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Adaptive Clutter Rejection Filtering in
Ultrasonic Strain-Flow Imaging
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Abstract—This paper introduces strain-flow imaging as a
potential new technique for investigating vascular dynamics
and tumor biology. The deformation of tissues surrounding
pulsatile vessels and the velocity of fluid in the vessel are
estimated from the same data set. The success of the ap-
proach depends on the performance of a digital filter that
must separate echo signal components caused by flow from
tissue motion components that vary spatially and tempo-
rally. Eigenfilters, which are an important tool for natu-
rally separating signal components adaptively throughout
the image, perform very well for this task. The method is
examined using two tissue-mimicking flow phantoms that
provide stationary and moving clutter associated with pul-
satile flow.

I. Introduction

Clutter suppression in ultrasonic color-flow (CF)
imaging is a challenging signal processing problem.

The goal is to isolate signals from flowing blood that are
summed with clutter signals, i.e., echoes from stationary
or slowly moving extravascular scatterers. At ultrasonic
frequencies below 20 MHz, the scattering amplitude from
tissue echoes is orders of magnitude greater than that from
red blood cells (RBCs), so CF imaging is often dominated
by clutter signals that produce, for example, flash artifacts.
Even if the sample volume1 is entirely contained within a
blood vessel, reverberations can bias velocity estimates sig-
nificantly. Under slow-flow conditions, as in tumor imag-
ing, the blood and clutter echoes often share the same
Doppler frequency bands, thus increasing the challenge to
separate signals.

Usually clutter signals are discarded as a nuisance. How-
ever, clutter signals convey information about the displace-
ment and elasticity of tissues surrounding the vessel lumen
[1]. Spatial derivatives of displacement yield strain esti-
mates that describe tissue [2], [3] or vascular [4], [5] elas-
ticity via strain imaging. This paper focuses on filtering
techniques that are able to separate the blood and tis-
sue components of motion to simultaneously image tissue
strain and blood flow from the same set of echo data.
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1The sample volume is the volume of the scattering medium that
contributes to the echo signal for any one velocity estimate. It is
determined by pulse volume and range gate properties.

Highpass (HP) digital filtering of pulsed Doppler sig-
nals is most effective for suppressing clutter if the RBC
velocity is much higher than the tissue velocity, and the
respective Doppler spectra are nonoverlapping. The de-
gree of spectral separation determines the specification for
classical HP filter design in terms of filter characteristics,
order, corner frequency, and ripple. A narrow separation
demands high order filters to provide a narrow transition
band. Infinite impulse response (IIR) filters are superior
to finite-impulse response (FIR) filters under these condi-
tions, but high order IIR filters yield significant transient
responses and thus require longer settling times. Unfortu-
nately, the number of samples per line-of-sight (LOS), or
packet size N , must be kept small (2 ≤ N ≤ 20) to achieve
real-time CF frame rates. The IIR filter initialization tech-
niques are known to reduce transient filter responses [6],
[7]. Another approach is to apply regression filters that
treat input samples as polynomial functions in the time
domain and perform least-square regression analysis [8].

The complexity of filter design increases considerably
when clutter and blood spectra overlap. This is often the
case for tumor imaging where the RBC velocity is rela-
tively slow and spatially disorganized, thus producing low
mean-frequency Doppler spectra in the clutter band. Neo-
vascularization is accompanied by a collagenous structural
remodelling of the parenchymal tissues that stiffens the
tumor and adjacent regions as they become fibrotic [9]
and desmoplastic [10]. Combined strain-flow (SF) imaging
may improve our understanding of tumor development and
their responses to the new classes of antiangiogenic thera-
pies [11].

To measure blood velocity and tissue elasticity simul-
taneously, we developed a laboratory ultrasound scan-
ner capable of standard and novel procedures for tumor
imaging [12], [13]. Specifications for clutter filter design
are unique and best implemented using an adaptive ap-
proach. The performances of adaptive clutter filters for
CF imaging were evaluated recently by Bjærum et al. [14]
for data acquired while moving the probe in search of
small blood vessels. Their investigation included a) sig-
nal down-mixing with a temporally and spatially averaged
estimate of the mean Doppler frequency, b) down-mixing
with varying phase increments to adapt to accelerated tis-
sue motion, c) eigenvector-based regression filters, which,
for first-order filters, turn out to be approximately equal to
b), and d) prewhitening of clutter and noise spectra prior
to velocity estimation. The authors concluded that method
b) provides the best performance if evaluated with power
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Fig. 1. Scan-mode acquisition for CF imaging (left) and matrix rep-
resentation of data (right). Matrix dimensions are M × rN . The
situation for M-mode is similar except there is no transducer motion
along the x-axis (r = 1), and only a single LOS is investigated as a
function of time.

Doppler. However, we felt the tremendous computational
load of b) warrants further investigation of the second best
filter method c). In our application, basis functions for
the clutter space are created to adapt to specific realiza-
tions of clutter signal statistics. Probe movement in the
Bjærum study produced a uniform velocity over the entire
region-of-interest (ROI) at any instant of time. Our task
is different—we hope to separate spectra in a SF imaging
environment in which the clutter varies temporally and
spatially.

II. Flow Velocity Estimation

To measure low blood velocities with high accuracy,
precision and reasonably high frame rates, we used the
2-D autocorrelation estimator [15]. This estimator com-
bines the 1-D Kasai autocorrelator [16], commonly used
in CF imaging, with mean radio frequency estimation for
the compensation of frequency-dependent attenuation and
scattering. Compared to the Kasai autocorrelator, the 2-
D autocorrelator yields significantly lower estimation bias
and variance with only a moderate increase in computa-
tion load [13].

Digitized echo signals are organized in 2-D arrays where
the terms “fast-time” (columns) and “slow-time” (rows)
define the direction of the beam axis (echo signal sam-
pling rate fs, index m) and pulse packet dimension (pulse
repetition sampling rate fPRF, index n), respectively. The
column index in the CF image is r. This data structure
is depicted in Fig. 1.2 Provided that scatterers move at
velocity v, the mean Doppler frequency computed from
slow-time samples is fD = 2vzf0/c where vz = |v| cos θ is
the axial velocity component, θ is the Doppler angle (be-
tween beam axis and velocity vector v), f0 is the signal
radio-frequency and c is the longitudinal sound speed. vz

can be estimated using the complex 2-D correlation func-

2Although Figs. 1–11 are placed near the associated text, Figs. 12–
16 are placed on a single color page.

tion R(k, �) at lags (k, �) = (0, 1) and (k, �) = (1, 0) [15]

vz =
c

2
fPRF∠R̂(0, 1)

2πfdem + fs∠R̂(1, 0)
, (1)

where fdem is the demodulation frequency used for co-
herent quadrature demodulation and ∠ represents phase
angle. R̂ is an estimate of the complex 2-D correla-
tion function computed from complex baseband signals
I(m,n) + jQ(m,n) recorded in the range gate at a cer-
tain LOS

R̂(k, �) =
M′−k−1∑

m=0

N−�−1∑
n=0

[I(m,n) + jQ(m,n)]

· [I(m + k, n + �) − jQ(m + k, n + �)],

(2)

where M ′ ≤ M is the number of axial echo samples in the
range gate. The velocities estimated from the autocorre-
lation function are unbiased for symmetric Doppler power
spectra. With additive white Gaussian noise (WGN), this
also holds true in the limit of infinite packet size [17]. De-
tailed error analysis of autocorrelation-based velocity esti-
mators for CF imaging is described in [13].

Properly designed fast-time RF filters maximize the
SNR and allow accurate measurements of the mean fre-
quency of the RF signals in noise. To achieve this objec-
tive, the amplitude response of the RF filter in the band-
pass must be flat or, at minimum, symmetric about the
true mean to prevent noise from biasing the mean RF fre-
quency estimates.

III. Strain Estimation

Strain images are usually formed from crosscorrelation-
based displacement estimates. Local displacements are
usually determined from pairs of RF data frames acquired
for the same region in the object but at two different times,
representing different stages of deformation. Like B-mode
and unlike CF imaging, strain images employ high band-
width pulse transmission and N = 1. The Chaturvedi algo-
rithm [3] was applied to estimate displacement and image
strain. The algorithm was originally developed for imaging
strain resulting from external compression but has been
applied to vascular imaging of internal deformation [5].

Strain is nonzero when the local displacements vary
with position in the scan plane. The algorithm is designed
to measure local displacements within the deformed object
from 1-D or 2-D correlation lags determined at three spa-
tial scales. First, the coarsest estimates of displacement
are used to measure the overall displacement and aver-
age strain in the plane applied to one frame with respect
to another. The echo data in a frame are then warped
in two dimensions to compensate for the average physical
deformation using a process known as global companding.
Second, 2-D displacements measured at an intermediate-
size spatial resolution are recorded and used to warp the
echo fields via a local companding process. Finally, dis-
placements are measured at the highest spatial resolution
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by 1-D axial correlation of twice companded echo frames.
Displacements measured at each stage of the process im-
prove the condition of the data for displacement estimation
at higher resolution [18]. Finally, the summed components
of displacement along the ultrasonic beam axis measured
at each stage are filtered by a simple first-order linear FIR
differentiator to form strain images. Axial strain pixel size
is determined by sampling rate and correlation parame-
ters. These parameters and the impulse response of the
instrumentation combine to determine the spatial resolu-
tion of the strain image.

The above procedure was designed for quasi-static
strain imaging using external compression. To image in-
ternal deformation from pulsed flow, global companding is
unnecessary for phantoms but applied when scanning in
vivo to compensate for in-plane transducer motion com-
mon with hand-held scanning devices. The flexibility of
our laboratory imaging system allows the application of
various ultrasonic pulsing strategies useful for imaging in-
ternal deformation. For example, the rising edge of the car-
diac pulse rapidly expands the lumen of normal brachial
arteries by hundreds of microns in just a few milliseconds.
Frame rates lower than 30/s result in echo decorrelation
near the vessel wall where the displacement is greatest. We
can increase the pulse-repetition frequency (PRF) in our
lab system and apply multiple broadband pulses at a given
LOS, similar to packets for CF imaging and the elasticity
imaging methods of Nightingale et al. [19], to detect rapid
local movements. Furthermore, accurate positioning of the
transducer (better than 100 nm) together with appropri-
ate gating techniques allow data acquisition from 2-D re-
gions for repetitive physiological signals (see Fig. 13 and
14). Two-dimensional local companding is not possible for
M-mode data. Fortunately, when the PRF is sufficiently
high, tissue movement between pulse transmissions is small
enough to be estimated using 1-D cross-correlation meth-
ods without significant decorrelation. Adding individual
interpulse displacements gives the net displacement. To
achieve unbiased subsample displacement estimates, we
chose sinx/x interpolation of the cross-correlation func-
tion for best possible results over less accurate alternative
interpolation techniques [20], [21]. To maximize numeri-
cal efficiency, cross-correlation and interpolation were both
implemented in the Fourier domain.

IV. SF Imaging

The ultrasonic pulsing requirements for imaging strain
and flow individually are often not the same. Generally,
CF imaging requires large packet sizes and narrow-band
pulses to minimize velocity errors in larger vessels with
steady flow conditions. Conversely, strain imaging usually
employs a packet N = 1, two or more frames of RF data,
and broadband pulses. Shorter pulses help to minimize the
amount of tissue deformation that occurs on the scale of
the pulse volume and in turn minimize severe strain noise
from signal decorrelation. If the conditions include pul-
satile flow in small vessels or high flow gradients, then

Fig. 2. Block diagram of combined strain-flow imaging.

short-duration wide-bandwidth pulses and smaller packet
sizes are selected. Consequently, the pulsing requirements
for the two methods can converge in some challenging sit-
uations, such as tumor imaging. In this study, we chose
one pulse bandwidth that minimized strain-flow estima-
tion errors for specific imaging situations in phantoms. For
critical applications in which the highest performance is
required for both strain and flow, pulse interleaving tech-
niques can be applied.

The SF imaging performance, measured in terms of ve-
locity and strain errors or imaging detectability, also de-
pends on the effective separation of tissue and blood mo-
tion components in the echo signal. Fortunately, the two
components can be largely complementary, e.g., when tis-
sue motion is responsible for most of the clutter signal.
An HP clutter filter effective for CF imaging provides the
design for how to filter for strain. The output of the filter
complement represents the necessary lowpass filtering for
strain imaging. A block diagram of a combined SF imaging
system is shown in Fig. 2. If the SF filter is well-designed
for the conditions, vessel regions in the strain image will
be filled completely with decorrelation noise, and all of the
CF signal will be located in vessels. However, if the clutter
signal also includes nonphysiological motion, e.g., trans-
ducer motion, then two parallel filters must be designed
to isolate the two principal motion components. Individ-
ual filters are also necessary when the quality of the filter
complement signal is insufficient for strain estimation. For
example, a Chebyshev type II HP filter (equal amplitude
ripples in the stopband) is a simple and effective choice for
velocity estimation [21]. However, strain estimation using
the filter complement can be very much influenced by the
filter response ripples, which for clutter signals appear in
the passband. We will show that the quality of strain es-
timates in SF imaging can be significantly improved by
applying an adaptive clutter rejection filter optimized for
CF imaging. In the next section, basic properties of var-
ious filter classes appropriate for CF imaging are briefly
reviewed.

V. Clutter Filter Designs

Displacement estimates are essentially phase measure-
ments. Therefore, phase distortions introduced by a clut-
ter filter add errors to both velocity and strain images
when using the entire pulse packets for combined strain-
flow measurements. The FIR filters and zero-initialized IIR
filters are linear time-invariant (LTI) systems and conse-
quently introduce no estimation bias from phase distor-
tion.
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To see why this is true, assume an echo-signal input se-
quence x[n] that is a wide-sense stationary (WSS) discrete-
time complex random process with autocorrelation func-
tion Rx[n]. This input is applied to an LTI filter with im-
pulse response h[n]. The output is given by the convolution
y[n] = h[n]∗x[n], and the relation between input and out-
put autocorrelation functions is

Ry[n] = h[n] ∗ h∗[−n] ∗ Rx[n], (3)

where [. . . ]∗ denotes complex conjugation. The discrete-
time Fourier transform of (3) gives the corresponding
power spectral densities, [21] Sy(ejω) = |H(ejω)|2 Sx(ejω),
where the mean Doppler frequency is proportional to ve-
locity. However, (3) is not valid for commonly used ini-
tialized filters because they are non-LTI systems; e.g., the
step-initialized IIR filter is nonlinear because the output
can be nonzero for times larger than t0 even if the input
was zero for all times prior to t0 [21]. While non-LTI fil-
ters have many advantages, the distortion of the complex
autocorrelation phases should be considered when using
autocorrelation-based estimation techniques.

The filter amplitude response is also important for ve-
locity estimation. In noise-free Doppler spectra in which
the blood flow and clutter components do not overlap in
frequency, biased velocity estimates will result if the pass-
band amplitude response is not flat. Additive WGN does
not bias autocorrelation-based velocity estimates because
its autocorrelation is zero at all lags different from zero.
However, this desirable feature fails when clutter rejection
filtering is applied, even for LTI filters.

Filter impulse and frequency responses are defined once
the transient responses have completely settled. Such con-
ditions are difficult or impossible to achieve when small
packet sizes are used, which is why we need an alterna-
tive method for characterizing the filter performance in
CF imaging. Torp [22] characterized these filter responses
from the ratio of output-to-input signal power when the
input is a complex exponential. The power of a complex
sinusoid is constant and independent from the phase of the
input signal, which, of course, is not the case for real-valued
sinusoids. We have adopted this definition of the clutter
filter frequency response as applied to complex baseband
IQ signals. Power-ratio measurements can be swept in fre-
quency to map the filter attenuation. Group delay cannot
be defined in the traditional sense for many of these filters.

A. FIR Filters

Given that N is small for real-time applications, low-
order FIR filters are inappropriate for CF imaging because
the transition frequency band is often too large. Further-
more, the number of valid output samples, viz., N minus
the filter order, becomes too small when one considers that
the variance for autocorrelation estimates is inversely re-
lated to the number of valid filter output samples. While
we do not consider FIR designs, it has been shown that
minimum-phase FIR filters and mirroring techniques can
yield acceptable performance [23].

B. IIR Filters

The IIR filters exhibit narrower transition bands than
FIR filters for the same order. However, appropriate ini-
tialization of the internal filter states must be applied in
order to suppress the transient filter response. Three dif-
ferent initialization techniques are investigated in this pa-
per [7]:

• Zero initialization: the initial filter state vector is set
to zero for times less than zero. Often, this technique
yields unacceptably large transients, although this fil-
ter is LTI, and therefore its phase response does not
influence autocorrelation-based velocity estimation.

• Step initialization: the filter state vector is set to a
constant determined by filter coefficients and data val-
ues. Transients can be partially suppressed from a pri-
ori knowledge that the input signal is dominated by
high-amplitude, very low Doppler-frequency (station-
ary) clutter. We apply a unit-step input and calculate
the internal filter states at t = ∞. These values are
scaled at each range depth (fast-time) by the ampli-
tude of the first data sample in the pulse packet before
being loaded into the filter.

• Projection initialization: the filtered signal is decom-
posed into steady-state and transient components.
Using an appropriate projection operator [7], which
projects the signal in the “transient response sub-
space,” it is possible to decompose the filtered sig-
nal into two orthogonal components and subtract the
transient subspace component from the output.

C. Polynomial Regression Filters

Regression filters operate on the assumption that the
slowly varying clutter component in the signal can be ap-
proximated by a polynomial. The least-squares fit to this
low-frequency clutter component in the echo signal is sub-
tracted. The curve set can be chosen to form an orthonor-
mal basis for a K-dimensional clutter subspace of the N -
dimensional signal space. The least-squares clutter fit is
the projection of the signal into the clutter subspace. The
linear filtering operation can be generally expressed as

y = Ax, (4)

where x is the complex input signal vector (slow-time sam-
ples), y is the complex output vector, both of dimension
N × 1, and A is an N × N dimensional filter matrix,

A = I −
K∑

k=1

bk bH
k . (5)

bk is the set of basis vectors, for orthonormal bases often
Legendre or Chebyshev polynomials, (. . . )H is the Hermi-
tian operator, and I is the identity matrix. The frequency
response of the filter can be calculated by

H(ejω) = 1 − 1
N

K∑
k=1

|Bk(ejω)|2, (6)
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where Bk

(
ejω

)
is the discrete-time Fourier transform of

the basis vector bk [22]. In order to design HP filters,
K must be small. Regression filters are adaptive in the
sense that the polynomial coefficients vary depending on
the data.

D. Eigenfilters

The eigenfilter approach is to create a unique set of ba-
sis functions for a specific clutter space that adapts to the
statistics of that clutter signal. Since the entire basis set
and not only scaling coefficients are determined from the
data, eigenfilters are truly adaptive. The Hotelling trans-
form3 decomposes the data vector x into N eigenvectors
(e1, . . . , eN) of the clutter covariance matrix CC

4

CC = E{xxH}, (7)

where E{·} is the expected value. In the common situa-
tion where echo-signal energy from clutter is much greater
than that from blood flow, the largest eigenvalues corre-
spond to the clutter component. The Hotelling transform
decomposes the echo signal into an orthogonal basis set.
These basis functions are then arranged in descending or-
der of energy. Clutter and noise can be suppressed by re-
moving certain eigencomponents. First-order eigenfilters
(K = 1) are implemented by subtracting the eigencompo-
nent with the highest energy from the input signal. Second-
order eigenfilters (K = 2) subtract the highest and second
highest energy components. While clutter is usually con-
tained in a subspace defined by (e1, . . . , eK) with K < N ,
white noise is spread over all eigencomponents. All sub-
space eigencomponents that do not contain blood flow can
be subtracted to increase the overall SNR.

Eq. (5) and (6) are used to calculate the filter matrix A
and filter frequency response. In practice, CC is unknown
a priori but can be estimated from the data by spatial
averaging:

ĈC =
1

M ′

M′∑
i=1

xi xi
H . (8)

The specificity of the filter to a particular data set with
clutter is maximized by choosing a region in the data that
excludes any blood flow. That region can be selected auto-
matically by locating the subregion of data that exhibits
maximum slow-time echo coherence by means of thresh-
olding the velocity spread or choosing the first eigencom-
ponent. It is unnecessary to assume temporal stationarity
in slow-time when computing the correlation matrix, and
therefore, the eigenfilter is able to adapt to clutter from

3Hotelling was the first to derive the transformation of discrete
variables into uncorrelated coefficients. He referred to it as the
“method of principal components.” The analogous transformation
for transforming continuous data was discovered by Karhunen and
Loéve [24].

4Clutter signals are assumed to stem from a zero-mean complex
Gaussian random process. Hence the covariance and correlation ma-
trices are equal.

Fig. 3. Frequency responses of HP filters (N = 8). The maxi-
mum (aliasing) frequency is 0.5 fPRF (not shown). Second-order
IIR Chebyshev filters were designed with a cut-off frequency of
0.0566 fPRF Hz to match the −3 dB point of the eigenfilter designed
for stationary clutter signals (zero Doppler shift).

accelerated tissue [14]. However, wide sense stationarity in
fast-time is necessary for the estimation of ĈC , and the
depth region for averaging must be chosen appropriately.

E. Comparison of the Filter Frequency Responses

Fig. 3 shows the frequency responses of the different
HP filters described above and for a packet size N = 8.
Initialization of second-order IIR filters with Chebyshev
characteristics largely suppresses transients and thereby
improves the frequency response. For comparison, we also
show the steady-state response, which cannot be achieved
in CF imaging due to the small N . The zero-initialized IIR
filter provides a zero-frequency attenuation of only 11 dB,
which is inadequate for CF imaging. The projection-
initialized IIR filter and the first-order regression filter
have generally similar frequency responses. For the pa-
rameters here, the step-initialized IIR filter also has simi-
lar performance. The frequency response of the first-order
(K = 1) eigenfilter is closest to the second-order steady-
state IIR filter. A more detailed study of filter performance
as a function of various parameters can be found in [25].

F. Summary of Design Considerations

The traditional approach to highpass digital filter de-
sign is to select a filter type, corner frequency, transition
band, error tolerances, and frame rate and then compute
the minimum filter order. Provided that N < 8, our ex-
perience shows that second-order IIR filters provide a reli-
able compromise in phantom studies. If the clutter is from
stationary scatterers and the echo SNR is high, a step-
initialization IIR filter provides sufficient performance at
low computational load. It adapts to the data by finding a
single initial filter value. If the clutter is from moving scat-
terers and varies spatially, we increase the degrees of free-
dom for motion (and complexity) by choosing a projection-
initialized IIR filter, regression filter, or eigenfilter depend-
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Fig. 4. Phantom experiment for generating clutter. Echo data were
acquired in M-mode in the vicinity of the circled region.

ing on tissue acceleration, echo SNR, and required CF
frame rate. The most complex imaging environments re-
quire maximum filter adaptability, which is provided by
the eigenfilter at the cost of the greatest computational
load. In such situations eigenfilter parameters must adapt
to spatial changes in the clutter component of tissue scat-
tering. Yet, there must also be a subset of the data set
acquired for each frame that can be considered wide sense
stationary in fast-time to allow averaging when determin-
ing filter basis functions. Because physiological displace-
ments from cardiac pulses are small compared with RBC
displacements, we often average data over all M depth
samples to compute eigenvectors and therefore filter prop-
erties. Averaging over a much larger depth than the speckle
correlation length is necessary to obtain a good estimate of
the clutter covariance matrix. We assume the echo data are
spatially stationary over the M samples. If that is not the
case, the M -sample waveform must be subdivided into seg-
ments of duration M ′ that are WSS. Consequently, prior
knowledge of the ROI can help with the adaptation of the
filter to specific imaging conditions.

VI. Results and Discussion

A. Phantom Experiments

The performance of clutter rejection filters applied to
strain-flow imaging was examined with the experiment di-
agrammed in Fig. 4. Two phantoms with this geometry
were designed. First, a solid tissue-mimicking graphite-
gelatin phantom was constructed with two wall-less cylin-
drical flow channels [5]. A low gelatin concentration pro-
duced a soft material (c = 1561 ± 1 m/s, elastic modulus
18 kPa, [26]), while the graphite concentration was ad-
justed to give ultrasonic absorption and backscatter that
is tissue-like [27]. A 3-mm-diameter channel with circular
cross section was connected to an infusion pump that gen-
erated steady Poiseuille flow for CF imaging. The max-
imum velocity within the parabolic flow profile was ap-
proximately 17 mm/s. The scattering fluid in the channel
was a sparse (1% by mass) suspension of cornstarch in
water. Before use, the suspension was heated to 100◦C

for several minutes and cooled to room temperature. This
process increased the buoyancy of the particles. A second
channel, 5 mm in diameter and in close proximity to the
first, was connected to a peristaltic pump that introduced
pulses of water at a rate of approximately 5/s to produce
a cyclic motion throughout the soft gelatin. These pulses
gave the strong clutter signals necessary to test filter per-
formance, as we show in the next section. Time-varying
pressure from the pulsed channel provided an echo-signal
component that simulated clutter from extravascular tis-
sues and modulated the steady flow in the first channel.

We found it difficult to produce a significant moving-
clutter signal with a single pulsed-channel phantom with-
out also aliasing flow velocities. The challenge is to gen-
erate a durable phantom material that will transmit the
mechanical energy of pulsed flow deep into the surround-
ing gelatin, is soft enough to produce a clutter spectrum
that overlaps the flow spectrum and allows the echo sig-
nal to recorrelate after each pressure-pulse cycle. Body
tissues naturally have these properties because of a het-
erogeneous layered structure. The two flow-channel phan-
tom design described above gave a clutter signal that pe-
riodically shifted scatterers in the ROI without significant
strain. Unfortunately, the flow channels in the soft gelatin
ruptured regularly. For the second experimental series, we
changed to a slurry phantom material [28] in place of the
solid gelatin for the CF experiments and used long-thin
latex balloons with approximately 0.5-mm wall thickness
for the two flow channels. The slurry is the same con-
gealed graphite-gelatin as in the solid phantom. Pieces
were placed in a blender with a water-propanol solution
until slurry particles less than 2 mm in size were pro-
duced. The slurry was degassed and allowed to settle in
the water-alcohol solution into which the latex flow chan-
nels were placed with the geometry of Fig. 4. The settled
slurry was very soft, had tissue-like acoustic properties,
seemed to transmit mechanical energy with high displace-
ment amplitude, and yet exhibited scatterer motion that
allowed echoes to recorrelate with each pressure pulse.

B. Modeling Pulsatile Wall Motion

To help us design phantom experiments and then trans-
late those results to measurements in the body, we es-
timated the fluid velocity-vector components of oscilla-
tory flow from equations that model viscous flow in a
thin-walled elastic tube [29]. The axial u(r, x, t) and ra-
dial v(r, x, t) components of fluid velocity are given by (9)
in the Appendix as a function of radial distance r from the
tube center, axial distance x from the tube entrance, and
time t. The axial velocity located at the center of tube en-
trance is u(0, 0, t), and v(a, 0, t) is the radial velocity at the
channel wall. Their maximum values are plotted in Fig. 5
as a function of the pulsed-pressure frequency parameter
Ω. For comparison, the maximum axial velocities for New-
tonian Poiseuille flow and pulsatile flow in a rigid tube are
shown at the same pressure gradient ks = dp/dx. Model
parameters were set to the phantom experiment. The fluid



830 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 50, no. 7, july 2003

Fig. 5. Computed maximum axial fluid and radial wall velocities
in an elastic tube (radius a = 3 mm, h/a = 0.1, ν = 0.5) for a
frequency-independent pressure gradient ks = −13.3 N/(m2·m) as a
function of the frequency parameter Ω and elastic modulus E. See
the Appendix.

density ρ = 103 kg/m3 and viscosity µ = 0.001 kg/m·s val-
ues are for water. The wall density ρw = 1060 kg/m3 was
that of the gelatin phantom material.

To match our experiment, the pressure pulse frequency
was set to the fundamental frequency of 5 Hz (Ω = 16.82)
and an elastic modulus of the wall material of E = 18 kPa
was chosen. The pressure gradient was −13.3 N/(m2·m)
to produce a maximum flow velocity of 30 mm/s in the
center of the tube at 0 Hz, which corresponds to a mean
flow velocity of 15 mm/s for laminar flow. For exact com-
parisons between predicted and measured values a Fourier
decomposition of the pressure pulse used in the experi-
ment is necessary. To calculate flow and wall velocities,
solutions for each individual oscillatory pressure compo-
nent must be derived from (9) and superimposed with one
another with correct phases. The inertia of blood or water
delays the temporal velocity relative to the pressure as a
function of frequency. However, the analysis of the applied
pressure pulse shows that the second and third harmonics
contain only 5.49% and 0.18% of the total pulse energy.
Thus, the wall velocity is mostly determined by the first
harmonic component, and investigation of the fundamen-
tal provides sufficient accuracy for our application. Fig. 5
clearly shows that increasing Ω slows the fluid velocity
and increases the clutter-generating wall velocities—the
situation we seek for testing filter performance. However,
the maximum radial wall velocity can only reach 4.2% of
the axial center velocity of the fluid (water) at this pulse-
pressure frequency of 5 Hz. The viscosity of blood increases
to µ = 0.004 kg/m·s, and with a cardiac pulse frequency of
1 Hz (Ω = 3.76), the equations predict a peak wall velocity
that is just 0.6% of the peak fluid velocity.

C. Color M-Mode

Echo data were acquired in M-mode from the solid
phantom above the center of the 3-mm-diameter chan-
nel as shown in Fig. 4. We used a single-element, 12.7-

Fig. 6. Different filters were applied to suppress tissue motion: zero-
initialized second-order IIR (top left), step-initialized second-order
IIR (top right), first-order regression (bottom left), and first-order
eigenfilter (bottom right).

mm-diameter, f/3.5 spherically focused, 15-MHz trans-
ducer. Fig. 12 displays the resulting color M-mode image:
color-coded velocities calculated by the 2-D autocorrela-
tor are overlayed on the gray-scale brightness trace. The
Gaussian-shaped pulse length was 0.4 mm at −20 dB pulse
duration, and the range gate length was set at the same
value. Nonoverlapping range gates were used, therefore the
vertical color pixel size is 0.4 mm.

Switching off the pulsed-pressure channel, the phan-
tom was motionless and the flow in the 3-mm channel
was steady over time giving flow velocities in the range
0 ≤ vz ≤ 17 mm/s. Switching on the pulsed-pressure chan-
nel, gelatin (clutter) velocities ranged between ±5 mm/s,
and flow velocities were temporally modulated over the
range −1 ≤ vz ≤ 30 mm/s. The clutter filter should elimi-
nate CF signals outside the flow channel without affecting
flow in the channel; that is, the temporal flow modulation
should remain.

Fig. 6 shows velocity maps corresponding to the color-
flow image of Fig. 12 after four different clutter filters were
applied. The zero-initialized IIR filter is unable to suppress
the gelatin motion. Step initialization is more efficient at
suppressing clutter but also suppresses flow. The regres-
sion filter significantly cancels clutter but disturbs the flow
profile. Only the eigenfilter completely eliminates clutter
without disturbing flow velocities.

Eigenfilters adapt to the statistics of high-energy clut-
ter regardless of the specific frequency characteristics. The
FIR and IIR clutter filters require blood and clutter spec-
tra to be separable and also that we know a priori which is
higher. Polynomial regression filters can successfully filter
clutter if the polynomial terms that best model clutter can
be found. Eigenfilters adapt naturally. If the eigencompo-
nents can be associated with whatever physical processes
are generating the Doppler spectrum, the processes can be



kargel et al.: adaptive clutter rejection filtering in ultrasonic strain-flow imaging 831

Fig. 7. Filter frequency responses in the range of −0.25fPRF to
+0.25fPRF for N = 8. The second-order IIR Chebyshev filters are
highpass with a cut-off frequency of 0.0755fPRF Hz. The eigenfilter
was designed to suppress clutter centered at +0.0566fPRF. Increas-
ing the order of the eigenfilter also increases attenuation but widens
the stopband.

separated. This feature makes eigenfilters well suited for
SF imaging.

D. Color Flow Images

Another advantage of eigenfilters is that asymmetric
frequency responses can be easily realized. Traditional fil-
ters are most often designed with real coefficients and thus
respond symmetrically. Examples of both are shown in
Fig. 7. An asymmetrical frequency response is an advan-
tage in CF imaging when the clutter and blood velocities
are of equal magnitude but opposite direction. Eigenfilters
easily adapt to these situations.

The advantage was demonstrated experimentally by
producing Doppler shifts from clutter and blood flow with
similar magnitudes but opposite signs. The slurry phan-
tom was ideal for this demonstration. Data were acquired
with our lab scanner in a repetitive (gated) acquisition
mode. An optical sensor mounted on the peristaltic pump
enabled us to adjust the temporal phase of the ultrasonic
pulse transmission with respect to the pressure pulse in
a manner similar to physiological gating. Thus the 2-D
CF images of Fig. 13 and 14 were obtained. Data were
recorded during the pressure pulse phase that produced
clutter and flow with equal Doppler shift magnitudes but
opposite signs, coded as red and blue, respectively. Fig. 13
compares unfiltered CF images with those filtered by a
second-order projection-initialization IIR filter with vari-
ous cut-off frequencies. As the cut-off frequency increases,
clutter and flow are both suppressed due to the symmet-
ric frequency response. Fig. 14 shows results for the same
data after applying the polynomial regression filter and
eigenfilter. Eigenfilter performance is superior for separat-
ing signal components with minimal passband distortion.

The B-mode component of these images is distorted
because of echo amplitude saturation. The bit depth for
Doppler estimation was maximized at the expense of the

Fig. 8. Separate eigencomponents are shown in an M-mode format
when the clutter is from stationary scatterers. In the top row are the
brightness eigenimages related to the first (left) and second (right)
eigencomponent. The bottom row shows the 3rd eigencomponent
(left) followed by the combination of all eight (right). Note the differ-
ent brightness scalings. Virtually all of the clutter signal is contained
in the first eigenimage, and most of the steady-flow signal energy is
found in the second eigenimage.

high amplitude graphite-gelatin echoes. B-mode distortion
is eliminated by increasing the analog-to-digital converter
bit depth.

E. Eigenimages

The spatial distribution of echo energy into various
eigencomponents is shown in Fig. 8 for stationary clut-
ter and Fig. 9 for moving clutter. Eigenimages were com-
puted from echo data acquired in the experiment shown in
Figs. 4 and 12 and normalized to the highest echo ampli-
tude. Without pulsatility, the phantom echo signal gener-
ates a stationary clutter contained almost entirely within
the first eigencomponent. With pulsatility, energy of the
moving clutter signal extends to the first two eigencom-
ponents. The bright irregular echoes at the bottom of the
flow channel are from cornstarch particles that have settled
out of suspension.

Eigenimages of these M-mode data are computed as
follows: N = 8 consecutive echoes with a 1 ms slow-time
sampling interval (PRF = 1 kHz) are decomposed into 8
eigencomponents by subtracting certain eigencomponents
using the eigenfilter approach. Repeating the decomposi-
tion for all 1024/8 = 128 pulse packets gives the eigenim-
ages shown. Each pulse packet is then used to form N − 1
echo signal pairs for flow and strain estimation resulting in
CF and strain images with 128 columns. Individual estima-
tion of the eigencomponents for every final image column
may not be necessary if the clutter movement is uniform.
In this case the N×N autocovariance matrix, estimated by
averaging over depth, does not differ significantly as a func-
tion of time or image position. However, for more complex
imaging environments with nonuniform lateral displace-
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Fig. 9. Separate eigencomponents are shown in an M-mode format
when the clutter is from moving scatterers. In the top row are the
brightness eigenimages related to the first (left) and second (right)
eigencomponent. The bottom row shows the 3rd eigencomponent
(left) followed by the combination of all eight (right). Note the dif-
ferent brightness scalings. Clutter is contained in the first two eigen-
images.

Fig. 10. Fast-time spectra of the clutter component computed from a
single pulse packet in the upper part of Fig. 9: all 8 eigencomponents
(no filtering) and the first eigencomponent only.

ment gradients, individual decomposition at every LOS is
crucial for good filter performance.

F. Strain Images

The precision of correlation-based strain estimates in-
creases with echo signal bandwidth. Fig. 10 shows that
the fast-time signal bandwidth of the first eigencompo-
nent is essentially the same as of all eight components.
Consequently, strain estimates from eigenfiltered echoes
are only negligibly degraded in realistic situations.

Fig. 11 shows displacement images for several situa-
tions. The axial image resolution is 0.2 mm resulting from
a correlation window length of 0.4 mm and a window over-
lap of 0.2 mm. Strain images are not shown for this data
because the axial displacement is virtually constant; there-
fore, axial strain is zero.

Fig. 11. Displacement images of M-mode data. Top row are for sta-
tionary clutter and bottom row for moving clutter. Top left is un-
filtered, while the remaining images are filtered using a first-order
eigenfilter. These images demonstrate that tissue motion can be es-
timated independent of flow. The colorbar is scaled in microns.

The top left image in Fig. 11 shows unfiltered displace-
ment estimates of the phantom flow channel when there is
no pulsatile flow. Fluid flow minimizes the interframe cor-
relation coefficient between echoes in the channel, which
gives the intense decorrelation noise. The upper right im-
age is displacement computed from the same echo data but
using only the first eigencomponent. Decorrelation noise
is reduced by eliminating much of the flow- and noise-
component signal energy. The lower left image of Fig. 11
is the same processing as the upper right except the pulse-
flow channel is switched on. Finally, masking all the pix-
els marked for flow velocity estimation by the first-order
eigenfilter, we find the image in the lower right.

G. Toward Strain-Flow Imaging

A CF image using only the first eigencomponents and
the corresponding displacement-flow image are shown in
Fig. 15. This image pair clearly shows how well the mov-
ing clutter signal is separated from the flow and how in-
formation about blood and tissue motion can be merged.
Unfortunately, the nature of the pulse-phantom stimulus
gave constant displacement, and zero axial strain results.

The final experiment was recorded using a commer-
cial system (Siemens Elegra) modified to acquire IQ data.
Data acquisition on the Elegra is described in [5]. The un-
known wall-filtering of the CF system was not harmful in
this situation because the only movement came from con-
stant channel flow. Strain was computed from two data
frames acquired after external compression from a plate
in which the linear array was mounted. The static strain
image was fused with the system’s CF image (Fig. 16).
This result demonstrates that SF imaging on commercial
systems is possible. However, for more challenging exper-
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Fig. 12. Left: Color M-mode image shows steady flow in the 3-mm-
diameter flow channel away (blue) from the transducer with the pulse
channel off. Right: Color M-mode image of the same channel tempo-
rally modulated by the adjacent pulsed-pressure channel. The color
scales of both images are the same. Cyan regions indicate velocities
away from the transducer that are out of range. Clutter appears as
color outside the channel.

Fig. 13. 2-D CF images where the flow and clutter Doppler shifts are
equal in magnitude and opposite in sign. Unfiltered (upper left) and
second-order projection-initialized IIR filter with 3 increasing cut-off
frequencies (highest value lower right) and N = 8. The length of the
green bars in the lower left corners represents 1 mm.

Fig. 14. 2-D CF images for first-order (upper left) and second-order
(upper right) polynomial regression filters. In the bottom row are
the results for a first-order (lower left) and second-order (lower right)
eigenfilter with N = 8. The length of the green bars in the lower left
corners represents 1 mm.

Fig. 15. Left: CF image where only the first eigencomponents are
used to estimate velocity from the 2-D autocorrelator. Right: Corre-
sponding displacement-flow image where displacement is computed
from the first eigencomponent only. Flow is derived from all but the
first eigencomponent. The length of the green bars in the lower left
corners represents 500 ms (horizontally) and 4 mm (vertically).

Fig. 16. Merged strain and color-flow data obtained from the complex
baseband signals of a Siemens Elegra system at 7.5 MHz. External
compression of 1% (left) and 3% (right) of the phantom height was
applied. The velocity of the steady flow was about 8 mm/s. As the
inclusion in the middle was stiffer, the flow channel collapsed less
than within the outer softer regions. As a result, the flow velocity
was slightly increased in the softer regions. This effect can be seen
more clearly at higher compressions (right).

imental strain-flow situations, access to echo data pulse
packets before wall filtering is necessary.

VII. Conclusions

A method for estimating flow velocities and tissue strain
independently from a single set of echo data was described.
Eigenfilters provide a clear separation between signal en-
ergy from these two components of motion that is adapt-
able to a wide range of imaging conditions. These phantom
studies suggest that strain-flow imaging is possible in vivo
for vascular imaging.

Appendix A

After elastic wall and Navier–Stokes fluid motion equa-
tions have been coupled and matched at the neutral posi-
tion r = a of the tube wall, the following expressions for
the axial and radial velocities can be found [29]

u(r, x, t) =
ksa

2

µΛ2

[
1 − G

J0(ζ)
J0(Λ

]
e

jω(t− x
cp

)

v(r, x, t) =
−ks

2ρcp

[
r

a
− G

2J1(ζ)
ΛJ0(Λ)

]
e

jω(t− x
cp

)
(9)
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where G is referred to as the “elasticity factor” given by

G =
2 + z(2ν − 1)

z(2ν − g)
, (10)

and

Ω=
√

ρω

µ
a; Λ= j3/2Ω; ζ =Λ

r

a
; g =

2J1(Λ)
ΛJ0(Λ)

; z =
Eνh

ρac2
p

.

The angular frequency is ω, J0 and J1 are Bessel functions
of zero and first order, Eν = E/(1−ν2) where ν represents
Poisson’s ratio, j =

√
−1, ks = dp/dx is the longitudinal

pressure gradient, and ρ and µ are density and viscosity.
It can be seen from the above equations that the pulse

wave velocity (PWV) cp must be known to calculate z and
thereafter G to find the axial and radial velocities. The
well-known Moens–Korteweg PWV expression is defined
for nonviscous, pulsatile fluid of constant density flowing
in a thin-walled elastic tube (h � d):

c0 =

√
Eh

ρd
.

However, if fluid viscosity needs to be included, the solu-
tion for the PWV is more complicated but can be obtained
from z after solving the following quadratic equation [29]:

[(g − 1)(ν2 − 1)]z2 +
[
ρwh

ρa
(g − 1) + (2ν − 0.5)g − 2

]
z

+
2ρwh

ρa
+ g = 0, (11)

where ρw is the density of the wall material, and z as a
measure of the PWV in viscous flow is a complex number.
Therefore, the PWV is also complex and shows dispersion
because the solution for z is frequency-dependent. For vis-
cous fluid, cp is related to c0 as follows:

cp =

√
2

z(1 − ν2)
c0. (12)

The wave propagation velocity can be found from the
real part of cp, and the wave attenuation is determined
by its imaginary part. The PWV variation with angular
frequency ω, and kinematic viscosity ν = µ/ρ can be ex-
pressed as a function of a single, nondimensional frequency
parameter Ω = a

√
ω/ν. We also correct c0 by taking tube

tethering, finite wall thickness h and Poisson’s ratio ν of
the wall into account [30]. This becomes necessary, espe-
cially in vivo, because the classical model assumes that
no longitudinal stresses are applied, i.e., the free tube will
shorten longitudinally when it is extended radially. Arter-
ies, however, are anatomically attached to their surround-
ings. The walls are stiffly tethered by a longitudinal elas-
tic constraint such that they are unable to move longi-
tudinally under the influence of the viscous drag from the
blood flow. In this case, radial stretch induces longitudinal
tension, which, in turn, increases the PWV. Furthermore,

the influence of wall viscosity is very similar to that of
tethering because internal viscosity impedes the longitu-
dinal movement of the wall [31]. Of course, now the incre-
mental elastic wall modulus becomes a complex number,
indicating that radius changes always lag behind pressure
changes. It is known that for a Poisson’s ratio close to 0.5,
which is the case for soft tissue, cp increases by no more
than 16% compared with c0 [32].
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[12] Ch. Kargel, G. Höbenreich, G. Plevnik, B. Trummer, and M. F.
Insana, “Velocity estimation and adaptive clutter rejection filter-
ing for color flow imaging,” in Proc. WSEAS Conf. Sig. Speech
Image Proc., 2002.

[13] Ch. Kargel, G. Plevnik, B. Trummer, and M. F. Insana, “Ultra-
sonic visualization of tumor blood flow,” IEEE Trans. Instrum.
Meas., submitted for publication.

[14] S. Bjærum, H. Torp, and K. Kristoffersen, “Clutter filters
adapted to tissue motion in ultrasound color flow imag-
ing,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 49,
no. 6, pp. 693–704, 2002.



kargel et al.: adaptive clutter rejection filtering in ultrasonic strain-flow imaging 835

[15] T. Loupas, R. B. Peterson, and R. W. Gill, “Experimental eval-
uation of velocity and power estimation for ultrasound blood
flow imaging by means of a two-dimensional autocorrelation ap-
proach,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.
42, no. 4, pp. 689–699, 1995.

[16] C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time
two-dimensional blood flow imaging using an autocorrelation
technique,” IEEE Trans. Sonics Ultrason., vol. SU-32, no. 3,
pp. 458–464, 1985.

[17] W. D. Barber, J. W. Eberhard, and S. G. Karr, “A new time do-
main technique for velocity measurements using Doppler ultra-
sound,” IEEE Trans. Biomed. Eng., vol. BME-32, pp. 213–229,
1985.

[18] M. F. Insana, L. T. Cook, M. Bilgen, P. Chaturvedi, and Y.
Zhu, “Maximum likelihood approach to strain imaging using ul-
trasound,” J. Acoust. Soc. Amer., vol. 107, pp. 1421–1434, 2000.

[19] N. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E.
Trahey, “On the feasibility of remote palpation using acoustic
radiation force,” J. Acoust. Soc. Amer., vol. 110, pp. 625–634,
2001.

[20] Ch. Kargel, “Hybrid optical and digital signal processing in a
laser speckle measurement technique,” Ph.D. dissertation, Graz
University of Technology, Graz, Austria, 1999.

[21] A. V. Oppenheim and R. W. Schafer, Discrete Time Signal Pro-
cessing. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1999.

[22] H. Torp, “Clutter rejection filters in color flow imaging: A the-
oretical approach,” IEEE Trans. Ultrason., Ferroelect., Freq.
Contr., vol. 44, no. 2, 1997.

[23] S. Bjærum, H. Torp, and K. Kristoffersen, “Clutter filter de-
sign for ultrasound color flow imaging,” IEEE Trans. Ultrason.,
Ferroelect., Freq. Contr., vol. 49, no. 2, 2002.

[24] R. C. Gonzalez and R. E. Woods, Digital Image Processing.
Reading, MA: Addison-Wesley, 1992, p. 157.
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