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Both radio-frequency (rf) and envelope-detected signal analyses have lead to successful tissue discrimination in
medical ultrasound. The extrapolation from tissue discrimination to a description of the tissue structure requires
an analysis of the statistics of complex signals. To that end, first- and second-order statistics of complex random
signals are reviewed, and an example is taken from rf signal analysis of the backscattered echoes from diffuse
scatterers. In this case the scattering form factor of small scatterers can be easily separated from long-range
structure and corrected for the transducer characteristics, thereby yielding an instrument-independent tissue
signature. The statistics of the more economical envelope- and square-law-detected signals are derived next and
found to be almost identical when normalized autocorrelation functions are used. Of the two nonlinear methods of
detection, the square-law or intensity scheme gives rise to statistics that are more transparent to physical insight.
Moreover, an analysis of the intensity-correlation structure indicates that the contributions to the total echo signal
from the diffuse scatter and from the steady and variable components of coherent scatter can still be separated and
used for tissue characterization. However, this analysis is not system independent. Finally, the statistical methods
of this paper may be applied directly to envelope signals in nuclear-magnetic-resonance imaging because of the

Wagner et al.

approximate equivalence of second-order statistics for magnitude and intensity.

INTRODUCTION

Radio-frequency (rf) signals are the source of information in
two major medical imaging modalities today, namely, ultra-
sonic imaging and magnetic resonance imaging (MRI).
These signals have a random character that is due, in the
first case, to the coherent interference at the detector of the
backscattered signals from a diffuse collection of scatterers
and, in the second case, to thermal currents in the body and
the detection system. The details of the random character
depend on whether one uses the complex rf signal, referred
to here as the complex amplitude, or the envelope of
this signal, referred to here as the magnitude signal.
In the latter case one might alternatively use the square
of the magnitude signal, referred to as the intensity
signal.

The random signals may include a component with some
long-range organization or order. In MRI this might be the
presence of either a steady or an amplitude-modulated sig-
nal, and in ultrasound the presence of a regular scattering
structure. Separation of the ordered from the random com-
ponents is desirable in MRI to improve signal detectablity,
and in ultrasound to distinguish features of the scattering
for the purpose of tissue characterization or discrimination.

In principle, this separation task is more straightforward
when the rf signal is analyzed directly, and, in fact, tissue
discrimination using this approach has been quite successful
in the eye and in the liver.!-” However, it is often more
convenient or economical to work with the envelope-detect-
ed signal that may be obtained and stored with less sampling
and memory. Also, it is the envelope-detected signal that is
displayed in the conventional ultrasound B-scan image.
Tissue discrimination using only envelope signals has also
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been successful in the liver.1? The purpose of the present
paper is to examine the connection between the rf and enve-
lope signals and the underlying tissue structure. In the
course of this examination we shall uncover the stronger
points of each approach.

The probability-density functions (pdf’s) required to
characterize the first-order properties of these random phe-
nomena include the circular complex Gaussian pdf, the Ray-
leigh and Rician pdf’s, and their generalizations to the case
of organized structure. There is already a wealth of litera-
ture on these first-order properties, but the material avail-
able on second-order properties is sparse, and the mathe-
matics is generally not transparent to physical insight; also,
in one important case reviewed in Appendix A, the previous-
ly published mathematics is typographically inaccurate. In
this paper we concentrate on these second-order properties,
beginning with the rf analysis and ending with the intensity
analysis. Although our examples will be drawn entirely
from ultrasonic imaging, the formalism contained here is
immediately applicable to MRI.

COMPLEX GAUSSIAN STATISTICS

The random character of ultrasonic images of human tissue
results from the phase-sensitive detection of the scatter
from many sites randomly distributed in the resolution cell
of the transducer, together with the scanning of this cell
through the tissue. The process of interference can be de-
scribed geometrically as a random walk of component pha-
sors. When the number of scatterers within one resolution
cell is large, and the phases of the scattered waves are inde-
pendent and distributed uniformly betwen 0 and 2w, the
phasor or complex field amplitude ., which is the result of
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Fig. 1. Schematic representation of the noise cloud that results
from the random walk in the complex plane (from Goodman!?).
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Fig. 2. Schematic representation of the noise cloud that results
from a constant phasor (or coherent signal) plus a random walk in
the complex plane (from Goodman!?).

the random walk, has real and imaginary components a, and
a; whose joint pdf in the narrow-band approximation is!!

pla,, a;) = (270®) " exp[—(a,? + a;%)/247]. (1)

This is simply the product of two independent Gaussian
density functions with zero mean and variance ¢2 and is
referred to as a circular Gaussian pdf. Figure 1 gives a
schematic representation of this pdf as a noise cloud,!? cen-
tered on the origin of the complex coordinates. The vari-
ance o depends on the mean-square scattering amplitude of
the particles in the scattering medium.!! The resultant
mean (absolute) square of the complex amplitude of Eq. (1)
is easily seen to be

(aa*) =(a’+a?) =22=1, (2)

and will be referred to as the mean diffuse intensity I;. We
shall consider this parameter to be the average value over the
bandwidth and to be constant with position.

If we add a constant amplitude signal to this random
accumulation, designated by a constant phasor of magnitude
yI; and fixed phase (which can be taken to be 0 deg without
loss of generality), this simply changes the mean value of the
real part of the circular Gaussian statistics. This could
represent a coherent signal in MRI or coherent scattering in
ultrasound. The noise cloud of Fig. 1 is then just shifted
along the real axis, as shown in Fig. 2. The joint pdf then
becomes

pla, @) = (2re®) " expl~[(a, — JT)* + a?/263.  (3)
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The squared magnitude of the constant phasor of Eq. (3), I,
is referred to as the specular intensity and will be allowed to
vary with position in our examples below. Since this specu-
lar contribution is distributed over a region of the tissue or
source of scattering, that is, it is not localized (as, e.g., at the
surface of a mirror), we refer to it as “distributed speculari-
ty.” Examples will be given presently. A fundamental pa-
rameter in our analysis will be the ratio of the average specu-
lar intensity I, to the diffuse intensity Iy, i.e., r = I/,
Other authors!® have used the parameter & = I /o for the
analysis of envelope or magnitude signals. The relationship
between r and & is then r = k2/2.

SECOND-ORDER STATISTICS FOR COMPLEX
AMPLITUDE

We consider first a complex random process, e.g., a rf wave or
ascattered pressure field. We are interested in the correla-
tion between its values at two positions in the field, x; and
Xg. At position x;, we write

a(xy) = a;, +iay; (4)

The random process is taken to have zero mean and to have
the variance of the real part equal to that of the imaginary
part, o2, as in the complex Gaussian case introduced above.
The statistical character at position x; is the same but may
be correlated with that at position x;. At x; we write

a(x,) = ay, + iay;:. (5)

The autocorrelation of this process, e.g., the wave or field
values, is given by

R (x), x5) = (a(x)a*(x,)). (6).

If this field is simply read out or scanned by an imaging
process with a point-spread function (psf) k(x), the resulting
complex signal A is related to the original field a by!415

A(x) = h(x) * a(x), (M

where = is the convolution operator (see, e.g., Refs. 14 and
15). The autocorrelation of the resulting process A is then
given directly by

R 4(Ax) = h(—Ax) * R (Ax) * h*(Ax), (8)

where Ax = x5 — Xx,.

A commonly realized example is the acoustic scattering
from a random collection of N point targets in a resolution
cell or volume. Then

N
a(xy) = z |a;|e‘¢‘
i=1
and
N .
alxy) = laje™, ©
j=1

where | a;| is the magnitude of the scattering amplitude of the
ith target and there is correlation neither among the target
phases ¢; in the first scattering volume nor among those in
the second scattering volume ¢; nor between the scattering
volumes. Then the autocorrelation of « is
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N N
(axpa*(x)) = > " (lallal explits; - ¢)])

i=1 j=1
= N{la|*)s(ax)
= I,5(Ax), (10)

since all phases average out unless they match up identical-
ly. Here 6(Ax) is the Dirac delta function.!* This condition
is referred to as diffuse scattering, and the total diffuse
intensity is NV times as great as the average scattering inten-
sity per particle. We shall consider these average properties
to be independent of position. The autocorrelation of the
readout or scanned process is then simply

R 4(Ax) = I,[h(—Ax) * h*(Ax)]. (11)

In practice, there is always a finite readout, as in this equa-
tion, and the infinite variance implied by Eq. (10) is not
encountered.

In the frequency domain conjugate to x—in the conjugate
coordinate k—Eq. (8) becomes

W (k) = |HK)PW (k). (12)

W, and W, are the power spectra for the respective process-
es, and

FT
H(k) = h(Ax) (13)

are a Fourier-transform (FT) pair. For the uncorrelated
limit,

W, (k) =1,
W (k) = IIH(K)I. (14)

The power spectral relationships are the well-known fre-
quency-domain representations of the autocorrelation func-
tion relationships!4!5 involving the transforms

FT
W_g (k) = Rx(ﬂx);

W, (k) = R (Ax),
[H(k)|? = h(—Ax) * h*(Ax). (15)

They indicate that the power spectrum of the rf signal is
given by the squared modulus of the system frequency re-
sponse weighted by a factor proportional to the incoherent
backscattered intensity Iy in that channel. The latter, in
turn, is given by the product of the number of scatterers and
the average scattering intensity per particle [Eq. (10)].

We now consider a physical realization of ultrasound pulse
echo or backscatter imaging, where the process a is a more
general scattering mechanism to be characterized below and
the psf is due to the readout mechanisms of the pulse used to
probe the scatterers and the diffraction pattern of the beam.
In the far field, to a good approximation, the psf can be
separated into the transverse component h; due to diffrac-
tion and the range component h, due to the pulse:

h(x| kD) = hc(x; Ys kﬂ)hr(zv ko])
All psf’s are functions of temporal frequency through the

wave number ko = 2r/A\g = wp/c, where )\q is the correspond-
ing wavelength, wp is the corresponding angular frequency,
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and ¢ is the velocity of sound in the medium. Since ultra-
sonic images are generally scans in the x—z plane, the diffrac-
tion pattern may be considered to be effectively one dimen-
sionall5;

hy(x,y, ko) = ' y(x, ky).
In the range direction the psf is the pulse given by
h,(z, ky) = A exp(—2%/24,%) explikyz), 17

that is, a carrier at a frequency corresponding to kg and an
overall Gaussian envelope characterized by rms radius oy.
In the frequency domain

FT
H,(k) = h,(z, ko),
H,(k) = expl—a,2(k — ko)¥/2]. (18)

The process « is described by the coupling of an incoming
wave and a source of acoustic scattering, the coupling being
governed by the acoustic wave equation for inhomogeneous
media.?®18 We assume that we have a continuous medium
or matrix with embedded discrete scatterers, i.e., changes in
acoustic impedance (pc) or compressibility «. Since the
contribution of changes in density p to the scattering is
small,!” we have the following relations between the descrip-
tors of the scattering!®:

xk=1/pc?
pe = 1/kec )
Alpe)/pe = —Alke)/ke

Ap — 0 ={ —Ax/k = 2Ac/c = ~,.

(19)

The fractional change in compressibility is referred to as v,.
The description of the coupling of the incident wave and the
scattering targets depends on which of the following three
conditions prevails:

(1) Independent Scatterers Whose Structure Is on a
Scale Smaller Than a Wavelength. At the focal plane of
the source, an incident wave directed along the z direction—
effectively a plane wave in the commonly encountered weak-
focusing geometry—senses the change in compressibility «
or impedance pc at the scattering site. The scattering site
removes energy from the plane wave and reradiates spheri-
cal waves whose amplitude is a function of frequency and the
size of the scatterer. For the weak-scattering condition;s
the Born approximation is yalid,'® and the amplitude ®,(2k)
for scattering waves of wave number k in the backward
direction is

®,(2k) = 272", (2k),

R0 = o e expl-2iko ), (20)

where I',(2k) is the FT in the variable 2k of the distribution
of fluctuation in compressibility y,. The variable 2k is the

difference in wave vector between incoming and backscat-
tered waves. Assuming spherical symmetry,!6

b,(%k) = b J " dry, () sin@kr)P (k). (1)
0

In the small-scatterer or long-wavelength limit this becomes



Wagner et al.

B,(2k) = B,(2K) = %k"’af-}‘, Skag <1,  (22)

where ag is the radius of the scatterer and v, is the average
value of v, over the scatterer. The differential scattering
cross section in the backward direction is just

dog = |2 = %k*au‘*&f = (lal?®, (23)

and this limit is referred to as Rayleigh scattering.

The function T is often referred to as the form factor in
studies of scattering phenomena.!® The negative of the sec-
ond derivative of the form factor at the origin (the inverse of
the radius of curvature) is equal to the rms radius of the
scattering distribution v,. That is,

1 k—-0

—V 2T (2k) = —— j dxy, (x)(x - x) exp(—2ik-x) —> (Ix[?).
(2m)?

(24)

Therefore, if only the effect of size or scale—as opposed to
structure—is important, then it is reasonable to model T, as
any originally zero-slope function with the correct curvature
corresponding to the characteristic or rms radius. That is,
any simple low-pass filter function will be adequate. Gauss-
ian and other elementary functions have been used,-7 and
the details are unimportant until 2kay ~ 1, where a more
elaborate understanding and description are required.
More on this presently.
The autocorrelation of the scattering process is

R-,(xlxz) = (7, (X1)7,(x5)). (25)

By Eq. (8), then, the autocorrelation of the scanned pulse-
echo process becomes

R (x;x,) = A exp(—A2%/20,7) exp(ikyA2)

» (‘Tx(xl}T;(XZ))
* exp(—A2%/20%) exp(—ikyAz). (26)

The transverse or diffraction-pattern psf may be absorbed
into the normalization A in this small-scatterer regime and
be calibrated out by measurement of a signal scattered from
a perfectly reflecting surface®519 or a strong point reflector.
In these applications there is no scanning in the transverse
or diffraction direction. For imaging applications in which
transverse scanning is used, or for the large-scatterer case,
the diffraction psf must be included.

The expected measured power spectrum corresponding to
Eq. (26) is

Wy (k) = doyTo2(2k) | H, (%)?
= (la*)|H,()I? 27

and is proportional to the product of k%ag8, the system re-
sponse |H,(k)|2, and a normalized form factor

Tp2(2k) = (9/167%a,%y,%)
X [ dx, [ dxo( 7y, (x1)7,(%,)) exp(—2ik - Ax), (28)
again in the variable 2k corresponding to the forward-and-

back trip of the probing waves in backscatter measurements.
In practice, this expression [Eq. (27)] is further simplified
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by measuring |H,(k)[2, here modeled or approximated by
expressions (18) and dividing it out from the measured spec-
trum, thus leaving the simple expression degl'yZ. This
means that the form factor for scatterers with small-scale
structure can be deduced by dividing out k* from the nor-
malized rf power spectra. When there is acoustic attenua-
tion, an additional factor must be considered. This will be
included in the examples to be given presently.

(2) Structure on a Scale Larger Than a Wavelength. A
realization of this is a collection of small targets that are
organized into a quasi-periodic structure on a scale greater
than the wavelength, i.e., about one millimeter or greater. A
number of investigators have reported observing such struc-
ture in abdominal organ tissue.2’-23 The pulse in diagnostic
ultrasound is usually about three wavelengths long—about
1-2 mm. This means that these regular structures are par-
tially resolved and therefore produce a line spectrum corre-
sponding to this spacing (scaled by ¢/2) that will be directly
superimposed upon the measured diffuse-scatterer rf power
spectrum. It may be difficult to detect in the low-frequency
region (just below 1 MHz in the case of several abdominal
organs) but can stand out after some signal processing, as we
indicate later. A near-zero-frequency component is also
possible since the pulse can embrace several scatterers and
return a coherent or distributed specular scatter. We refer
to this as the unresolvable component, which—being a spec-
ular scatter—will vary more slowly with frequency and have
significant power only at low frequencies.’

If the structure is due to large-scale scattering targets, the
resolvable component is a more complex function of k. For
ka >> 1, the scattered intensity is mirrorlike or specular and
approximately independent of k. Examples of large scatter-
ing targets in ultrasound imaging are major blood vessels
and organ surfaces. In our analysis such structures are
eliminated by preprocessing the data.?

(8) Structure on a Scale Comparable with a Wave-
length. In this regime there are just a few scatterers per
resolution cell, and both the physics and the statistics are
much less transparent to a straightforward analysis. Since
there are many common examples of structure from catego-
ries (1) and (2) in the body, most work has concentrated on
these regimes, and category (3) has been neglected. Also,
for most applications in this category the statistics are non-
Gaussian (the few-scatterer case). While we have been de-
veloping the formalism for this case, we have attempted to
screen out this category in the second-order statistics of
intensity, as mentioned below. Again, for the case of isolat-
ed blood vessels and other specular scatterers, we have used
a straightforward cross-correlation or matched-filter tech-
nique to identify such structures and eliminate them from
the data before further analysis.23

EXAMPLES OF RADIO-FREQUENCY SPECTRA

In Fig. 3 we include a set of examples of expected power
spectra for category (1) and category (2) scales of structure
in the ultrasound rf case. In Fig. 3(a) we show typical
Gaussian form factors for particle diameters 20-500 um (4
standard deviations), the k* weighting factor, and a Gauss-
ian probing pulse with a 3-MHz center frequency. In Fig.
3(b) the squared normalized form factor I';? (2k) has been
multiplied by the k%ay® weighting to give theoretical rf power
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Fig. 3. (a) Rayleigh backscattered intensity as a function of frequency (dotted curve, f*); normalized squared form factors for Gaussian shapes
with diameters (four standard deviations) shown (solid curve); typical 3-MHz pulse with FWHM equal to 2 MHz (dashed curve). (b) Product

of f* and squared form factors from (a); vertical arrows indicate location of specular scattering strength. (c) Product of functions from (b) and
attenuation factor (see text). (d) Product of functions from (¢) and pulse from (a).

spectra from such fuzzy spherical scatterers. Figure3(c)isa
modification of the spectra in Fig. 3(b) to include attenua-
tion. Typical values for liver tissue have been used: o =
0.5 dB/cm MHz and a depth z = 8 cm. Finally, Fig. 3(d)
shows the expected measured rf power spectra in this model
using a 3-MHz Gaussian pulse with a 2-MHz FWHM band-
width. Resolvable semiperiodic structure of dimension 1.15
mm, such as that found for normal liver,2021.23 will be seen as
superimposed narrow-band spectra. The resolvable and
nonresolvable components are indicated by arrows in Figs.
3(b)-3(d).

This model, in which scattering is described as the product
of dop and the square of a simple form factor, has been
formulated for small kay. In Figs. 4(a) and 4(b) we compare
this simple treatment with an exact scattering theory from
Faran?! to see when the approximation breaks down. The
solid curve is the simple Gaussian model, the dotted line is

9 10
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the simple hard-sphere model, and the dashed line is the
theory of Faran. The last-named model was calculated for a
scattering phantom composed of spherical glass targets em-
bedded in gelatin. Relevant physical properties of the scat-
terers and the surrounding gelatin are, respectively, longitu-
dinal speed of sound, 5571.9 and 1540.0 m/sec; densities, 2.38
and 1.00 g/em?; and Poisson’s ratio, 0.21.25 This example
clearly pushes the limits of the simple model because of the
density difference.

Figure 4(a) shows that the Gaussian and spherical models
are good approximations to the exact calculation for values
of kag < 1. Figure 4(b) illustrates the same point for the
Gaussian model and target sizes of interest in the diagnostic
ultrasound frequency range. For 100-um particles the mod-
el works well up to 6 MHz, where the disagreement with the
exact calculationis 2dB. The agreement is quite good, even
though v, and v, are relatively large: v, = 0.97 and v, =
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Fig.4. (a) Solid curve, f* weighted by squared Gaussian form factor;
dotted curve, f* weighted by squared hard-sphere form factor;
dashed curve, expected backscattered intensity for scattering from
glass spheres in gelatin, using the exact method of calculation de-
rived by Faran?! (see text for parameters). Allresults are plotted as
a function of the product of wave number k and particle radius a.
(b) Solid curves, same as (a) with particle diameter as a parameter;
dashed curves, same as (a) with particle diameter as a parameter.

0.68. The resonances in the calculated curve will not be
present in soft-tissue scattering.?®

This has been a summary outline of the simple model that
has been evolving for ultrasound rf analysis over the past 5-
10 years. Evidence for the applicability of the model has
been offerred by Lizzi et al.,’ Feleppa et al.,” Sommer et
al.,?% Fellingham and Sommer,?! and Waag,® among others.
It has been speculated that difficulties in applying the model
are due to isolated large scatterers with the structure dis-
cussed in class (3) above, namely, the intermediate-size do-
main in the order of a few wavelengths.2?” However, this is
just the kind of structure that can be detected and deleted
from the signal by matched filtering,?® leaving the possibility
that class (1) (diffuse scatterers) and class (2) (resolvable
and nonresolvable distributed specular scattering) may lead
to unambiguous tissue signatures. This does not rule out
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the possibility that class (3) scatterers may also be calibrated
and used as a tissue signature. In fact, we shall see in the
next section that the presence of just a few scatterers per
resolution cell—the class (3) regime—manifests itself
through non-Gaussian intensity statistics. The latter raises
a flag that may itself be used as a tissue signature.

In the second half of this paper, then, we show how the rf
signals that we have been discussing get mixed together
when the envelope or intensity signal is used and to what
extent the mixing may be undone.

SECOND-ORDER STATISTICS OF INTENSITY

The autocovariance of a process « is defined by analogy with
the variance as

C(Ax) = R _(Ax) — [{a)I?, (29)

where (a)? is the square of the mean of the process. The
normalized autocovariance of a complex field is referred to
as the complex coherence factor p(Ax)111%

p(Ax) = C,(Ax)/C(0). (30)

The autocorrelation of detected signal intensities or their
magnitudes can be expressed in terms of p. In the magni-
tude case the results are found as generalized hypergeomet-
ric functions in p. This treatment is relegated to Appendix
A since it is not so transparent to intuition as is the intensity
case and is not so directly useful. In the intensity case the
results are found to be simple algebraic expressions in p,
which—when reduced to autocovariance functions and nor-
malized to their value at the origin—are good approxima-
tions to the results for magnitude. We shall comment fur-
ther on this point after deriving the autocorrelation function
for intensities.

The autocorrelation of intensities for the purely random
case—e.g., the diffusely scattering case—can be derived
from the autocorrelation of the rf signals by using straight-
forward algebra and a well-known theorem for higher-order
statistics of Gaussian signals. We shall first derive the well-
known result for the diffuse case and expand the treatment
to include specular scatter or long-range order. We seek the
autocorrelation (I1I5), where

L=al+a;2 L=a’+a,? (I)=2d (31)

So
(L) = ((a,? + a;D)ay® + ay?). (32)

This can be simplified by using the moment theorem for
jointly normal, zero-mean, Gaussian random variables
Xl,X2X3X4 (Ref. 28)

(X1 X X3X,) = (X1 Xo) (X3Xy)

+ (X XN XX ,) + (X X ) (X Xp) (33)
since the real and imaginary parts of @ are zero-mean Gauss-
ian random variables. The variances of «a;, and ay; were
given above as (a;,2) = ¢% and {(a;;?) = o2 Assuming that
the real and imaginary parts of « are uncorrelated,

(ayay) = (ayay) =0,

we may write
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(I,1,) = 2(41r2) (ﬂ-z;a) + 4{41ra2r>2 * 2(4‘1.‘2><azr2)
(34)

and use the symmetry of p,

= (4102* YII) = ((ajas) + (all-azj))/?az
o <alra2r)!02 = (auagi}fﬁ. {35)

to obtain simply

(LL) = (26%*(1 + p?),
=121+ p?). (36)

(When there are phase errors it cannot be assumed that p is
real as we have done here. In that case the result is given in
terms of the squared magnitude of p. cf. also Appendix A.)
We proceed next to the case of diffuse scattering with
intensity 4, in the presence of a constant level of distributed
specular scattering I, which is analogous to a carrier with
additive thermal noise in the rf case. This may also be the
steady, dc, or unresolved average component of the more
general case to be considered presently. Then, as above,

a;=a;,+R+iay,
ay=a, + R +ia,, (37)

where 2 = (I,)Y2. We then have for the autocorrelation
function

(IL1,) = {(a2+ 2a,R + R (a,® + 2a4, R + #?)), (38)
where

a’=a,’+a,’

a?=ay,?+ a’. (39)
The first terms in each set of parentheses generate the Ray-
leigh- or diffuse-scattering autocorrelation function as just
given in Eq. (36). The remaining terms are simple to aver-
age since 7 is constant. We get the final result by using the
properties of the a’s that are distributed according to the
complex Gaussian pdf given above together with

(atzazr) =2 (ﬂlﬂeg) =0, (40)
which follows from the random phase of the a’s, obtaining
(Id,) = I?4(1 + p%) + 2I' ]I, + Isg + 20 I p. (41)

We shall use I to refer to the measured value of the diffuse-
ly scattered intensity. It is the area under the power spec-
trum, considered as the average value over the band, I,
weighted and summed over the pulse response [Eqgs. (14)]:

7= ] ARIJH®)P. (42)

We show examples of the autocorrelation function of Eq.
(41) in Fig. 5 for various values of the ratio r = I,/I’g, on an
absolute scale, and in Fig. 6 on a scale normalized to unity
after removing the squared mean, i.e., the conventional cor-
relation function. We have taken p to be the coherence
factor corresponding to a Gaussian psf, as in Eq. (17) above
(envelope only),

p = (wa )2 exp(—2%/20,%) * exp(—2%/20,2). (43)
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The squared mean-intensity level is the value of this func-
tion [Eq. (41)] at infinity, where p = 0, and the mean-square
level is the value at the origin, where p = 1,

D=1’ +2lJ +12= Iy +1)%,
() =21 + 4I' I, + 12, (44)
from which the variance is seen to be
(¥ — (=12 + 20 ], = og® (45)

in agreement with Middleton.?? We refer to this as the
Rician variance, o? after Rice,3" who was one of the first to
study this problem (as was North®!). When I, = 0, we
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Fig. 5. Autocorrelation functions for intensity as a function of
distance, in units of the standard deviation of the underlying Gauss-
ian spread function. The curve parameter, from bottom to top, isr
=1,/I'3=0,1,2, 8, 18. The absolute units are determined by the
value of I’y = 2 [cf. Eq. (2)].
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Fig. 6. Normalized autocovariance functions for intensity corre-
sponding to absolute curves of Fig. 5. When the autocovariance
functions for magnitude (derived in Appendix A) are plotted on the
same scale, they are almost indistinguishable from these functions,
except for the case r = 0 in which the greatest difference is between
0.03 and 0.04 (see Ref. 15).
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recover the result for Rayleigh scattering given above. The
Rician variance therefore contains the Rayleigh variance
plus an interaction term that couples the diffuse and specu-
lar scattering. Notice that the total scattered intensity is
the sum of the average diffuse-scattering intensity and the
average specular-scattering intensity. As the ratio r in-
creases, the average total intensity increases faster than its
standard deviation, with the result that the point signal-to-
noise ratio SNRg = (I)/o; > 1, increasing monotonically with
T.

In Appendix A we derive the autocorrelation functions for
the envelope-detected or magnitude signal. The results are
sums of hypergeometric functions and, in general, are not
transparent to intuition. However, when these functions
have their squared mean values subtracted off and the rea-
mining autocovariance portion is normalized to unity at the
origin, the results as a function of r are almost identical to
the results for the intensity signal given in Fig. 6. Forr=10
the greatest difference between the normalized magnitude
and normalized intensity functions is about 0.03-0.04, Asr
increases, this difference decreases. This means that if one
keeps track of the overall normalization, the intensity and
the magnitude autocovariance functions may be used inter-
changeably for most practical purposes.

Finally, if the distributed specular scattering is a function
of position, we may obtain the general case by letting

a; = ay, + Ry +ilay+7,),
ay = Ay + Ry + ilay + 7)), (46)
where (ay,, ;) represents the diffuse scattering, constant

with position, and (R, 7;) the specular scattering, a func-
tion of position. Again, as above, we obtain

(II,) = I’zd(l + 0% + I, + 1)
+ (R + TR+ T D)
+ 2I' jp{ (R Ry + T1 1)) (47)

If we now set position x; = x; + Ax and average the result for
a fixed Ax over position x;, we obtain

(Ix)I(x + Ax)) = I?;(1 + p?) + 2I' I,
+ Jra:l ®’ Isz
+ 2 3p(R, ® Ry + T, @' Tp).  (48)

Here we use the symbol ® for the conventional correlation
operation, and we now adopt the symbol ® to mean that this
operation is averaged over the record length X of the posi-
tion of the x, variable:

L@ I,=XU,0I,=(X)" z I(x),(x; + Ax).
X

(49)

It is the average autocorrelation function that is measured in
practice, and some of its properties are discussed in Ref. 32.

It is straightforward to write Eq. (48) in the frequency
domain. We first separate out the steady or dc contribu-
tions by writing

I =1+ Al,
R=R+AR,
I=7+Ad. (50)

Vol. 4, No. 5/May 1987/J. Opt. Soc. Am. A~ 917

Then we have
I, I, =172+ Al ® Al (51)

If we write
FT
I,® I, = 1% + |AL(MIY/X,

FT
P = p, etc., (52)

where f/ means all f ¢ 0, we obtain for the Fourier-domain
equivalent of Eq. (48)

W = s(HU2, + 2I' 1) + 5(HI 2
+ I, P+ P+ ALY/ X
+ 20, P[R% + 77
+2I' P+ [|AR()IP + 185 () P1/X. (53)

We note that the actual level of the power spectrum of a
sinusoidal component with a fixed reference phase increases
with the record length studied,®® whereas the power spec-
trum of a random phase process is independent of record
length. This ambiguity is removed, however, if the area
under the power spectrum or variance is measured; as the
height of the corresponding line spectrum increases, its
width decreases. We shall see this effect below. These
expressions suggest, then, a method for obtaining a tissue
scattering signature that we present in the next section.

ANALYSIS OF THE INTENSITY VARIANCE

If one were to work only with the first-order statistics of the
intensity signal to estimate the value of r = I,/I’g, without
accounting for the variable part of the ordered or coherent
component, the result would suggest non-Gaussian statis-
tics. This can be seen from the following considerations. In
the non-Gaussian case there are few diffuse scatterers per
resolution cell. When this number is a random variable, one
finds that the variance is greater than the squared mean?*

Var(l) = (I?) — (I)2> (I)*

(non-Gaussian statistics)
(54)

often referred to as enhanced fluctuations. This condition
can be taken as a cue that scattering structure (3) listed
above is present and may serve as a tissue signature. In the
Gaussian case—many scatterers per resolution cell—when
there is no variable component, the inequality is always

Var(l) = I’y + 2I' ]I, = op®
<(I'y+1)*=(I)* (Gaussian statistics), (55)
as indicated above in Egs. (44) and (45). This may be seen
graphically in Fig. 5. The presence of a variable component
will inflate the variance, driving it in the direction of the
inequality described in Eq. (54). If one then attempts to
solve Egs. (44) for I, and I, or, in effect, 7, the result will be
imaginary solutions. This might be interpreted as the few-
scatterer or non-Gaussian case if the variable component is
ignored—as might happen if only first-order statistics are
considered. We next indicate a simple procedure for avoid-
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Fig. 7. Effect of a sinusoidal variation in coherent signal strength
on the noise cloud of Fig. 2 (cf. Goodman!?).

ing this ambiguity through the use of the second-order ex-
pressions given above.

We consider the autocorrelation function and power spec-
trum from a region of tissue with diffuse-scattering intensity
I’y, mean specular intensity I;, and a sinusoidally varying
component of specular intensity to be characterized by its
total contribution to the variance of I,, We label this last
contribution 2,2, The effect on the noise cloud is shown in
Fig. 7. We may deduce the form of the autocorrelation
function from Eq. (48), and this is shown schematically in
the top panel of Fig. 8; the corresponding theoretical power
spectrum is shown in the middle panel of Fig. 8; asample of a
measured intensity power spectrum from a normal liver is
shown in the bottom panel. From three values labeled t, b,
and p that can be read from the autocorrelation function, we
are able to calculate the values of Iy, I, and =,. This
requires calculating the autocorrelation function at Ax = 0,
where p = 1 (i.e., the mean square); at Ax = =, where p = 0
(i.e., the squared mean); and at Ax, where the sinusoidal
structure has been shifted one cycle. In practice, the square of
the measured mean intensity is used rather than a value of b
read from the autocorrelation function. From Eq. (48) we
have, for a sufficiently low-frequency sinusoid with wave-
length greater than the range of p,

t=2I% + 4 + (1%,
p=I%+2r I + (12,
b=y +1)>% (56)
which combine to yield
t—p=I%+2r] = o?
p—bm ([~ m 32
b2=r,+1,. (67

The first and third of these relations combine to give a
simple quadratic for I, (or I’y) and a trivial expression for Iy
(or I;). This procedure may also be illustrated in the fre-
quency domain by using the middle panel of Fig. 8, and we
have found this to be more robust in practice.?3 In this case
the lengths along the autocorrelation ordinate become areas
under portions of the power spectrum. The variance due to
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the structure is stripped from the Rician noise cloud by
fitting the latter with a Gaussian function.2? A typical ex-
ample of the application of this algorithm to measurements
on normal human liver is given in the bottom panel of Fig. 8.

If the structure is not exactly periodic, i.e., if it is irregular,
the above procedure will still properly yield the variance of
this structure. The success of this procedure may, however,
be extremely sensitive to the curve fitting that is used to
strip out the Rician variance from the structured variance.
In practice, it has been found to be essential to preprocess
the intensity image: (1) to remove the low-frequency trends

900 T — T T T T T

800
[0 L
& 700f

600 F

RELATIVE NPS

0.80
SPATIAL FREQUENCY . C©
Fig.8. Top panel, autocorrelation function in intensity for simulat-
ed Rician speckle with single-frequency structured specularity of
period d (other parameters defined in text). Middle panel, corre-
sponding speckle power spectrum showing Gaussian fit to Rician
noise, which integrates to the Rician variance, and peak correspond-
ing to structured specularity, which integrates to var ([;) = 2,
Bottom panel, measured power spectrum for human liver in vivo.
Error bars are +1 standard error. Darkened area is Rician variance.
(After Refs. 22 and 23.)
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from the image and (2) to remove large isolated specular
scatterers such as blood vessels by matched filtering.2? Oth-
erwise the sample heterogeneity leads to an ambiguous in-
terpretation.

As an example of the working of Eq. (53), we consider the
case in which the specular scattering has a steady or dc
component and a single sinusoidal component at frequency
fo. That is, we take J(f) = 0 and

R(f) = (A — fo) + 8(F + fo)] + Agd (D), (58)

where 8(f) is the_Dirac (_:!eltgv fuPction. I_\Iow_. since I; = R2,

we shall require I,(f) = & = &, |T(N)2 = | % RI2, and, for the

decomposition of variance, their integrals over frequency.
First,

R » AP = j FRERE )
=5(NA, %2+ A

+ A AglB(f — fo) + 5(F + fy)]
+ (A/D(f — 2fo) + 8(F + 2], (59)

and so the first required integral over frequency is
x-! J AR « ROE = At + A2A2 + AY4
+24,%4,% + A"/, (60)

where the first three terms are the contribution from f = 0,
the fourth from f = %f,, and the fifth from f = £2f, and we
have used the identity under integration, 8%(f) = X&(f).%
Note that since

I,= (R = A2+ A%/2,

(L2) = (R*) = A + 34,2A,% + 3A,"/8, (61)
and
32= (12 —12=2424,>+ A*/8, (62)
we have
X1 j ARG « ROP =12 +32 (63)
or
x-1 f dfiRL, () = 3.2 (64)

This can be identified with p — b in Egs. (57) above, i.e., the
variance in the structure or the area under the line portions
of the power spectrum.

For the final step we also require |Z(f)|2 and its integral
over frequency. Using the expression from Eq. (58), we find
immediately, as above, that

I dﬂﬁw[z = A02 + Alzilz
=1, (65)

Now, since the integral of a convolution is the product of the
individual integrals

J dxfast)= U dxa)( j dxb), (66)

we obtain for the cross term
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or, J dfP « R (I = 21 1, ©67)

since the integral under P is the value of p at the origin,
unity.

We see from the last two results that, if one takes the
intensity signal to be a tissue signature, with features Iy, 1.,
and Z,, these features can be determined according to the
paradigm just presented and perhaps with less ambiguity
than available in the pure rf signal. However, if one thinks
of the rf signal as the fundamental tissue signature, with
features Ag, A;, and Ig, where I’y is approximately the aver-
age diffuse power in the backscattered rf sampled by the
pulse [see Fig. 3 and Eq. (42)], the intensity signal mixes
together the Ay and the A; contributions to this signature.
Furthermore, the quantities R, 7, Ag, A1 here refer to signals
after the detection stage, i.e., after degradation by the sys-
tem psf or transfer function. Agand A; are degraded differ-
ently by this function, and, since the analysis does not yield
them separately, corrections for the system cannot be ap-
plied unambiguously. The problem is even more difficult in
practice since there may be components present at other
frequencies. Moreover, recalling that [Egs. (11) and (30)]

p = h(—Ax) * h*(Ax)/[h * h*] px=0»
FT
p =P = |H(ﬂ|2 (68)

for the diffuse-scattering case, for example, one sees that the
correction for the system transfer function |H(f)[? is differ-
ent for each term of Eq. (53). One needs to have solved the
decomposition of the variance, as indicated above—but free
of system effects—in order to correct for the system effects:
so0 the best that can be hoped for is an iterative solution to
obtain results that are independent of the system. Finally,
it would be possible to invert Egs (61) to obtain Ag and A, if
one had a calibration or a priori information on the correct
branch of the solution to choose.

The diffuse contribution is separated from the specular
contribution unambiguously in this scheme if the diffuse
scatterers are point scatterers. If they have a nontrivial
form factor, this will narrow the shaded region of Fig. 8 [see
expressions (27) and (68)]. In principle, this bandwidth can
be compared with the bandwidth expected from the calcu-
lated value of r = I,/I’4 and the curves of Fig. 6. The
difference can then be ascribed to the nontrivial form factor.
In general, however, this will be a small effect that, in prac-
tice, will be harder to see in the intensity power spectrum
than in the rf analysis since the system transfer function
enters to four powers in the former and only to two in the
latter [formulas (27), (53), and (68)].

In spite of the limitations to the approach of analyzing the
intensity correlations instead of the rf correlations or power
spectra, the intensity analysis has been shown to yield excel-
lent tissue discrimination in liver scans. It allows for the
separation of the diffuse- from the specular-scattering con-
tributions and yields the period of the regular specular
structure. It might also be calibrated to give a measure of
the diffuse-scatterer form factor, but this remains to be seen.
Since this analysis can be achieved with less sampling and
data storage, it remains an attractive approach.

Finally, we point out that the problem addressed in this



920  J.Opt. Soc. Am. A/Vol. 4, No. 5/May 1987

paper is the analog of many important problems in statisti-
cal optics.!> The approximate equivalence of the magnitude
and the intensity statistics means that the analysis of inten-
sity variance given here is also directly applicable to MRI
when the magnitude is the quantity of interest.

SUMMARY

The fundamental properties of second-order statistical mea-
sures, namely, the autocorrelation function and the signal
power spectrum, have been presented for the case of coher-
ent detection of rf signals. Direct analysis of the rf suggests
the possibility of separating the diffuse-scattering strength
from the distributed specular-scattering strength. Howev-
er, the rf power spectrum as conventionally used does not
directly yield this information.

A principal benefit of rf analysis is the opportunity to
study the backscatter as a function of frequency and thereby
to identify the form factor that characterizes the size of the
diffuse scatterers. An exact calculation indicates that a
simple low-pass function works well as an approximate form
factor for values of kag up to the neighborhood of about 2.

Analysis of the envelope or magnitude of the rf is equiva-
lent, to a good approximation, to analysis of the intensity of
the rf. The latter is preferred for its mathematical simplic-
ity and physical transparency. A straightforward procedure
for separating the specular- from the diffuse-scattering in-
tensities based on second-order statistics was presented.
Any method based on first-order statistics will be biased
toward inferring non-Gaussian statistics, i.e., few scatterers
per resolution cell. The intensity analysis may require cali-
bration techniques, however, to get to the form factor of the
diffuse scatterers and also requires much larger correction
factors than with the rf analysis. It also mixes together

Table 1. Rf Tissue Signature

Scattering Scatterer Particle-Size
Regime Size Signature
. ka <« 1 (small) None/weak
Rayleigh ka ~ 1 (inter- Form factor:
mediate) low-f curvature
Mie (rms size only)
ka > 1 (large) Form factor:

higher frequencies
(size and shape)

Table 2. Intensity Tissue Structure Signature?®

Distribution First-Order Signature First- and Second-Order

Function (Ambiguous) Structure Analysis
Sub-Rayleigh o > (I)2 Non-Gaussian/
few diffuse scatterers
Rayleigh off = (I)? Gaussian/
many diffuse scatterers
Rician o < (I)? Unresolved coherent
component (spacing <
pulse width)
Generalized o > (I)? Resolved coherent
Rician component (spacing >
pulse width)

@ Trends and heterogeneities (e.g., large vessels) must be removed.
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components of the distributed specular-scattering strength
at different frequencies. Nevertheless, the features that
result from intensity autocorrelation analysis have offerred
good to excellent discriminating power in abdominal organ
scans.

The results obtained here are summarized in Tables 1 and
2.

Many analogs of this problem exist in the field of statisti-
cal optics and MRI when magnitude or intensity signals are
detected.

APPENDIX A: GAUSSIAN STATISTICS

When there are a large number of scatterers contributing
magnitude a; and phase ¢; to the resultant field «,

a= Z lale™, (A1)

and the magnitudes and phases of the individual scatterers
are statistically independent of one another and among scat-
terers, then the field has real and imaginary parts a,, ; that
are distributed according to circular Gaussian statistics

pola, a) = (27a?) ™" exp[—(a,? + a;%)/26%] (A2)

by the central limit theorem.!! We shall write p; whenever
we refer to a pdf that has a one-dimensional argument and p
when referring to a pdf that has a two-dimensional argu-
ment. The two-dimensional Gaussian function is simply
the product of two independent one-dimensional Gaussian
pdf’s with zero mean and variance ¢2. The laws of conserva-
tion of probability then yield a two-dimensional pdf in mag-
nitude V = (a,? + a;2)!/2 and phase ¢, which when integrated
over ¥ yields the one-dimensional pdf

p1(V) = (V/eDexp(=V?*24%) V=0
=0 otherwise. (A3)

This is referred to as the Rayleigh distribution. Similarly,
for the intensity I = V2, the pdf

p(D) = (26%) lexp(=1/26%) I=0
=0 otherwise (A4)

isobtained. Thisis the exponential or xo2 pdf. The param-
eter o2, written often as ¢ = o2 in the papers by Middle-
ton,2%3 depends on the mean-square magnitude or mean
intensity of the scattering strength of the particles in the
scattering medium.!!

The second-order statistics will require the joint pdf at
two positions xy, X, in the field. We can construct this as a
four-dimensional Gaussian pdf in the variable a = (ay,, a1,
asy, agi):

exp[—h(a'K, " a)]

P = oI 2 @R
if we have the covariance matrix Ky. When the power spec-
trum of the underlying process is symmetric about its center
frequency, the covariance matrix K; can be written as

10 p0O
=QUIUD‘
KO"pom’

0p 01

det K, = [|IK,|l = 81 = o2 (A6)
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(Unsymmetric spectra generate additional off-diagonal con-
tributions,2? but we have not detected these in experi-
ments.!®) Thus the real and imaginary parts remain inde-
pendent normal processes but are individually correlated
according to the complex coherence factor p:

(aay®) _ (ayas) _ (aiay;) .

(1112)112 0103 0109

p (AT)
The first equality is the definition of p, and the remaining
equalities hold under the assumption of symmetry between
the real and imaginary parts.

As above, when this expression for p is written in terms of
magnitudes and phase and integrated over phase, the joint
pdf in magnitudes becomes

ViVe 2 2 2
po(Vy, Vo) = m exp[—(V,* + V,)/2¢(1 — p%))
X In(pV, Vo/l1 = p%)), (A8)

where V; = (a2 + @22 and I, is the modified Bessel
function of the first kind, zeroth order.

The autocorrelation function that arises in the analysis of
physical systems is the joint second moment of the second-
order pdf. That is,

R,(Ax) = (V,"Vy) = [ AV, AV, Vi1V py(Vy V),
0

(A9)

where Ax = xp — xy; in the magnitude case v = 1, and in the
intensity case v = 2.

The integration may be carried out, using pa(V3, V) of Eq.
(A8), by expanding the Bessel function, as indicated by Mid-
dleton,?® with the result

(L= pz}”zFl(g + 1,5 +11; pz)
(VPVy) = (2.,&)"1‘2(’-2’ + 1) or

fl(—g, %v: .oz)
(A10)

The hypergeometric functions »F; are defined according to
common convention (see, e.g., Middleton®® and Abramowitz
and Stegun37), and the alternative results are a consequence
of Kummer’s theorem.36:37 For the intensity case v = 2, the
hypergeometric series terminates, giving the simple result

(V2V,2) = (L)) = @)L+ pP), (A11)

which is obtained more directly in the text by using the
Gaussian moment theorem.

We next allow for the presence of a coherent background
signal that adds to the random fluctuations of the Gaussian-
distributed components, That is, we consider there to be a
constant level of spatially distributed specular scattering I,
= R2 added to the previous constant level of diffuse scatter-
ing. This simply moves the origin of the circular Gaussian
statistics of Eq. (A2):

pola,, @;) = (2x0®) " expl—[(a, — R)* + a]/24%. (A12)

The joint pdf in magnitude can now be found by using the
multidimensional Gaussian and integrating over angles?®
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py(V1V) = exp[—(V;* + V,)/2¢(1 — p*)]

1V
V21 = p%)
X exp[—R%/2¢(1 + p)]
= pV1V2
X I|—
2, n "’[u& - p?-)]

m=0

RV, RV, ]
I s A
”"‘Lb(up)] "‘[wu-rp) ()

where ¢ = 1, ¢, = 2, m > 1, and all orders, m, of modified
Bessel functions of the first kind are required. This reduces
to Eq. (A8) when & — 0 since I5(0) = 1and [,,(0) =0, m > 1.

The integration required for the autocorrelation function
[Eq. (A9)] is somewhat more involved than for the 7 = 0
case. Several routes have been indicated by Middleton®;
we have used the direct power-series expansion of the Bessel
functions and termwise integration to obtain

R,(Ax) = (VVy") = (29)’(1 — p?)"*
X exp[—R2p/Y(1 + p)]

= € Lmip\™ 5
xmz_,u(m!J‘*(1+9) P

2 T (m+n+1+%)

nl(n + m)!

n=0

p -p =P
X 1Fll:—n —fym+1; Ll-l:— ) (A14)

where p = %2/2¢. The exponential factor represents a cor-
rection to the result given by Middleton.?® When R = 0,
only the m = 0 term will contribute, the confluent hypergeo-
metric functions 1 F, reduce to unity, the sum over n can be
identified as a hypergeometric function, and the first form of
Eq. (A10) is recovered.
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