Syllabus: Robot Dynamics and Control ME 446 / ECE 489 / SE 422 Spring 2021

Course Summary and learning objectives:

This course is intended for seniors and first year graduate students from a wide variety of engineering disciplines. We will emphasize the basics of motion and force control mostly for serial robotic manipulators. Transformations from task space to joint space will allow joint level control. The study of forward and inverse kinematics, along with differential kinematics will provide a foundation for designing robots and their controllers. We will examine robots operating in free spaces as well as in contact with environments. Advanced topics will look at the dynamics and control of other underactuated and mobile robotic systems. It is assumed the students have a basic knowledge of rigid-body dynamics and linear control theory, including feedback and feedforward control. This is a hands-on course multiple lab sections. Students are expected to study independently and work on their projects outside of class. It is very helpful if students have already taken Introduction to Robotics (ME445/ECE470/AE482).

Course webpages

Lecture: Compass2g Lab: <u>http://coecsl.ece.illinois.edu/ME446/</u>

Instructors:

Lecture: Joao Ramos <u>ilramos@illinois.edu</u> – Office hours: TBD @ 163 CAB Lab: Dan Block <u>d-block@illinois.edu</u> – Office hours: Arrange as needed

Teaching Assistants:

Yanran Ding <u>yding35@illinois.edu</u> – Office hours: TBD @ TBD Open lab office hours:

Lecture and lab hours:

Lecture: Tuesdays and Thursdays 9:30-10:50am @ at: Lab Section 1: Mondays 2-5pm @ room 3071 ECE Building Lab Section 2: Wednesdays 11-2pm @ room 3071 ECE Building Lab Section 3: Fridays 10am-1pm @ room 3071 ECE Building

Text book:

Robot Modeling and Control - Spong, Hutchinson & Vidyasagar – Wiley Other suggested: <u>Modern Robotics: Mechanics, Planning, and Control</u> – Lynch and Park, 2017

Grading:

Homework: 50% Lab participation and reports: 30% Final Project: 20%

	Course schedule:					
Week	Class	Day	Lecture topics	Lab topics	Comments	
1	1	Jan 26	Class intro Robot examples	-		
		Jan 27	-	Lab 1A: Kinematics		
	2	Jan 28	Rigid-body, DoF,	-		
			Rotation and HTMs			
2	3	Feb 02	Forward Kin. (DH par.)	-		
			Inverse Kinematics			
		5 1 00	Workspace			
	4	Feb 03	- Differential kinematics	Lab 1B: Kinematics	HW 1 due	
	4	Feb 04	Jacobian derivation	-		
			Manipulability			
3	5	Feb 09	Lagrange EoM	-		
•	•		Kin. and Pot. energy			
			Inertia tensor			
			Reflected inertia			
		Feb 10	-	Lab 1A: Kinematics	HW 2 due	
	6	Feb 11	Manipulator Equation	-		
			Examples and properties			
			Forward and inverse			
4	7	Fab 1C	dynamics			
4	7	Feb 16	Newton-Euler algorithm Numerical Simulation	-		
			Discrete control and			
			filtering			
		Feb 17	-	Break day	HW 3 due	
					No Lab this week	
					Make up time	
	8	Feb 18	Typical actuators	-		
			DC motor dynamics and			
			limitations Transmission dynamics			
			and friction			
			Force Ellipsoid			
5	9	Feb 23	Joint PD control	-		
			Selecting gains			
			Practical considerations			
		Feb 24	-	Lab 1B: Kinematics	HW 4 due	
					Lab report 1A due	
	10	Feb 25	Joint PID control	-		
			Feedforward control PD control + feedforward			
6	11	Mar 02	Single joint PD demo	-		
			Q&A			
		Mar 03	-	Lab 2A: Joint Control	HW 5 due	
					Lab report 1B due	
	12	Mar 04	Path and trajectory	-		
			generation and planning			
7	13	Mar 09	PD + gravity compensation	-		
			Inverse dynamics control			

		Mar 10	-	Lab 2B: Joint Control	HW 6 due
	14	Mar 11	Multi-joint Control Demo	-	
			Semi-static force control		
8	15	Mar 16	Hybrid systems	-	
			Impact dynamics (IMF)		
			Contact models (soft and		
			hard)		
		Mar 17	-	Lab 2A: Joint Control	HW 7 due
	16	Mar 18	Stiffness and compliance	-	
			Impedance control		
9	-	Mar 23	Hybrid Force/Velocity	-	
			control		
			Adaptive control		
		Mar 24	-	Break day / Lab 2B: Joint	Lab report 2A due,
				Control	Lab 2B will have to
					reschedule Wed lab
			Tusisstemu sutininsticu		this week
10	- 17	Mar 25 Mar 30	Trajectory optimization Optimization-based	-	
10	17		Control	-	
		Mar 31	Control	Lab 3A: Task Control	HW 8 due
			-	Lab SA. Task control	Lab report 2B due
	18	April 01	Actuation and Sensing	-	
11	19	April 06	Design Considerations	-	
		Apr 07	-	Lab 3B: Task Control	Lab report 3A due
	20	Apr 08	Underactuated robots	-	•
12	21	Apr 13	Break day	-	
		Apr 14	-	Break day	Lab report 3B due,
					No Lab this week
					Make up time
	22	Apr 15	Q&A for project	-	
13	23	Apr 20	Floating base	-	
			Legged locomotion		
			Simple models		
		Apr 21	-	Lab 4A: Project workday	HW 9 due
	24	Apr 22	Discuss HW 9	-	
14	25	Apr 27	Other robots (parallel,	-	
			mobile, soft,)		
		Apr 28	-	Lab 4B: Project workday	
4-	26	Apr 29	Semester recap	-	
15	27	May 04	-	Rivel meters in the state	
		May 05	-	Final project demo A	
	20	May 06		Final project demo B	
16	28 29	May 11	- Reading day	-	
10	29	May 11 May 12	neaulig udy	- Make up times	Final reports A due
		ividy 12	-	wake up times	Final reports A due
	30	May 13	Reading day		rinai report b uue
	50	iviay 15	Reduing udy	-	

НW	Homework and lab report conte Homework content	Lab	Laboratory content
ΠVV		1	Laboratory content DSP controller
	-	1	
			Code Composer Studio IDE
			CRS robot arm
1	Coordinate frames	1	Implement FK and IK on CRS
	DH analysis		robot arm
	Calculate HTM's	_	
2	Calculate FK and IK		
	Code for plotting robot position		
	 Convert joint <-> task space trajectory 		
	Manipulability, workspace	-	
3	Calculate Kin and Pot energies	2	Implement velocity and
	Calculate equations of motion	_	integration calculations
4	Simulate the robot on MatLab		online
	 Open-loop sim: gravity, friction, damping 		 Implement joint PD/PID
	 Velocity and integration from real data 		
5	Reflected inertia, force capability	2	 Implement joint PD + FF
	 Actuator pos control w/ voltage and current 		 Implement gravity
	 Motor model on simulation (saturation and inertia) 		compensation
	Simulate point-to-point PD/PID		Implement joint trajectory
6	Simulate gravity compensation		tracking
	 Trajectory generation (filtered step for point-to-point) 		
	 Simulate point-to-point feedforward joint control 		
	 Simulate joint trajectory tracking 		
	Evaluate power consumption		
7	 Inverse dynamics control with joint space tracking 	3	Task space PD/PID/FF
	Compare inverse dynamics control with PD+FF using		Task space impedance
	payload at end-effector		Task space force
8	• Cimulate tech append CC control	-	Straight line trajectory
0	 Simulate task space PD and FF control Simulate task space force control 		tracking
	•		
	Simulate task space impedance control		
9	In simulation:	4	Final project workday
	 position control: point-to-point, sequence of points, and 		
	trajectory. Use laser pointers		
	 impedance control: soft/rigid in different directions 		
	• force control: approach a surface, detect, and press with		
	prescribed force		
10	Bonus challenge problem:	5	Final project demo
	Trajectory optimization		Extra points on demo day:
	Optimization-based controller		Minimize time
	Underactuated robots		Minimize power
	•?		

Homework and lab report contents:

Homework and report evaluation:

- Reports must include:
 - the complete derivations;
 - code utilized;
 - o limitations, difficulties and failures.
 - Nice and informative figures.
- Extra points for creative and innovative ideas.

Useful references for robot dynamics and control:

- Modern Robotics book: <u>http://hades.mech.northwestern.edu/images/7/7f/MR.pdf</u>
- Northwestern robotics: <u>https://www.youtube.com/user/kevinl2145/playlists?view=50&sort=dd&shelf_id=9</u>
- Roy Featherstone's page: <u>http://royfeatherstone.org/</u>
- Rigid-body dynamics algorithms book: <u>https://link.springer.com/book/10.1007%2F978-1-4899-7560-7</u>
- MIT Underactuated robotics notes: <u>http://underactuated.mit.edu/underactuated.html</u>
- MIT Underactuated robotics channel: <u>https://www.youtube.com/channel/UChfUOAhz7ynELF-s_1LPpWg</u>
- Notre-Dame Intro to robotics: <u>http://sites.nd.edu/pwensing/ame-50551-introduction-to-robotics/</u>
- Notre-Dame optimization-based robotics: <u>http://sites.nd.edu/pwensing/ame-60621/</u>
- IHMC robotics channel: <u>https://www.youtube.com/user/humanoidroboticschan/videos</u>
- MATLAB control systems in practice series: <u>https://www.youtube.com/watch?v=ApMz1-MK9IQ&list=PLn8PRpmsu08pFBqgd_6Bi7msgkWFKL33b</u>
- HEBI Robotics IROS 2020 tutorial: <u>https://www.youtube.com/playlist?list=PLYy-ocPrXDOUovtgclU7kgqqlnC1-Nzfr</u>