
CS 426 Lecture 1: Course Overview

University of Illinois at Urbana-Champaign

What is a Compiler?

Compiler ≡ A program that translates code in one language (source code) to code in

another language (target code).

Usually, target code is semantically equivalent to source code, but not always!

Examples

C++ to Sparc assembly

C++ to C (some C++ compilers work this way)

Java to JVM bytecode

High Performance Fortran (HPF: a parallel Fortran language)

to Fortran: a parallelizing compiler

C to C (or any language to itself):

Why? Make code faster, or smaller, or instrument for performance . . .

Lecture 1: Course Overview – p. 1/11

CS 426 Lecture 1: Course Overview

University of Illinois at Urbana-Champaign

Uses of Compiler Technology

Code generation: To translate a program in a high-level language to machine

code for a particular processor

Optimization: Improve program performance for a given target machine

Text formatters: translate TeX to dvi, dvi to postscript, etc.

Interpreters: “on-the-fly” translation of code, e.g., Java, Perl, csh, Postscript

Automatic parallelization or vectorization

Debugging aids: e.g., purify for debugging memory access errors

Performance instrumentation: e.g., -pg option of cc or gcc for profiling

Security: JavaVM uses compiler analysis to prove safety of Java code

Many more cool uses! Power management, code compression, fast

simulation of architectures, transparent fault-tolerance, global distributed

computing, . . .

Key: Ability to extract properties of a program (analysis),

and optionally transform it (synthesis)

Lecture 1: Course Overview – p. 2/11

CS 426 Lecture 1: Course Overview

University of Illinois at Urbana-Champaign

A Code Optimization Example

What machine-independent optimizations are applicable to the following C

example? When are they safe?

1 /* A, B, C are double arrays; X, Y are double scalars; rest are int scalars.

2 int main(int argc, char** argv) {

3 ... /* Declare and initialize variables. */

4 X = ...;

5 N = 1; i = 1;

6 while (i <= 100) {

7 j = i * 4;

8 N = j * N;

9 Y = X * 2.0;

10 A[i] = X * 4.0;

11 B[j] = Y * N;

12 C[j] = N * Y * C[j];

13 i = i + 1;

14 }

15 printArray(B, 400);

16 printArray(C, 400);

17 }

Lecture 1: Course Overview – p. 3/11

CS 426 Lecture 1: Course Overview

University of Illinois at Urbana-Champaign

A Code Optimization Example: Result

1 X = ...

2 N = 1;

3 j = 4; // Induction Variable Substitution (SUBST),

4 // Strength Reduction

5 Y = X * 2.0; // Loop-Invariant Code Motion (LICM)

6 while (j <= 400) { // Linear Function Test Replacement (LFTR)

7 // Dead Code Elimination (DCE) for i * 4

8 N = j * N;

9 // DCE of A, since A not aliased to B or C

10 tmp = Y * N;

11 B[j] = tmp;

12 C[j] = tmp * C[j]; // Common Subexpression Elimination (CSE)

13 j = j + 4; // Induction Variable Substitution,

14 // Strength Reduction

15 }

16 printArray(B, 400);

17 printArray(C, 400);

Lecture 1: Course Overview – p. 4/11

CS 426 Lecture 1: Course Overview

University of Illinois at Urbana-Champaign

General Structure of a Compiler

Lecture 1: Course Overview – p. 5/11

CS 426 Lecture 1: Course Overview

University of Illinois at Urbana-Champaign

Topical Outline

1. The structure of a compiler

2. Intermediate representations

3. Runtime storage management (excluding garbage collection)

4. Intermediate code generation

5. Code Optimization

Peephole optimizations

Control flow graphs and analysis

Static Single Assignment (SSA) form

Introduction to iterative dataflow analysis

SSA and iterative dataflow optimizations

6. Global Register allocation

7. Global Instruction Scheduling (if time permits)

Lecture 1: Course Overview – p. 6/11

CS 426 Lecture 1: Course Overview

University of Illinois at Urbana-Champaign

Programming Projects

An Optimizing Compiler for DECAF using C++

Source Language: DECAF

Object-oriented language similar to Java

But small and very well-defined: syntax and semantics

Target Language: LLVM Virtual Instruction Set

Both intermediate representation and assembly language

Designed for effective language-independent optimization

Project phases

MP1: Scanning and Parsing: DECAF to Abstract Syntax Tree (AST)

MP2: Intermediate code gen., Part 1: AST to LLVM, local expressions only

MP3: Intermediate code gen., Part 2: AST to LLVM, all of DECAF

MP4: Dataflow (SSA) Optimizations: ADCE, LICM

Unit Project (Teams of 2): Write a graph-coloring register allocator for LLVM on X86

Lecture 1: Course Overview – p. 7/11

CS 426 Lecture 1: Course Overview

University of Illinois at Urbana-Champaign

Getting Started on the Programming Projects

1. Login and set up your account on the EWS machines.

2. Print and read the DECAF manual, Chapters 1-11 (through syntax) at

least. The manual is on the class web site under the Project/ link.

3. Download and read the DECAF examples from the Resource section of the

class website. Write a DECAF program to get familiar with the syntax.

4. DON’T download or install LLVM! We will release a reduced version for
your use in this class.

Lecture 1: Course Overview – p. 8/11

CS 426 Lecture 1: Course Overview

University of Illinois at Urbana-Champaign

Getting The Most Out Of Any Class

“Education is what survives when what has been learned
has been forgotten.” –B. F. Skinner, New Scientist, May

21, 1964.

Get the big picture:

Why are we doing this? Why is it important?

Understand the basic principles:

If you know how to apply them, you can work out the details

Learn why things work a certain way:

Automatic vs. manual, elegant vs. ad hoc,

solved problem vs. open

Think about the cost-benefit trade-offs:

Performance vs. correctness, compile-time vs. payoff

Lecture 1: Course Overview – p. 9/11

CS 426 Lecture 1: Course Overview

University of Illinois at Urbana-Champaign

Getting The Most Out Of This Class

“Sir, I can give you an explanation
but not an understanding!”

–British parliamentarian

Do the exercises given in class (more on it later)

Start the assignment the day it’s handed out,

not the day it’s due

“Come” to class.

Lecture 1: Course Overview – p. 10/11

CS 426 Lecture 1: Course Overview

University of Illinois at Urbana-Champaign

Getting Started: Summary

Read the CS 426 Web site — all pages

Register for Piazza (or contact me ASAP if you have concerns)

Log in and set up your EWS account

Download and read the DECAF manual and examples

Write a few simple DECAF programs

Buy/Borrow the text books. Some exercises will be from the Aho... book.

Lecture 1: Course Overview – p. 11/11

	What is a Compiler?
	Uses of Compiler Technology
	A Code Optimization Example
	A Code Optimization Example: Result
	General Structure of a Compiler
	Topical Outline
	Programming Projects
	Getting Started on the Programming Projects
	Getting The Most Out Of Any Class
	Getting The Most Out Of This Class
	Getting Started: Summary

