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Ultrasound Elastography Based on Multiscale
Estimations of Regularized Displacement Fields
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Abstract—Elasticity imaging is based on the measurements of
local tissue deformation. The approach to ultrasound elasticity
imaging presented in this paper relies on the estimation of
dense displacement fields by a coarse-to-fine minimization of
an energy function that combines constraints of conservation of
echo amplitude and displacement field continuity. The multiscale
optimization scheme presents several characteristics aimed at
improving and accelerating the convergence of the minimization
process. This includes the nonregularized initialization at the
coarsest resolution and the use of adaptive configuration spaces.
Parameters of the energy model and optimization were adjusted
using data obtained from a tissue-like phantom material. Elas-
ticity images from normal in vivo breast tissue were subsequently
obtained with these parameters. Introducing a smoothness con-
straint into motion field estimation helped solve ambiguities due
to incoherent motion, leading to elastograms less degraded by
decorrelation noise than the ones obtained from correlation-based
techniques.

Index Terms—Motion estimation, multiscale optimization, op-
tical flow, regularization, ultrasound elastography.

1. INTRODUCTION

LASTICITY imaging describes the compressibility of bi-

ological tissues [1]. Changes in tissue stiffness correlate
with pathological phenomena and can be indicators of major
diseases, such as cancer [2]—[5] or cardiovascular disease [6],
[7]. Various elasticity imaging techniques have been developed
over the past decade. Reviews are found in papers by Gao [1],
Parker [8], Wilson [9], and Ophir [10].

Quantitative assessment of elasticity can be provided by mea-
suring elastic parameters such as strain [11], which is inversely
proportional to the elastic modulus of tissue [12]. Strain im-
ages or elastograms are usually computed based on measure-
ments of local deformations induced by compressive forces and
captured using conventional imaging modalities, mainly ultra-
sound and magnetic resonance imaging. Most approaches to ul-
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trasonic elasticity imaging consist of computing strain estimates
as the spatial gradient of local tissue displacements. Techniques
have also been proposed that estimate strain directly without
involving estimation of displacement, either within the frame-
work of inverse problem solutions [13]-[16] or using the power
spectra of signals [17]. The approach described in this paper
falls into the first category of methods. It addresses the problem
of constructing high quality strain images by precise estimation
of local movements of tissues under deformation.

Most ultrasonic techniques estimate local displacements
of scatterers based on correlation analysis of echoes [2], [3],
[18]-[20]. Cross-correlation is a very accurate and effective
estimator of distance (or similarity) between echo fields and is
capable of tracking small variations even when very low strains
are involved. This estimator is robust to noise. However, strain
imaging is subjected to ultrasonic speckle decorrelation induced
by out-of-plane motion, nonuniform motion of subresolution
scatterers, nonuniformity of the ultrasound field and nonrigid
tissue deformation [21]. Speckle decorrelation results in loss
of echo signal coherence and leads to displacement estimation
errors [12]. Attempts have been made to reduce decorrelation
noise and increase the range of accurate strain measurements
using adaptive methods that compute local scaling factors
[19], [22]-[24]. Companding methods consisting of joint
operations of compression and expansion of echo fields prior
to cross-correlation have also been proposed in order to com-
pensate for scaling and shifting of echoes in the scan plane
and help restore signal coherence [25], [26]. The multiscale
companding method originally proposed by [25] and modified
by introducing a semi-constrained correlation search based
on physical priors of tissue motion continuity [27] provides
elastograms of in vivo breast and vascular tissues with high
spatial resolution and contrast. However, elastograms remain
degraded by decorrelation noise, especially when large and
out of plane motion is present. In fact, incoherent motion and
variations in the signal from scatterers at high compression lead
to ambiguities in the determination of the motion vectors [26].

Since data alone can be insufficient to solve ambiguities due to
loss of echo coherence, we propose an approach that integrates
a priori knowledge into the motion estimation process. Regular-
ization provides the theoretical framework necessary to integrate
this additional information. Due to the complexity and spatial het-
erogeneity of motion, a global parametric regularization model
is inappropriate. Optical flow seems a better model as it permits
estimation of local deformations. Methods for computing optical
flow were first proposed by Horn and Shunk [28] and applied to
medical imaging by Mailloux et al. [29]. Optical flow is based
on the implicit assumptions that signal amplitudes are constant
between sequentially recorded frames and that local texture con-
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tains sufficient unambiguous information [30]. However, the hy-
pothesis that signal intensities remain constant along the motion
trajectories is not fully justified, especially in the case of ultra-
sound elasticity imaging where compression of scatterers leads
to changes in their echo response [31]. Consequently, estimating
the optical flow from local information is ill-posed. To regularize
this problem, approaches based on a Markovian model of optical
flow have been proposed [32], [33]. The method we developed is
based on a regularization of the optical flow using an approach
similar to that described by Perez and Heitz [32]. The algorithm
estimates the optical flow by minimizing a global function that
reflects the typical constraint of conservation of the echo ampli-
tude while imposing a smoothness constraint on the displacement
field. The search of the minimum difference energy configuration
is performed using a deterministic multiscale descent optimiza-
tion algorithm [34].

An integral part of the formulation of regularization prob-
lems is the choice of the smoothness parameter that controls
the tradeoff between noise reduction and resolution and contrast
degradation. The regularizing factor as well as other key opti-
mization parameters was adjusted empirically using phantom
and breast tissue data obtained with different sets of parame-
ters. For that purpose, elastograms obtained with different reg-
ularizations were qualitatively compared with elastograms ob-
tained with a multiscale cross-correlation technique used as the
reference method. Performances in terms of noise and contrast
were also measured and compared.

Section II focus on the description of the specific regularized
model and associated multiscale optimization strategy proposed
to reconstruct the displacement field associated to ultrasonic
radio frequency (RF) data. The adjustment of the regularization
parameters and the subsequent elasticity imaging results from
phantom and breast data are discussed in Section III.

II. METHODS
A. Elasticity Estimation

Elasticity imaging can be performed using static or dynamic
stimuli [9]. In this paper, only static elastography is consid-
ered, where external compressing forces are applied at the skin
surface. An ultrasonic transducer flush mounted onto a small
plexiglass compression plate facilitates application of a uniform
stress distribution. Elasticity measurements involve tracking the
locations of scatterers in tissue from a resting state to a com-
pressed state. In order to increase the sensitivity and precision
of displacement estimates, RF data are preferred over B-mode
envelope data. RF echoes are acquired along A-lines in the rest
and compressed states. A-lines are divided into small segments,
and the postdeformation displacement d is estimated for each
segment. We estimate strain along the beam axis where the wave
modulation increases the sensitivity of echo signals to motion.
Strain estimates € for each segment of initial length L are esti-
mated using

e=Ad/L. (1

Managing three-dimensional tissue motion is a major factor
affecting experimental design and algorithm development [25].
Assuming all motion of the biological media can be confined
to a plane, for example, by adjusting boundary conditions, then
precise estimates of axial displacements may be obtained by
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analyzing echoes in the image plane. Nevertheless, differences in
sampling interval for different directions with respect to the beam
axis complicate algorithm development and limit precision.

The axial sampling interval (Az) used here is 53.5 m while
the lateral sampling interval (Ay) is 120 ym. In order to in-
crease the precision of displacement estimates, RF data are in-
terpolated by a factor of 4 in the axial direction. Elastograms are
then obtained by calculating the axial strain as the first-order fi-
nite difference of the estimated displacement field in the z di-
rection. Since the differentiation operator is very sensitive to
noise, displacement estimates are averaged along z (kernel size:
1.7 mm, overlapping: 214 pm) prior to differentiation to limit
degradation of the signal to noise ratio.

B. Regularized Modeling of the Optical Flow

We seek to estimate the dense displacement field d =
{d(s),s € S} corresponding to a pair of frames from the RF
image sequence f = {f,(s),s € S} defined over the rectan-
gular grid S of size Z x Y. The movement is represented with
respect to the first frame of the echo sequence, corresponding
to the resting state (¢ = 0). A pixel site s with coordinates
(z,y) in the reference frame will move after compression by a
factor o to the location s + d(s) with d(s) = (du(s),di(s)) da,
and d; representing the axial and lateral components of d.
Displacement vector solutions have values in a discrete con-
figuration set that depends on experimental parameters such as
sampling specifics, boundary conditions, and the applied force
stimulus. The set A of possible displacements (search window)
is defined as

A={=D.,...,D.} x {-Di,..

- Di} @

where D, is the maximum authorized value of displacement
in the axial direction (z) and D; is the maximum authorized
value of displacement in the lateral direction (y). The set of all
possible configurations is = AZ*Y,

To estimate displacement vectors, spatial variations of the
echo amplitude f as function of the applied compressive force
are analyzed in the framework of regularized optical flow
(ROF). For that purpose, we define an energy cost function
that is constrained by echo amplitude conservation and neigh-
borhood smoothness of displacements. It is then minimized in
order to find the most probable value of the displacement field
d. Specifically

d = arg {}gg(El(d) + akir(d)) 3)
where « is a positive regularization factor.

The first term assumes echo amplitude is conserved. It corre-
sponds to the shifted inter-echo image difference. A simple sum-
absolute difference (SAD) measure is used, which has demon-
strated accuracy comparable to the usual correlation measure
and requires less computation [11], [35]. It is written as

Ey(d) = [fo(s) = fols +d(s))]

seS

“

The second term of (3) regularizes the solutions by mini-
mizing local variations of the vector field. It is defined as

Ey(d) =" > lld(s) - d(s)|”

seES s'eCy

)

where C; represents an 8-sample neighborhood about site s.
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Fig. 1. (a) Multiscale optimization: The minimization of the energy at level
leads to the estimation of the displacement field d* which is interpolated to the
resolution of the next scale : — 1. A new estimate d**1 of the displacement field
is obtained, which is again interpolated. The same operations are repeated until
1 = 0.

C. Multiscale Optimization Adapted to Nonisotropic Data

The search for the minimum energy is a classical optimiza-
tion problem. The energy function we seek to minimize is non-
convex and presents several local minima. Stochastic algorithms
such as Simulated Annealing converge in theory toward a global
minima of the energy function [36]. However, stochastic relax-
ation algorithms necessitate a large number of iterations and
are very slow, especially when the field to be estimated is large
(high value of Z x Y'). They are not well suited to our applica-
tion, where minimizing computation time is an important con-
sideration. Deterministic algorithms such as the iterative con-
ditional modes (ICM) algorithm [37] converge much faster but
can be trapped in local minima of the energy function. In order
to avoid selecting local minima, optimization can be initial-
ized with configurations that are close to the global minimum
[34]. Multiscale or pyramidal approaches offer this possibility
by searching for the solution within finer and finer spaces of
configurations. In contrast to multiresolution approaches that
observe data and measure displacements at increasing spatial
resolutions, the multiscale approach uses the finest spatial reso-
lution for all observations but varies the scale of the configura-
tion space 2. The optimization strategy we have implemented
is an adaptation of multiscale ICM algorithms to the specific
problem of anisotropically sampled ultrasonic RF data.

Optimization consists of satisfying (3) while searching for
solutions of the displacement field d within M = I + 1 suc-
cessive spaces of configurations Q¢ (i = I,1 —1,...,0), in-
cluded in the original space €2, and obtained by grouping blocks
of sites Fig. 1. Multiscale algorithms presented in the literature
only consider the specific case of isotropically sampled data,
and use spaces of configurations built from square blocks. Since
investigated RF data have a significantly higher axial than lateral
sampling, anisotropic blocks have been introduced in this paper.
The ratio of axial and lateral block dimensions is normally set at
4 to account for the axial interpolation. The displacement field

is estimated over a rectangular grid S of dimension Z X Y that is
fit within the original field of view, where Z and Y are multiples
of 4 x 21 and 2. For configuration scale i, the grid is partitioned
into N; rectangular blocks B! of size k x [ Fig. 1. This design
leads to k = 2+2] = 2 and N; = Z x Y/2%%2 At each
scale 4 is associated a configuration d’ defined over a grid S°.
Displacement vectors within the same block B! are identical

d(s) =d'(n).  (6)

At each scale, we estimate the suite of configurations

Vne{l,...,N;}, Vse B,

di = arg drir.lgigl)li (Ei(dl) + aiEé(di)) . @)

Note that at the finest configuration scale (i = 0), blocks are
of size 4 x 1. This leads to estimation of the displacement field
according to the original resolution (before axial interpolation)
but with an accuracy of the axial component of Az/4.

During ICM optimization, sites from the grid are visited se-
quentially at each iteration. To prevent the formation of artifacts
due to a privileged scanning direction, alternative scans starting
at the top left, bottom right, top right, and bottom left of the
grid are performed. To ensure that a stable minimum energy is
reached at a given spatial scale ¢, iterations should ideally stop
when no more sites are modified. However, each time the scale
increases a factor of 2, the number of sites visited increases a
factor 4. At coarse scales, convergence is achieved within a few
iterations, but at fine scales, many iterations are necessary to
achieve the same stable state. To homogenize the optimization,
iterations are stopped when the number of modified sites during
an iteration becomes smaller than a threshold 7; function of the
scale 7. This threshold is chosen so that ICM optimization is
stopped at the coarsest scales when none of the sites is modified
during a full scanning, and at finest scales when the number of
modified sites is lower than one per cent of the number of vis-
ited sites

forz > 3

i = 07
{’fh’ = Ni/IOO, for 4 S 3. (8)

D. Nonregularized Initialization

In conventional multiscale approaches, the same cost function
is used at each level so that the energy models at different scales
are completely determined by the original model corresponding
to the finest scale. Stated mathematically

Vi € {0,..., I} {oi = a, Bi(d') = Ey(d), Bi(d') = Ea(d)}.
| ©
where d is related to d* according to (6).

However, regularization at the highest level (coarsest scale)
can lead to an initial solution that is too smooth and, thus, traps
solutions in local minima, as will be illustrated in Section III-3.
We have considered that the displacement vector field is already
regularized because all the sites of a block are estimated by a
constant vector; hence, we chose to cancel the regularization
cost for 2 = I, i.e., ay = 0. It is not necessary to iterate in
that case, since only the conservation term intervenes in the en-
ergy model. Optimization at the coarsest scale, thus, becomes
a simple minimum SAD search with a finite number of values
where the energy only depends on the echo data and is not af-
fected by the estimates. This nonregularized model, which is
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only used at the top level, can be, in a sense, considered as a gen-
eral initialization. All the other resolution levels use the same
energy model (Vi € {0,...,T — 1}, a; = a) so that the energy
model remains coherent along the different scales.

For a given scale i, the amplitude conservation term £?(d")
is defined as

E{(d') = Z > 1fo(s) = fols + d(n)))]
n=1seB}
=" fo(s) = fols +d(s))], (10)
seS

which, using the relationship from (6), is identical to the defini-
tion of F; from (4).

The regularization energy is also independent of the scale. At
a given scale ¢, the regularization term can be written as

Y Y e

n=1seB} s'€C;

E3(d") (HIF Ay

which is identical to the definition of E5 in (5).

However, since displacement vectors are constant within a
block, the local displacement variation cost will be null for
neighboring pixels that are within the same block. The com-
putation time of E% can be considerably reduced by excluding
same block neighbors. A simplified expression of (11) can be
obtained as

E5(d’) d'(n")||* (12)

-3 T A

n=1n’ GC”

where A! is determined by the number of adjacent pixels in
neighboring blocks { B!, B, }, and C, refers to the neighbor-
hood system associated with B!,. We decompose C?, into three
subneighboring systems C'? . Ci , and Cflg , respectively refer-
ring to sets of horizontal, vertical, and diagonal neighbors of d’.
Equation (12) can be written as

=3 | 3 Al - de

n=1l|n’eC},
Yo Aldi(n) = di(n)]?
n’GCf,U
+ Y Alldm) —d@)]* a3
n’GCf,
where A}, \¢, and /\; are normalization factors corresponding

to the number of pixels shared by a pair of neighboring blocks
in the horizontal, vertical, and diagonal neighboring systems re-
spectively. Since rectangular blocks are considered, horizontal,
and vertical neighbors have different weights. In the horizontal
neighboring system, B! possesses k neighboring pixels with
B¢, as shown in Fig. 2(a). Each of the two corner pixels on the
51de of B! adjacent to B!, has 2 neighbors with B!,. The re-
maining (k 2) noncorner plxels each has 3 nelghbors with B!, .

This leads to a total of (2x 2+(k—2) x 3) possible pairs of nelgh-
bors for C, . In the vertical system, a total of (2x 2+ (1—2) X 3)
pairs of nelghbors are possible [Fig. 2(b)]. Finally in the diag-
onal system, only one pair of pixels are neighbors [Fig. 2(c)].
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Since k = 2:12 and [ = 2¢, the normalization coefficients for a
given scale ¢ are defined as

(N =(Bx2F2—2) Al =(3x2'—2),\ =1}. (14
e Sm
s )
o ‘ =
e et b
non-comer
pixel of B!
CO[llt‘BI‘ pixel B; , B::'
of B
binlect akc  Bumlec
(a) (b) (c)

Fig. 2. Neighboring systems for blocks B} . (a) In the horizontal neighboring
system B, possesses k pixels adjacent to B ,. Each of the 2 corner pixels (s.)
of the side of B adjacent to B?, has 2 neighbors with B’ ,. The remaining
(k — 2) noncorner pixels (s, ) each has 3 neighbors with B!, This leads to a
total of (2 X 2 4+ (k — 2) x 3) possible pairs of neighbors. (b) In the vertical
system (middle), a total of (2 X 2 4 (I —2) x 3) pairs of neighbors are possible.
(c) In the diagonal system (right), only 1 pair of pixels are neighbors.

E. Introduction of Adaptive Configuration Spaces

Another characteristic of classical multiscale approaches is
that the same search window is used at each scale [32]

Vie{0,...,I}, A=A (15)
leading to the configuration spaces
Q= AN (16)

In our approach, search windows A?, depending on the scale
as well as on the studied block itself are defined. This allows
more flexibility in the search of the minimum of the energy func-
tion as well as reduction of the computation time. Configuration
spaces are defined as a function of the scale 2 as

o= J] AL

ne{l,...,N;}

7)

1) Search Window at Scale I: When tissue displacements
result from internal forces within organs (such as pulsation),
no privileged direction of deformation is observed. However,
when external forces are applied using the transducer, the dis-
placements of scatterers at the end of the echo will be signif-
icantly larger than those at the beginning, since all measure-
ments are relative to the transducer. For example, a uniform
object compressed under ideal boundary conditions will exhibit
a displacement that varies directly proportional to depth along
z. Assuming a compression factor o is applied at the surface of a
homogeneous object lying on an immovable support boundary,
the linear displacement as a function of the axial depth is given
by diin(z) = o X z. Consequently, the search window at the
bottom of the echo field is chosen larger than that at the top,
and it is shifted to account for the axial scaling (Fig. 3). At the
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Fig. 3. (a) Axial compression of a homogeneous object with the ultrasonic
transducer. (b) Precompression and postcompression acquired images.

(c) Resulting displacement (in the reference of the transducer) as a function of
the axial direction z. The scatterer at the bottom of the object (#) is subject to
the largest displacement.

coarsest scale I, the search window AZ depends on z,, defined
as the z value corresponding to the middle of B}

Al = {dyu(2n) = Das - . ., diin(20) + Dy}
X{—Dl,...,dl}. (18)

2) Search Window at Scale 1 < 1: Once a coarse estimation
of the displacements has been made at scale I, search windows
can be reduced and centered about the coarse estimates. The
axial search extent at lower levels is chosen twice smaller than
that of the top level. Search window centers are determined lo-
cally by the estimates found at the previous level.

Another modification consists of adaptively reducing the
local search window in homogeneous areas. For that, a matrix
m' (i € {0,...,I —1}) of zeros is defined over the grid 5. For
sites s belonging to B;,, the value m’ i(s) is incremented each
time the estimate d(n ) is modified. The counting of modified
sites starts at scale I — 1, since at level I, only one iteration
is needed. If n represents the block at + + 1 from which n
originates, then search windows at the beginning of each scale
optimization process, are adaptively defined for each block n as

Vi< 1,
Ay = {di*'(n) = Daf2, ..
X {J;‘H(ﬁ) ~ D,

A1+
a

s

i (n) + Da/2}
d“rl( )+Dl}

if m* T (n) >0
1A (), ditt(n) + 1}
Lt (), di(n) + 1)
it mt(n)=0. (19

This reduced search is based on the observation that neigh-
boring sites belonging to elastically homogeneous regions will
converge toward the optimal solution at the highest levels. If the
displacement estimate of a block has not been modified during
the relaxation process at scale ¢, this probably means that this
block belongs to a homogeneous region and its estimate has
reached a stable state. The adaptive window allows only a lim-
ited shift of £1 pixel of the estimate in the four sub-blocks orig-
inating from a block that was found stable during the optimiza-

tion at scale 2 + 1. This limited search window was shown to be
of sufficient size to account for the precision increase from one
scale to the next.

III. RESULTS
A. Motion Data Investigated

Parameters of the ROF algorithm were adjusted using
phantom data. A soft tissue-mimicking gelatin phantom was
constructed with a stiff cylindrical inclusion designed to repre-
sent the conditions of a breast lesion. The inclusion was about
six times stiffer than the phantom background. It also contains
a soft and thin (1.5-mm diameter) fluid-filled channel. During
strain imaging, the top surface of the phantom was compressed
downward with the transducer face while the bottom phantom
surface was fixed by a support. All exterior phantom surfaces
were free to slip across any contacting boundary and fluid
was free to flow in the channel. The method was then tested
using data of normal breast tissue from volunteers acquired
in vivo. Freehand scanning techniques were applied [3], [4]
where out-of-plane motion cannot be controlled and large
decorrelation errors are common for large deformations. To
limit the effects of incoherent motion, small pressures (<1%
compression) were applied to the surface of the breast. Small
compressions reduce decorrelation noise at the expense of
strain image contrast.

Phantom construction and data acquisition are described by
[38]. Radio-frequency data were reconstructed from IQ data ac-
quired using a digital interface to a Siemens Sonoline Elegra
system (Issaquah, WA) with a 7.5-MHz linear array. RF sig-
nals were digitized at 36 Msamples/s, downsampled by 2.5 for
electronic transfer, then upsampled by 4 before processing to
increase the precision of displacement estimates. Our patient
scanning procedure is described elsewhere [27].

In the following section, characteristics of algorithmic opti-
mization are illustrated using phantom data. Reconstructed elas-
tograms from in vivo breast data are then shown. Although there
is no reference standard to validate the strain results directly,
the simplicity of the phantom structure and our prior experi-
ence [26] with finite-element modeling of similar phantoms al-
lows us to anticipate the result with confidence. Elastograms
obtained with our ROF algorithm are compared with those ob-
tained using the well-tested multiresolution companding/corre-
lation (MRCC) algorithm originally developed by Chatuverdi
et al., [25], [26] and modified in a recent work [27] to allow
adaptive search windows in order to reduce the computation
time. The modified Chatuverdi algorithm is referred to as the
MRCCA method in the following paragraphs.

B. Parameter Adjustments

The ROF method requires adjustment of three key param-
eters: regularization coefficient, number of scales and search
extend. These parameters were empirically selected using
phantom data. Criteria used to select adequate parameters were
based on visual image appearance and convergence time as
well as on comparison with the MRCC method. Measures of
contrast-to noise ratio (CNR) were also performed to evaluate
the performance of the algorithms in a more quantitative
way. Although CNR is not a complete measure of target
detectability, it provides a metric for comparing techniques
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Fig. 4. (a) B-scan of a gelatin phantom containing a rigid cylindrical
inclusion and a soft channel. (b) Corresponding elastogram obtained using
an MRCC-based method (MRCC). The inclusion appears dark (low strain),
while the channel appears bright (high strain) with decorrelation noise due
to the flow. The channel is not as deformed inside the inclusion as it is
outside. (c) Corresponding MRCCA elastogram. Some line artifacts are
present. (d) Corresponding ROF elastogram. Decorrelation noise is eliminated.
(e) Difference image between the MRCC and ROF elastograms.

based on large target contrast and relatively uniform noise that
is well correlated with visual impression. The CNR measure
used in the paper by Chatuverdi ef al. [26] was computed

§b - St)
)b+ var(8))

where §, and §, are the spatial average strain for target and back-
ground regions respectively and C' and N are the contrast and
noise defined as

C = (35 — 31) /5,
v = V@) +var(@o)/2

b

_C 2(
CNR = N (var($ (20)

2y

(22)

Fig. 4(a) shows the B-scan of the phantom before compres-
sion. Fig. 4(b)—(c) shows the elastograms corresponding to an
applied compression of 3% computed from the axial displace-
ment maps estimated with the MRCC and MRCCA methods
respectively. Interfaces between regions of large strain contrast
decorrelate near the flow channel except within the stiff inclu-
sion where the channel deformation is limited. Computation
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Fig. 5. (a) Mean absolute difference (MAD) between the MRCC elastogram

and ROF elastograms reconstructed using different values of the regularization
parameter « (abscissa). A stable minimal region is observed for o« = 2-10.
(b) Mean strain values as function of « in regions inside the inclusion, near the
inclusion and in the background. Corresponding reference mean values obtained
with the MRCC method are shown in dotted lines.

times for the MRCC and MRCCA methods were respectively
7.9 and 1.5 min on a Pentium 4-M CPU 1.70-GHz processor.
Notice that the adaptive search used in the MRCCA algorithm
produces line propagation artifacts in the background due to
the continuity constraints [Fig. 4(c)]. We used the MRCC elas-
togram as a reference to study the influence of the ROF key
parameters because it provides unbiased estimates.

The appearance of the ROF elastograms is greatly influ-
enced by the parameter « that balances the relative weight
of the smoothness and conservation constraints in the energy
equation. A study comparing the elastograms from phantom
data obtained using MRCC with that obtained using ROF was
performed with various values of a. An « value of 4 was found
to provide the necessary compromise between conservation
of the spatial resolution and noise minimization for the data
examined [Fig. 4(d)]. The ROF computation time was 2.2 min.
Fig. 4(e) is an image of the difference between the ROF and
MRCC elastograms. The channel appears uniformly bright
on the ROF elastogram. Major differences between the ROF
and MRCC elastograms are concentrated around the channel
[Fig. 4(e)]. Regularization has been effective at minimizing
decorrelation errors from the complex fluid motion inside the
channel. CNR of elastograms were computed using regions
of 160 pixels inside [ROI 1 in Fig. 4(b)] and immediately
outside the stiff inclusion [ROI 2 in Fig. 4(b)] respectively
as the target and background regions. CNR of the MRCC,
MRCCA, and ROF methods were respectively 135, 134, and
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Fig. 6. ROF elastograms of the phantom obtained using (a) &« = 0.3, (b) &« =
2.5, and (c) o = 125.

145. Regularization reduces target contrast slightly and noise
significantly such that there is a net increase in CNR with
computation time comparable to the MRCC algorithms.

The mean absolute differences (MAD) between the MRCC
elastogram and the ROF elastograms obtained using various
smoothing factors a are represented on Fig. 5(a). Mean strain
values in small regions inside the inclusion (ROI 1) and imme-
diately outside (ROI 2) as well as in the background (ROI 3)
are also represented as function of « on Fig. 5(b). The corre-
sponding mean strain values obtained with the reference MRCC
method are shown as straight dotted lines. The MAD curve
[Fig. 5(a)] shows that the solution is stable for 2 < a < 10.
Mean strain values in this range are stable and approximate the
reference values [Fig. 5(b)]. The stability of strain estimates is
confirmed visually in Fig. 6(b). ROF images are not strongly
dependant on « in the range 2 < « < 10. For « higher than 10,
the regularization dominates, thus providing a very uniform but
inaccurate displacement and strain fields [Fig. 6(c), o« = 125].
For o smaller than 2, the regularization is too weak to suppress
noise [Fig. 6(a), o = 0.3]. We concluded from these visual and
quantitative studies of the influence of the regularization param-
eter, that values of « that achieve the best compromise between
contrast to noise ratio and accuracy of strain estimates must be
comprised between 2 and 10.

The number of spatial scales included in the ROF algorithm
was set to 6 (I = 5). Consequently, the initial block size was
128 x 32 samples, which is comparable to the block size used
in the MRCC method. For I < 5, both the convergence and
optimization time were degraded because the initial size of the
data blocks were too large. Values of I > 5 gave acceptable
results, although the computation time increases in proportion
to the number of scales for I > 5.

Parameters that control the extent of the search during dis-
placement estimation, D, and D;, were selected adaptively de-
pending on the tissue explored and compression applied. The
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Fig. 7. Estimated displacement fields at (a) the coarsest resolution (¢ = T)
using a regularized initialization (o = «), (b) the finest resolution (i = 0)
using &; = «, (d) ¢ = I using a nonregularized initialization (a; = 0)

and (e) © = 0 using oy = 0. Resulting elastograms using (c) «; = « and
(f) a;y = 0. Regularization at the coarsest resolution results in a misplacement
of the channel (c) while initialization by a nonregularized solution leads to a
correct estimate (f).

choice of the search window size is critical since the computa-
tion time increases in proportion to each spatial dimension of the
window. If the window is too small, the algorithm cannot find
the global energy minimum. If the window is too large, time is
wasted and there are more opportunities for echo noise to in-
crease estimation uncertainty. The optimal search window size
was determined empirically by increasing its dimensions until
stable results were found. Compressing the phantom 2%, we
found D, = 12 pixels (160 um) and D; = 4 pixels (480 pm)
were optimal.

C. Influence of the Adaptive Search

1) Nonregularized Initialization: The classical multiscale
approach to optical flow consists of initializing the search
with null vector fields and using a regularized model at the
coarsest scale (ay = «). We compared that approach to one
modified to use a nonregularized initialization (a; = 0). Fig. 7
shows the resulting displacement maps and elastograms from
the phantom data corresponding to 2% applied compression
estimated using oy = « (left column) and a; = 0 (right
column). The post-compressed RF field had been stretched
back by 2% before computing the displacement field in order
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to globally match the precompressed field. This provides a
displacement field spatially centered around zero. Estimated
displacement fields at + = 5 (coarsest scale) and ¢ = 0 (finest
scale) are represented on the first two rows. When oy = «,
uniform blocks are favored from the beginning of the opti-
mization [Fig. 7(a)]. This tends to attenuate abrupt deformation
variations near the channel and prevent the solution from
evolving toward the global minima [Fig. 7(b)]. The resulting
elastogram shows errors in the positioning of the channel
[Fig. 7(c)]. When the initial estimation is performed using no
regularization (ay = 0), a more realistic displacement map
showing abrupt changes is obtained at the top level [Fig. 7(d)]
that then evolves toward the global minima [Fig. 7(e)]. The
channel is correctly positioned in the resulting elastogram
[Fig. 7(f)]. These results were observed whether using the
same search window at each scale or using an adaptive window
centered on the displacement field found at the previous scale.
Thus, the results do not depend on the fact that the search
window is adaptive. Although the results are the same, adaptive
searches lower the computation times. Optimization using a
nonregularized initialization yields 10% time reduction when
compared with that obtained using a;; # 0, due to the fact that
only one iteration is required at the top level.

2) Reduced Search Windows: Elastograms from the
phantom as well as those from in vivo data were formed using
constant and adaptive window sizes. The corresponding images
are identical, and Fig. 8 shows that the final energies reached at
the end of each scale using constant search windows (gray) and
adaptive search windows (stripes) are also identical. Similarly,
the number of modified sites and the number of iterations
necessary to reach the minimum energy at each scale are the
same using the standard and adaptive methods. In the case
illustrated here, convergence time is decreased by a factor of
two when adaptive windows are used. When comparing the
convergence time at each scale, we observe that at levels 5
and 4, the processing times of the two methods are identical
because the counting of modified sites begins at level 4, and
consequently the search windows only start to be affected at
level 3. Note also that the processing time of the two methods
is short at level 5 because only one iteration is necessary.
Processing time for the conventional method increases almost
quadratically from level 4 to level 0 because the regularity term
requires four times more computation every time the resolution
increases. However, with the adaptive method, the processing
time does not necessarily increase with the level. Here the
processing time depends primarily on the number of changes
that occurred at the previous scale. The gain in time obtained
with the adaptive method is related to the heterogeneity of local
deformations and ranges from 30% to 70% depending on the
investigated object.

D. Elasticity Imaging of In Vivo Breast Data

Elastograms of normal breast tissue were formed with the
ROF algorithm using the same regularization factor and number
of spatial scales found optimal for phantom data (a« = 4and I =
5). The search window size was adapted to breast tissue proper-
ties. For applied compressions <0.5%, we found that D, = 4
and D; = 2 were optimal, and for compressions between 0.5%
and 1.0%, D, = 8 and D; = 3 were used.
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Fig. 8. Comparison as a function of the spatial scale of the energy attained,
the number of modified sites and the processing time using constant search
windows (gray) and adaptive search windows (stripes). The energies and
number of modified sites of the constant and adaptive searches are identical
while the total processing time of the adaptive search is half that of the regular
search.

Fig. 9(a) shows the B-scan corresponding to normal breast
tissue data. On the B-scan, glandular tissue appears hyper-
echoic while fatty tissue is hypo-echoic. Multicompression ac-
quisition was used in order to obtain high contrast elastograms
without high decorrelation noise [39]. Final elastograms were
obtained by adding strain estimates from three successive
frames each corresponding to a small compression of 0.5%.
The elastograms displayed correspond to a 1.5% net compres-
sion. Soft fatty tissue appears bright on the elastograms while
the stiffer glandular tissue appears dark. Fig. 9(b)-(c) shows
the elastograms obtained respectively using the MRCC and
MRCCA methods. The MRCCA method performs slightly
better than the MRCC in case of breast tissue, as the MRCCA
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Fig. 9. (a) B-scan of normal breast tissue. Fat tissue is hypoechogenic and
glandular tissue is hyperechogenic. (b)-(c) MRCC and MRCCA elastograms
corresponding to 1.5% compression. Fat tissue appears bright (high strain). A
small rigid structure (arrow) is detected. Decorrelation noise is slightly reduced
with MRCCA. (d) Median-filtered MRCCA elastogram. The salt-and-pepper
effect is smoothed out. (e) ROF elastogram. The decorrelation noise has been
eliminated and the small rigid structure still appears clearly.

search constraints help eliminating some decorrelation noise.
The elastograms clearly show a 5 mm dark structure imme-
diately followed by a bright region (arrow). The dark region
indicates a stiff structure probably corresponding to an ob-
structed duct. ROF seems to preserve these important structures
while reducing salt-and-pepper decorrelation [Fig. 9(e)]. For
comparison purposes, a 3 X 3 median filter was applied to the
MRCCA elastogram [Fig. 9(d)]. Decorrelation noise is reduced
with filtering but the resulting image has less details while
noise is reduced without an obvious loss of resolution with the
ROF method. Furthermore, large regions of estimated strain
errors that are only smoothed with median filtering [such as the
dark area indicated by an arrow on Fig. 9(d)], are eliminated
with the ROF method.

Table 1 summarizes the strain contrast (C'), noise (N),
contrast-to-noise ratio (CNR) and total computation times cor-
responding to the MRCC, MRCCA, MRCCA filtered and ROF
elastograms. Two target regions of 100 pixels corresponding
to bright structures were selected together with two adjacent
background regions. The target regions are indicated by arrows
on Fig. 9(e). The MRCCA filtered and ROF methods seem to
present the best performances in terms of CNR and noise. The
CNR of the MRCCA filtered method is significantly better than
that of all the other methods for the second pair of target and
background regions (6.50 compared with 3.67, 4.13, and 4.26
for the MRCC, MRCCA, and ROF methods respectively) while

TABLE 1
PERFORMANCE COMPARISON OF THE MRCC, MRCCA, AND MRCCA
FILTERED AND ROF ELASTOGRAMS OF BREAST TISSUE CORRESPONDING
TO 1.5% MULTICOMPRESSION. THE MEAN STRAIN VALUES HAVE BEEN
COMPUTED IN ROIs LOCATED IN BRIGHT REGIONS [Fig. 9(e)] AND
THEIR ADJACENT BACKGROUND REGIONS

MRCC MRCCA  MRCCA ROF
filtered
Mean strain (%)
target 1 6.20 6.12 6.02 6.31
background 1 1.19 1.20 1.19 1.19
target 2 4.94 5.45 5.48 5.26
background 2 1.86 2.06 2.07 2.00
Contrast (C)
t1/bl 4.21 4.08 4.04 4.32
t2/b2 1.66 1.64 1.64 1.63
Noise (N)
t1/bl 0.87 0.80 0.56 0.59
t2/b2 0.45 0.40 0.25 0.38
CNR
t1/bl 4.84 5.08 7.18 735
t2/b2 3.67 4.13 6.50 4.26
Total Computation time
(min) 18.5 3.2 3.2 4.9

the ROF method presents the best CNR for the first region
pair (7.35 compared with 4.84, 5.08, and 7.18 for the MRCC,
MRCCA, and MRCCA filtered methods respectively). Median
filtering systematically result in noise reduction with almost no
reduction in contrast which leads to this strong improvement
of the CNR (about 1.5% increase). The ROF method also
reduces noise compared with the MRCC and MRCCA methods
but the reduction is more adaptive. Certain regions are more
regularized than others depending on their local characteristics
(the noise is reduced by a factor 1.35 in the first ROI pair
while it is only reduced by a factor 1.05 in the second). The
original MRCC method shows lower performance than the
MRCCA and ROF methods both in terms of computation time
(18.5 min) and CNR. In fact, the MRCC method seems to not
perform as well on in vivo tissue as on phantom data. This can
be explained by the fact that biological tissues are composed of
many layer interfaces, that result in a loss of signal coherence
when subjected to manual uncontrolled deformations. Methods
that use a priori information, formulated either implicitly
(MRCCA) or explicitly (ROF), are more appropriate to track
tissue motion in the presence of decorrelation noise induced by
incoherent motion. The MRCCA method is the least computa-
tional time extensive method in the example shown (3.2 min).
The ROF method also shows a reasonable computation time
(4.9 min). Since the MRCCA and ROF methods use acceler-
ation processes in homogeneous regions, their computation
times strongly depend on the explored data. When observing
all the cases studied, we can say that computation times of the
two methods are overall comparable.

Fig. 10 shows another example of normal breast tissue
data. Fig. 10(a) shows the B-mode scan, Fig. 10(b)—(c) shows
the elastograms corresponding to about 0.35% compression
obtained using the MRCCA and ROF approaches respectively.
Fig. 10(d) shows the MRCCA elastogram obtained from one
single compression of about 0.7%. A completely decorrelated
elastogram is obtained. Fig. 10(e) shows a multicompression
elastogram obtained using the MRCCA method by adding
two successive 0.35% compressions. Decorrelation noise is
considerably reduced but is still present. When using the
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Fig. 10. (a) B-scan of normal breast tissue. (b) MRCCA elastogram
corresponding to 0.35% compression. (c) ROF elastogram corresponding
to 0.35% compression. (d) MRCCA elastogram corresponding to a single
compression of 0.7%. Important decorrelation noise due to out-of-plane motion
predominates. (¢) MRCCA elastogram corresponding to multicompressions
totaling 0.7%. Although strongly reduced, decorrelation noise is still present.
(f) ROF elastogram corresponding to a single 0.7% compression. The
regularization permits to lift under-determinations due to incoherent motion
and to clear decorrelation noise.

ROF method, elastograms can be reconstructed in a single
step at 0.7% compression [Fig. 10(f)]. The ROF algorithm
allows strain computation at larger applied deformations
than cross-correlation methods. Regularization is effective at
reducing decorrelation noise without distorting the elastogram
because tissue deformations are spatially smooth.

IV. SUMMARY AND CONCLUSION

The paper presents a method for reconstructing elasticity im-
ages from ultrasonic RF echo data based on a regularization of
the optical flow constraint (ROF). A measure of tissue elasticity
is obtained by computing the axial strain derived from local
tissue displacements. The displacement field is estimated by
minimizing an energy equation that imposes constraints of echo
amplitude conservation and displacement smoothness. This ap-
proach offers the advantage of combining local and global in-
formation, which leads to both accurate and low noise displace-
ment fields. However, the search for the global minimum of
energy is very time consuming. In order to accelerate conver-
gence, a coarse-to-fine minimization is used. The algorithm de-
veloped is an adaptation of multiscale optical flow methods for
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ultrasonic elasticity imaging. The method has been generalized
to take into account the case of anisotropically sampled data.
A major implementation concern was to increase the efficiency
of the multiscale optimization process both in terms of conver-
gence and computation time. The general initialization of the
optimization as well as the multiscale process were specifically
designed for that purpose by using a nonregularized model at
the coarsest scale and introducing adaptively reduced configu-
ration spaces.

Optimized parameters of the energy model were determined
using a tissue-like phantom and then applied to in vivo data
of normal breast tissue. Elastograms obtained with the ROF
method were compared with that obtained with a purely
multiscale cross-correlation technique (MRCC) and a modified
cross-correlation technique that uses some a priori knowledge
(MRCCA). Comparative measurements of contrast and noise
performances seem to indicate that the regularization improves
noise characteristics while preserving contrast. In terms of
computation time, the ROF and MRCCA algorithms are
comparable. Regularization also seems to visually preserve
small structure details, although further thorough validation of
the method is necessary to evaluate the performances of the
ROF method in terms of resolution. If future analysis reveals
that the regularization significantly degrades spatial resolution,
a relaxation of the smoothness constraint on contours could be
implemented. Clinical interest of the ROF method will also be
studied by evaluating its ability to differentiate between benign
and malignant breast tumors.

In the present implementation, only one regularization term
has been introduced that imposes a 2D continuity of the dis-
placement field. An additional term of coupling between succes-
sive compressions could easily be added to the energy equation
to impose a 2D+t continuity of the displacement field. This fea-
ture would be particularly appropriate for reconstructing strain
sequences to observe, for example, cardiac or vascular deforma-
tions. Finally, the present model can be formalized in 3D and the
reconstruction problem can be extended to the estimation of 3D
displacement fields.
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