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Experimental methods for estimating detection efficiencies of human and computational 
observers viewing low-contrast circular targets in acoustic noise are described. Sonographic 
images were simulated with signal and noise properties specified exactly. These images were 
presented to observers in two-alternative forced-choice (2AFC) experiments. Relative to the 
ideal observer of these images, i.e., the prewhitening matched filter, human observers were 60% 
efficient for detecting targets over a broad range of target energies and for both target polarities. 
Studies were limited to situations where target diameters were much larger than the correlation 
length of the noise. In that case, observers unable to decorrelate the noise showed no reduction 
in detectability as predicted by theory. For example, the efficiency of one computational 
observer, a nonprewhitening matched filter, was nearly ideal. Its response was proportional to 
that of the average human observer, which suggests a role for computational observers in image 
evaluation. 

PACS numbers: 43.60.Gk, 43.60. Cg 

INTRODUCTION 

Many imaging tasks require observers to visually dis- 
criminate among regions of similar reflectivity. An exam- 
ple in diagnostic ultrasound is lesion detection. Conse- 
quently, one essential feature of high-quality 
ultrasonography is superior low-contrast detectability. To- 
day's sonographers have the opportunity to reconfigure the 
instrumentation to match specific diagnostic tasks, e.g., 
maximize lesion detectability, by selecting the appropriate 
transducer technology and pre- and postprocessing 
schemes. Unfortunately, there are no standard criteria for 
optimization. Evaluations are subjective, for the most part, 
because objective criteria have not yet been developed for 
many important clinical imaging tasks. In this paper we 
discuss objective criteria for evaluating the quality of a 
SOhographic image for the clinically important task of de- 
tecting low-contrast targets. 

Objective assessment begins by first specifying a rele- 
vant task and then determining quantitatively how well the 
task is performed. ! Our approach to image assessment is 
based on classical signal detection theory 2'• as applied to 
ultrasonic imaging by Wagner et al. 4 and Smith et aL • The 
task is visual detection of low-contrast targets in speckle 
(correlated noise). The procedure begins with the deriva- 
tion of a test statistic, called a decision function, for the 
optimal detector or ideal observer of the image. The ideal 
observer is a computational observer or mathematical 
function of the image data that makes optimal use of all 
available information for the purpose of accomplishing a 
task. Ideal observers provide the upper limit of detectabil- 
ity by which the efficiency of human ohserver• can Be de- 
termined. The task required of the ideal observer is defined 
by the task it is given. The decision function--test 
statistic--is determined mathematically by the probability 

density functions (pdf) of the image data. The test staffstie 
is applied to images, a decision is made, and the ability to 
perform the task is evaluated. Observer performance is 
specified by the signal-to-noise ratio (SNR). Finally, hu- 
man visual detection efficiency is computed from SNR val- 
ues measured for ideal and human observers by the ratio 
SNR•t/SNR•. 6 

The efficiency for performing important clinical exam- 
inations is the ultimate assessment of image quality, and 
therefore the appropriate criteria for task-specific system 
optimization. Unfortunately, statistically robust estimates 
of human observer SNR are labor intensive because of 

three intrinsic sources of response uncertainty: Between- 
observer variance, within-observer variance, and between- 
image variance. 7 Therefore we have also examined the use 
of computational observers, since they generate no 
between- or within-observer variances. Suboptimal compu- 
tational observers are also of great practical interest if they 
can be computed quickly--ideally at the frame rate for 
video--and if the corresponding SNR is highly correlated 
with that of the average human observer. We show that the 
nonprewhitening matched filter for intensity is one such 
computational observer that could quickly provide precise 
estimates of the human observer's ability to visualize low- 
contrast targets. Computational observers may offer the 
objective assessment of ultrasonic images necessary to op- 
timize systems for specific diagnostic tasks. 

I, METHODS 

Observer experiments were performed using simulated 
ultrasonic B-mode images. The images were generated by 
applying knowledge of the statistical properties of radio- 
frequency echo signals, X. 8 Two independent, identically 
distributed Gaussian white-noise patterns were formed us- 
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FI(•. 1. An example trial of 2AFC detection where the signal (disk) is 
known exactly (SKE). A speckle-free mask image of the target is dis- 
played along with two speckle fields, where only one contains the target. 

ing an algorithm that generates normal random deviates. 
One pattern represented the real (in-phase) part of the 
analytic signal of X and the other represented the imagi- 
nary (quadrature) part. Circular targets with either posi- 
tive or negative contrast were introduced by multiplying a 
circular target region in the center of the real and imagi- 
nary patterns by the object contrast factor (OCF). For 
example, the OCF was 1.2 for a 20% increase in echo 
amplitude in the target relative to the background (1.6 
dB). Both patterns were smoothed using a two- 
dimensional (2-D) Gaussian-shaped smoothing kernel, 
where the horizontal dimension was 50% larger than the 
vertical dimension. Finally, to simulate the envelope- 
detection process of image formation, the real and imagi- 
nary components were squared and summed. The square 
root of the result yielded simulated B-mode image data, y. 
These images simulate the essential statistical properties of 
real B-mode images. The 3-D nature of realistic transducer 
pressure fields and objects was not included in this study. 

The probability density function (pdf) of the B-mode 
image data, where the in-phase and quadrature compo- 
nents of the echo signal are bivariate normal with zero 
mean and equal variance, •, is Rayleigh 

p(y)----•exp , (1) 
where 2•p is the mean-square scattering amplitude, i.e., the 
average backscattered intensity /.4 We verified the exist- 
ence of the fully developed speckle condition that gives rise 
to Rayleigh statistics by measuring the first eight even mo- 
ments for y, e.g., Or•), (y4), etc., using 200 target-free im- 
ages. Values agreed with those derived by Middleton 9 
within the experimental uncertainty. 

The task required of the observers is to detect disk- 
shaped targets of known properties, i.e., the so-called 
signal-known-exactly (SKE) condition, where target visi- 
bility is limited by multiplicative, Rayleigh, colored noise. 
Two-alternative forced-choice (2AFC) experiments were 
designed to measure detectability. For each response, ob- 
servers viewed three images as in Fig. 1. Two were speckle 
fields, one with and one without a target. The selection of 
the image--image 1 or image 2--for placement of the tar- 
get was random, although the location of the target in the 
image was not. The third is a speckle-free image of the 
target as it appears in one of the first two images. Observers 

were asked to decide which of the two speckle images con- 
tained the target. This 2AFC design follows the basic par- 
adigm for detection analysis that allows straightforward 
comparisons between human and ideal observers. 2 

A. Ideal observer 

In a 2AFC experiment under SKE conditions, the 
ideal observer examines two images, y• and y2 in the region 
where the target is expected, and decides between two hy- 
potheses: The target is present in image 1, H•, or the target 
is present in image 2, H•. The decision is based on the 
value of the test statistic D, where as derived in Appendix 
A, 

M M 

D= >C Z (2) 
i=1 

and M is the number of independent samples per target 
area (see Appendix B). 

Equation (2) states that the optimal decision function 
is a matched filter for intensity. The detection strategy of 
the ideal observer is to measure the total intensity within 
the target region for both images. For positive contrast, the 
ideal observer decides that the target is in the first image 
when D>0 and in the second image when D < 0. The de- 
cisions are reversed for negative-contrast targets. The ideal 
observer operates on independent samples of the noise; that 
is, it finds a representation in which the noise is uncorre- 
lated and in that representation the noise is spectrally 
white. •2 

The ability of the ideal observer to succeed at this task 
is quantified by SNR•, which is computed from the means 
and variances of the decision function under the two hy- 
potheses: 

2 ((OIH2)--(DIHI 
SNR• ..... ( 3 ) 

The means and variances follow immediately from the mo- 
ments of the Rayleigh pdfi 4 

{DIH9 =-- <DIHO 
(4) 

where I,=2•b, and Is=2½• denote the intensities in the 
noise only and in the signal target area, and {.--) denotes 
ensemble average. Combining Eqs. (3) and (4) we find 
that 

(½,_½.)2 

SNR•=4M (•+•/),) , (5) 
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The first factor on the right-hand side of Eq. (6) describes 
how target diameter, a, and spatial resolution, S c, affect 
detectability. The second factor, SNI•, is the square of the 
point signal-to-noise ratio, i.e., SNR 0 is the mean-to- 
standard deviation ratio for intensity, and a summary of 
the noise properties of squared B-scan images. (Note the 
distinction between SNR• and SNR 0.) The, third factor is 
the square of intensity contrast C 2. 

SNR2• provides the quantitative index needed to mea- 
sure the highest possible detection performance, and as 
such defines the difficulty of the observation task. The de- 
tectability index for the ideal observer increases as the tar- 
get area St and contrast C increase. Also, as the resolution 
cell area S c decreases, the spatial resolving power of the 
imaging system increases, providing more independent 
samples per target area and increased target visibility. 
Equation (6) describes how compromises in the basic en- 
gineering properties that determine image quality (for the 
most part, beam properties) affect low-contrast detectabil- 
ity of the ideal observer. Because it defines the best-possible 
performance, Eq. (6) is the standard for measuring ob- 
server detection efficiency. SNR• has already been used to 
predict how changes in system design affect target 
visibilityfl'11'12 Any change in the image data or experimen- 
tal conditions alters the task, and hence the: decision func- 
tion, which can change the strategy of the ideal observer? 

Note that to compute SNR• 2 using the analytic expres- 
sion, we need to count the number of independent samples 
per target area available to the observer. Methods for esti- 
mating M are discussed in Appendix B. 

B. Human observers 

Three human observers participated in the 2AFC ex- 
periments. Observers were asked to examine the mask im- 
age and then choose which of the two speckle images con- 
tained the target. Viewing time per image was not 
restricted, and the observers were not told if the choices 
were correct, i.e., no feedback. 

Observers sat in a darkened room, 45 cm from a 19-in. 
color workstation monitor. The resolution of the monitor 

was 1024)< 864 and had 3.049 pixels/mm. The simulated 
image format was 128 X 128 pixels and each was magnified 
a factor of 2, so that the viewing size was 84 X 84 mm. One 
magnified pixel subtended an angle of 0.73 :mrad (2.5 min 
of are), which is approximately the effective blurring ap- 
erture of the eye. Measured full-scale brightness of the 
monitor was 7.7 ed/m 2 and the average image brightness 
was 1.0 + 0.1 cd/m 2. 

The fraction of correct responses was our estimate of 
the probability of a correct response P(C). The figure-of- 

merit for evaluating human observer performance is 
SNR}/, and is often called d} in the psychophysics litera- 
ture. As shown in Appendix C, P(C) and d} are related by 
the expression 

])2, (7'.) 
where q•(z) is the integral of the standard normal distri- 
bution and z=q>--•[•(z)]. 

Visual detection efficiency of human observers relatiw: 
to the ideal observer, r/m, was calculated from signal-to- 
noise ratio estimates as follows 

[ d•,1t12 

Efficiency measures the fraction of the total information an 
observer extracts from the image in performing the task. TM 

C. Computational observer 

Our objective in applying a computational observer to 
ultrasound images is image evaluation. Such evaluation 
should be accomplished more quickly and with lower un- 
certainty than human experts. Also, the performance of the 
computational observer should be highly correlated with 
that of the human observer, and directly interpretable in 
terms of fundamental properties of image quality. 

An obvious candidate is the nonprewhitening matched 
filter (NPWMF), which is realized by implementing the 
strategy of the ideal observer in Eq. (2), but replacing M 
with N, the number of pixels per target area. Myers et al.,•5 
have shown that, like the NPWMF, human observers are 
unable to prewhiten the noise and may be handicapped by 
large negative noise correlations when performing detec.- 
tion tasks. In the absence of negative correlations, such as 
those that result from images reconstructed from projec.. 
tions, the reduction in detectability due to correlated noise 
is considered minimal as long as there are many ( > 10) 
independent samples per target area. 24 Expressions analo.. 
gous to Eqs. (7) and (8) were used to compute d}, c and 
*/c• for the NPWMF computational observer from the: 
fraction of correct responses to 2AFC experiments. 

II. RESULTS 

Measurements of d} for human and computational ob-. 
servers viewing positive-contrast and negative-contrast le-. 
sions are listed in Table I and plotted in Fig. 2 as a function 
of the task difficulty, SNR•. Larger values of SNR• corre-. 
spond to more visible targets. The quantity d2• may be in-. 
terpreted as the squared signal-to-noise ratio required for 
the ideal observer to match the detectability index of the: 
test observer, e.g., when 2 2 do:SNR• (dashed lines in Fig. 2) 
the performance of the test observer is ideal. Individual. 
human observer results are plotted in the figures, whereas; 
average values are listed in Table I. Error bars were com-. 
puted using the results of Appendix C. 

We found it convenient to use another form of Eq. (6) 
to calculate SNR• as a function of the object contrast fac- 
tor (OCF) and M: 
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TABLE I. Summary of signal-to-noise measurements for the ideal observer (SNR•), the average of three 
human observers (d•H), and the NPWMF computational observer (d•.c). Observers viewed 200 image 
pairs at each SNR• value. OCF is the object contrast factor, a is the target diameter in millimeters, and M 
is the number of independent samples per target area, Eq. (Br). 

Positive contrast Negative contrast 

$NR• OCF d•n da•c SNR• OCF aa•H d•c a M 

1.172 !.029 0.204-0.12 0.774-0.36 1.246 0.971 0.334-0.15 1.584-0.41 29.5 178 

2.133 1.059 0.944-0.24 2.004-0.70 2.401 0.941 1.69+0.43 2.284-0.56 19.7 81 
3.352 1.075 1.584-0.41 4.394-1.11 3.889 0.925 1.654-0.43 4.674-1.21 19.7 81 

4.689 1.059 2.704-0.69 4.674-1.71 5.277 0.941 3.574-0.87 5.764-1.62 29.5 178 

6.770 1.090 3.754-0.97 6.294-2.63 8.093 0.910 4.394-1.11 6.02 4-1.74 23.6 145 

8.539 1.102 4.484-1.14 9.414-3.92 10.44 0.898 6.29ñ1.86 9.94 4-4.41 23.6 115 

10.46 1.090 5.424-1.56 12.3 4-10.4 12.51 0.910 6.154-1.79 14.2 4-11.1 29.5 178 

13.20 1.122 5.964-1.80 13.6 4-14.0 16.77 0.878 10.2 +4.70 18.8 4-29.3 24.9 127 

14.84 1.130 9.174-3.70 14.2 4-11.1 19.13 0.870 9.174-3.70 18.8 4-29.3 24.9 127 

17.00 1.140 8.944-2.49 18.8 4-29.3 22.32 0.860 10.8 4-5.38 23.7 4-77.9 24.9 127 

18.42 1.122 14.6 4-12.8 26.5 4-196. 23.39 0.878 10.6 +5.14 26.5 4-139. 29.5 178 

4M( 1 --OCFa) 2 
SNR•- 1 + OCF 4 (9) 

Because a simple 2-D Gaussian point-spread function was 
used in the simulations, it was possible to compute M from 
the exact expression, Eq. (B6), thus eliminating the bias 
associated with the usual approximation of M [Appendix 
B, Eq. (B12)]. 

The data reduction process is illustrated in Fig. 3 for 
the computational observer examining 1030 image sets for 
each hypothesis. In this example, OCF=--0.925 (--0.68 
dB), M----81 (20-ram target), and SNR•=3.889, which 
may be considered as a moderately challenging detection 
task. The figure shows that the distributions P(DIH 0 and 
p(DIH2) overlap, thereby producing detection errors and 
a score of 81.4% correct. The magnitude of the means and 
the variances for the distributions are equal, as they must 
be for a 2AFC experiment, and given by 10.2 and 134.6, 
respectively. From Eq. (3), we find that SNR$= 3.09. As 
expected, this value is approximately equal to the result of 
Eq. (7), where for P(C)=0.814 we find d•c----3.19mO.35. 
In this example and in Figs. 2(b) and (d), the detectability 
index of the NPWMF computational observer is nearly 
ideal: •/cj= 0.82. 

The solid lines in Fig. 2 are least-squares fits to a 
straight line as weighted by the experimental 
uncertainties. :6 Slopes, intercepts, and X • values for the fits 
are listed in Table II. The X 2 values suggest that the human 

visual response is a linear function of the ideal observer 
response. The intercepts are small, so that the slope is a 
good estimate of detection efficiency. The efficiency for de- 
tecting negative-contrast targets (•/m=59%) was equiva- 
lent to that for positive-contrast targets (•/m= 58% }, and 
the three human observers responded equivalently, al- 
though one (LH) was an experienced sonGgrapher and 
two were not. 

Following the suggestion made by Wagner and 
Brown, 14 we expanded the definition of human observer 
efficiency to includes d•o and rewrote Eq. (8} as the prod- 
uct of two factors: 

=•7Hdrlc •. (10) 

The first factor, •IHC, is the efficiency of human observers 
relative to the NPWMF. Its value is approximately 0.5 for 
all targets (Table II). 

The second factor, •/c•, is the efficiency of the NP- 
WMF relative to the ideal observer. It has been called the 

observer reconstruction efficiency •4'•5 for images recon- 
structed from projections, because it describes the reduc- 
tion in detectability caused by correlations in the noise 
resulting from image formation. Since M is large, we ex- 
pected the effects of noise correlations to be minimal for 
pulse-echo ultrasound. Figure 2(b) and (d) and Table II 

TABLE II. Summary of fincar regression analysis applied to the data in Fig. 2. Slopes are an estimate of visual detection efficiencies, •/. Q is a 
goodness-of-fit measure that depends on )t 2 and the number of degrees of freedom; it is the probability that deviations from the model are due to chance. 

Contrast Slope Intercept • Q 

d•. H vs SNRt 2 Positive •/m = 0. 58 4- 0.07 -- 0.45 4- 0.16 5.44 0.99 
(human versus ideal) Negative •H.t=0.594-O.05 --0.344-0.12 11.7 0.86 

•.C VS SNR• Positive •/ct---- 1.184-0.24 --0.544-0.51 1.11 1.00 
(computational versus ideal) Negative •/ct=0.844-0.19 +0.514-0.52 1.68 1.00 

d•.u vs aa•c Positive •1HC----0.494-0.05 --0.16•0.13 3.28 0.95 
(human versus computational) Negative •/HC=0.544-0.07 --0.424-0.21 9.93 0.37 
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FIG. 2. Plots of the detectability index d• as a function of the squared signal-m-noise ratio for (a)(c) three human observers [O (MI), O (LC), II 
(LH)] and (b)(d} the NPWMF computational observer (r-I) of positive-contrast and negative-contrast targets. Dashed lines indicate the detectability 
index of the ideal observer, whereas solid lines are least-squares fits to a straight line as weighted by the experimental uncertainties. 16 Detection efficiencies 
are estimated from the slopes, which are summarized in Table II. Error ban; denote one standard error acx:ording to Appendix C. (Not all points are 
visible because they overlap.) 
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FIG. 3. Histograms of the decision functions for the computational ob- 
server under the two hypotheses, H i and Hz, and for SNR•----3.889. Solid 
lines are Gaussian functions having the same mean and variance as the 
data. 

show that •/c/ is nearly 1, which indicates that speckle 
generates no more detection errors than white noise. 

IlL DISCUSSION 

Human observers are approximately 60% efficient at 
detecting low-contrast targets in ultrasound images when 
the target is specified exactly. This value is in the range of 
efficiencies measured by others for many visual detection 
and discrimination tasks. 17'•8 Our observation that target 
polarity is not a factor determining observer efficiency is 
consistent with observations made for other digital imaging 
modalities. • s 

We observed no loss in low-contrast detectability due 
to the inability of observers to decorrelate the noise. Wag- 
ner and Brown •4 show that the SNR for the prewhitening 
matched filter (the ideal observer for our task) and that of 
the nonprewhitening matched filter (our computational 
observer) are approximately equal for colored noise as 
long as the power spectral density of the speckle is a slowly 
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varying function at all spatial frequencies in the target 
power spectrum. This condition is met throughout this 
study, since there are no negative noise correlations and 
M> 10. We expect noise correlations to become a factor 
when $t=$½, or when unusual filter functions are applied 
to projection data to form ultrasound CT images? 

The linear relationship between responses of human 
observers and the NPWMF suggests that the NPWMF is a 
reasonable choice for a computational observer. One appli- 
cation of a computational observer in ultrasonic image 
quality assessment is to compare how various transducer 
designs or signal processing schemes influence the visibility 
of low-contrast lesions in the body. Receiver operating 
characteristic (ROC) analysis is the accepted comparison 
standard. However, ROC experiments are very costly and 
the uncertainties are large even for expert observers, so 
they are rarely used by manufacturers to design instrumen- 
tation. In place of expert humans, the NPWMF could be 
applied to image data for either the 2AFC or yes-no ex- 
perimental designs. Tissuelike phantoms with well-defined 
properties are available to provide as many as 100 statisti- 
cally independent views of a target under SKE 
conditions? The detectability index for human observers, 
d•,y, is then approximately 0.5 d•. c. In this manner d•.y 
may be estimated very quickly and without the uncertain- 
ties associated with the within-observer and between- 

observer variances. 

There are at least two previous examples where com- 
putational observers were used to evaluate imaging strate- 
gies. Hanson 2ø used a computational observer to evaluate 
image-recovery algorithms applied to images reconstructed 
from projections. Later, Lopez et al. 2• explored applica- 
tions in sonographic image evaluation. Although the deci- 
sion function used by Lopez was the total amplitude in the 
target area instead of the intensity, he was limited to one 
noise realization per target, and he used a different exper- 
imental design, he too found the responses of human and 
computational observers to be highly correlated. 

These efficiency estimates apply to the SKE condition. 
If targets are variablesspecifically, if parameters such as 
target amplitude and position are defined statistically-- 
then the detection strategy of the ideal observer must be 
derived from Eq. (A1) using all the details of the task to 
formulate the appropriate likelihood functions. Barrett has 
shown that the optimal linear discriminant, i.e., the best 
performing decision function that is linear in the intensity 
data, is the Hotelling test discriminant.• The Hotelling test 
statistic may be a better choice of computational observer 
under signal-known-statistically (SKS) conditions. Linear 
discriminants are of considerable interest because of their 

widespread use in many signal processing applications and 
because of their success at predicting the performance of 
human observers. 

Emphasizing the task specific nature of image evalua- 
tion, we conclude that insofar as low-contrast detectability 
is an essential feature of diagnostic imaging, observer effi- 
ciency estimated using the NPWMF provides a precise, 
easily computed, and objective assessment of image qual- 
ity. 
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APPENDIX A 

The optimal detector of low-contrast targets in ultra- 
sound images is determined using the statistical tools of 
hypothesis testing. 3 In our 2AFC experiment where the 
signal is known exactly, e.g., Fig. 1, an observer must de- 
cide between two hypotheses: 

H•: the target is present in image 1 and not image 2 
or 

H2: the target is present in image 2 and not image 1. 

Assume that the joint conditional probability density 
functions (pdfs) of the data of image 1, y•, and the data of 
image 2, Y2, given the two hypotheses, i.e., p(y• ,y21H• ) and 
P(Yl ,Y21H2), are known. These pdfs are often called like- 
lihood functions. A decision function for the ideal observer 

D' is the ratio of likelihood functions [Ref. 2, Eq. (3.5)] 

P(Y•,Y2 I Ha) 
D'-- (A1) 

p(y•,Y21H2 ) ß 

This decision function is optimal in the sense that it satis- 
fies the Neyman-Pearson criterion by providing the max- 
imum detection rate for a fixed false positive rate) 

The radio-frequency echo signal is modeled as a com- 
plex, multivariate, Gaussian random process, so that the 
B-mode image data are characterized by a Rayleigh pdf. 4'8 
If the Rayleigh noise in one image is independent of that in 
the other, and if we sample the data such that image sam- 
ples are also independent, then the conditional probabili- 
ties in the known target regions of the image are given by 

p(yl,Y2lHl)= • Yli • 
j•l 

(A2) 

and 

p(y,,y•]H•)= fi y•i {--yii• fi y:jex_(• ' 
i=1 j=l 

(A3) 

where the parameters 2• and 2• are the mean-square 
scattering amplitudes, i.e., the backscatter intensities for 
the noise-only image, I n , and for the signal-in-noise image, 
I•, in the region in the medium corresponding to that in 
the image. M is the number of independent data samples in 
the target area available to the decision m•er (see Appen- 
dix B). 

Substituting •s. (A2) and (A3) into •. (A1), we 
find 
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(A4) 

Note that regions outside the target area do not affect the 
decision function, because outside the target the pdfs are 
equal and the likelihood ratio is 1. Applying the monotonic 
transformation 

yields a more economical, yet equivalently performing, 
form of the decision function (Reft 2, Seetiion 1.6): 

M M 

D= Y• di-- Z dj' (A6) 
i=1 j=l 

Equation (A6) is a matched filter for intensity where we 
have assumed disk-shaped targets. This expression may be 
generalized to include nonrandom targets of arbitrary 
shape by changing the transformation in Eq. (AS) to 
D=ln(D'), to find 

M' M • 

D• Z Viy•i- Z Vi.P]j 
i=1 j=l 

M' 

i=1 

=•Ptz, (A7) 

where •Pi= (l•s i-- l•ni)/2l•sil•n i and M' is the: number of in- 
dependent samples in the entire image. The boldface quan- 
tities •P and z are M' 3< 1 column vectors, •t is the trans- 
pose of •P(a 1XM' row vector), and z = y• -- y] is the 
difference image vector. It is clear from Eq. (A7) that the 
ideal observer's strategy for detection, e.g., the task of de- 
termining which of two images contains a target, and for 
discrimination, e.g., which of two targets ils brighter, are 
equivalent. 

Equation (A7) is a valid approximation for correlated 
image samples if the correlation length of the target func- 
tion is much greater than the correlation length of the 
noise, i.e., if M' is large? For small M', the optimal strat- 
egy for detecting nonrandom targets is to use the prewhit- 
ening matched filter (PWMF) for intensity) 

D= øItK- •z, (A8) 

where the covariance matrix K= (zzt). Equation (A8) is a 
general expression for the PWMF; for example, in the spe- 
cial case of uncorrelated noise, 

K-I_--• oo , 1 

and Eq. (A8) reduces to Eq. (A7) through a monotonic 
transformation. 

APPENDIX B 

To compute the signal-to-noise ratio fc,r the ideal ob- 
server, SNR/, we must first estimate the number of inde- 

pendent data samples per target area M. To find M, we 
focus our attention on the statistics of the image intensity, 
I--=y 2. Let I 0 be the average intensity over the target area: 

i= 

where s is a weighting function determined by the shape of 
the target, and S= • is i. For unit amplitude, disk-shaped 
targets, $ is the target area and the mean value of I 0 is 
given by 

1 

(Iø) =X • si(Ii)' 
1 M 

--M • (I•) = (I), (B2) 
if (I) is independent of position in the image. ('..) is the 
ensemble average operator. 

The variance of Io is given by 

M 2 

•0:((I0--(I0))2): ((• ,•lli--(Io)))' 

(B3) 

Since each element I i in the average I 0 is an independent 
sample, the cross product terns in the last expression haw• 
expectation zero, and combining Eqs. (B2) and (B3) we 
find the hmiliar expression for variance of the mean: 

(I i-- (I))2 (B4) 

Consequently, 

(Io) 2 M(I) • 

since for circular Gaussian statistics (I)/a•= 1. 4 Therefore 
the number of independent samples per target are found 
from the first-order statistics of I o. 

Goodman :3 derived the squared mean and variance of 
I0 to find that 

M_(Io) • 
- •o 

-1 

R,.(Ax,Az) I px(Ax,mz) 12dAxdAz) , 
(B6) 

where Rs(Ax, Az) is the autocorrelation of the weighting: 
function, s, and a function of the difference coordinates in 
the range Az and cross-range Ax directions. The complex 
coherence factor for echo magnitude, px(AX,AZ), 23 sum-. 
marizes the correlation properties of rf echo signals, X, and[ 
is computed from the autocovariance function normalized[ 
by its value at zero, i.e., px(AX,Az)=Cx(Ax,Az)/ 
Cx( O,O ), where Cx( Ax,Az) --= Rx( AX,AZ ) --(j[/)2.4 We are: 
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assuming that X is a random process that is stationary to 
second order. 

In general, M is a complicated function of the target 
shape and resolution properties of the imaging system. For 
the purposes of studying low-contrast detectability, a very 
useful approximation is obtained in the limit where the 
target area is "large" compared to the area of a speckle 
spot. In that limit, R(fi•x,•z)=R(0,0) for all non- 
negligible values of Px(fi•x,•z), and Eq. (B6) reduces to 23 

where 

(B7) 

S2 

$t----Rs(O,O) -- f _• •s•(x,z)dx dz' (B8) 

$½ = [ Px( •,• ) 12 dax d•. (B9) 

S t may be inte•reted as an effectioe target area. When the 
target is a disk of amplitude one and diameter a, then 
St= S = •a•/4. Goodman found for square targets that the 
exact expression for M, •. (B6), when plotted as a func- 
tion of the number of speckle spots per target area S/S c, 
gave approximately the same result for (Gaussian- 
apodized) circular and (unifomly weighted) square de- 
tector ape•ures. This suggests that some sidelobe energy in 
the ultrasound beam does not invalidate the use of Eq. 
(B7). Although •. (B7) does breaks down in the near 
field of the transducer, •cause adjacent speckle spots are 
highly correlated, and therefore not independent samples 
of the image. •uation (B7) is a reasonable approximation 
in the focal region of the transducer. 

In addition, the number of speckle spots underesti- 
mines the number of independent staples, so that •. 
(B7) is a biased estimate. For example, St/S • values of 1, 
5, 10, 20, 1• produce the following v•ues for M using the 
exact expression [Re[ 23, •. (2.121)]: 2.1, 6.8, 12.4, 23.2, 
106.7. To fu•her illustrate the bias, note that a t•get re- 
gion much smaller than a speckle spot, i.e., St/S• 1, still 
provides one legitimate sample of the data to the detector. 
We consider Eq. (B7) a valid approximation when there 
are 10 or more speckle spots per target, since the bias will 
be less than 20%. 

In our B-mode image simulations, we used a 2-D 
Gaussian point spread function (psf) given by the equation 

g(x,z)=•,a;exp[--[•+•j ] . (BI0) 
It is straightfomard to show that for this psfi 

px(•,•) =exp[ -- [•2 • 
and that •. (B9) •ves 

Sc=2•a•. (Bll) 

Finally, for disk targets of diameter a, •. (B7) yields 

a 2 

M•a•, where St/Sc>10. (B12) 

APPENDIX C 

In this section we summarize relationships among the 
various measures of detectability for two-alternative 
forced-choice (2AFC) and yes-no (YN) observer experi- 
ments. 

Both experiments use images with and without targets 
that are specified exactly, and observers are asked to decide 
between two hypotheses, H l and H 2. In a YN experiment, 
an observer is presented with one image and asked to de- 
cide if the target is absent (H•) or present (H2). In a 
2AFC experiment, an observer is presented with two im- 
ages, where one contains a target and one does not, and 
asked to decide if the target is in image 1 (H l ) or image 2 
(H2). It is important to note that the statistics for the two 
experiments are different. 

First, we examine the YN paradigm. The decision 
function of the ideal observer D, is found from the likeli- 
hood ratio. 2 Presenting the decision maker with many im- 
ages for both hypotheses and plotting a histogram of the 
results, we obtain estimates of the probability density func- 
tions p ( D I HI ) and p ( D I H2), which are often accurately 
represented by Gaussian functions, as illustrated in Fig. 
C1. If the task is sufficiently challenging, the pdfs overlap 
and measureable decision errors result. To assess the ob- 

server's performance, we study changes in the true-positive 
fraction (TPF) of responses as we vary the false-positive 
fraction (FPF). TPF, FPF pairs are measured according 
to the following equations once we have selected a decision 
threshold, Do: 

TPF= 
(el) 

FPF= œ( DIH•)dD=d•[ ( •l- Do)/a z>,], 

where •(z) is the integral of the standard Gaussian ran- 
dom variable: d•(z) -- 1/2•f •_ • exp(--t2/2) dt. Ob- 
server performance is entirely specified by the receiver op- 
erating characteristic (ROC) curve for the experiment. 
The ROC curve is a plot of (TPF,FPF) pairs measured for 
all possible D O . An important summary measure of perfor- 
mance is the area under the ROC curve: 

AUC= TPF dFPF. (C2) 

If p(DIH•) and p( D IH 0 are non-Gaussian, then AUC is 
our performance metric, and detection efficiency is esti- 
mated as follows. First, select a task as defined by SNR/, 
and find the average AUC for human observers. Then re- 
duce the visibility of the target, i.e., reduce SNR/, until the 
AUC for the ideal observer equals that of the average hu- 
man. The ratio of the SNR• values is the detection 
efficiency. 6 

Fortunately, the Gaussian assumption simplifies per- 
formance evaluation significantly. Performance is entirely 
characterized by the means and variances of the decision 
function pdfs (see Table CI) using the equation for detect- 
ability 
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YN 

d a,YN 

•-• TPF 
[• FPF 

2AFC 

d a,2AFC 

H• D• 
-6 -3 0 3 

FIG. CI. Conditional probability density functions of equal variance for 
a binary discrimination task are illustrated for (top) the yes--no (YN) 
experiment where da.¾N = 2 and (bottom) the analogous two-alternative 
forced-choice (2AFC) experiment where da.2,•F c = 2 •f•. For convenience, 
the decision axes have been normalized by the standard deviation of the 
corresponding palls, e.g.,/•'• D/•o and therefore da= • -- •)•. 

da= (o2m + ojm) 1/2. (C3) 
In addition, if oam =O2tr2--=o 2, then da is equal to another 
popular detectability index, d'=(b•-b2)/cr. The rela- 
tionship between d. and AUC is given by Swets m as 

AUCy, = • [da•2N ] . (C4) 
The same equation holds for d' in place of d•. 

The analysis of 2AFC experimental data is similar, 
although each decision is based on the observation of two 
images. Consequently, the means and variances of the de- 
cision function are each twice that of the YN case (Ref. 2 
Sec. 3.2.4), and therefore 

d,•aAVC= •d,•.vr• . (C5) 

Distinctions between the decision functions statistics using 
the YN and 2AFC experimental methods for equivalent 
sets of observer data are illustrated graphically in Fig. C 1 
and quantitatively in Table CI. 

Another important relationship between YN and 
2AFC methods is a theorem that states: The probability of 
a correct response in a 2AFC experiment, P(C), equals the 
area under the ROC curve in a YN experiment [Ref. 2, Eq. 
(2.11)], 

P(C) 2AFC = AUCyN, (C6) 

where we estimate P(C)2AF c by the fraction of correct 
responses resulting from a 2AFC experiment, •(C). Com- 
bining Eqs. (C4)-(C6) we find that 

da,2AFC = 2(I)-- I lb(C) 2ARC], (C7) 

where z=•-l[•(z)]. 
Following Simpson and Fitter, 24 Hanson 2ø shows that 

the uncertainty in da estimates is given by 

da 2 

where the nature of the 2AFC experiment dictates that 
b(C) estimates are binomial random variables with stan- 
dard error 

cr/,tc I = {P(C) [ 1 --P( C) ]/Np} •/2 (C9) 

and Np is the number of image pairs per 2AFC experiment. 
Finally, we compute the uncertainty in d2• using the 

approximation cr• •_ 2d,tYa•. Here, a• depends on P(C) 
and fir e . For any fixed At e , the smallest uncertainty is ob- 
tained near 80% correct (d•=l.7). Experiments can be 
designed to minimize uncertainty by adjusting the diffi- 
culty of the task so that approximately 80% correct is 
achieved, and then increasing the number of image pairs to 
obtain a set uncertainty. If the observer task is too easy 

TABLE CI. A comparison of decision function statistics for yes-no (YN) and two-alternative forced-choice 
(2AFC) observer experiments. 

YN (one image) 2AFC (two images) 

Hypotheses 

Optimal decision 
function 

Means: 

b•(OlH•) 
b•=-(alH•) 

Variances: 

02•-- ((OIH•-5p 2 ) 
02•n• ((OIH•- b,) • ) 

Detectability index, d• 

target absen! 
target present 

Ii 

d•. v•= (I• -Ii)/a 

H•: target present in image 1 
Hc: target presem in image 2 

D= •i M i ( Ili--12i) 
(Ili•J•li) and (I2i--=y•2i) 

202 
202 
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[P(C) = 1.0] or too hard [P(C) =0.5] then the percent un- 
certainties become very large for any value of Np (see 
Fig. 2). 
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