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A maximum-likelihood (ML) strategy for strain estimation is presented as a framework for
designing and evaluating bioelasticity imaging systems. Concepts from continuum mechanics,
signal analysis, and acoustic scattering are combined to develop a mathematical model of the
ultrasonic waveforms used to form strain images. The model includes three-dimen&ddgl

object motion described by affine transformations, Rayleigh scattering from random media, and 3-D
system response functions. The likelihood function for these waveforms is derived to express the
Fisher information matrix and variance bounds for displacement and strain estimation. The ML
estimator is a generalized cross correlator for pre- and post-compression echo waveforms that is
realized by waveform warping and filtering prior to cross correlation and peak detection.
Experiments involving soft tissuelike media show the ML estimator approaches the ICiRate

error bound for small scaling deformations: at 5 MHz and 1.2% compression, the predicted lower
bound for displacement errors is 44n and the measured standard deviation isgm¥. © 2000
Acoustical Society of AmericBS0001-4966)0)00903-4

PACS numbers: 43.60.Cg, 43.60.Gk, 43.80.3¢B]

INTRODUCTION of displaced scatterers. The displacement field is measured
from the pre- and post-compression echo fields using a se-
Bioelasticity imaging provides important diagnostic in- quence of signal processing techniques that varies with the
formation about soft tissue stiffness not available with Otherpresumed nature of the deformation. Gradients of disp|ace_
imaging modalities. It is based on the principles of manualment are estimates of strain tensor compon&h@ne pri-
palpation, a standard diagnostic technique, but promiseg,ary objective of the image formation algorithm is to maxi-
greater sensitivity and spatial resolution. Numerous apize coherence between the pre- and post-compression
proaches to bioelasticity imaging have been propdsétiA waveforms to be cross correlated.
common featgre of each tgchnique is a force that is carefully When object deformation is accurately described by
selected to displace the tissue in a way that can be traCke&aling spatial coordinates of the echo signal, then waveform

using standard imaging technology, often ulirasonics or magéompandingapplied before 1-D cross correlation has been

netic resonance. Analysis of the estimated displacement ﬁel%und to produce low-noise time delay estim&%emd strain
yields an image of an elasticity modulus or strain.

images?® More complex deformations require image

We study strain estimation from tissue d|splacement:?. ey . o899 . .
: . . ; o iltering®” or warping®?°techniques to improve coherence at
caused bystatic compression. Static compression minimizes L .
tgle expense of processing time. For very complex motions,

the viscous effects of tissue dynamics. Local displacement ) b lied | all d
are detected from changes in the ultrasonic echo fields r20MPressions must be applied incrementally and accumu-

. . 30 .
corded before and after compression. Unfortunately, the otJ-ated to aYO'd ngeform decorrelatléh.' We will show'
ject motion necessary for strain contrast also can produckat @ maximum-likelihood approach to displacement estima-
noise as coherence is reduced between waveforms recordi@n can be implemented for strain imaging through least-

before and after compression. The performance of strain im2duares techniques.
aging for visualizing stiffness variations is often noise lim-  The amount of compression we apply depends on our
ited. ability to balance the requirements f¢a high coherence
In a typical two-dimensiona(2-D) strain imaging ex- Detween pre- and post-compression echo figllsaccurate
periment, we confine all motion in the body to the imagedisplacement estimation, afid) high strain contrast between
plane. We then scan the tissue with broadband pulse-ectackground and targets. Large compressions increase object
ultrasound to record a radio-frequency echo field at high spacontrast for strain but decrease waveform coherence particu-
tial resolution from the region of interest. This precompres-arly if cross correlation is the only displacement estimator.
sion echo field is a reference by which the position of scat\We also know from experience that choosing a compressor
terers after compression can be compared. Next wegeometry and boundary restraints that yield a uniform stress
compress, hold, and re-scan the tissue to record the positidield in the medium being imaged reduces decorrelation er-
rors and simplifies the resulting strain patterns. The chal-
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Shields Avenue, Davis, CA 95616. Electronic mail: mfinsana@ucdavis.eddrol a large number of coupled variables that influence task
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performance. Yet most of what is known about strain imag-mass densityp(x), bulk compressibility«(x), and specific
ing is empirical. acoustic impedancez(x). For local plane wavesz(x)

An excellent introduction to signal analysis for motion = = /p(x)/k(x). Specifically, the scattering amplitude de-
estimation in bioelasticity imaging is found in the extensivescribes a spatial-frequency distribution of scattered energy
literature on time delay estimation for sonar and ratfr from the randonspatial fluctuationsn mass densityAp(x)/
and for blood velocity estimatiot?>* These works explore p(x), compressibility A x(x)/k,, and impedance\z(x)/z,
velocity and range estimation for spread target, spread veloaccording t3°>8
ity situations using wide-band signa®tal bandwidths be-
tween 20% and 100%Our study extends the conditions by d(u)= wu%]—"[ AK(X)_ Ap(X)]
analyzing wide-band maximum-likelihood estimation of Ko p(X)
slowly fluctuating(i.e., strain constant over a pulse volume
spread targets that move in a plane or volume. = —27ru§]-"{

Specifically, this paper investigates a maximum-

likelihood appl‘oaCh to displacement and strain estimation tq'he Spatia|_frequency Componau'ht Corresponds to the spa-
provide a rigorous strategy for designing and evaluatingia| coordinate parallel to the axis of the ultrasound beam
strain image formation algorithms and instrumentation. Theand «, andz, are the spatial averages of the corresponding
goals are to find principles that guide experimental desigiyuantities. To find the final form of Eq2), we used the
and predict error bounds. Our viewpoint is from the tradi-re|ation A k(x)/ ko — A p(X)/p(X) = — 2AZ(X)/z, and the de-
tional time-delay estimation literature where much is knownrjyative theorem for Fourier transformi$. The equation
about motion detection, albeit largely in one dimension ancshows that sound is scattered wherever the second derivative
without signal decorrelation. We first describe a comprehenof the acoustic impedance in the direction of the transmitted
sive ultrasonic waveform model that includes deformation ofheam axis is nonzero. Scattering may be considered as a
the scattering medium consistent with static compression ofigh-pass filter of the object functian attenuation as a low-

biological tissues. Second, the concept of coherence is develzss filter, and the point-spread function as a band-pass filter.
oped for strain imaging. Coherence is at the core of algocombining Eqs(l) and (2), we find

rithm design and performance assessment. Third, the

2
Az(x)]: 1 ]__[a z(x)}. @

Z, 2mzy” | X2

maximum-likelihood strategy for displacement estimation is (%) J dx’ h(x « ) 9%z (X )

developed. Fourth, error bounds for displacement and strain 27rz

estimates are found, verified with simulation, and compared ~

with phantom experiments. The results are a rigorous frame- _ N 1 d°h(x)

work for future developments of strain imaging using ultra- =[h®2z](),  where h(x)= 21z, ale - G
sound.

The symbol® denotes 1-D, 2-D, or 3-D convolution depend-
ing on the dimension ok. While h is deterministicz is an
|. ULTRASONIC WAVEFORM MODEL ergodic, zero-mean, Gaussian random process.

The final form of Eq.(3) was introduced to strain imag-
ing by Bertrand and colleagu€$®to relate the echo signal
directly to the impedance distribution. Therein, signals from
a deformed scattering medium can be written in terms of the
object functionz(x) through a coordinate transformation on
X. The quantityh is the sensitivity function. It includes the

oint-spread function of the ultrasound system, but, more

We model an ultrasonic echo waveforfx) as the sum
of a random procesgx), which we refer to as the noise-free
echo signal, and a signal-independent noise proo¢ss.
Each is a function of positiofboldface x=(x;,X,,X3)!, a
vector of Euclidean 3-space. The transpose & indicated
by x'. For incident plane waves and far-field observation, it

is well known that the scattered pressure from a rando . o . . :
medium is the sum of spherically diverging wavésdow- precisely, it is the mapping between the object funciamd
' the echo signat. Notice that for an ideal imaging system

ever, modeling echo signals recorded during a pulse-ech ~ s i )
experiment requires that we also include the point-spreal1€reh(x)=24(x), the Dirac delta function, then
function for the imaging system. . 1 3Pz(x')

r(x)= —
( ) 27TZO (9)(5_2

: x'=x
A. Echo signals
An echo signal may be described as a function of theB. Object deformation and coordinate transformation

scattering amplitudeb(u) and pulse-echo transfer function Strain is estimated through a process that correlates ul-

H(u)* at spatial frequency,®’ trasonic waveform segments recorded before and after a
T(X):Fl{ﬁ(u)q)(u)}, (1) static stress field is app!ied tq the medium being imaged. To
~ ~ be able to evaluate strain estimators, we need a model of the
where F{h(x)} =H(u) is the forward 3-D Fourier transform yjtrasonic waveform that is both accurate and mathemati-
of the pulse-echo point-spread functiom(x) and cally tractable. An essential component of such a model is
F YHH(u)}=h(x) is its inverse. the ability to express coordinates of the impedance distribu-
The amount of acoustic energy scattered depends on thimn before deformation, labelex, in terms of those after
microscopic distribution of three coupled tissue propertiesdeformationx, viz., z(7<(x,tj)) where
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S‘((X,tj)=(3‘(1(X1,X2,X3,tj),7(2(X1,X2,X3,tj), ?%2 x2
X3(X1,X2,X3,t)))", X, VAT, X,

i=0,1,2,..., andX(x,tg)=X. The time variable denotes the
waveform field recorded during thjgh compression at time ¢ <
t;. In this analysis single-compression strain images are >
studied:t, indicates the time of recording for the precom-
pression waveform field ang is the time of recording fol-
lowing the first compression. However, the analysis is easily
extended to multicompression techniques. The correspond-
ing waveforms, expressed in the post-compression coordi-
natesx, at eacht; are given by

FIG. 1. Deformation of an elastically uniform medium.

r(x,t)=r;(x)+n;(x) must be satisfied: the mapping fromto x must be linear
over S, and the components of the transformation matrix
:[f dx"h(x—x")z(X(x',t;)) |+ n;(x), (4)  must be linear functions of strain as in the example above.
§ Both conditions are satisfied if the applied deformations are
where S is the region of support as discussed below andmall R . _ .
defined as usuéf: Noise processes;(x) are signal indepen- Many biological tissues are linear-elastic and incom-
dent, zero-mean, bandpass white, and Gaussian with powgressmle for small deformatio$ Shear modulus is the ma-
spectral densitG,,, i.e., terial prope_rty that describes the deformation of an incremen-
tal volume into an equal volume of altered shape. A volume
E{n*(x)z(x)}=0, E{n(x)}=0, cannot be transformed into a plane, a line, or a point by this
E{n* ()n(x')} =G, 8(x—x'), operation, so the matriA must have rank 3. The mapping

from one space to the other is one to one, the invérsé
wheren* is the complex conjugate of andE{---} denotes exists, and the Jacobian of the forward transformation, which
expectatiorf? is the determinant oA, detA, is nonzero. Furthermore, for
At time ty, EQ. (4) reduces tor(x,t))=[h®z](X)  incompressible media, d&t=1, which means the volume is
+no(x), the pre-compression echo waveform. At the  conserved. Equatiof®) is critical for describing how physi-
post-compression acoustic impedance field is described byal deformation of the object affects coherence between the
z(X(x,t1)) that explicitly relates the pre-compression posi-pre- and post-compression waveforms. In our experience
tion of the impedance field to the post-compression posi- with tissuelike media, deformations are often spatially
tion x. We refer to the set of radio-frequen@y) waveforms  smooth, particularly over the dimensions of the ultrasonic
in a scan plane acquired at frame titjeas anecho field pulse volume. So the first line of E¢6) may be considered
An affine mapping betweer andx is defined by the a first-order Maclaurin series expansionsgk,t;). It is an
linear transformation matriR, the translation vector,, and  accurate approximation of in a neighborhood cX=0. The
the equations deformation of a large object region in a strain image may be
Xt =AX+ AT described by segmenting echo fields into neighborhoods and
~ _A-1 for j=0, (5) determining the first-order Maclaurin series for egehy. 1).
X(X,t) =A"X—7,

where C. Waveform warping
Xy 9Xy 0Xy Our original deformation model was limited to scalitfg.
X, IX,  dXg Large displacement errors were found when using correla-
Xy Xy 9%y Ta,1 tion techniques if either of the signals to be cross correlated
A= . Ta=| Taz| . (6)  were scaled relative to the other. To minimize the effects of

Xy Xy IXg
X3 X3 JXg
Xy Xy dXs3

Tag/ scaling deformation on displacement estimation, waveforms
] were compressed and expanded—companded—irt%He,

two,® or threé* dimensions prior to correlation. The purpose
was to eliminate the scaling component of deformation over

A andr, are implicit functions ot; since the transformation the dimensions of the correlation data kernel size and larger.

at anyx varies for each level of compression; e.g.jat0, Companding significantly reduces strain noise whenever

7,=0, andA=l, the identity matrix. Another example is the scaling is the principal deformation.

deformation of a homogeneous and incompress{Bleis- For more general types of motion, wearp the pre-

son’s ratio=0.5) medium, where the object is uniformly compression echo field prior to cross correlatidiVarping

squeezed by a small amount along theaxis. In this case, may be achieved by applying the transformatiofx,t,)

the deformation may be described as a scaling of the eche BX+ B, to r(X,t,) to find r(B~x— =,,to). The criterion

coordinates, and\ is diagonal with nonzero elements;;  for selectingB and =, is that they maximize the magnitude

=1-s5s, Apy=As3=1/J1—-s=1+s/2. If Egs.(5) and(6) are  squared coherence function defined in Ef) below. Using

to accurately represent the effects of strgitwo conditions  the notation of Eq(5) and the post-compression coordinates

o)
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1,(X) D. Definitions

%
Warped i A few important quantities and relations well known
T —> . . .
Pre H —' B o™ from the literature are stated below without proof and in the

2(® (%) notation of this paper.
! We assume 2-D echo fields(x), j=0,1, are acquired
Post r (%) from the object in a rectangular region defined by theSset
measureS’.** The Fourier series coefficient estimaig of
FIG. 2. Ultrasonic waveform model of E€7). the 2-D echo field afé
. . . - - 1 —i2mulx
x, the waveforms for single-compression static strain imag- ~ Rjk=37 Sdej(X)e K ©
ing using pulse-echo ultrasound signals, E4), may be
written as Wave vectoral, define points on an infinite 2-D gritf.For
r(X,to) =[h®z](X) +ny(x), Pre convenience, the two integer indices required to define the
. . grid are lumped into a single indéx=1,...N that enumer-
Fo(X)=r(B~"X—1p,1to), ates allN frequency points withinS.*® Ry is a complex,
Gaussian random process because the real wavefgrnis
= f dx'h(B™x—7,—x")z(x") Gaussian.
S The Fourier transform of;(x) is*’
+No(B™x— ), Warped Pre .
. ) — i B — ) —i2mulx
—Tg(X) +Ng(B~ =), @) R;(u) Sll|m S'Rjk ﬁxdxrj(x)e , (10

ri(x)2r(xty) , : : .
' whereu is a continuous 2-D spatial frequency variable. It has

been showtf"*'that if the dimensions of the support function
+ny(x), Post are large compared to those of the correlation area plus

= { J dx’h(x—x")z(A" X' —7,)
s the translationr, , then the cross power spectral density is

=r1(x)+Nny(x). R
Grorl(uk):SIZE{RSlek’} - Grorl(u)

Matrix A is a linear transformation that describes the physi- S N

cal deformation of the impedance field from a force applied

to the object, an® is the linear transformation that describes =E{R3 (W)Ry(u)}. 11

the warp applied to the precompression echo field through

signal prr)ocgssing. Eq7) iSiIIustraFied in Fig. 2. M Gryro(U) and Gy, (u) are the autospectral densities,
Warping cannot fully restore lost coherence even forthen the complex coherence and magnitude squared coher-

noise-free waveforms. First, the sensitivity functiointro- ~ €nce(MSC) functions are, respectively,

duces a null spaéein which small-scale object deforma-

tions cannot be observed using echo waveforms. Conse- . Grorl(u)

quently, echo formation and object deformation are not Vrgr, (W= m

commutative operationgig. 2). Second, a typical strain im- foo 11

age is generated from a plane of echo data. WAile given (12)

2
by Eg.(6), B has the form ly (u)|2=M
fo's Gy (WG, (W)’
Xy Iy 0 oo 11
IXy X o1 where 0<|y, . (u)|?<15
B=| dX, X5 ol ™= ™2 (8) Finally, the Fourier transform of a single realization of a
Xy IX, 0 scalar random function whose vector coordinates undergo a
0 0o 1 linear transformation and translation is given by
Here too is a null space that reduces coherence in a manner F{z(A~x—7,)}=detAZ(Alu)e 127'A, (13

that cannot be recovered by signal processing. The first cause

for coherence loss is minimized using highly focused, highRelated results are derived in Appendix A and in Ref. 27.
bandwidth ultrasound pulses. The second cause is minimized

by finely sampling data from a volume instead of a plane or

reStriCtiﬂg all motion to the scan plane. Nevertheless, qu POWER SPECTRAL DENSITY AND COHERENCE

show below that filtering and cross correlatingandr, is

the maximume-likelihood strategy for estimating displace- The goal of this section is to express power spectral
ment. Equation(7) extends our previous 1-D waveform density functions of the pre- and post-compression wave-
modef® to three dimensions. forms in terms of the signal model of E(f).
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A. Cross-spectral density Notice thatry andr, are individually stationary processes

Assume two-dimensional echo fields are recorded usingu: Jotljnt(ljytn?rr:statldqnary. _Equ?t'otrﬁi) an<tj_ (15 _{an be
a linear array transducer. For a rectangular support re§ion xtended 1o thrée dimensions 1o track motion within a scan-

th dimensionss’ T, T, we find from Eqs(9) and(11) Volume data set A
mat imension 1Tz, we find from Eqs(9) and(11) Combining Egs.(14) and (15) and integrating with re-

spect tox andx’ we find

A 1
E{R} R }= = dede’ X, X'
{RoRu} = 52 IX bryr (XX") . detA detB -
. E{ROlek’}:TJ déH(§H*(B'E)
XeiZW(ULX*Uk,X’)- (14) -
Using Eqs.(45) and(47) from Appendix A and the Wiener— XE{Z(A'§)Z* (B'&)}e 127E (ATa=Bm)

Kinchin theorent?® the mean cross correlation function for
the echo waveforms 33

Bror, WXV EE{TE (01 1(X)}

sinm(&1—Uy) Ty Sin(€3— Uy )Ty
D m(é—ug)Ty m(é—ugy)Ty
SINT (&= Ug) Ty SiNT(€,— Uy )T,
2 m(é—Uy) T m(Er—Uy)To

=detA deth:dgH(g)H*(B‘g)

(16)
XE{Z(A'§)Z* (B'§)}
IncreasingT,; and T, while holding u, and u,, constant
X gi2mE (X' ~x= Ayt Bap), (15 vyields*
|
detA detB :
o o H(U)H* (Blup E{Z(Alu) Z* (Blu }e 12™iA% B for k' =k
E{RGRu = s : 17)
0 for k' #k

Selection of harmonic frequencies, e.gy=k/T;, is  For white noise,E{|Nggy 2} =E{|N1|?}=G,/S'%. Equa-
sufficient to ensure that frequency components of the crossions (17) and (18) show that the spectral density functions
spectral density are orthogonal. The approximation in Eqof the pre- and post-compression echo fields depend on the
(17) approaches an equality &) S’ becomes large or the pulse-echo transfer function of the ultrasonic imaging system
other factors in the integrand do not vary over the frequencyia H, the physical deformation via and r,, and the ap-
interval and(b) the displacement becomes small, specifi-plied warp viaB and 7.
cally, 7,1<<T,. Weighting the data with an apodized window
function correlates frequency components and can interfere
with the orthogonality that must be achieved if data warpingC c | h
followed by cross correlation is to be a maximum-likelihood = omplex conerence
estimator, as discussed below. The orthogonality condition  The next section will show the importance of the MSC
depends only on properties of the measurement and not ttfanction for modeling the performance of strain imaging. An

object. expression for MSC is found by substituting Eq4$7) and
(18) into Eq. (12). For a continuous frequency variable, we
B. Autospectral density find
Following the ab_ove development, and combining Eqs. , |72021(U)|25NR(U)
( (detB)?
5 (H(BUPE{Z(B'u)|* where
E{RY Row ) = N o ,_ E{Z(A'WZ* (B'u)}E{Z* (A'w)Z(B'u)}
+E{|NOBk| }) for k'=k |')’zozl(u)| E{|Z(Atu)|2}E{|Z(Btu)|2}
L0 for k' #k (20)
(1 ) ) . (18) is the MSC for the object function,
— ((detA)|H(u ) |[“E{|Z(A'u
I ((detA)?|H(ug) |PE{| Z(A'ug) %} e SN o
{RikRuey = +E{INyl?}) for k' =k 1+ S/Ng(u) + S/Ny(u)
(0 for kK'#k is the net signal-to-noise ratfd,and
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|H(B'u)|2E{|Z(B'u)|% Whﬁareli’r is the complex conjugate transpasaljoint of R,
E{|No(B'u)|?} ’ E{R}=0, and

(22) QéS’ZE{ééT}

S/Ng(u)=

(detA)?[H(u)|*E{|Z(A'u)[?}

S/Nl(u) = 2 s
E{IN1(w)[} is a spectral density matrix. The effects Bnof object de-

are channel signal-to-noise ratios corresponding to théormation, translation, rotation, and data warping are com-
warped pre- and post-compression echo waveforms, respegletely specified byQ.
tively. The echo waveform MSC is the frequency-space ana-  The 2NX2N Hermitian matrixQ may be thought of as
log to the correlation coefficient. It depends on the objecn NN block-diagonal matrix of 22 Hermitian submatri-
function MSC and SNRi) that includes properties of the C€sQyi . Since the frequency components are orthogonal,
imaging system, scattering medium, and noise. Qxk' = Qdkk , Where i is the Kroneker delta function,
MSC defines the similarity betweeg andr,. Intuiton  an
tells us that it will be easier to measure displacemeng i
similar tor, e.g., rigid-body displacement. More intuition
about Eq.(19) is found through examples. First, in a simple
ideal case, the channel signal-to-noise ratios are large at all
frequencies in the bandwidts/N,=S/N,>1, and we com- Each of theN submatriciesQ,= S’ZE{Ri< k} where Rk

(24)

Gryro(Uk) Gforl(uk)
Q=

Gryr, (U Grr, (U

press the object a small amourt1% of its siz¢ and warp —(ROk le) are statistically independent. Also,
the waveforms accordingly;A=B=l. Then SNR()
=0.55/N; andlyrorl(u)|2=1. Low-compression strain im- detQk:Groro(uk)Grlrl(”k)(l_|7’fof1(“k)| )

ages are contrast limited. In a second, more complicated,
ideal situation, we physically deform the object a substantial
amount, say 5% to 10%, to ensure ample strain contrast. Q;l
Then we apply the perfect warp, i.eB=A. In this case,

|7242,1°=1 and yet|y, , [*<1 becauses/No#S/N; unless 1 =iy, ()

all scatterers tarezresolvedzby the ultrasonic _imaging gystem Groro(uk) \/Gr (UG, (U
such thafH(B'u)|“=|H(u)|* over all frequencies for which - 0 !
|Z(u)|? is nonzero. Unfortunately the bandwidth of the ob- = Yror, (UK 1

ject response is usually much broader than that of the imag- G (u)

ing system, and the resulting null space leads to a loss of \/Gforo(“k)Guu(“k) fary ok
coherence even for a perfect warp. High-compression strain 2

images are noise limited. Third, if the warp does not match ><(1_|7’fof1(uk)| ) (25)

the physical deformatiorB+#A, then coherence is lost re-
gardless of SNR) becauséyzozl|2< 1. Ultrasonic attenua-
tion reduces coherence only at frequencies wige;> 1.

We show in the next section that accurate displacement es-

In practice, waveforms always contain noise, so (1
~[rr,(U[?)>0 andQ, * exists.
The logarithm of the likelihood function is

timates require that we design the experiment and image for- S'?. -~
mation algorithm to achieve MSC close to one. Inp(R|6)=4NIn 8"~ 2N In 27—~ In detQ— TRTQ_lR-
(26)
The first three terms of E¢26) can be ignored since they are

1. MAXIMUM-LIKELIHOOD DISPLACEMENT independent ofr, and weakly dependent of. Expanding
ESTIMATION the last term, we find

The maximume-likelihood(ML) estimator for displace- o N ~
ment selects the estimatethat maximizes the value of the Sy S 1 | Rox|
ikeli ; S0 ) 56,57 : Inp(R|6)= > — 7
likelihood functionp(R|6),°**" or a monotonic transforma- 2 E0 1=y, (W)]? | Gryr (Ui
tion of p(R| ). @ is a vector of all unknown real parameters A
that affect the data, viz., the elementsffB, ,, 7, |Hyl?, |Ryl? RoR1k Y7, (Uk)
E{IZkl?}, andE{|I\lik|2}. It is convenient to define thet com- Gror (W) Gy (U0Gy (U
plete data vectoR=(Rg1,R11,---Rok;Rik,---Ron,Rin)" Of 0o r1
length 2N. It interlaces Fourier-series coefficient pairs from R. R* ()
the warped pre- and post-compression echo fields ovet all _ Ok 1k Yrgr, Tk ) (27)
frequencies! Since each value d®y, andR;, is a complex, \/Gforo(uk)Guu(uk)
Gaussian random variable, the likelihood function is multi-
variate, complex, and Gaussian il 2limensions: Again, the first two terms in the square brackets are weakly

" dependent on the motion parameters and therefore can be
5 liTQ—lli 23 safely ignored for our purposes. The remaining two terms
' may be written as

14N
p(R|0 2 )ZN de‘(Q) €X
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a)ix) 7{ T,
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—» W [-»|delay
S0
0x; s
ry®) t
LI Wi S
? max

0(X)
FIG. 3. Generalized cross correlator and strain estimator. The quaikity

is a window function.

N
INp(RIO)=S'2Y, Re(RERWA(Uy)
k=1

Xe*iZ#U}((ATa*BTb)}, (28)

where Ré¢ -} is the real part of the argument and
|'yr0r1(uk)|
\/Groro(uk)Grlrl(uk)(l_|7ror1(uk)|2)

is a real function of frequency. For larg®, Eq.(11) can be
used to express the log-likelihood function of EB8) as an
integral over a continuous frequency variable,

W2 (uy) =

Inp(R|)=S' fjo du Re[R% (U)Ry (U)WA(u)

XG*iZWUI(ATa*BTb)}. (29)

The first factor in the braces of EQ9), R§ (u)R(u), is

the frequency-space representation of the cross correlati

between echo wavefornier a specific data kernelThe sec-

ond factor, W2(u), is a filter function that weights the Fou-
rier coefficients of the data based on coherence. The third

(phasg factor is a function of the physical displacemént,
and warp displacemeiz, . If we write

R (U)Ry(U)=G; ¢ (u)

=%y, (W]EP™MTG, - (WG, (W),

(30)
WhereGrOrl(u)zE{érorl(u)}, then
“ o |'A)’rr(u)||')’rr(u)|
In R0:S’f U—a =
PRIO=S' | U=, W)
% Re{e—iZTrut(Ara— Brb—})}_ (31)

scribed by Knapp and Carter if it is extended to higher spa-
tial dimensiong>*® Maximizing waveform coherence also
maximizes the peak of the cross correlation function.

The phase factor in Eq31) is unity at all frequencies
only when the estimate is accurate+ Bm,=A7,. Other-
wise, motion along all three axes affects displacement esti-
mates along each axis, and the integrand becomes an oscil-
lating function of frequency with decreasing envelope. The
oscillations, which are about zero, increase in frequency as
Ar,—Bm,— 7deviates further from zero, dramatically reduc-
ing the value of the log-likelihood function. The mean log-
likelihood function is maximum wherE{7}=A7r,—Bm,
=0, A=B=l, and =,=7,, which is also a situation that
provides uninteresting strain images. The challenge for
medical imaging applications is to achieve maximum-
likelihood estimation for displacement in less optimal but
more interesting situations.

A. Relationships

The log-likelihood function of Eq(29) is related to im-
portant estimation criteria found in the literature. By begin-
ning the derivation with Fourier coefficients of the data, Eq.
(29) becomes the characteristic functionlpf the classical
log-likelihood function defined by Van Trees for zero-mean
random signals?

l,(6)=FYInp(R|0)}
=Cfx dyfm dxfoo dx’ Re{rg (y—x)w(x)

XW(=X)r(Bry,—Ary+y—x")}, (32

wherew(x)=F YW(u)} is a filter function ancC is a con-

Qant. We can further define

Fow(y)= f icdxro(y—X)W(X)

and

e f dxr y(Bry— ATty = X)W(—X)

as filtered echo fields, and write E(32) as a wide-band
ambiguity functionA:>®

A(B,m:Re{ f . dyrz;W(y)er(y)]. (33)
The view from Eq.(393) is somewhat different from E¢29)
although the result is the same. Equati@3) suggests we
should filter the 2-D echo fields and cross correlate wave-
forms in the six-dimensional space defined by the motion

ML estimates of displacement are those that satisfyParameter&ay, By, Byy, Boy, 71, 7. The peak value of
aIn p(R| 6)/97=0. Equation(29) is one way to view the ML A gives joint ML estimates of the motion parameters such

strategy:(a) Warp the echo fields in a way that maximizes

thatB=A and7,= 7,.

the coherence between andr, (Fig. 2). (b) Increase the
relative weighting of frequency components with the highes
coherence usiniV. (c) Cross correlate, andr; to find 7 at
the peak value and add ®7,. Hence, the ML strategy for Least-squares techniques in elasticity imaging are
displacement estimation in acoustic strain imagdifig. 3 is  common:®?but are they consistent with the ML approach?
consistent with the generalized cross correlator approach d&he principal criterion of least-squares algorithms is to mini-

tB. Implementation
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a b for continuous data is represented by the shaded surface. The

; same values for sampled data are shown as points. In this
example, sparse sampling alomg leads to an estimation
error.

We reduce displacement estimation errors using a warp-
ing algorithm that searches for an ambiguity function peak in
a sparsely sampled six-parameter sgdd@ur least-squares
warping algorithm begins with the same block-matching al-
FIG. 4. Sampled ambiguity functions usit companding an¢b) warping ~ gorithm used in companding and ends with a perturbation
algorithms. technique that finely tunes the block-matching estimates. Ob-

serving the same two parameters of the ambiguity function,
mize a matching energy functidgy,,. Using the filtered echo we find in Fig. 4b) that the perturbation component of the
waveforms of Eq(33), we express the matching energy as algorithm extends the number of sampled points about those

determined using block matching. Hence we explain the re-

Em:f dX| 5, () =T 1(X)[? duced noise seen with warping versus companding as the

consequence of a more thorough sampled ambiguity function

) ) in the plane of the displacement vecf&ig. 4(a) versus Fig.
:f dx|r ou(X)| +J' dx|r 1(X)] 4(b)] and a modest extension of the search to include motion
parameters from the coordinate transformation marixot
—2 Re[ f dxrgw(x)rlw(x)}. (34 ShowninFig. 4

The first two terms on the right side of E(4) are propor-
tional to the energy in the respective echo fields. In the a

can successfully estimate motion, the energy terms are aptetermining a lower bound on estimation variance based on
proximately constant and not of interest. Minimizing the the information available from the data. The link between the

matching energy is equivalent to maximizing the third g s the Fisher information matri¢ with component®
term—the wide-band ambiguity function of E®3). Conse-

quently, the ML estimator is implemented by the least- | _ {32“1 p(R|0)}

squares approach to motion estimation. e 36;36;
The exact ML algorithm for strain imaging would ex- _ . Lo

haustively search the relevant parameter space of the amkﬁ-he variance of an unbiased estimaieis bounded from

guity function for the largest peak value, and thus obtain elow by

estimates for each motion parameter. Given the model of Eq.  var fgi): E{(bi— 6)%=(371); . (36)

(5), there are 2 parameters that define motion in 1-D echo

fields® 6 parameters for 2-D echo fields, and 12 parameters )

for 3-D echo fields. Sampling limitations of echo fields andA- Displacement

long computational times are practical considerations that  Applying Eq. (31) to Egs.(35) and (36) and assuming
restrict the extent of the search, so we compromise. each displacement is independent of other parameteés in

For example, the internal motion from a very small com-the displacement variance about the true Vitiaed along,
pression applied along the transducer beam can be approxs hounded by

mated by 1-D translation and scaling. The optimal solution

bI_V. CRAMER-RAO VARIANCE BOUNDS

(35

) — ~ 2
for this motion estimation problem is provided by the wide- var(ry) =E{(m1— (A7a—Bm)1)°}
band ML estimgtor for a spread target with constant dis- AizYl + Angz
placement gradieni. STV — N (37)
Larger compression produces greater strain contrast, (AriAz2= A1A2)"Y1 Y,

which is desirable, but it also produces larger, more compleX,; andY, are frequency integraléAppendix B that sum-
motion and hence poses a greater challenge to the algorithmarize the effects of the pulse bandwidth and beam width on
Normally we impose boundary conditions that confine move-displacement variance, respectivéhBoth are functions of
ment to the scan plane of the linear array transducer. A blockhe deformation parameters. Equati@7) is derived in Ap-
matching algorithm is used to measure local displacementgendix B for two spatial dimensions where we assume

in two spatial dimensions, i.eB7,, for each data segment andA are independent. When the displacement and deforma-
(Fig. 1). The sampled waveforms are companded and thetion parameters for 2-D motion are coupled, the sizel of
cross correlated to estimate the residual displacem&ft increases from 22 to 6x6, and the variance bound is re-
The nature of ultrasonic beamforming using a linear arrayduced if information is added. Reduced variance for joint
results in echo fields that are sampled finely alongand  range-velocity estimation has been demonstratéd|.

coarsely along,. The ambiguity function for this situation Equation(37) shows how object deformation and rota-
is illustrated in Fig. 4a), wherery,; is the displacement esti- tion reduce the information content of the echo signals with
mate alongx; obtained from block matching. Equati¢83) regard to displacement estimation.
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1. Example 1 R 5 Gs Ug+Ug/2 2 -1
An incompressible medium is deformed in two dimen- var 71)2(477 S ZGHZJUOUO,zdu )

sions by a scaling transformation, i.eA,llez’zl and A;;

= e i I i G U2 71
A;i=0. The corresponding variance bound is _ 47728’—SU0u2 14 —0 ,
G o\ 1203
- 1 . 0
= .
varr) AEMYl exactly the variance bound found by numerous
, g investigator® for passive radar and sonar systéfrat high
_| 25'A2 °°d 5 2 |7’fof1(u)| SNR and for time-independent time delay. Lacking deforma-
Bl "o u(2muy) (1—|yr0rl(u)|?) ' tion, this example is a trivial result for strain imaging.
(38)
The same result was found in one dimension by Knapp and- Example 4
Carter forA11=1.5° Scaling increases the.dis_;placement vari-  Given the assumptions above, but allowing the object
ance directly through the factok;; and indirectly by de-  fynction to decorrelate because of a scaling deformation, i.e.,
creasing the MSC. |yzozl(u)|2$ 1, Eq.(38) reduces to the result of Walker and
Trahey [Eqg. (20) in Ref. 67]. Converting our notation to
2. Example 2 theirs, | ,,,, (U)|?= p?, Gs/Gr=SNR, 8’ T, ug—(1lco
An object is sheared either axiallglongx;) or laterally ~ +iao/2m)2f,, andUg/up—B. The two sets of results are
. compared in Sec. elow.
(alongx,): pared in Sec. VI bel
The new contribution that Eq.37) makes to the vast
1 A . existing literature on time-delay estimation is to reveal how
A= (axial) and A= (latera). : . . ) . :
0 1 Ayq two-dimensional motions in the object couple to increase

displacement variance along one direction—that parallel to

From Eq.(37) the corresponding variance bounds are the ultrasound beam.

2
var(t,)= Yil + Y—lzz(axial) and vatt,)= Yil (latera).

(39 B. Strain
Rotation occurs wheA,= — A,,;. SinceY,; andY, are each
functions of A, the relative effects of each motion are not
immediately obvious from Eq$38) and(39). We did com-
pare variances for axial and lateral shear using simulafions, 1
and found that a given amount of axial shear always pro- €mn=%
duces more displacement variance than the same amount of
lateral sheaf* The largest variance for axial shear occurredand the longitudinal strain along the beam axis is
with the widest ultrasound beam.

If the total displacement vector is= 7+ B, the Eule-
rian strain tensor f§

v, Jdunp
X Xy

For purposes of comparison and illustration, we now  g2¢ =—~ (40)
examine specific examples of the scaling-only result for 1-D 261
signal and noise sequences that are described by the bang-y actice, however, strain is estimated from the difference
pass white, autospectral density functions equation
u—ugp u-+ug (2) (1)
—— =G = + ~ U -0
G,O,O(u) Grl,l(u) Gq rec( Uy ) rec< U, s 2t = 1 , 41)
and . ) )
where the superscript numbers in parentheses label the posi-
u—u u-+u i i i -
G, (U)=G, 1 (U)=G, rec( 0 +rect( 0 tions of two displacement estimates from Wavefprm_seg
oo 1 Ug 0 ments along the beam that are separated by the axial distance
with center frequency,, bandwidthU,, and power spectral AT. By error propagation,
densitiesGg apdGn. The value of rect({—ug)/Ug) is unity A (var(}(ll)) +var(%<12>)— 2 00\,(}(11) ,;(12>))
over U, that is centered aiy and zero elsewhere. var(s)= AT
3. Example 3 _2var(m) (42)

With no deformation or rotatiori,yzozl(u)|2:1 for all T,AT

u. In addition, assume the channel signal-to-noise ratios ar€he last form makes use of a conservative approximation for
equal and largeS/Ny(u)=S/N;(u)=G./G,>1, so that Eq.  the covarianc® that was shown to be reasonably accufate.
(19) gives SNR(1) =G4/2G,,. Combining Eqs(19) and(38)  The lower bound on strain error is found by combining Egs.
we find (37) and (42).
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V. METHODS correlated through the Gaussian lateral beam pararhgtier
Eq. (43) to simulate the experimental measurement condi-
tions described below.

We explored the consequences of EgF) and(42) for Displacements were measured fromu§-segments of
strain imaging through the use of 2-D echo waveform simusimulated echo data using cross correlation kuithout
lations. Echo fields from a linear array were generated fl’Ol’TWarping (B:|)_ In each case the disp|acement was zero

their Fourier-domain representations, E&3) and (A5).  (7,=0) and the object deformation, i.e., elementsAofvere
We setB=I and =,= 7,=0 to isolate the effects of object known.

deformation on displacement variance and to be consistent

with the assumptions leading to E&7). Quantitiesz(x) and

n;(x) were assigned samples of a Gaussian, white random

process as given h¥{0,S/N(uy)) andN(0,1), respectively. B. Measurements

S/N =100 (20 dB) for all the data. This object functi . -
(Uo) ( ) for all the data. This object function We also examined the efficiency of the cross correlator

simulates scattering from a medium with randomly DOSi-frgr displacement estimation using phantom measurements
tioned particles, each smaller than the smallest wavelength i . . ’
P g A 5-MHz linear array(Q2000, 5L45, 60% bandwidth,

the pulse, and with sufficient number density to produceS_ Ult d 1 dt hit
fully developed speckle. The noise function represents elec= lemens rasound, Incwas used to scan a graphite- .
elatin phantom. In the scan plane, the array was dynami-

tronic fluctuations and quantization errors. The 2-D point-g . . ;
spread function was a Gaussian-modulated sine wave cally focused on receive with a constant relative aperture of
f/2. Perpendicular to the scan plane, the focal properties

X2 x5\ were fixed atf/4.5 and the aperture was 10 mm. The line
L2 + L2 )5'”(27“‘0)(1)- density of the scan plane was 4.9 A-lines/mm, so the lateral
sampling interval was 0.20 mm. Echoes were recorded at 45

L, andL, are spatial parameters that determine the puls&isamples/s for an axial sampling interval of 0.017 mm.
length and beam width, respectively. The temporal carrieEach scan plane spanned approximately<40 mm (200
frequency of the pulse wag,cy/2=f,=5 MHz. The effec-  A-linesx2340 samples/A-lineand was centered at a depth
tive temporal bandwidth was computed assuming thef 45 mm. At the 45-mm depth, the measured lateral and
expressioff elevational beam width6-6 dB) were 0.7 mm and 1.5 mm,

o ~ 2 respectively. The correlation coefficient was 08803 be-

Joduy[H(uy)| __% tween adjacent A-lines and 0.68.05 between every third
[H(ug)|? YNET A-line.

The phantom was a graphite-gelatin block of dimensions
100 mmx100 mmix 74 mm (heighd.”* The block was elas-
tically homogeneous on any scale larger than the pulse vol-
ume. It was placed on an immovable surface and compressed
Ro(uy,up)=H(ug,up)Z(ug,uy)+ No(uyg,uy), (430  from above with a rigid plate in which the array transducer
was flush mounted. The two side surfaces of the phantom
parallel to the scan plane were restrained to prevent motion
out of the plane. The remaining two phantom surfaces were
free to move. All phantom surfaces were lubricated to en-
whereu,; andu, are spatial-frequency variables correspond-courage free-slip boundary conditions.
ing tox, andx,, respectively, an€’ is a complex constant. The phantom block was warmed to 21°C, pre-loaded
The attenuation parameter=2da,|f|/20 logeincreases lin- 4% of its 74 mm height under computer control, and elec-
early with temporal frequency. The attenuation constant tronically scanned to obtain the pre-compression echo field.
@o=0.05dB mm*MHz ! is valid over ad=40mm depth. It was then further compressed, held, and re-scanned at
The high-pass filtering effects of Rayleigh scattering andl.2%, 2.4%, and 3.6% of its pre-loaded height mm. In
low-pass filtering effects of attenuation in E@3) nearly each case, we selected a sub-region of 50 A-k®eg us
cancel for Gaussian pulses, as shown in Appendix C. Al{256 ptg near the center of the echo field where there was
though scattering and attenuation were included in thesminimal lateral motion. The pre- and post-compression
simulations, they could have been ignored without a signifiwaveforms were shifted to remove any time delay= =)
cant loss of accuracy. but not warpedB=1). ConsequentlyE{7,}=0 and the de-

Pre-compression echo waveforms were computed usinfprmation was predominantly axial scaling with minimal lat-
rox)=F YRo(u)}. The function  sgn)=|u/u,, eral scaling, shearing, or rotation. Displacement was mea-
sgn(0)=0, ensures that, is analytic. Post-compression echo sured for every fourth waveform in the sub-region using
waveforms were found in a similar manner using E&5) cross correlation. The variance vagf was computed from
and the appropriate linear transformation mathix Wave- 16 uncorrelated echo segments ng in duration.
forms were oversampled at 400 Msamples/s along the ultra- The following displacement variances for simulated and
sonic beam axis to minimize errors introduced by samplingexperimental data represent those for unbiased, zero-mean
Each waveform in the echo field was simulated assuming astimates that could result from residual deformation after
lateral aperture shift of 0.18 mm. Adjacent waveforms werewarping.

A. Simulations

2

~ 1
h(x)=(2wL,L,) ! exp( -3

Setting 2.,/cy=0.1us gave an effective bandwidth of 2.8
MHz (56%). Including the above details into EGA3) yields
for two-dimensional data structures

where

— _9.2 _ 2/2 5 222
H(Ul,U2):C,Uie asgr(ul)e 27%(|uq|—ug) Lle 27 u2L2’
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VI. RESULTS AND DISCUSSION .
cision of the cross correlator does not change below 0.1%

Simulated echo data provide us the means to computgpplied strain. The precision of the cross correlator is highest
the analytic predictions of Eq37) for arbitrary spectra and in this low strain range. Assuming that2 standard devia-
verify the results for elementary motions. Experimental echaions of the displacement error is the tolerance for reliable
data show us thefficiencyof the cross correlator for dis- measurements, the smallest measurable displacement at
placement estimation under controlled conditions using tis9.1% applied strain under these typical measurement condi-
suelike media and clinical ultrasonic instrumentation. tions is 2(/5.74x 10" 7 u=1.5ns or 1.2um. With respect

Figure 5 shows the analytic results for displacemento the wavelength at 5 MHz, this is less than 3° of phase!
variance as a function of the applied strain up to 4%. Simu-  |n Fig. 6, the analytic results for the Gaussian signal
lated data were used to estiméjg, (u)|” for each value of  spectrum shown as the solid line in Fig. 5 are reproduced as
applied strain. Results from 200 independent waveformshe solid line labeled A. Figure 6 results represented by the
were averaged to find each point plotted. Because the defoopen circles labeled B are the displacement variances mea-
mation is limited to scaling, Eq.38) applies. However, to sured using simulated echo data for axial scaling oAly,
facilitate comparisons with predictions from the literature,=1—s. Agreement with the analytic results is nothing more
the Y, integral was reduced to one dimension, alang than verification of programming. Results represented by
Extending the frequency integral in E@8) to two dimen-  Xlabeled C and bylabeled D are variances measured using
sions yields similar curves with slightly greater variances. simulated echo data for axial and lateral scaling, where in C,

The open circles labeled in Fig. 5 are the results fora A;;=1-s and A,,=1/2(1-s), and in D,A;;=1—-s and
flat, band-pass signal spectrum and noise spectrum using E&,,=1/(1—s). The former case represents unconstrained
(38). The asterisks labeled show the results from Walker motion in a central plane of a homogeneous, incompressible
and Trahe$’ also for flat, band-pass spectra. Values indi-cube. The latter case is similar but includes boundary condi-
cated by the solid line marked are the results for a Gauss- tions that prohibit any motion out of the plane. Decoherence
ian echo spectrum and flat, band-pass noise spectrum usifigm in-plane motion lateral to the beam axis increases the
Eqg. (38). Gaussian signal spectra and flat band-pass noisgisplacement variance by orders of magnitude. Doubling the
spectra are representative of those for strain imaging in biokateral motion by adding boundary constraints halves the
logical media. As explained in the previous section, thestrain at which the sudden increase begins. Because the
channel signal-to-noise ratios at the center frequencgnd  Crame—Rao approach describes errors based on the infor-
the effective bandwidthsl, for the flat and Gaussian signal mation content of the waveforms, the analytic results are
spectra were set equal. In general, however, the shape of thechnique independent. Displacement variance increases
signal and noise spectra can influence the curves in Fig. With aliasing caused by undersampling the data, particularly
because SNR is a function of frequency. It is a coincidencén nonaxial directions. Aliasing errors are not reflected by
that the variances for flat and Gaussian signal spectra coirkq. (37), where we assume the data are continuous with large
cide for realistic system and tissue parameters. The similarittime-bandwidth product. The CrameRao approach estab-
of the results suggests that spectral shape is not a dominaliighes the best-possible estimation performance and conse-
factor determining variance for strain imaging. quently the standard by which the efficiency of real estima-

The displacement variance at 0.1% strain is an importantors is measured. Our simulated echo fields were sampled at
result. We routinely match scaling components of an appliec rate of 400 Msamples/s to minimize sampling errors. Typi-
strain using companding and warping methods to an averagsl experimental data are sampled at much lower rates, in
of 0.1%. Figure 5 shows that efforts to matBhto A closer this case 45 Msamples/s, and interpolated.
than 0.1% will not improve strain image noise since the pre-  Finally, phantom measurements are plotted in Fig. 6 at
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teria discussed above, the data point at 1.2% applied stra%708221'
shows the precision for displacement to be 7.4 ns opnr
The predicted variance was 4. This is the first experi-
mental evidence to suggest that cross correlation can be a&PPENDIX A
efficient estimator of ultrasonic displacement in the Crame
Rao sense when deformation is minimized through warping. :
Agreement between prediction and measurement was fourl@(X) are derived below.
despite subtle differences in the parameters used to generate Fom EQ.(7),
analytical results and phantom measurements. For the analy-
sis, the peak frequency was 5 MHz, the bandwidth was 56%,
the channel s?gnal—to-noise ratio at the peak frequenc_y Was 1 (x)=T,(X)+ny(X).
20 dB, the window length was s, and the attenuation
coefficient slope was 0.5 dB cthMHz . For the phantom Therefore,
measurements the peak frequency was 4.2 MHz, the band-
width was 60%, the channe] signal-to-noise ratio at the peak To(X)= J'w dx'h(B~x— m,—x")z(x")
frequency was 17 dB, the window length was ag, and the —

= f dx’

1
| ngzmemffx’},

The Fourier transforms of the echo signalgx) and

Fo(X)=ro(X) +No(B~ X~ 17),

attenuation slope was 0.4 dB civHz . .
f dgH(g)eiZﬂ'ft(B_lerbfx')

X

VIl. SUMMARY

A mathematical model is proposed to describe the ultra- =f dgf dEH(&Z(He'2 B X m)
sonic waveforms recorded during strain imaging. From this o -
model, the ML strategy for displacement and strain estima- o _ o
tion is derived. In addition, a lower bound on displacement Xf dx’e'2m= 9, (A1)
variance was found, verified using simulated echo data, and o
compared with experimental data obtained using a tissuelik@ne integral ovex’ is 8(£—¢). Substitutingu’'=£B 1 into
phantom. Eqg. (A1) and noting thatlé=detBdu’ we find

The ML strategy for image formation is to find the glo-
bal peak of the ambiguity function. We implement an ap- — = . {17y i 27U’ (x— Bry)
proximation to the ML strategy by filtering waveforms to ro(x)—detBJlmdu H(B'u)Z(B'u')e '
favor frequency components with the highest coherence and (A2)
then warping the pre-compression echo field to match the _
physical deformation recorded by the post-compression echo The Fourier transform ofo(x) is
field. Finally, warped pre-compression and post-compression .
waveforms are cross correlated and the net displacement Eo(u):f dxr_o(x)e—ihutx
field is differentiated along the direction of the ultrasound o
beam axis to estimate strain. The ML approach to displace-
ment and strain estimation is consistent with the generalized =dethm durH(Btur)Z(Btu/)efian-u”Bq-b
cross correlator, ambiguity function, and least-squares ap- —w
proaches described in the time-delay literature. It is possible .
to implement exactly only when the spectral properties of the X f dxei2mu’ —w'
signal and noise are known and the data are oversampled. -

In most practical situations, errors predicted by the o
Crame—Rao approach cannot be achieved because the as- =detBH(B'u)Z(B'u)e '2™"Bm,
sumptions of continuous echo waveforms and large time-
bandwidth products are unrealistic for imaging. This vari—and consequently
ance bound ignores essential design issues relating noise, _ t t t _iomulB
spatial resolution and aliasing. Nevertheless, the ML strategy Ro(W)=detB(H(BWZ(B') + No(B'u)e Tb'(A3)
is a rigorous, broad framework for designing systems and
algorithms for strain imaging. Similarly, forr(x),
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- ” J12=J21=A11A15Y 1+ AnALY 5,
rl(X):f dx'h(x—x)2(A~ X' — 1) 1279217 AnA1aY 1 T AT 2

where
) N i ! 0 |7r r (LI)|2
= dX’f de(§)€'2”§{(*‘“} Y22 f du(2muy) 2
j‘“ - 2 MR, Py
X fm dé'z(g)eiZﬂ{t(A—lx',.a)}, |7r0r1(u)|2 (Bl)

Y é2<S"foodu 27U, .
2728 | QU@ T )

The determinant of the Fisher information matrix is
detd=(A11A2—AA) Y Y,
Finally, we arrive at Eq(37):
1y, - A§2Y1+A§2Y22 |
(A11A22_ A12A21) YlYZ

- medgfjxdm(§)Z(§)ei2ﬁ(§{xféfa)5(§_A*ltg),

= detA f " dgH(HZ (Al g2 Ay, (A4)

. o var(7y)=(J~
The last form was found by noticing that the delta function is

nonzero only ag=A'¢ and thatd{=detA d£. Finally,
oyt APPENDIX C

Ry(u)=detAH(u)Z(Atu)e ™A%+ N, (u). (A5)
Warping the data affects all componentsRyj(u) whereas
the physical deformation affects only the object function i
Ry(u).

We show that the sensitivity function for a Gaussian
r]point—spread function is approximately Gaussian. The func-
tion

H(f,fo,0)=C'|f|me~ sgr(f)e 27l ~fo*e*
APPENDIX B fo,0,a>0, (CD)

The Fisher information component that defines the lowefS @ 1-D temporal-frequency representation of the sen§nitivity
bound on displacement variance measured along the ultrdunction described by Ec(43). The high-pass factoff|
sound beam, Eq37), is derived below. defines the scattering function, wheret=<2, m=20 is for

We assume the displacements are independent of oth&Pecular reflection, anoh=2 is for Rayleigh scattering; the
parameters i, 2-D object motion(plane-strain stajeand  low-pass factor exp-a) defines attenuation losses; the re-
2-D data structuréscan plane from a linear arrayThen, ~Mainder represents the point-spread function of a Gaussian-

from Egs.(31) and(35),

E[ #%In p(|i| Ta)]
B ————

aTal ;:Afa*BTb
|7r0rl(u)|2

(AU + AyUy)?,
ATy Pat ™ Aaitd)

=47728’j du
_E[ #*Inp(R|7.)

2
aT; ]
a2 7=AT7,— BTy

o |'}’r r (U)|2
:47725'j dy—?0%
—o (1_|7r0r1(u)|2)

£[#1n P(R|7)
07310742

(Agug+Agly)?,

];Ara—Brb
|7r0rl(u)|2
(1_|7r0rl(u)|2)

X (AqUg+Agly).

:4’7728, in du (A11U1+A21U2)

Completing the squares and integrating, we find that term

modulated sine wave with center frequerfgyand pulse du-
ration o.
We find that

H(f,f1,04)=C, sgn(f)e 27 (=10
= lim H(f,f{,0), (C2)

o— %

where the constants
— o/ fMa—ag—2m2(f;—fg)%0?
C,=C'fe e 2™ (1= T0)%"

—a+4720%f o+ V16w o’m+ (a— 4w 0?fg)?

fi= 2 )

870
and
fie— a(fy— fo)e— a2/87720'28— 27T2(fl— f0)20'2

! 1+ o fomg—p + 12
47la? 47 a? 02m2g? 0
That is, for narrow-band transmission, the sensitivity func-
tion is Gaussian witlr,= ¢ andf, given above. It is also a
very good approximation for broadband transmission. For
example, letf,=5 MHz, 0=0.1 us (effective bandwidth
=2.8 MH2, m=2, and «=2.3 [=0.05dB/mm/MHz
% (2x40 mmx5MHz/(20loge)]. We find that f,/f,

o,=0

linear in frequenciesl; andu, integrate to zero. Factoring =097, oy/o=1.11, and |[H(f,fo,0)—H(f,f1,0q]/Cy

the components oA out of the remaining integrals allows

the following simplifications:
Ju=A%Y 1 +ALY,,
Jp= ALY 1 +ASY,,
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<0.026. Consequently, we may use a 1-D Gaussian sensitiv-
ity function when the 1-D point-spread function is Gaussian
without significant error. The situation can be more compli-
cated when modeling the point spread function at higher spa-
tial dimensions.
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