Instructors: Jessica TerBush, 207 Ceramics, 300-9924, jterbush@illinois.edu

Lecture: 1:00 PM – 1:50 PM Monday & Wednesday, 124 Burrill Hall*

Discussions: 1:00 PM – 1:50 PM Monday & Wednesday, 122 Kiln House*

Office Hours: 1:00 PM – 2:00 PM Tuesday & Thursday, or by appointment

Laboratory: 2:00 PM – 5:00 PM (M-F) – 105-108 SILC

* Only first lecture will be in Burrill Hall. Subsequent lecture/discussion sections will all be in 122 Kiln House.

Course Objectives:

1) To learn the basic skills required to properly use materials science instruments;
2) To learn the principles of materials science and engineering through lab investigation;
3) To learn to organize the lab results into logic, concise and accurate reports.
4) To develop writing and communications skills for effective presentation of technical materials.

Text: Handouts for individual experiments.

Website for course materials: https://compass2g.illinois.edu/

Course Outline:

1. Thermal Stresses and strains (TS) 2 Wk
2. Thermoelectric Energy Conversion (TEC) 2 Wk
3. Differential Scanning Calorimetry (DSC) 2 Wk
4. Adsorption and Humidity (AH) 2 Wk
5. Pyrometry (PY) 2 Wk
6. Phase Equilibria: Optical Microscopy (OM) 2 Wk
Schedule: Fall 2017

Students will be divided into three groups (A, B, or C), and only need to attend the discussions for their group. Group assignments as of [XXX] are listed on last page of syllabus.

<table>
<thead>
<tr>
<th>Week</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>Week</th>
<th>Monday</th>
<th>Wednesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TS1</td>
<td>TEC1</td>
<td>DSC1</td>
<td>8/28 – 9/1</td>
<td>Intro</td>
<td>TS-Disc-A</td>
</tr>
<tr>
<td>2</td>
<td>TS2*</td>
<td>TEC2*</td>
<td>DSC2*</td>
<td>9/4-9/8</td>
<td>Labor Day*</td>
<td>DSC-Disc-C</td>
</tr>
<tr>
<td>3</td>
<td>TEC1</td>
<td>DSC1</td>
<td>TS1</td>
<td>9/11-9/15</td>
<td>TEC-Disc-B</td>
<td>TEC-Disc-A</td>
</tr>
<tr>
<td>4</td>
<td>TEC2</td>
<td>DSC2</td>
<td>TS2</td>
<td>9/18-9/22</td>
<td>DSC-Disc-B</td>
<td>TS-Disc-C</td>
</tr>
<tr>
<td>5</td>
<td>DSC1</td>
<td>TS1</td>
<td>TEC1</td>
<td>9/25-9/29</td>
<td>TEC-Disc-C</td>
<td>TS-Disc-B</td>
</tr>
<tr>
<td>6</td>
<td>DSC2</td>
<td>TS2</td>
<td>TEC2</td>
<td>10/2-10/6</td>
<td>DSC-Disc-A</td>
<td>Tech Writ-A</td>
</tr>
<tr>
<td>7</td>
<td>Break</td>
<td>Break</td>
<td>Break</td>
<td>10/9-10/13</td>
<td>Tech Writ-B</td>
<td>Tech Writ-C</td>
</tr>
<tr>
<td>8</td>
<td>AH1</td>
<td>PY1</td>
<td>OM1</td>
<td>10/16-10/20</td>
<td>AH-Disc-A</td>
<td>PY-Disc-B</td>
</tr>
<tr>
<td>9</td>
<td>AH2</td>
<td>PY2</td>
<td>OM2</td>
<td>10/23-10/27</td>
<td>OM-Disc-C</td>
<td>Present-A</td>
</tr>
<tr>
<td>10</td>
<td>PY1</td>
<td>OM1</td>
<td>AH2</td>
<td>10/30-11/3</td>
<td>OM-Disc-B</td>
<td>AH-Disc-C</td>
</tr>
<tr>
<td>11</td>
<td>PY2</td>
<td>OM2</td>
<td>AH2</td>
<td>11/6-11/10</td>
<td>PY-Disc-A</td>
<td>Present-B</td>
</tr>
<tr>
<td>12</td>
<td>OM1</td>
<td>AH1</td>
<td>PY1</td>
<td>11/13-11/17</td>
<td>PY-Disc-C</td>
<td>OM-Disc-A</td>
</tr>
<tr>
<td>13</td>
<td>Fall Break</td>
<td>Fall Break</td>
<td>Fall Break</td>
<td>11/20-11/24</td>
<td>No Lecture</td>
<td>No Lecture</td>
</tr>
<tr>
<td>14</td>
<td>OM2</td>
<td>AH2</td>
<td>PY2</td>
<td>11/27-12/1</td>
<td>AH-Disc-B</td>
<td>Present-C</td>
</tr>
<tr>
<td>15</td>
<td>Presentation</td>
<td>Presentation</td>
<td>Presentation</td>
<td>12/4-12/8</td>
<td>Presentation</td>
<td>Presentation</td>
</tr>
<tr>
<td>16</td>
<td>Presentation</td>
<td>Presentation</td>
<td>Presentation</td>
<td>12/11-12/13</td>
<td>Presentation</td>
<td>Presentation</td>
</tr>
</tbody>
</table>

*Students in the Monday groups need to join one of the other groups on T-F for the week of Labor Day.

Teaching Assistants:
Joseph Flanagan – jeflana2@illinois.edu
Tooba Shoaib – shoab2@illinois.edu
Jaeuk Sung – jsung12@illinois.edu
Kaitlin Tyler – kityler2@illinois.edu
Yuecheng Zhou – zhou62@illinois.edu

Lab Manager: Nicole Robards nrobards@illinois.edu 204A SILC (4-7498)

SILC: Student Instructional Laboratory Center (*Kiln House*)
Grading Policies and Procedures:

1. Each student will submit 5 individually written reports during the course of the semester and also will make an oral presentation at the end of the semester.
 - 2 of the reports are Formal (Long) reports;
 - 3 are Short reports;
 - One of the long reports will have a rewrite opportunity.

2. Both a hard copy and an electronic version of each lab report are required. The hard copy should be submitted directly to the TA; all pages should be stapled together. The electronic version must be submitted in MSWord or PDF format to the Compass2g course website. Please be sure to agree to SafeAssign when submitting online.

3. The reports are due exactly at 2:00 PM in the lab, one week after the experiment is finished. Any excuses must be presented to the instructor in writing before the due date of the report, and only then will the excuse be considered.

4. All unexcused late reports will be penalized. Typical penalty is 25% deduction for reports submitted within 24 hours of deadline, but may be higher for reports submitted after this.

5. Each report will be graded using a standard checklist for a total of 100 points.
 - 30% of which is allocated to the writing (organization, format, grammar, spelling, sentence construction, style and illustration).
 - 70% is allocated to the technical content (concepts, data analysis, interpretation and understanding).

6. Each student is required to maintain a lab notebook. The notebook must be signed and dated by the TA at the end of each lab to indicate that the student has completed the lab. The student then needs to scan the signed page and submit it to Compass to receive the credit for completing the lab. Completing all 6 labs will add 20% toward the final grade; however, missing one lab will result in an incomplete grade.

7. Everyone is required to make a 15-minute presentation on the Pyrometry lab. The presentation will be followed by 5-minute questions and answers (Q&A). The presentation will be graded on completion of lab requirements (40%), data analysis (30%), clarity of presentation (15%) and Q&A (15%). The presentations will be held in 122 Kiln House, during the last two weeks of the semester. Signup sheets will be posted for scheduling individual presentations.

8. Each lab will have a pre-lab quiz, which must be completed online (on the Compass course website) before the start of the lab. The quizzes will contribute 5% toward the final grade.

9. The final grade will be calculated as following: 60% from the 5 lab reports (10% for each short lab report, 15% for each long report), 20% for completing all 6 labs (signatures), 15% from the presentation, and 5% from the 6 pre-lab quizzes.

10. Everyone will have the opportunity to rewrite the report for the DSC lab. Rewrites will be due 5 PM on 12/1. The grade of the initial report will count 40%, while the grade of the rewritten report will add 60% toward the final grade for the DSC lab report. A copy of the original report must be submitted with the rewrite.

11. Final letter grades will be awarded depending on the class average and the relative performance of the individuals. Overall, scores less than 40% are a failing grade.
Penalties:

- **Copying or Sharing:** 25 - 50% penalty for copying or sharing any part of the individual report
- **Plagiarism:** As per the University Code of Policies and Regulations, the instructor may impose one or more of the following penalties depending on the severity of the infraction:
 - A reduced grade for the lab report
 - A "0" for the lab report
 - A reduced grade for the course
 - A failing grade for the course
 - Recommend to the head of the department that the student be suspended or dismissed from the University

Laboratory Rules and Regulations:

A) Safety:

1) Always use appropriate safety equipment and follow proper safety procedures

2) Always bring your own Safety Glasses and wear them during the lab period (Safety glasses will not be provided for you! No exceptions)

3) Always wear proper attire (shirt, long pants and closed shoes)

4) **Long hair?** Properly contain it so that it will not be hazardous to you and to your fellow classmates and will not damage the very sensitive equipment in the labs

5) Inside the labs, ABSOLUTELY NO:
 - Food or drink
 - Roller Skates/Blades
 - Game playing (of any sort, particularly on the computers)
 - Anyone caught violating the above laboratory rules:
 - Will be expelled from the lab
 - No compensating lab time will be given to complete the experiment(s) and
 - Will not be allowed back into the labs without a letter from the Head of the Materials Science and Engineering department.

6) **Online Lab Safety Training:** Everyone is required to complete the online lab safety training at the DRS website before starting the first lab. You can complete the training at the following website:

 https://www.drs.illinois.edu/Training?section=GeneralLabSafety#GeneralLaboratorySafetyTraining

 After you finish the training, print out the completion certificate, bring it to your lab, and submit it to the lab manager or TA. Must be completed within the **first two weeks of class**.
B) **General:**

- **Arrive at the lab (105-108 Kiln House)** a few minutes before the start of each lab; TA has the discretion to deduct 2% from the completion grade (20% for all 6 labs) for anyone who is more than 15 minutes late for a lab. Anyone who is more than 30 minutes late for a lab will not receive the credit for the lab and will automatically receive an **incomplete** grade.

- You are **responsible** for the **clean up** of the common as well as the individual work areas at the end of your lab period.

- After you are done with your experiment, you **should not leave** the lab premises **without checking with your TA**.

- Pay particular attention to the proper use of equipment and experimental procedures. **Use your down time wisely. No loud and excessive conversations**

- You **should not leave** the area of your experimental **set up** in the middle of the experiment **without a proper cause** and/or permission from the **lab supervisor**

- Save your data on your own storage media immediately after the experiment is done.

University Policies to Note:

Accommodations: To obtain disability-related academic adjustments and/or auxiliary aids, students with disabilities must contact the course instructor and the Disability Resources and Educational Services (DRES) as soon as possible. To contact DRES, you may visit 1207 S. Oak St., Champaign, call 333-4603, e-mail disability@illinois.edu or go to the DRES website.

Emergency Situations: Emergencies can happen anywhere and at any time, so it’s important that we take a minute to prepare for a situation in which our safety could depend on our ability to react quickly. Take a moment to learn the different ways to leave this building. If there’s ever a fire alarm or something like that, you’ll know how to get out and you’ll be able to help others get out. Next, figure out the best place to go in case of severe weather – we’ll need to go to a low-level in the middle of the building, away from windows. And finally, if there’s ever someone trying to hurt us, our best option is to run out of the building. If we cannot do that safely, we’ll want to hide somewhere we can’t be seen, and we’ll have to lock or barricade the door if possible and be as quiet as we can. We will not leave that safe area until we get an Illini-Alert confirming that it’s safe to do so. If we can’t run or hide, we’ll fight back with whatever we can get our hands on. If you want to better prepare yourself for any of these situations, visit police.illinois.edu/safe. Remember you can sign up for emergency text messages at emergency.illinois.edu. *(From the Division of Public Safety and Public Affairs)*

Guidelines to Preparing
Laboratory Reports

Department of Materials Science and Engineering
University of Illinois at Urbana-Champaign

The following guidelines are for writing formal laboratory reports for the MatSE-307 and 308 laboratory courses taught in the Department of Materials Science and Engineering at the University of Illinois at Urbana-Champaign.

All laboratory reports should contain the following in order:

Title Page:
The following information should be centered on the front page: (with no page number)

 Experiment Number
 Title of the Experiment
 Author
 (Lab Partners)
 Class______, Section______
 Date Due________
 Date Received________ (leave blank)

Abstract:
The abstract is to be placed on numbered Page 1, in block style with no paragraph indentation and in bold type. It should be no more than 150 to 200 words in length.

The abstract should be a concise summary of the experiment, containing general statements of the investigation, the methods used, materials tested, and the main results. It should not include procedural details.

The following sections of the report should start at the top of Page 2:

Introduction and Background:
The Introduction and Background section should include: (l) statements that clearly define the purpose of the experiment; (2) its significance; (3) background information necessary to understand the concepts, methods, and procedures presented in the subsequent sections. This section should not contain the details of the laboratory procedures and the data analyses.

The purpose of this section is to identify the reasons for performing the experiment. What are you measuring or determining and why? What is the significance of your observations? Say this in your own words. Do not copy the "objectives" from the laboratory manual or any handout that might be given to you. The goal is to supply the minimum supplementary information necessary to understand the methodology employed and the theoretical background of the experiment. When this section is properly written, the logic behind the experimental approach will be clear.

Experimental Procedure:
The Experimental Procedure section should give an explicit and concise account of the methods and procedures followed during the experiment without getting into the operational details of the equipment used. Do not simply copy the laboratory manual or a handout. A person with technical background should be able to carry out the experiment without any difficulty by reading this section and the appropriate equipment manuals.
This section should include, when applicable, raw materials, compositions, batch formulas, and specific processing and analytical procedures used to make, test, and analyze the samples. Brief descriptions of equipment, diagrams of apparatus, sketches of circuits, etc., should be included when needed for clarity.

Results and Discussion:
This section should be the majority of your report. All pertinent observations and the refined data should be presented and discussed in logical order. Whenever possible, data should be presented in graphical form to show any relationships between variables. Raw data should be tabulated and placed in an appendix.

The interpretations and significance of the results should be discussed, including whether the purpose of the experiment had been fulfilled. The results should be compared with those found in the literature and if possible, with theory. Any specific experimental conditions that may have affected the results and any sources of error should also be discussed.

Conclusions:
This section should be a brief summary of the important findings, preferably in itemized form. The conclusions should not simply be a copy and paste of the abstract. Conclusions are a distinct element within a technical report.

References:
References acknowledge the sources of non-original information, data, and ideas (i.e., not those of the author), and are used to support the author's point of view or observations.

References should be numbered consecutively in the order they appear in the text and listed in this section with the following information. The references should be listed in IEEE format as indicated by the following examples:

Journal:

Proceedings:

Books:

Patents:

Appendices:
The Appendices are used for placing material that is pertinent, but would cause a disruption to the flow of the text in the main body of the report. Raw data, sample calculations, and extensive derivations are typically included. Appendices should be lettered consecutively (e.g., Appendix A, Appendix B, etc.) and given a descriptive title.
General Guidelines:

Format:
All reports must be typewritten, single sided and double-spaced, with one-inch margins on all sides and the pages numbered. Reports must be either stapled at the upper left-hand corner or bound in a report cover. Any handwritten annotations, equations, etc. must be neat and legible.

A good laboratory report should be concise and comprehensive, and need not be long. The text of a typical laboratory report usually ranges from 10 to 13 pages in length (excluding tables and figures).

Writing:
- Always save your report file on a backup disk
- Use concise and economical wording of sentences and paragraphs without being choppy
- Particular attention should be given to proper word usage, correct spelling, proper punctuation, and the use of complete sentences
- Keep the tense consistent in a given section. Usually simple present tense is best. The main exception is the description of the experimental procedure where past tense is often more natural.
- Typically, sentences should be written in third person, but first person can be used where appropriate. Avoid a conversational style of writing.
- Avoid using gender-specific references.
- Avoid the use of absolute, unrestricted, or unqualified statements
- Reports should be written based on the premise that the reader may not be well informed on the subject. Reports should be concise, but they must be sufficiently complete to supply the necessary information.
- If you have general comments, which you care to make about the laboratory, this is not the place to make them. Such comments should be directed to the instructor or to a teaching assistant on a separate note.

Tables:
All tables should be numbered in the order they appear and placed successively in the text. Each table should have a descriptive caption above the table, and numbered as Table I, Table II, etc. as per the following example:

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Oxidation temperature (°C)</th>
<th>Oxidation time (h)</th>
<th>Fe content (×10^3/cm²)</th>
<th>Mg Content (×10^2/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1a</td>
<td>1000</td>
<td>0.5</td>
<td>120</td>
<td>160</td>
</tr>
<tr>
<td>4-1b</td>
<td>1000</td>
<td>1.0</td>
<td>210</td>
<td>190</td>
</tr>
<tr>
<td>4-1c</td>
<td>1000</td>
<td>4.0</td>
<td>320</td>
<td>340</td>
</tr>
<tr>
<td>4-1d</td>
<td>1000</td>
<td>10.0</td>
<td>480</td>
<td>550</td>
</tr>
<tr>
<td>4-1g</td>
<td>1000</td>
<td>40.0</td>
<td>960</td>
<td>1200</td>
</tr>
<tr>
<td>5-b1</td>
<td>700</td>
<td>10.0</td>
<td>33</td>
<td>29</td>
</tr>
<tr>
<td>5-b3</td>
<td>800</td>
<td>10.0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2-1a</td>
<td>900</td>
<td>10.0</td>
<td>330</td>
<td>460</td>
</tr>
<tr>
<td>5-b2</td>
<td>1000</td>
<td>10.0</td>
<td>470</td>
<td>480</td>
</tr>
<tr>
<td>5-b5</td>
<td>1100</td>
<td>10.0</td>
<td>1100</td>
<td>770</td>
</tr>
<tr>
<td>10-b3b</td>
<td>700</td>
<td>70.0</td>
<td>220</td>
<td>150</td>
</tr>
<tr>
<td>10-b4b</td>
<td>810</td>
<td>49.3</td>
<td>460</td>
<td>250</td>
</tr>
<tr>
<td>10-b5b</td>
<td>907</td>
<td>10.0</td>
<td>440</td>
<td>310</td>
</tr>
<tr>
<td>9-b5b</td>
<td>1100</td>
<td>1.0</td>
<td>350</td>
<td>160</td>
</tr>
</tbody>
</table>
Figures:
All figures should also be numbered in the order they appear and placed successively in the text. Each figure should have a descriptive caption below the figure, and numbered as Fig. 1, Fig. 2, etc. as per the following examples:

![Graph Example](image1)

Fig. 1. Acceptable example of a graph.

![Scale Bar Examples](image2)

Fig. 2. Acceptable examples of scale bars.

When micrographs are to be included in the report, use scale bars as shown above and indicate the magnification in the caption, in parenthesis.

The axes of each graph must be labeled and their units clearly designated in parenthesis. Take error into account.

Mathematical Expressions:
Equations should be consecutively numbered and all variables identified. Decimal numbers less than one must have a leading zero such as 0.01, not .01. Every symbol must be defined, and avoid multiple meanings for the same symbol. In displaying equations with fractions (except superscripts), numerators should be stacked over denominators rather than placed on a single line and separated by a slash (/). Very large and very small numbers should be expressed in scientific notation, e.g., 4.53×10^8 and 2.98×10^{-8}.
Note:
If you choose to include tables and figures within the body of your report, always place them (along
with the equations) after their point of reference. Otherwise, put your tables and figures at the end of
the report (after References).

SI Units:
Use metric units of measurement, specifically SI units. English or non-metric units may appear in
the report, but they should appear only in parenthesis following the SI units, e.g., 32 mm (1.25 in.).

Formal (Long) Reports

The long reports should contain the following sections in order:

1. Title Page
2. Abstract
3. Introduction and Background
4. Experimental Procedure
5. Results and Discussion
6. Conclusions
7. References
8. Appendices

Short Reports

The short reports should contain the following sections in order:

1. Title Page
2. Abstract
3. Objectives and Experimental Procedure (What? and How?)
 Maximum of one page in length
 (This section should contain the main objectives of the experiment and a brief experimental
 procedure.)
4. Results and Discussion
5. Conclusions
6. References
 (DO NOT include any Appendices)
Type of Reports / MSE-307

<table>
<thead>
<tr>
<th>Experiment</th>
<th># of weeks</th>
<th>Report Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Thermoelectric Energy Conversion / (TEC)</td>
<td>2 Wks</td>
<td>Short</td>
</tr>
<tr>
<td>2. Thermal Stresses and Strains / (TS)</td>
<td>2 Wks</td>
<td>Short</td>
</tr>
<tr>
<td>3. Differential Scanning Calorimetry / (DSC)</td>
<td>2 Wks</td>
<td>Long (rewrite)</td>
</tr>
<tr>
<td>4. Adsorption and Humidity / (AH)</td>
<td>2 Wks</td>
<td>Short</td>
</tr>
<tr>
<td>7. Pyrometry / (PY)</td>
<td>2 Wks</td>
<td>Presentation</td>
</tr>
<tr>
<td>8. Phase Equilibria: Optical Microscopy / (OM)</td>
<td>2 Wks</td>
<td>Long</td>
</tr>
</tbody>
</table>

Presentation Guidelines

Location: 122 Kiln House
Format: Electronic presentation in powerpoint format
Duration: 15 minutes + Q&A
Date: M-F afternoons

Everyone should sign up for one 20-minute presentation slot. Sign-up will be done electronically through Google Docs (watch email for link).
Show up at Room 122 Kiln House at least 5 minutes before your scheduled presentation time with an electronic version of the PowerPoint presentation on a USB memory stick and a printed copy of the PowerPoint presentation.

A group of two instructors (TAs and/or Dr. TerBush) will grade the presentations. The presentation grade will be determined by the following four components:

1) Completion of lab requirements (40%)
2) Data analysis (30%)
3) Clarity of presentation (15%)
4) Q&A (15%).