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Linear System Models for Ultrasonic Imaging:
Application to Signal Statistics

Roger J. Zemp, Craig K. Abbey, and Michael F. Insana

Abstract—Linear equations for modeling echo signals
from shift-variant systems forming ultrasonic B-mode,
Doppler, and strain images are analyzed and extended. The
approach is based on a solution to the homogeneous wave
equation for random inhomogeneous media. When the sys-
tem is shift-variant, the spatial sensitivity function—defined
as a spatial weighting function that determines the scat-
tering volume for a fixed point of time—has advantages
over the point-spread function traditionally used to analyze
ultrasound systems. Spatial sensitivity functions are nec-
essary for determining statistical moments in the context
of rigorous image quality assessment, and they are time-
reversed copies of point-spread functions for shift variant
systems. A criterion is proposed to assess the validity of a
local shift-invariance assumption. The analysis reveals real-
istic situations in which in-phase signals are correlated to
the corresponding quadrature signals, which has strong im-
plications for assessing lesion detectability. Also revealed is
an opportunity to enhance near- and far-field spatial reso-
lution by matched filtering unfocused beams. The analysis
connects several well-known approaches to modeling ultra-
sonic echo signals.

I. Introduction

The objective assessment of image quality in medical
imaging systems is a topic of growing importance.

Our ability to rigorously quantify the performance of clin-
ically relevant tasks, such as identification of low-contrast
lesions, can help us improve diagnostic performance and
may influence standards of practice. Information theoretic
approaches to performance assessment may help us under-
stand fundamental limits of ultrasound systems, quantify
information content of signals, and reveal optimum strate-
gies for image processing. A key element of ultrasonic per-
formance assessment is the computation of echo-signal co-
variance matrices that define likelihood functions. Current
probabilistic models are valid only near the transducer fo-
cal region and in dense random media of point scatterers
[1], [2]. These models further assume the impulse response
function is shift-invariant. Motivation for our work stems
from the need to extend existing statistical models to more
realistic shift-variant imaging systems and nonstationary
random scattering media.
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Pulse-echo imaging may be described as a linear system
that obeys the imaging equation:

g(t) =
∫

dxh(x, t)γ(x) + n(t) = H{γ(x)} + n(t),
(1)

where g is the radio-frequency (RF) echo signal consist-
ing of a set of A-scan lines. The function h is the pulse-
echo spatio-temporal impulse response, which is generally
shift variant. H is the linear operator associated with h.
γ is called the object function (often stochastic), and n
is signal-independent zero-mean additive Gaussian noise.
A vector t, representing, for example, the axial and lat-
eral (temporal) dimensions of the echo data, will span the
data space (see Appendix A for details). Points in object
space, in contrast, are positioned according to the spa-
tial vector x = (x1, x2, x3). The dimensionality of the do-
main of h is the dimensionality of the object space plus
that of the data space. Thus, for a single A-scan line,
h is a four-dimensional (4-D) function: one dimension of
time and three of space. Eq. (1) describes how spatial
variations in physical properties of the object that in-
teracts with the sound waves are mapped into data. It
will describe acoustic transmission and reception (includ-
ing the effects of diffraction, attenuation, and scattering),
electromechanical coupling of the transducer, and elec-
tronic processing. It is a linear system in the sense that
H{aγ1 + bγ2} = aH{γ1} + bH{γ2} for any object func-
tions γ1 and γ2, and for any constants a and b. Thus, (1) as-
sumes linearity in the system electronics, in the scattering
response, and in acoustic propagation.1 Partial motivation
for writing the imaging equation in form (1) is the imme-
diate connection to literature on objective assessment of
image quality [3]–[5].

Investigators frequently use linear systems approaches
in ultrasound research, some of which will be reviewed
here. The imaging equation (1) is a generalization of
many such approaches in the literature. Tupholme [6] and
Stepanishen [7]–[10] were among the first to model ul-
trasonic imaging systems using the impulse response ap-
proach; the system impulse response was viewed as a series
of convolutions of various impulse response functions rep-
resenting acoustic, electromechanical, and scattering influ-
ences. This description led to a representation of a linear

1Nonlinear propagation in transmission could be allowable in (1)
because scattering in soft tissue is very weak and propagation back
to the transducer may be described as linear. The model for a tissue
harmonic imaging system would be linear in the object function, but
not in the driving voltage.
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system, in which the object function was studied one point
scatterer at a time. Other researchers have considered γ
as a continuum variable that depends on perturbations in
density and compressibility [11], [12].

Jensen [13] developed a linear model for the propa-
gation and scattering of ultrasound in tissue based on
a time-dependent Green’s function solution to the wave
equation in heterogeneous media. This is similar to our
time-independent Green’s function approach. However, he
expresses the imaging equation (1) in terms of a spatial
convolution [13, equation 45] and ignores attenuation and
noise. Our results reduce to his with a shift-invariance
assumption, an attenuation-free medium, and no noise.
Moreover, we take the extra step to apply the linear system
theory to signal statistics.

Walker and Trahey [14] present a k-space linear sys-
tems model of ultrasound systems that they use to calcu-
late speckle variance and image correlations. Their appli-
cation of the Fraunhofer approximation limits the results
to the focal and far field regions. Walker [15] extends his re-
sults to shift-variant systems, but does not make an impor-
tant distinction between point-spread and spatial sensitiv-
ity functions. Our results provide a rigorous underpinning
to the computation of spatially varying statistics. Walker
and Trahey [14] suggest that wavefront phase curvature
does not contribute to speckle correlations. This conclu-
sion was conditioned upon some assumptions that will be
elucidated in Section VII. We demonstrate situations in
which wavefront curvature can indeed be quite important
in the evaluation of speckle texture.

Our aim is to demonstrate how the imaging equation (1)
provides a comprehensive representation of shift-variant
systems applied to continuous scattering media. Our mo-
tivation is to form a bridge between ultrasound physics and
the statistical image quality assessment literature. The ap-
proach uses a solution of the homogenous wave equation
in inhomogeneous media. We relate our model to existing
theory and show that it is well suited for evaluation of the
statistical properties of ultrasound signals and images.

II. Radio-Frequency Signals

Assume that the imaging medium is heterogeneous in
density ρ and compressibility κ on a scale smaller than the
wavelength, although the average density ρo, average bulk
compressibility κo, and speed of sound, c = 1/

√
ρoκo are

approximately constant macroscopically throughout the
medium. With the small amplitude approximation, acous-
tic propagation is well described by the homogeneous wave
equation for inhomogeneous media [16]–[18],

∇ ·
(

1
ρ(x)

∇p(x, t)
)

− κ(x)
∂2p(x, t)

∂t2
= 0, (2)

where p(x, t) is the pressure field. Here time is a scalar
quantity representing pulse-echo time for a single A-scan
line. Taken from the classic acoustics literature [19], In-
sana and Brown [18] provide a time-independent solution

Fig. 1. Illustration of the measurement geometry. Field and observa-
tion points are labeled x and r, respectively.

to (2) using a weak scattering Green’s function approach.
In particular, they give an expression for the pressure scat-
tered to observation points r from a distributed scattering
media. We will base our linear systems model on their ap-
proach, and connect it to linear systems approaches pre-
sented by other investigators.

Backscattered energy at frequency ω propagates to the
transducer aperture where it is coherently summed to gen-
erate a net instantaneous force, fω(t). Using the plane-
impedance approximation p = ρocu relating pressure p to
particle velocity u normal to the detector surface S, and
integrating over S, we obtain [20]:

fω(t) =

1
2
iρockU(ω) exp(iωt)

∫
V

dx
{

k2
(

∆κ(x)
κo

)
A2(x, k)

+
(

∆ρ(x)
ρ(x)

∇A(x, k) · ∇A(x, k)
)}

. (3)

Eq. (3) is described in Appendix B. Here ∆κ and ∆ρ
are spatial fluctuations in κ and ρ about their respective
means, U(ω) is the transducer surface velocity amplitude
on transmission,

A(x, k) ≡ 1
2π

∫
S

dSξ(r)
exp (−ik |r − x|)

|r − x|

= 2
∫
S

dSξ(r)G(r | x),
(4)

is the velocity potential due to a unit amplitude sinusoidal
excitation [17], ξ is the transducer apodization function,
which may be complex to allow for focusing, and G(r | x)
in (4) is the Green’s function that describes the propaga-
tion of scattered waves created at field point x to obser-
vation points r on the transducer surface, as labeled in
Fig. 1. Note that an assumption of separability between
apodization (transducer geometry) and the driving veloc-
ity is made. The magnitude of the wave-vector k can be
complex to allow for attenuation; for local plane waves
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k = ω/c − iα(ω), where α is the frequency dependent at-
tenuation coefficient. The middle expression in (4) is the
well-known Rayleigh integral [21], representing a linear su-
perposition of excitations from elements of the transducer
surface.2 Eq. (3) shows that scattering occurs at locations
in the object of density and compressibility variations. The
pattern of scattered sound is different for these two types
of perturbations because density variations interact with
the spatial gradient of the acoustic field A while compress-
ibility variations interact with the field itself. Two copies
of the field weightings A and ∇A are required to represent
transmission and reception.

A weighted superposition of forces at each frequency
in the transmitted pulse gives the measured echo-signal
voltage (neglecting noise):

g(t) =
∫

dωY (ω)fω(t). (5)

Y (ω) is the complex electromechanical coupling coefficient
of the transducer. Neglecting noise, (3) and (5) may be
considered one form of linear system (1) operating on per-
turbations in density and compressibility. A more useful
form of (5) may be obtained if one considers field points
that are a distance greater than the aperture dimension3

[22] or media where perturbations in density contribute
negligibly to the scattered field. In such cases, the pulse-
echo spatiotemporal impulse response in (1) may be de-
fined from (5) as:

h(x, t) =
∫

dωY (ω)
[
1
2
iρockU(ω)

]
k2A2(x, k) exp(iωt),

(6)

and the object function γ in (1) represented as:

γ(x) ≡
(

∆κ(x)
κo

− ∆ρ(x)
ρ(x)

)
∼= −2

∆z(x)
zo

. (7)

For local plane waves, z(x) =
√

ρ(x)/κ(x) is the acous-
tic impedance, zo is the mean impedance, and ∆z(x) =
z(x) − zo. The last expression in (7) holds only for small
perturbations in density and compressibility. Eq. (6) is
an impulse response in the sense that it describes the re-
sponse of the system to a point scatterer (a delta function
in space). Pulsed excitation is incorporated by the super-
position of frequency components initiated at transmission
and filtered by the system.

It is a straightforward exercise to show that (6) and (7)
can be used to represent (1) in the time domain in terms
of convolutions. The electromechanical impulse response is
indicated by hy. In the absence of dispersive attenuation,
the transmit impulse response (which, by the principle of
reciprocity is the same as the receive impulse response)

2The Rayleigh integral is valid only for planar or quasiplanar sur-
faces. For curved surfaces, a cosine directionality term should be
included in the integral, as described by the Rayleigh-Sommerfeld
diffraction formula [21].

3The approximation made is ∇A(x, k) · ∇A(x, k) = −k2A2(x, k)
for points x > rmax, where rmax is the radius of the aperture.

is the velocity potential due to a temporal delta function
excitation:

ha(x, t) =
1
2π

∫
S

dSξ(r)
δ(t − |r − x|/c)

|r − x|

= �−1
t {A(x, k)}.

(8)

Consequently, the echo signal may be expressed as:

g(t) =
∫
V

dx
[{

hy(t) ∗ u(t) ∗
(

∂

∂t
ha(t,x)

)

∗ ha(t,x)
}

∗ s(t,x)
]

+ n(t). (9)

Here the convolutions are over the time variable, u is the
surface velocity, and s is the scattering response such that
s(t,x) = �−1

t

{
γ(x)k2(ω)

}
, where �−1

t is the inverse tem-
poral Fourier transform operator. From the properties of
convolutions, the temporal derivative can be moved to act
upon any of the other functions. If the transmit and re-
ceive apertures are not the same, (9) should involve both
transmit and receive impulse response functions. With s
taken as a point scatterer, and neglecting the k2 filtering
action of scattering, a form of (9) was derived with a dif-
ferent approach by Tupholme [6] and Stepanishen [7]–[9]
and is the basis of a number of simulation packages and
papers on linear systems.

The spatiotemporal impulse response (6) may be writ-
ten in terms of convolutions:

h(x, t) = − 1
c2

∂2

∂t2{
hy(t) ∗ hy(t) ∗ v(t) ∗ ∂

∂t
ha(x, t) ∗ ha(x, t)

}
, (10)

where the surface velocity has been written as a convolu-
tion u(t) = hy(t) ∗ v(t) between the transducer electrome-
chanical impulse response and the driving voltage. Note
that the driving voltage need not be an impulse to call h
an impulse response function. It is an impulse response in
the sense that a spatial impulse γ(x) = δ(x − xo) gives
a noise-averaged linear response h(xo, t). Also note that
although (3)–(6) allow for dispersive attenuation (in con-
trast to existing theory [6]–[10], [13]) by allowing a complex
wave-vector, (8)–(10) do not, although one could easily
add a plane-wave type of attenuation by convolving (10)
in time with a position-dependent, pulse-echo attenuation
filter. A practical alternative to the time-domain impulse
response technique for evaluating (3)–(6) computationally
is the spatial-frequency domain angular spectrum method
[21], [23] that includes direction-dependent attenuation.

Like others [11]–[13] our approach describes a spatially
distributed scattering function as a continuous distribu-
tion of point scatterers, and it attaches physical meaning
to s by connecting it to variations in density and com-
pressibility. Contrary to (9), in (6) and (10) we choose to
couple the k2 filtering action of scattering (object proper-
ties) with acoustic and electromechanical impulse response
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functions (system properties). It should be clear that there
is some flexibility in defining which factors are associated
with the object and which with the system. That decision
depends on the application.

III. Point-Spread and Spatial Sensitivity

Functions

As discussed in Appendix A, we may consider the data
space variable t to be a vector representing, for example,
the axial and lateral dimensions of a B-mode image. With
this interpretation, various samples in the data may be the
result of different spatiotemporal, impulse-response func-
tions, i.e., shift variance.

Imaging systems are often studied using point-spread
functions. An ultrasonic point-spread function (psf) is ob-
tained from an ensemble of echoes recorded from one sta-
tionary point scatterer. The psf is a data-space slice though
the higher dimensional impulse response h(x, t). Point-
spread functions characterize spatial resolution. Consider
the psf representing noisy RF data from a point scatterer
fixed at location xo:

psfx0(t) =
〈∫

dxh(x, t)δ (x − x0) + n(t)
〉

n

=
∫

dxh(x, t)δ(x − x0) = h(t | x0). (11)

Here, the notation < >n represents an ensemble average4

over noise variations in the stochastic quantity n. When
the noise level is sufficiently low, averaging can be ne-
glected. The spatiotemporal impulse response h at time t
and position xo is equivalent to the point-spread function
at sample time t obtained when scanning a point source
at position xo.

Shown in Figs. 2(a)–(c) are RF data matrices illustrat-
ing the psfs g(t1, t2) = h(t2, t1 | xo) generated using Field
II [24] by scanning a point scatterer placed at three differ-
ent positions in the field of a linear array transducer: near
field, focal zone, and far field. Fig. 2 was formed by puls-
ing and receiving along a number of parallel lateral A-scan
lines. With this scanning configuration, at any given depth,
the point-spread function is conveniently shift-invariant in
the lateral (vertical) direction. At first glance, the curva-
ture of the psf wavefronts may seem counterintuitive. One
might expect, for example, a transmitted wavefront to be
concave in the near field because concave focusing is being
used. Convex near-field curvature is observed because the
pulse-echo transit time is smaller when a (concave) trans-
ducer’s edge is nearer in pulse-echo transit time to the
point scatterer than when the scatterer is centered with
respect to the transducer. Also note that the phase os-
cillations in the psf maintain a constant frequency along
each A-scan line. This is why the width of the psf in the

4By ensemble average we mean 〈f〉n ≡
∫

f(n)pdf(n)dn, where pdf

is the probability density of n.

direction normal to the wavefront seems to narrow at the
edges. The low magnitude X-shape components in the psf
are focusing flaws and include edge waves [25].

Of significance for modeling signal statistics is the spa-
tial distribution of h for a fixed time [i.e., h(x | t), which
we refer to as the spatial sensitivity function (ssf)]. This
is to be contrasted with the psf that describes tempo-
ral rather than spatial variation. The ssf is an object-
space slice though h(x, t) that describes how the impulse
response for a fixed-measurement time changes as the
point scatterer is moved in space. An alternative perspec-
tive is that, for each data sample, the ssf describes how
sensitive the imaging system is to point scatterer posi-
tions located throughout the object. Figs. 2(d)–(f) dis-
play spatial sensitivity functions corresponding to near-
field, focal region, and far-field pulse-echo times. They
were obtained by generating a sequence of psfs: {h(t | x),
h(t | x + ∆x), . . . , h(t | x + N∆x)}, where ∆x represents
an increment in the axial direction. Each psf was sampled
along a particular pulse-echo axial time point t, and the
resulting lateral scan vectors corresponding to each incre-
mental position were assembled into a spatial sensitivity
image. It should be emphasized that, for a given tempo-
ral point in data space, an ssf is a 3-D function of space,
and we are only displaying a 2-D slice through this dis-
tribution. The dimensionality of the psf depends on the
dimensionality of the data space: for 2-D imaging the psf
will be 2-D and for 3-D imaging the psf will be 3-D.

Spatial sensitivity functions are essential for studying
first- and second-order moments of samples or pairs of
samples in the data set. For example, to study the covari-
ance between samples recorded at t and t′, and modeling
the object function as a zero-mean, unit-variance, white
Gaussian random variable, we need to compute:

〈g(t)g(t′)〉n,γ =
∫∫

dxdx′ 〈γ(x)γ(x′)〉γ h(x | t)h(x′ | t′)

+ 〈n(t)n(t′)〉n

=
∫

dxh(x | t)h(x | t′) + σ2
nδ(t − t′),

(12)

which requires spatial sensitivity functions. Techniques
for calculating statistical moments for shift-invariant and
shift-variant systems were presented previously [15], but
these contributions presumed the point-spread function as
the critical quantity. In Section VI, we emphasize that a
local shift-invariance approximation is needed to use point-
spread functions in place of sensitivity functions.

IV. In-Phase and Quadrature Signals

The in-phase (I) and quadrature (Q) decomposition al-
lows a single A-scan echo signal to be represented by:

g(t) = gI(t) cos(ωot) − gQ(t) sin(ωot)
= Re {exp(iωot) [gI(t) + igQ(t)]} .

(13)

The quantity in curly brackets is the analytic signal
g(t) + ig̃(t), where the tilde represents the Hilbert trans-
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Fig. 2. Point-spread (a)–(c) and spatial sensitivity (d)–(e) functions for a 3 MHz array transducer. Images of psfs represent spread from one
scatterer positioned at 30 (near field), 60 (focal region), and 90 mm (far field), respectively. Similarly, spatial sensitivity functions are shown
for pulse-echo temporal intervals corresponding to times labeled by half the pulse-echo path distance: 30, 60, and 90 mm, respectively. The
psf and ssf functions were normalized by the maximal focal region magnitude. Also, the axes for the psf images here and in subsequent figures
are plotted in millimeters for convenience in comparing with the ssfs. The array consisted of 64 active elements of width one wavelength,
height 5 mm, and interelement gap separation of 0.1 mm. The electronic focus of the array was 60 mm. The excitation was taken as a
four cycle pulse filtered by the aperture electromechanical response simulated as a four-cycle Hanning-windowed pulse. The psf images were
generated with Field II, then filtered to include the effects of attenuation and scattering. The medium was taken to have sound speed of
1540 m/s, and attenuation coefficient of 0.3 dB/cm/MHz1.1. The ssfs were generated from an ensemble of psfs as described above.

form. Because in-phase and quadrature components gI and
gQ are baseband signals, they can typically be sampled at
a much lower rate than the RF echo signal. This represen-
tation saves data transfer and computational times while
preserving information content in the signal. Because of
its common use, it is desirable to model the [I, Q] decom-
position with a linear systems approach. To this end, the
echo signal may be written as:

g(t) =
∫

dx γ(x)eiωot �−1
t {H(ω − ωo | x)} + n(t)

= exp(iωot)
∫

dxγ(x)ho(x, t) + n(t), (14)

where H is the frequency response of h, and ho is the
demodulated spatiotemporal impulse response, in general
complex. The in-phase and quadrature components of an
echo signal thus may be modeled from (1) as:

gI(t) =
∫

dxγ(x)hI(x, t) + nI(t),

gQ(t) =
∫

dxγ(x)hQ(x, t) + nQ(t).
(15)

Here nI and nQ are assumed to be independent Gaus-
sian noise processes. The functions hI and hQ are the
real and imaginary parts of ho, and will be referred to
as in-phase and quadrature spatiotemporal impulse re-
sponse functions, respectively. Shown in Fig. 3 are the im-
ages of hI and hQ, visualized in the spatial and temporal
domains—or in other words, the in-phase and quadrature
point-spread and spatial sensitivity functions. Note that
the I and Q psfs Figs. (a) and (b) contain no axial phase
oscillations, as these temporal variations have been de-
modulated. The lateral banded pattern occurs because of
the pulse-echo wavefront curvature. A changing temporal
axial phase thus shifts energy between the in-phase and
quadrature channels. The I and Q ssfs of Figs. 3(c) and
(d) are markedly different than the I and Q psfs in that the
former exhibit axial spatial phase (exp(ikx)) oscillations.
The in-phase and quadrature ssfs are 90◦ out of phase and,
therefore, those echo signals are uncorrelated.

By replacing h(x | t) with hI(x | t) in (12), the co-
variance of the in-phase signal at times t and t′ may be
computed. Current theory, valid only in the focal region,
suggests that the statistical properties of fully developed
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Fig. 3. Normalized in-phase and quadrature point-spread (a)–(b),
and spatial sensitivity (c)–(d) functions for the array transducer de-
scribed in Fig. 2. Images of I and Q psfs represent spread from a
scatterer at a distance of 90 mm (far field). Similarly, I and Q spa-
tial sensitivity functions are shown for pulse-echo temporal intervals
corresponding to 90 mm, which is half the pulse-echo path distance.

speckle depend only on the overall shape of the pulse en-
velope [1], [2] and is independent of phase information. To
extend this statistical analysis outside of the focal zone,
(12) suggests that the precise phase of h or [hI , hQ] is re-
quired to accurately model the statistical moments of the
echo data g. Statistical analysis of echoes throughout the
field is the main application of this linear systems analysis.

V. B-Mode Signals

B-mode imaging systems display the envelope of the RF
echo signal obtained from the magnitude of the [I, Q] data:

ge(t) =
√

g2
I (t) + g2

Q(t), (16)

or equivalently the magnitude of the analytic signal. Enve-
lope detection is inherently nonlinear, thus linear systems
analysis of ultrasound systems must be applied to either
the RF or [I, Q] data. The envelope of h, which we denote
he(x, t), is important for modeling focal-region statistics
of the B-mode image signals [1], [2], and may be written
as he = |ho| =

√
h2

I + h2
Q =

√
h2 + h̃2. Because B-mode

processing discards phase information, it is natural to won-
der whether envelope detection is the optimal strategy for
data visualization and, if not, what is the optimal strat-
egy? Current research aims to address this question in the
context of image quality assessment literature [5].

VI. The Local Shift Invariance Approximation

As shown in Appendix A, 2-D image reconstruc-
tion maps the temporal coordinates of the echo data
g(t1, t2) into spatial coordinates associated with image pix-
els, γ̂(x1, x2). Furthermore, the spatiotemporal coordinate
transformation is linear, t = Bx and, therefore, interesting
relationships exist between point-spread and spatial sensi-
tivity functions when linear shift-invariance (LSIV) holds.

If we find that

h(x, t) ∼= h(x + ∆x, t + B∆x) (17)

over some range of ∆x, then we say that h is locally LSIV
for values of x where (17) holds. This region is often la-
beled isoplanetic. For such regions, h may be written as a
function of one vector variable:

h(x, t) = h(t − Bx), (18)

thus,

ssf(x) = h(to − Bx | to)
∣∣
to=Bxo

= h(−[B(x − xo)]
∣∣xo)

= psf(−(t − to)).

(19)

This means that the ssf, a function of x, is a copy of the
psf time-reversed about the point to=Bxo. This is why
there appears to be reflective symmetry between the psfs
and ssfs shown in Fig. 2.

Eq. (19) is not valid and the system is not locally LSIV
when amplitude profiles or wavefront curvatures vary sig-
nificantly with position, as is the situation for strongly
focused transducers. Fig. 4 shows farfield ssf and time-
reversed psf A-scan lines Fig. 4(a) on axis and Fig. 4(b)
7.6 mm off axis. The phase mismatch off axis may be ex-
plained by the changing curvature of the wavefront over
an assumed isoplanetic patch. The approximation is much
better on axis [Fig. 4(a)] or in the focal region, where wave-
front curvature is minimal.

In an isoplanetic region, the shape of the point-spread
or spatial sensitivity functions do not change. One way of
assessing the approximate size of an isoplanetic patch is to
plot the normalized correlation coefficient between differ-
ent sensitivity or point-spread functions as a function of
temporal or spatial separation. Because it is often easier
to compute the psf rather than the ssf, we choose to as-
sess how the psf changes as a function of distance. More
precisely, let p1(t) = h(t1 | x) and p2(t) = h(t | x2 =
x1 + ∆x) be point-spread functions for spatial (object-
space) points x1 and x2. Then the normalized correlation
coefficient for assessing shift invariance is:

Cp1p2(∆x) ≡
∫

p1(t)p2(t−B∆x)dt∫
p1(t)dt

∫
p2(t)dt

(20)

Cp1p2(∆x) is a measure of the similarity between over-
laid point-spread functions. By plotting Cp1p2(∆x) as a
function of lag ∆x, the degree of shift invariance can
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Fig. 4. Normalized farfield ssf and time-reversed psf A-scan lines
(a) on axis and (b) 7.6 mm off axis. The parameters were the same
as in Fig. 3.

be assessed. When Cp1p2(∆x) falls below a threshold
value (e.g., 90%) we say that shift invariance fails. The
suprathreshold region defines the extent of the isoplanetic
patch. To relate the point-spread and spatial sensitivity
functions as in (19), the temporal shape of the point-spread
functions should not change as the scatterer location is
moved spatially over the extent of the scattering volume
associated with a given instant of time. Alternatively, the
size of the isoplanetic patch should be larger than the tem-
poral extent of the point-spread function itself, as seen in
Fig. 5. The LSIV approximation holds across lateral scan
lines for linear arrays, except when the beam is electron-
ically steered or near the margins in which the aperture
is reduced. The isoplanetic regions will be small along the
beam axis for fixed-focus sources in which the wavefront
curvature varies. Outside the focal region, highly curved,
extensive ssf wavefronts may exhibit enough axial spatial
extent to exceed the size of an isoplanetic patch. In this
case, (19) does not hold and the symmetry between ssf
and psf is lost. The 90% threshold isoplanetic patch for
the farfield psf of Figs. 2(c) and (f), extended from 88.8
to 91.3 mm. Significant energy exists beyond this region;
hence the lack of symmetry between the psf and ssf as
seen in Fig. 4. Systems with dynamic focusing and aper-
ture growth, as well as systems that use synthetic aperture
approaches may be expected to have fairly large isoplan-
etic regions.

The local LSIV of isoplanetic regions fails for in-phase
and quadrature signals. As is evident in Fig. 3, the I and
Q ssfs are not approximated by time reversed I and Q
psfs. However, the I and Q ssfs can be represented as a
phase-shifted version of the RF ssf—or the time-reversed
RF psf. Multiplying the phase factor exp(−iωot) and the
analytic ssf signal (approximated by the time-reversed psf

Fig. 5. A way to assess the size of an isoplanetic patch. The lines in
(a) represent the point at which the correlation coefficient as defined
by (20) reach 90% threshold. In this example, because most of the
energy is contained within this region, the local LSIV approxima-
tion may be expected to be a good one. Point target was at 50 mm,
and focal region was 60 mm. A two-cycle excitation was used, and
the aperture’s electromechanical impulse response was simulated as
a two-cycle Hanning-windowed pulse. Otherwise, simulation param-
eters were the same as in Fig. 2.

whose argument has been converted to a spatial coordi-
nate) h(x | t) + ih̃(x | t) and taking the real part of the
result, the in-phase ssf may be obtained. The quadrature
ssf may be obtained by taking the imaginary part of the
product. Thus, with a local shift-invariance approxima-
tion, the RF point-spread functions may be used to com-
pute statistical moments of the in-phase and quadrature
signals without computing sensitivity functions. This may
be useful when it is more natural to calculate psfs than
ssfs, as is the case with many simulation packages.

When an isoplanetic region is larger than the sensitivity
function, the LSIV approximation holds and (1) reduces to
a convolution, e.g., g(x) = [h∗γ](x). The LSIV assumption
allows us to express g and g = 〈g〉n as functions of either
x or t. Specifically, g(t(x)) = g(Bx). Under the isoplan-
etic assumption, our results reduce to those of Jensen [13,
equation 45]. Walker and Trahey [14] chose to represent
the LSIV imaging equation in frequency or k-space. In the
Fraunhofer regime, this has a particularly elegant interpre-
tation as the field profile is simply the Fourier transform
of the aperture.
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Although the validity of the local LSIV assumption for
the RF signal is largely restricted to the focal region of ar-
ray transducers, the assumption nevertheless is useful for
analysis and interpretation. Let us define h̆ as the pulse-
echo impulse response, neglecting the quadratic frequency
dependence of scattering [i.e., h̆ is the LSIV approximation
to the quantity in curly brackets in (9)]. This approxima-
tion allows the noise-averaged linear system to be written
in the spatial frequency domain as [26]:

G(k) = �x {g(x)} = H(k)Γ(k)

= k2
1H̆(k)Γ(k) = H̆(k)Φ(k),

(21)

where k = (k1, k2, k3) is the spatial angular-frequency vec-
tor (conjugate to x), and H, H̆, and Γ are the spatial
Fourier transforms of h, h̆, and γ, respectively. The scat-
tering amplitude is defined as:

Φ(k) = − 1
4π

k2
1Γ(k) =

1
2πzo

�x

{
∂2z(x)
∂x2

1

}
,

(22)

where x1 is the component of x normal to the transducer
surface as in Fig. 1. A local plane wave approximation is
required to write (21) and (22), and hence its validity is
restricted, in practice, to the focal region of ultrasound B-
scans. The noise-averaged echo signal can now be written
as [26], [27]:

g(x) = −2
[
h̆ ∗ ∂2

∂x2
1

(
z

zo

)]
(x) = −2

[
h ∗

(
z

zo

)]
(x).

(23)

The first equality in (23) illustrates that sound is scat-
tered whenever the second derivative of the relative acous-
tic impedance (in the direction of transmission) is nonzero.
The second equality allows one to consider the acoustic
impedance itself as the object function. The spatiotem-
poral impulse response function, h, thus acts as a spatial
frequency filter on the object function z(x). The spatial
frequency response of this filter is described by H, which
is the k-space picture of h [14]. Insana and Cook [28] give
a useful LSIV approximation for a beam using a Gaus-
sian signal model. They show that h acts as a bandpass
filter of z(x) in the axial direction, and as a lowpass filter
of z(x) in the lateral direction. The bandpass nature of
h in the scanning direction is due to modulation about a
carrier frequency, and the lowpass character in the lateral
direction is due to the (unmodulated) taper of the beam
profile.

VII. Signal Statistics

The linear systems framework developed here and by
others provides a starting point for analysis of signal statis-
tics. Eq. (12) illustrates one way to compute the covariance
of the RF signal. With a local isoplanetic assumption, the
point-spread function can be used instead of the spatial

sensitivity, and our results match those of Walker and Tra-
hey [14], with one important exception. They predicted
that wavefront curvature played no role in the RF signal
covariance between two signals when the respective aper-
tures are coplanar. Their conclusion was based on stringent
assumptions, including the Fraunhofer approximation and
an assumption that phase curvature has no lateral posi-
tional dependence over some region of interest that does
not extend too far off axis. Explicitly, for spatial positions
x far from the aperture x1 	 k|r|2max

2 and not too far off
axis, so that cos(x1, r−x) ∼= 1, the continuous wave (CW)
Fresnel approximation of (4) due to a sinusoidal excitation:

A(x, k) =
exp(ikx1)

iλx1
exp

[
i

k

2x1

(
x2

2 + x2
3
)]

∞∫
−∞

∞∫
−∞

{
ξ(r) exp

[
i

k

2x1
|r|2

]}
exp

[
−i

2π

λx1
(x · r)

]
dS,

(24)

reduces to the Fraunhofer approximation [21]:

A(x, k) =
exp(ikx1)

iλx1
exp

[
i

k

2x1

(
x2

2 + x2
3
)]

∞∫
−∞

∞∫
−∞

ξ(r) exp
[
−i

2π

λx1
(x · r)

]
dS. (25)

This is because the quadratic phase term exp
[
i k
2x1

|r|2
]

in
the Fresnel expression is approximately unity over unfo-
cused aperture faces for points x1 far enough away. When
a focused aperture is used, the apodization ξ may be
considered a complex quantity. Its purpose is to negate
the exp

[
i k
2x1

|r|2
]

phase term in the Fresnel integral and,
hence, simulate the Fraunhofer region at a much closer
range. The quadratic phase argument will be negligible
in some depth of field about the focus of a focused trans-
ducer. In pre- or postfocal regions, where x1 is comparable
to or less than k|r|2max

2 , however, the phase may be signifi-
cant and the Fraunhofer approximation may fail. In these
situations, phase curvature is dependent on lateral posi-
tion, and the approximations of Walker and Trahey [14]
do not hold. Their conclusion is, for example, applicable
to the focal region of focused transducers in which wave-
front curvature is essentially flat and farfield regions of
unfocused transducers (as long as energy is concentrated
in a region not too far off axis).

We give an example of how wavefront curvature can
play a very important role in predicting speckle texture
for focused transducers in pre- and postfocal regions. Con-
sider an electronically swept linear array system with fixed
focus and shift invariance in the lateral direction. We are
interested in the correlation lengths of speckle along lat-
eral scan lines. In this case the covariance (12) depends
only on the difference (t−t′), and thus is simply a cross
correlation. Eq. (12) tells us that, to compute the speckle
cross correlation, one should slide the sensitivity map lat-
erally, then multiply with a copy of itself, and integrate.
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Fig. 6. Predicted correct and erroneous correlation coefficients of in-
phase image data from lateral scan lines at 30 mm axial depth for a
transducer with focus at 60 mm. Simulation parameters were other-
wise the same as in Fig. 2. Solid line: the predicted true correlation
coefficient using the spatial sensitivity functions. Dashed line: an er-
roneous predicted lateral correlation coefficient arrived at by ignoring
phase oscillations. Dotted line: the erroneous lateral correlation coef-
ficient arrived at by using the in-phase point-spread functions rather
than in-phase sensitivity functions. The true nearfield speckle is pre-
dicted to be very narrow in the lateral direction due to wavefront
curvature. Not shown is the in-phase correlation coefficient predicted
by a phase-shifted, time-reversed RF psf. It differed from the correct
lateral correlation coefficient by less than 1%.

In the near- and farfield, wavefront curvature is significant,
and this procedure of shifting and multiplying will result
in complex phase interference patterns that will quickly
integrate to zero. Fig. 6 shows the predicted correlation
lengths of in-phase speckle texture in the lateral direction
for curved and flat wavefront sensitivity functions along
with the corresponding erroneous predictions that use in-
phase psfs instead of ssfs, and neglect phase or assume a
flat wavefront field of equal shape and scattering volume.
Speckle patterns corresponding to the curved wavefront
field decorrelate more quickly than does the flat wavefront
field. This is one reason why speckle texture appears fine
in the near and farfield regions of ultrasound B-scans even
though the pulse energy is spread out very broadly. A re-
lated connection to the literature concerns phase aberra-
tion. Speckle has been observed to be broadest whenever
aberrations are least [29], [30]. Phase aberrations cause ir-
regularities in phase fronts that induce rapid decorrelation
even though the pulse volumes are very large.

The isoplanetic approximation to the lateral correla-
tion coefficient of Fig. 6 (not shown) for lateral speckle
correlation is very good (less than 1% maximum devia-
tion) because lateral shift invariance is assumed. Fig. 7
shows correlations in the axial direction, and the corre-
sponding isoplanetic approximation. In the axial case the
isoplanetic assumption deviates significantly (almost 20%
at 1-mm lag) from the full shift-variant computation. Bet-
ter agreement may be expected for shorter pulses because

Fig. 7. Normalized covariances KII(t, t+∆t), solid and dashed lines,
and KIQ(t, t + ∆t), dotted line, of in-phase and quadrature signals
along axial scan lines as a function of lag distance ∆x = c∆t/2.
Calculations were based on 2-D field distributions from a focused
array transducer with focus at 6 cm, and ct/2 = 90 mm. Otherwise,
parameters were the same as in Fig. 2. The dashed line represents
the computation using the isoplanetic approximation (modeling I
and Q ssfs by time-reversed, phase-shifted psfs). The solid line is the
computation with the full shift-variant theory. Note from the dotted
line that in-phase and quadrature correlations exist. This may be
explained as coupling between direct and edge waves, as shown in
Fig. 9.

the axial correlation distance will be shorter relative to
the size of the isoplanetic patch. For simplicity, in all the
examples shown, we imagine that we are imaging a 2-D
planar distribution of scatterers, so that we can assume
the ssf is a 2-D instead of a 3-D function.

If the system is locally shift invariant, and the object
can be modeled by a zero mean wide sense stationary
(WSS) random process, then the covariance matrices are
completely characterized by autocorrelation functions. In
the continuous sampling limit, the eigenvalues of the co-
variance matrix are simply the power spectrum. Thus,

K (x1,x1 + ∆x) = R(∆x) =
h(∆x) ∗ Rγ(∆x) ∗ h(−∆x) + Rn(∆x)

←→
�

| H(k) |2 Sγ(k) + NPS(k), (26)

where Rγ(∆x) and Sγ(k) are the autocorrelation and
power-spectral representations of the object function, re-
spectively, and Rn(∆x) and NPS(k) are the autocorrela-
tion and power spectrum of the noise, respectively.

One curiosity is that the covariance itself depends on
wavefront curvature, yet from (26), only the magnitude
of H(k) has a role in speckle properties. The conclusion
is that curved wavefront ssfs have spatial phase curvature
information in |H(k)|.

Intriguingly, the lateral spatial frequency bandwidth
[Fig. 8(d)] of the large curved wavefront sensitivity in
Fig. 8(c) is broader than the bandwidth [Fig. 8(b)] of the
smaller focal region sensitivity of Fig. 8(a). Specifically,
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Fig. 8. (a) Focal and (c) nearfield RF psfs due to a 3 MHz fixed focus
linear array of height 0.5 cm, with 64 active elements of width λ sep-
arated by distances of 0.1 mm. Azimuthal focus was 6 cm. The beam
was electronically swept laterally across the point target located at
(a) 6 cm and (c) 3 cm. (b) and (d) are the k-space representations
of (a) and (c), respectively. A two-cycle excitation was used, and
the aperture’s electromechanical impulse response was simulated as
a two-cycle Hanning-windowed pulse.

the effective lateral bandwidth of Fig. 8(d) as defined by
Bendat and Piersol [31], and evaluated at the axial fre-
quency maximum was 74% broader than that of Fig. 8(b).
Thus, from an information-theoretic point of view, the
curved wavefront ssf has potentially more spatial resolu-
tion available, even though the pulse volume is consider-
ably larger! This can be better understood by realizing
that a slice through the sensitivity function in the lateral
direction looks like a chirp function. A matched or mis-
matched compression filter could potentially be applied to
regain spatial resolution while improving signal to noise,
similar to current coded excitation schemes [32]. A fasci-
nating possibility for designing ultrasound systems could
be the introduction of an engineered, coded excitation in
the lateral direction of the beam, similar to work that has
been done for 2-D velocity estimation using array trans-
ducers [33], [34].

As a final illustration of the application of this work,
we give an example of how shift-variant systems may ex-
hibit statistical coupling of in-phase and quadrature sig-
nals along axial scan lines. Most current literature assumes
independence of I and Q channels. It is well-known that
the on-axis acoustic response consists of direct and edge
waves, and that these contributions will have a position-
dependent phase delay. Keeping this in mind, now consider
computing the covariance between in-phase and quadra-
ture signals at various points of time. Eq. (12) tells us
that we should multiply sensitivity functions for the I and
Q signals then integrate. This integration will not tend
to zero if portions of the in-phase signal are not exactly
90◦ out of phase with the quadrature, as demonstrated in

Fig. 9. (a) Axial slices through in-phase ssfs. This is to illustrate that
in-phase ssfs are always in phase with each other, even though the
envelope may shift. (b) In-phase (solid line) and quadrature (dotted
line) ssfs are not 90◦ out of phase. At about the 90-mm point, the
direct wave of the quadrature ssf is almost 180◦ out of phase with
the edge wave of the in-phase ssf.

Fig. 9. Statistical independence between I and Q signals
can be expected in the focal zone of unapodized transduc-
ers as direct and edge waves are approximately superim-
posed with a constant phase relationship. Understanding
these edge-wave effects may be important for understand-
ing or eliminating unwanted image correlations, both from
a system design point of view and an image processing per-
spective. The degree of statistical dependence between I
and Q channels will be diminished greatly with decreas-
ing edge-wave amplitudes. Consequently, apodization may
significantly reduce edge wave amplitudes and abate I −Q
correlation.

VIII. Conclusions

A linear systems framework based on a solution to the
wave equation for inhomogeneous media has been pre-
sented that is similar to others [11]–[13]. With certain
approximations, our results reduce to a continuum ex-
tension of the Tupholme-Stepanishen theory [6]–[10]. Al-
though their focus has been on point-spread functions,
ours is on spatial sensitivity functions. For each echo sam-
ple, the spatial sensitivity function reveals the sensitivity
of the ultrasound system to each location in the object.
These functions, along with their in-phase and quadrature
counterparts are important in the computation of statisti-
cal moments. When local shift-invariance holds (as is the
case near the focal region of an array transducer), the spa-
tial sensitivity functions are shown to be similar to point-
spread functions, which are time reversed about the axial
position of the scatterer location. This time-reversal prop-
erty does not apply to the in-phase and quadrature distri-
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Fig. 10. Illustration of geometries for the object and data vectors
using a linear array transducer.

butions. The LSIV approximation together with a plane-
wave approximation has further been used to understand
the system response as a spatial frequency bandpass filter
of acoustic impedance z(x) in the axial direction, and as
a lowpass filter of z(x) in the lateral direction. An equiv-
alent interpretation suggests that ultrasound systems are
sensitive only to the second derivative of z(x) with re-
spect to the scanning direction. In situations in which lo-
cal shift invariance does not apply, the full shift-variant
theory must be used. Shift-variant, in-phase and quadra-
ture spatial sensitivity functions may be particularly im-
portant for the evaluation of statistical properties of de-
modulated or envelope-detected images of realistic ultra-
sound imaging systems. Such statistical characterization
may be useful for quantifying image quality and for de-
sign of image processing algorithms. Our theory predicts
that wavefront curvature and phase information contained
within sensitivity functions is essential for explaining the
complex speckle structure apparent in ultrasound images.
Coupling between direct and edge waves introduces statis-
tical correlations between I and Q channels. Also revealed
is an opportunity to enhance near- and far-field spatial res-
olution by matched filtering unfocused beams. Ultimately
this work will aid our understanding of fundamental per-
formance limits, optimum image processing strategies, and
quantitative image quality metrics for ultrasonography.

Appendix A

This appendix provides examples of object, data, and
image function representations that may be useful in sev-
eral ultrasonic applications of the linear imaging equation
(1).

One common data structure for B-mode acquisition is
shown in Fig. 10. A linear array generates beamformed
echo sequences oriented in columns with elements g(t) =
g(t1, t2) = g(�T, mLT ). The L range samples are placed
in columns corresponding to each A-line and assigned a
discrete time stamp t1 = �T , where 0 ≤ � ≤ L − 1 are
integers and T is the temporal sampling interval. Columns
are filled left to right with sequenced A-line recordings,

where t2 = mLT , 0 ≤ m ≤ M − 1. The acquisition time
is given by t′ = t1 + t2 = (� + mL)T , and the integer �
is indexed completely between 0 and L − 1 before m is
incremented. In this example, sequentially acquired data
are represented by a 2-D matrix of echo samples g[�, m].
It is often convenient to organize all the data from a scan-
plane into a single LM -dimensional column vector g with
elements g[�+mL]. Then from (1) we can write the imaging
equation as a continuous-to-discrete transformation:

g =
∫

dxh(x, t′[�, m])γ(x) + n = H {γ(x)} + n,
(A1)

where H in the last form is a linear operator on γ that
generates g.

To facilitate diagnostic interpretation, human observers
require that echo locations be one-to-one with the cor-
responding object locations. Consequently, we apply a
discrete-to-discrete reconstruction operator O, viz., γ̂ =
O {g}, that converts echo data into an image of the ob-
ject, γ̂. Like g, γ̂ is a vector of length LM . If O is linear,
then [3]:

γ̂ = OH {γ(x)} + O {n}
= S {γ(x)} + (OH − S) {γ(x)} + O {n}. (A2)

where S is the sampling operator. The first term on the
right side is the sampled object, the second term is the
bias between the reconstructed image and sampled object,
and the third term is the image noise. If the task is to ob-
tain an image of the object nearest its true form, a supe-
rior linear imaging system minimizes the second and third
terms. B-mode image reconstruction is nonlinear, so (A2)
does not apply. Nevertheless B-mode image reconstruc-
tion is straightforward. Essentially we take the envelope
of the echo data, [see (16)] and convert temporal coordi-
nates to spatial coordinates: t1 = �T → �cT/2 = �∆X1,
and t2 = mLT → m∆X2, where c is the speed of sound
and ∆X1 and ∆X2 are the vertical and horizontal pixel
dimensions corresponding to the axial and lateral (pitch)
spatial sampling intervals. As part of the reconstruction
process, we normally convert the temporal axes of the data
into spatial axes via the inverse of the coordinate trans-
formation t = Bx, where, in the case of swept-scan 3-D
B-mode imaging, B is a diagonal matrix. Specifically, the
mapping is:


t1
t2
t3


 =


2/c 0

T/∆X2
0 T/∆X3





x1
x2
x3


 . (A3)

To consider other ultrasonic techniques requires that
we expand the dimension of the time vector t. Doppler
estimates use several A-line acquisitions at each lateral
transducer position. Fast-time (range) samples, identified
above by the index �, are repeatedly acquired Q times
before indexing m to form a slow-time data set at times
t0 = qLT [35]. The integer index is 0 ≤ q ≤ Q − 1,
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and we assume the temporal pulse-repetition interval is
Tp = LT . Further, to add data for either 3-D, B-mode
imaging or strain imaging, sequential scan planes are ac-
quired at times t3 = rMQLT , where 0 ≤ r ≤ R − 1 and
the temporal frame-acquisition interval Ts = QMLT . For
3-D imaging, r corresponds to a spatial index ∆X3, but for
strain imaging a fixed-object region is scanned (∆X3 = 0).
The indices are nested as follows: g(t) = g(t1, t0, t2, t3) =
g(�T, qLT, mQLT, rMQLT ), and the acquisition time is
t′ = t1+t0 +t2+t3 = (�+(q+(m+rM)Q)L)T . Of course,
the reconstruction operator O and coordinate transforma-
tion matrix B will change depending on the technique, but
O is nonlinear for all the techniques described above.

With the above data structure, it is easy to allow the
object function to change with time. This situation occurs
with blood flow and tissue deformation. The object func-
tion assumes the form γ(x, t′[�, q, m, r]), therefore,

g[�, q, m, r] =
∫

dxh(x, t′)γ(x, t′) + n[�, q, m, r].
(A4)

Re-mapping the four-dimensional matrix into a vector
gives the compact form similar to (A1):

g = H{γ(x, t′)} + n. (A5)

Although objects and images are naturally functions of
space and time, we believe it is easier to consider echo data
acquired serially strictly as a function of time. Yet, by cre-
ating a time vector, data can be conveniently partitioned
into segments that intuitively correspond to spatial and
temporal coordinates of the reconstructed image.

Appendix B

Here we summarize the derivation of (3). From (2),
the homogeneous wave equation in inhomogeneous media,
multiply by −1 and add:

1
ρo(x)

∇2 p − κo
∂2p

∂t2
.

Then multiply by ρo to find

∇2 p(x, t) − 1
c2

∂2 p(x, t)
∂t2

=

γκ(x)
c2

∂2 p(x, t)
∂t2

+ ∇ · (γp(x)∇p(x, t)) , (B1)

where γκ(x) = (κ(x) − κo) /κo, γp(x) = (ρ(x) − ρo) /ρ(x),
and c2 = 1/ρoκo. Using p(x, t) = pω(x) exp(iωt), the fol-
lowing time-independent solution to (B1) is found.

∇2 pω(x) − k2 pω(x) = −qω(x), (B2)

where

qω(x) = k2γκ(x)pω(x) − ∇ · (γρ(x)∇pω(x)) .
(B3)

Eq. (B2) is still a homogeneous wave equation as it has no
sources or sinks. The terms on the right describe scattering
sources that redirect energy but do not add or subtract
from the total. A solution to (B2) can be found using the
Green’s function approach [18]. The total field is the sum
of the incident and scattered fields:

pω(x) = pωi(x) + pωs(x), (B4)

where pωi(x) is the incident pressure field and

pωs(r) =
∫
V

dx qω(x)Gω(r | x) (B5)

is the scattered field. The Green’s function is defined as:

Gω(r | x) =
1
4π

exp (−ik |r − x|)
|r − x| (B6)

From (B3) and (B5) we find the scattered field as:

pωs(r) =
∫
V

dx
{

k2γκ(x)pω(x)Gω(r | x)

− Gω(r | x)∇ · (γρ(x)∇pω(x))
}

=
∫
V

dx
{

k2γκ(x)pω(x)Gω(r | x)

+ γρ(x) [∇pω(x) · ∇Gω(r | x)]
}

.

(B7)

The last expression was obtained by using the product
rule for differentiation followed by Gauss’s theorem. This
is the scattered pressure field at points on the receiving
transducer surface. It is a function of the total field pω(x),
which is well approximated by the incident field pωi(x) un-
der a weak-scattering hypothesis as is reasonable in biolog-
ical tissue. From [17] the incident field from a quasiplanar
surface is given as:

pi(x, t) = iρockU(ω) exp(iωt)A(x, t), (B8)

where A is the velocity potential described in (4). Inte-
grating the scattered pressure (B7) over the transducer
surface S, and applying the weak scattering approxima-
tion and (B8), the expression (3) for the force exerted on
the transducer is obtained.
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