulse length under applied strain 0.3%, 0.5%, and 0.7%, respectively. The correlation window length is 1.23 mm. The
attenuation coefficient slope, 0.6 dB/cm/MHz, and eSNR′, 40 dB, are fixed.

Longer coded pulses, for example, 3.85 mm for 0.5%
applied strain, have greater eSNR but their propagation
through deformed media increases displacement noise be-
cause of the range lobes generated by incomplete pulse
compression. Fig. 3(b) shows there is an optimal coded
pulse length unique to the strain estimation conditions.

Because the greatest relative improvements in SNRd for
coded pulses occur at the smallest deformation, Fig. 3, it
is reasonable to use multicompression methods [19]. Fig. 4
demonstrates SNRd for the chirp as a function of pulse
length using both single compression (0.3% and 0.6% ap-
plied strains) and multicompression (2×0.3% strain) tech-
niques. The SNRd for the 7-mm-long chirp is nearly 4 dB

greater for the 2 × 0.3% strain experiment than for the
single 0.6% applied strain experiment.

Fig. 5(a) shows the LMTF curves for each pulse type
when the correlation window length (0.077 mm) is shorter
than all of the compressed pulse lengths (0.17 mm for the
short pulse). For these curves, we studied the strain im-
pulse software phantom. These LMTF curves define the
upper limit of axial resolution because pulse length is the
limiting factor [17]. Fig. 5(b) shows the LIR when the
correlation window is longer than transducer pulse for
the short and chirp pulses. The width of the main lobe
shows the attainable resolution determined by the correla-
tion window [17]. Fig. 5(a) predicts a small degradation in
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Fig. 4. SNRd for chirp pulses as a function of pulse length under
applied strains 0.3%, 0.6%, and 2×0.3% (multicompression), respec-
tively. The correlation window length is 1.23 mm, eSNR′ = 40 dB,
and attenuation coefficient = 0.6 dB/cm/MHz are fixed.

upper bound resolution when coded excitation is applied.
However, Fig. 5(b) shows coded excitation has lower strain
noise under the same attainable resolution. Therefore, the
increased SNRd with coded pulse excitation permits use
of shorter correlation windows and higher frequencies that
enhance displacement and strain axial resolution. Fig. 6
shows SNRd for the short and chirp pulses as a function
of correlation window length (attainable resolution) using
the homogeneous phantom. For example, SNRd = 20 dB
with a short pulse when the correlation window is 3.1 mm.
However, we can obtain the same SNRd using a chirp pulse
with a 1.75-mm correlation window. Consequently, the rel-
ative spatial resolution for strain can be increased using
coded excitation in low eSNR conditions.

IV. Phantom Measurements

A. The Experiment

We developed an ultrasonic strain imaging system [20]
specifically for imaging tumors in small animals. An 8-
ring, 30-mm diameter, f/1.5, spherically focused annular
array was built to generate 10 MHz pulses with 60% band-
width [21]. This transducer dynamically focuses on receive
without aperture growth. Echoes are recorded with a sam-
pling rate of 62.5 MHz while the transducer is mechani-
cally scanned by a linear positioner under microproces-
sor control. The −6 dB depth of focus (DOF) for B-mode
imaging is extended from 2.4 mm to just 3.2 mm after
dynamic focusing. Therefore, the eSNR remained insuffi-
cient for strain imaging over a 10-mm depth near the focal
length because of significant decorrelation errors from low
eSNR.

We applied chirp and 13-bit Barker pulses designed to
increase eSNR and allow decorrelation-free strain imaging

TABLE II
Experimental System −6 dB Resolution (mm).

Resolution Short Chirp Barker

Axial 0.150 0.230 0.240
Lateral 0.226 0.226 0.220

over a 10-mm DOF. The lengths of the short, chirp (Tukey
apodized), and Barker pulses were 0.217 mm (TBP � 1),
2.65 mm, and 2.17 mm (TBP � 10), respectively. For all
sequences, the peak-to-peak excitation voltages (Vpp =
200v) and bandwidths were kept constant. The transmit-
ted energy was held constant for all coded sequences. Con-
sequently, the expected increase in eSNR was 10 dB. We
measured an increase in the −6 dB DOF from 3.2 mm to
7 mm.

A 35 mm × 10 mm graphite/agar phantom having
acoustic properties similar to breast tissue was built for
strain imaging. Measured attenuation is 5.4 dB/cm at
10 MHz. Three hard inclusions with diameter 2.5 mm were
embedded at 2-mm, 5-mm, and 8-mm depths. The trans-
mit focal zone is centered on the 5-mm deep inclusion.

This lesion-mimicking phantom can be used to study
lesion visibility via CNRε. The estimate of the ratio of the
elastic modulii of the background and inclusions is about
5 6. All processing was performed off-line on Pentium com-
puters. When phantom strain images are computed, 2-D
companding techniques [9] are applied to reduce out-of-
plane motion and the amount of strain between g1 and g2
before cross correlation. Thus, the residual strain detected
by the correlation estimator is less than 1%.

B. Experiment Results

We measured 2-D spatial sensitivity function (SSF) [22]
for the short, chirp, and Barker pulses along the lateral
(x) and axial (z) directions by scanning a point reflector
in two different ways. First, we scanned the point reflector
by moving the transducer on a fine mesh and recorded the
peak pulse amplitude. The results are the SSF shown in
Fig. 7. Penetration is greatly extended by coded excitation
with some increase in range and side lobes.

The second measurement fixes the reflector in space at
the focal length (45 mm) and records the echo amplitude
as a function of time (axially) and space (laterally). Axial
point spread function (PSF) and lateral SSF functions for
short, chirp, and Barker pulses are demonstrated in Fig. 8
and Table II. Long pulse excitation degrades B-mode ax-
ial resolution due to blurring by the base sequence as pre-
dicted by simulation results, Fig. 5(a). Lateral resolution
is determined by the product of wavelength and f-number,
λ×f/No = 0.148×1.5 = 0.22 mm, which is unaffected by
the applied voltage, Fig. 8(b). Range lobes for the 13-bit
Barker code are −22 dB lower than the main lobe peak in
the axial direction, Fig. 8(a), and −6 dB lower in lateral
direction.



liu and insana: comparative studies of strain imaging 237

Fig. 5. (a) LMTF curves for short pulse, chirp pulse, 7-bit Barker code, and 8-bit Golay code. The correlation window length is 0.077 mm.
eSNR′ = 1000 dB. Applied strain is 1%. (b) LIR for short pulse and chirp pulse under same attainable resolution. The correlation window
length is 0.62 mm, eSNR′ = 40 dB, and applied strain is 1%.

Fig. 6. SNRd for short and chirp pulse as a function of window length.
eSNR′ = 40 dB, attenuation coefficient 0.6 dB/cm/MHz, and 0.5%
applied strain are fixed.

Fig. 9 shows strain images of the lesion phantom for
applied strains of 1%, 2%, and 3%, using short, chirp, and
Barker pulses, respectively. Measured CNRε results from
data in Fig. 9 are listed in Table III. Square boxes in Fig. 9
indicate regions from which CNRε in Table III are com-
puted. The peak eSNR′ measured for our laboratory sys-
tem is a meager 30 dB for the lesion phantom. Images in
Fig. 9 are displayed with the same gray scale to show how
greater phantom compression increases lesion contrast and
decorrelation noise, particularly for the short and Barker
pulses. Comparing the strain images, it is clear that the
chirp pulse can successfully suppress decorrelation strain
noise under noise-limited condition. Although the Barker
pulse improves eSNR, its range side lobes induce decor-
relation noise at larger deformations. Its performance is

Fig. 7. Measured 2-D SSF for short, chirp, and Barker sequences.

TABLE III
CNRε Measured for Lesion Phantom in Fig. 9.

Strain Short Chirp Barker

1% 1.47 2.51 1.53
2% 0.05 1.58 0.03
3% 0.04 1.26 0.02

equivalent to the short pulse as predicted by the simula-
tion results, Fig. 2(a).

Fig. 10 compares the strain images of a lesion phan-
tom with 1% applied strain for short pulse and chirp
pulse using 1.58-mm and 0.79-mm correlation window
lengths. Measured CNRε results are shown in Table IV.
Chirp pulses provide greater CNRε than short pulses with
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Fig. 8. Measured axial PSF (a) and lateral SSF (b) for short, chirp, and Barker pulses at focal depth.

Fig. 9. Strain images of a lesion phantom with 1%, 2%, and 3%
strain applied from top. The excitation pulses are the short pulse
(left column), chirp (middle column), and Barker code (right col-
umn). The correlation window is fixed at 1.58 mm. Each image size
is 13.3 mm × 10.7 mm. Boxes indicate regions from which strain
contrast to noise ratios in Table III are computed.

TABLE IV
CNRε Measured for Lesion Phantom in Fig. 10.

Window length Short Chirp

1.58 mm 1.47 2.51
0.79 mm 0.23 1.41

Fig. 10. Strain images of a lesion phantom with 1% applied strain.
The excitation pulses are short (left) and chirp (right). The cor-
relation windows are 1.58 mm and 0.79 mm from top to bottom,
respectively. Each image size is 8.8 mm × 10.7 mm.

the same correlation window length. From Table IV, the
chirp pulse has almost the equal CNRε as the short pulse
but with half the window length. Recall that the window
length determines the attainable axial resolution for strain
imaging. Therefore, to keep the same lesion detectability,
the chirp pulse requires a shorter correlation window.

V. Discussion and Conclusions

This paper describes a method for adapting common
coded excitation pulses to strain imaging. It also presents
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a preliminary study based on simulated echo data using
parameters of the Siemens Antares system as well as phan-
tom experiments using a laboratory system. We compared
the performance of conventional short pulse and coded
pulse excitations under the operating conditions of breast
imaging. The measured results demonstrate that it is fea-
sible to apply coded excitation technique for ultrasonic
strain imaging. Many operating factors (such as electronic
noise, ultrasonic attenuation, and applied deformation)
will affect strain image quality. To maximize the perfor-
mance, the coding parameters must be carefully chosen.
To obtain the highest performance, the choice of pulse and
associated parameters is application dependent.

Fig. 2(a) shows that, when eSNR′ > 50 dB, SNRd is
greatest for the short pulse. When eSNR′ < 50 dB, the
chirp and Golay pulses yield the lowest strain noise. It sug-
gests that to obtain a low-noise strain image along an ex-
tended field of view, one should apply short pulses in high
eSNR regions (for example, near the focus), and coded
long pulses should be applied in low eSNR regions (e.g., in
which there is acoustic shadowing or deep in the body).

Fig. 2(b) predicts that coded excitation significantly
reduces strain noise in highly absorbing tissue. The es-
timated attenuation for fibroglandular tissue in breast is
22.8 dB/cm for a 10 MHz transducer [23]. The slope of
ultrasonic attenuation for some carcinomas is about 0.08–
1.6 dB/cm/MHz [24]. Coded excitation has great potential
for reducing strain noise in absorbing media such as breast
tissue.

The greatest improvement in SNRd with coded pulses
is obtained at the smallest applied deformations, e.g.,
Fig. 3(a). Also small deformations allow use of longer code
[see Fig. 3(b)]. Both of these results suggest that multicom-
pression methods combined with coded excitation will be
very effective, e.g., see Fig. 4.

A previous study [17] showed that B-mode axial reso-
lution determines the upper bound for strain axial resolu-
tion. For our approach to coded excitation, the upper limit
on axial resolution is further limited by the base sequence
as given by hsb and shown in Fig. 5(a), Fig. 8(a), and Ta-
ble II results. Using the spatial frequency at LMTF = 0.1
as the axial resolution limit [17], predictions in Fig. 5(a)
agree with the measurements in Fig. 8(a). However, in
common practice, the duration of the correlation window
determines attainable axial resolution. Fig. 5(b), Fig. 10,
and Table IV demonstrate the improvement in SNRd us-
ing coded pulses can be converted to improvement in at-
tainable axial resolution. The lateral resolution in strain
imaging is on the same order as in B-mode [25]. Because
the coding and decoding procedure have no effect on trans-
ducer aperture size, lateral resolution remains unchanged
by the excitation [see Fig. 8(b)].

Our comparative study of the performances of chirp,
Barker, suboptimal, and Golay codes shows that design-
ing sequences robust to deformations is challenging for
strain imaging. The simulations predict chirp and Golay
code have better performance than suboptimal and Barker
code. Experiments verify the predictions that it is easier

to detect small lesions using chirp pulse than Barker code
under noise-limited condition. Due to our limited hard-
ware, Golay code excitation was not tested during exper-
iments. However, because the experimental results using
chirp and Barker codes agree with predictions, we expect
the Golay code predictions to be verified also. A variety of
other codes available for ultrasonic imaging will be stud-
ied in our future work, such as m-sequence and Huffman
sequence [15].

Matched filters were used to decode echoes. Although
this approach maximizes eSNR, it introduces range lobes.
As the simulations and experiments showed, range lobes
act to decorrelate echoes in deformed media. For Barker
and suboptimal codes, the level of the range lobe is often
too high for strain imaging, roughly −20 dB below that of
the main lobe.

Echoes also may be decoded by inverse compression fil-
ters or an adaptive combination of matched and inverse
filtering given by the Wiener filter [7]. For a general com-
pression filter hc, the echo signal in (3) is written as:

gj[n] =
∞∑

m=−∞
hc[m − n]g′

j[m],

where the system response of the filter is:

Hc[k] =
C∗[k]

|C[k]|2 + E {|E′[k]l2} /E {|S′[k]|2} , (9)

and C∗[k], S′[k], and E′[k] are the discrete Fourier trans-
forms of c∗[−n], s′[n], and e′[n], respectively. The compres-
sion filter Hc is approximately proportional to the match
filter C∗[k] when the noise power is relatively large and
the inverse filter C−1[k] with the noise power is relatively
small. We focused the matched filter over the inverse fil-
ter because of its greater stability in noisy conditions, its
ease of use, and its ability to achieve the largest eSNR re-
gardless of the code [8]. The goal is to design |C[k]| to be
constant over the transducer bandwidth. In that case the
matched and inverse filters perform equivalently within a
scale factor.
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