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Abstract— Quasi-staticelasticity imaging techniques rely
on model-based mathematical inverse methods to estimate
mechanical parameters from force–displacement measure-
ments. These techniques introduce simplifying assump-
tions that preclude exploration of unknown mechanical
properties with potential diagnostic value. We previously
reported a data-driven approach to elasticity imaging using
artificial neural networks (NNs) that circumvents limitations
associated with model-based inverse methods. NN consti-
tutive models can learn stress–strain behavior from force–
displacement measurements using the autoprogressive
(AutoP) method without prior assumptions of the underly-
ing constitutive model. However, information about internal
structure was required. We invented Cartesian NN constitu-
tive models (CaNNCMs) that learn the spatial variations of
material properties. We are presenting the first implementa-
tion of CaNNCMs trained with AutoP to develop data-driven
models of 2-D linear-elastic materials. Both simulated and
experimental force–displacementdata were used as input to
AutoP to show that CaNNCMs are able to model both con-
tinuous and discrete material property distributions with no
prior information of internal object structure. Furthermore,
we demonstrate that CaNNCMs are robust to measurement
noise and can reconstruct reasonably accurate Young’s
modulus images from a sparse sampling of measurement
data. CaNNCMs are an important step toward clinical use of
data-driven elasticity imaging using AutoP.

Index Terms— Machine learning, elastography, finite ele-
ment analysis, inverse problems.

I. INTRODUCTION

QUASI-STATIC ultrasonic elastography (QUSE) is gen-
erally an ill-posed inverse problem because we can-

not normally acquire all of the data necessary to solve for
material properties exactly. Instead we impose assumptions by
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selecting, for example, a plane-strain linear-elastic constitutive
model that constrains the problem to closely match the data
that can be acquired. The data typically are acquired by slowly
pressing the US probe into the tissue surface while capturing
RF echo frames. Speckle-tracking algorithms applied to RF
data estimate internal axial displacements (along the direction
of US beam propagation) resulting from the quasi-static load-
ing. At most, each measured data set contains force applied by
the US probe, motion of the probe, and internal deformation
of a tissue volume sampled within a finite plane. Model-based
inverse methods can be expressed as an objective function that
is minimized by seeking a pre-defined set of model parameters
at position x, θ(x),

θ(x) = argmin
θ̂(x) ∈ R

Np∑

n=1

Nd∑

k=1

fu(un
k {θ̂(x)}, ûn

k ), (1)

where Np refers to the number of measured data sets, Nd is the
number of measured displacements in each of the Np sets, ûn

k
are the measured displacement vectors, un

k are displacements
estimated via a forward problem (e.g., via finite element analy-
sis (FEA)), and fu is often the L2 norm of their difference.
If the total deformation is small and applied slowly, soft
tissues are often assumed to be linear-elastic, isotropic, and
incompressible, leaving the spatial distribution of the Young’s
modulus to be estimated (θ(x) = E(x)). That is, if θ(x) is
a vector composed of nonzero elements from the constitutive
matrix, then this model assumes Young’s modulus E(x) is
the only unknown. With larger deformations applied quickly,
tissues exhibit non-linear [1], [2] and viscoelastic [3] material
properties that require models with more parameters and force-
displacement measurements acquired over time.

Accurately estimating material properties requires acquisi-
tion of more force-displacement data than can be obtained
using pulse-echo US imaging. Barbone and Bamber [4] proved
that a single displacement measurement is insufficient to
uniquely estimate Young’s modulus. Barbone and Gokhale [5]
later showed that the Young’s modulus distribution can be
determined up to a multiplicative constant if multiple dis-
placement measurements are available. Instead of relying
on multiple displacement measurements, other approaches
to the inverse problem include a priori information [6]
and/or regularization [7]–[9]. More recently, Tyagi et al. [10]
demonstrated how measurements of the surface force applied
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by the US probe [11], [12] can provide the additional informa-
tion necessary to estimate the magnitude of the Young’s modu-
lus distribution, not just the relative values. Other investigators
have proposed a method using only surface information to
reconstruct the interior modulus distribution [13], [14]. QUSE
has also been extended to the estimation of non-linear and vis-
coelastic properties of tissues [15]–[22], which provides more
diagnostic information than the Young’s modulus [2], [23].
For a comprehensive review of model-based methods,
see [24].

Model-based methods provide no means for discover-
ing new diagnostically-relevant mechanical properties or for
exploring ranges of known model parameters for relevance in a
given situation. Consequently, we adopt a data-driven approach
that first provides a nonparametric method for estimating
stresses and strains from force and displacement measure-
ments. Then, from stresses and strains, any and all models
can be tested to find those parameters with the most diagnostic
potential.

We previously described the first steps in the development
of our approach using neural network constitutive models
(NNCMs) and the Autoprogressive Method (AutoP) [25].
AutoP combines FEA and artificial neural networks (NNs) to
build data-driven constitutive models from force-displacement
data [26]. AutoP has been used in many civil and geotechnical
engineering applications to model linear, nonlinear, path-
dependent, and time-dependent material properties [27]–[34].
Force-displacement measurement data are iteratively applied
in two separate FEAs operating on one mesh to estimate
increasingly accurate distributions of stresses and strains. From
these data, NNCMs gradually learn material properties. This
is possible as the equilibrium and compatibility conditions
imposed by the FEAs are able to consistently convert force
and displacements into stresses and strains, which in turn are
made consistent with the data through the NNCM. The goal of
AutoP is to reconcile the stress-strain distributions estimated
when force or displacement measurements are applied to a FE
model by training the NNCM. Unlike model-based methods,
NNCMs are theoretically flexible enough to approximate any
physically realizable stress-strain relationship without a prior
assumption of the underlying material behavior.

II. METHODS

All prior implementations of AutoP for mechanical model-
ing have used a form of material property networks (MPN,
left side of Fig. 1) that accept a strain vector at the input and
return a stress vector at the output (i.e., Rm : ε → σ ). MPNs
characterizing viscoelastic or non-linear material properties
must also include stress and strain history points at the input
(e.g., [32], [35]). Strain values applied to the input of the
MPN were scaled by a vector Sε whereas the stresses at
the output were scaled by the vector Sσ . However, MPNs
are mapped to specific homogeneous regions of the FE mesh
and thus are only effective when the internal geometry of the
object is known. Without spatial information at the input of
the network, a MPN is unable to learn spatially-varying mate-
rial property distributions. Therefore, we invented Cartesian

Fig. 1. Structure of the CaNNCM composed of a MPN and SN. The MPN
learns a “reference” material property whereas the SN learns spatial
variation of the reference.

NNCMs (CaNNCMs) that simultaneously learn material prop-
erty and geometric information.

The architecture of a CaNNCM is depicted in Fig. 1 and its
core theory of operation is described in [36]. It is comprised
of both a MPN and spatial network (SN). The structure and
function of the MPN is unchanged, but the addition of the
SN allows this pair of cooperating networks to learn spatially
varying material properties. The MPN learns a “reference”
stress-strain relationship whereas the SN learns how the object
deviates from the reference as a function of position. Outputs
from the SN are spatially varying strain scaling vectors,
Sε → Sε

x , meaning the SN transforms the strain vectors
input to the MPN. The SN can be represented by the function
Rs : x → Sε

x .
While previous work with NNCMs and AutoP demonstrate

the ability to learn complex material properties [30]–[33], [37],
the initial network architecture introduced in this report is
limited to 2-D, linear-elastic, isotropic materials. In this case,
the MPN effectively learns a plane-stress relationship with a
constant Young’s modulus whereas the SN learns relative stiff-
ness. Results of prior work with AutoP leads us to believe that
CaNNCMs will be capable of capturing non-linear and vis-
coelastic behaviors in 3-D as we further develop this method.

A CaNNCM replaces the constitutive model in (1) and
the objective function is minimized when the network learns
the spatially-varying stress-strain relationship described by the
measured data:

Rm , Rs = argmin
Rθm ,Rθs ∈R

Np∑

n=1

Nd∑

k=1

fu(un
k {Rm, Rs}, ûn

k ), (2)

where Rθm refers to the weights of the MPN and Rθs are the
weights of the SN. Here, fu(·) is the L1 norm of the difference
between measured ûn

k and computed displacements. We use
an L1 norm in this case rather than an L2 norm to reduce the
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effects of extensive outliers. We describe in the next section
how the computed displacements arise in AutoP.

Equation (2) is useful as a description of the inverse problem
but misses the nuances of our data-driven approach. First,
in model-based methods the error computed by fu(·) would
directly affect the choice of parameter values. Gradient-
descent based schemes are typically employed to gradually
adjust parameters values based on error gradients. However,
we will describe in Sec. II-A how (2) is used to determine if
the CaNNCM has learned the material properties consistent
with the data, but has no bearing on the weight update
procedure. That is, the error computed by fu(·) only indirectly
affects Rθm or Rθs . Second, weights of the MPN and SN do
not map directly to material parameters. There is no weight
in either network that represents Young’s modulus. The MPN
and SN together define the function Rm, Rs : ε(x) → σ (x).
Image reconstruction occurs by relating the mechanical
behavior learned by CaNNCMs to a chosen constitutive
model after training. Even though modeling errors are still
possible, the benefit lies in the potential for using a CaNNCM
to estimate the parameters that might apply to any constitutive
model.

We will show in the following section how AutoP is used to
minimize (2) by reconciling stresses and strains estimated by
the CaNNCM being trained. Then, using force-displacement
measurements acquired through simulation and experimen-
tally, we will 1) demonstrate the ability of CaNNCMs to
learn stress and strain maps and ultimately reconstruct accurate
Young’s modulus images and 2) explore how sampling affects
the ability of CaNNCMs to learn these properties. This last
objective is part of our ongoing investigation to determine
how data should be sampled in time and space to accurately
estimate all stresses and strains.

A. The Autoprogressive Method
Training CaNNCMs requires an adjustment to the AutoP

procedure described in prior reports [25], [26]. AutoP uses
FEA to compute stresses and strains in response to force and
displacement load increments. Internal In and external Pn

forces are balanced for boundary conditions (BCs) applied in
the nth load increment in the solution of a FEA [38]:

Pn = In (3)

In = In−1 + K n�Un (4)

K n�Un = Pn − In−1 (5)

K n =
Ne∑

e=1

∫

�e

BT
e

CaN NC M︷ ︸︸ ︷
Dn(x) Bed�e (6)

In−1 =
Ne∑

e=1

∫

�e

BT
e

CaN NC M︷ ︸︸ ︷
σ n−1(x) d�e (7)

where K n is the tangent stiffness matrix computed in the nth
load increment, �Un is the vector of displacement incre-
ments, Pn is the vector of applied surface forces, and In

is the vector of internal resisting forces. In Eq. 5, In−1 is
expressed as the sum over all Ne elements by multiplying the
strain-displacement matrix Be with the stress vector σ n−1(x)

Fig. 2. (a) Hierarchy of training passes, steps, and iterations in
AutoP. The training window determines the number of preceding training
steps from which stress-strain data are included during stages 2–4 of
the current step. (b) One AutoP training iteration using a CaNNCM is
illustrated. Adding the spatial network necessitates two extra stages
where Sεx are updated and the SN is trained. Training of the MPN and
test for convergence follow the same procedure we describe in a previous
report [25].

and integrating over the element domains �e. Force BCs reside
in Pn and displacement BCs populate components of �Un .

A forward analysis consists of applying force and/or dis-
placement BCs to the FE model and solving the system of
equations (5) for the unknown displacement increments that
that satisfy (3). During the analysis, the stiffness matrix Dn(x)
and stress vector are computed using a constitutive model or,
in our method, the CaNNCM. To be clear, both the stiffness
matrix and stress vector in (6) and (7) are computed from
the CaNNCM being trained, not a pre-selected constitutive
model as would be done in model-based methods. The ana-
lytical expression for Dn(x) is provided in Appendix B. FEA
techniques are thus used to solve the forward problem for
un

k {Rm, Rs} in (2).
AutoP is organized in a hierarchy of training passes, steps,

and iterations as shown in Fig. 2a. A single training iteration
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comprises several stages utilizing force-displacement mea-
surements from a single load increment. A set of iterations
performed with the same input measurement data is one
training step. Completing a series of training steps over all
load increments constitutes a pass. The following paragraphs
track the six stages of AutoP processing illustrated in Fig. 2b.
Many AutoP iterations are performed throughout training,
during which the MPN and SN are repeatedly retrained.
We will consider the j th training iteration and introduce the
superscripts j and j +1 to Rm and Rs to clarify which version
of each network is active during each stage.

1) Pretraining: Before the first set of measurement data is
input, the CaNNCM is initialized using linear-elastic equations
(stage [0]). For the 2-D problems we describe, a Young’s
modulus value and Poisson’s ratio are chosen, a set of strain
vectors are generated with randomly selected values over a
small range. The corresponding stress vectors are computed
using the plane-stress equation. Theoretically, any value of
Young’s modulus and Poisson’s ratio can be selected for pre-
training, although, as one might expect, accurate initializations
result in faster convergence and avoids non-physical behavior
in early FEA iterations. The stress scaling value and all spatial
scaling vectors are set to one (Sσ = 1, Sε

x = 1).
2) Estimation of Stresses and Strains: Stage [1] consists of

estimating stresses and strains from measurement data. Forces
for the nth load increment are applied to the FE model in
FEAσ . Referring back to (5), force measurements are imposed
as BCs in Pn and total mesh deformation is computed. Due to
equilibrium conditions relating stresses to forces, all stresses
σ n(x) computed throughout the model in FEAσ are assumed
to be physically consistent estimates of the true stress.
Similarly, in FEAε US probe and internal displacement
measurements from the nth load increment are input as
components of �Un to compute displacements of the
remaining nodes. Due to compatibility requirements relating
node displacements to strains, the strains εn(x) computed in
FEAε are assumed to be physically consistent estimates of
the true strains. Recall that R j

m and R j
s are invoked by (6)–(7)

to solve each FEA.
After estimating all stresses and strains, the stress scal-

ing value Sσ is checked to ensure all scaled stresses fall
within ±0.8. That is, we check for max(σ n(x)/Sσ ) > 0.8,
where the division is performed element-wise. If any compo-
nent of σ n(x) falls outside this range, Sσ is increased so that
max(σ n(x)/Sσ ) = 0.8.

3) Training MPN: A total of Nx stresses σ n(xi ) and strains
εn(xi ) are computed in FEAσ and FEAε , respectively. Each
strain can by scaled by the corresponding Sε

xi
computed by

R j
s and input to R j

m to compute a new stress σ̂
n(xi ). The goal

of stage [2] is to adjust the weights of the MPN to minimize
the error between σ n(x) and σ̂

n(x):

R j+1
m = argmin

Rθm ∈R

Nx∑

i=1

Np∑

n=1

Nσ∑

l=1

fm(σ n
l (xi ),

σ̂ n
l (xi )︷ ︸︸ ︷

R j
m{εn

l (xi ), R j
s (xi )}).

(8)

Rs(xi ) is the output of the SN at xi and Nσ is the number of
stress-strains pairs at xi in the nth load increment. This value
is greater than one when frame-invariance is enforced or a
training window is implemented, both of which are described
in Appendix A. fm(·) is the L2 norm of the difference between
σ n(x) and σ̂

n(x); i.e., the MPN is trained via backpropagation.
Eq. (8) can not be minimized to zero for a heterogeneous

material given the current MPN architecture. As previously
stated, the MPN accepts a single strain vector as input and
responds with a single stress vector as output. There is a
many-to-many mapping from εn(x) to σ n(x) in heterogeneous
materials. For example, in the case where εn(xi ) = εn(x j ),
it is not necessarily true that σ n(xi ) = σ n(x j ) (i.e., Rm :
ε → σ is not bijective). Thus, the SN must supply additional
information in the form of Sε

x so that the MPN can determine
which stress should be returned for a given strain.

4) Spatial Scaling Calculation: The spatial values Sε
x are

computed in stage [3]. While the coordinates input to the SN
are given by the FE mesh, the target spatial values must be
determined based on R j+1

m , σ n(x), and εn(x). The goal is
to further minimize the error between σ n(x) and σ̂

n(x) by
altering the spatial values instead of the weights of the MPN:

Sε
xi

= argmin
Ŝ

ε
xi

∈R

Np∑

n=1

Nσ∑

l=1

fm(σ n
l (xi ), R j+1

m {εn
l (xi ), Ŝ

ε

xi
}), (9)

where R j+1
m is the output of the MPN retrained in (8).

5) Training SN: With a complete set of training data, the SN
is trained in stage [4] via backpropagation:

R j+1
s = argmin

Rθs ∈R

Np∑

n=1

Nx∑

i=1

fs(Sε
xi

, R j
s {xi }). (10)

Details of solving (9) and (10) are covered in [36].
6) Convergence Check: Finally, a convergence check is

performed in stage [5] to determine if training iterations for
the current step should continue. Node displacements un

k com-
puted in FEAσ are compared to the measured displacements
ûn

k using the L1 norm of their difference:

�un
k = |un

k − ûn
k |

= fu(un
k {Rm, Rs}, ûn

k ) (11)

which is the objective function defined in (2). We only
use axial displacements in this study, although lateral and/or
elevational displacements can also be used if available.

Following previous implementations of AutoP to determine
NNCM convergence, displacement errors are used to compute
two new values:

cn
max = max(�un

k )

| max(un
k )|

(12)

cn
μ = mean(�un

k )

| max(un
k )|

. (13)

We define convergence criteria Cn
max and Cn

μ for the nth
training step. If both cmax < Cn

max and cμ < Cn
μ, conver-

gence has been achieved and AutoP training iterations stop
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for the current training step. Otherwise, iterations consisting
of stages [1]–[5] continue until the convergence criteria are
met or a maximum number of iterations are reached. Training
steps continue for each increment of force-displacement data
in the set to complete a pass. Multiple passes are typically
needed to ensure the CaNNCM has fully learned the material
properties. A CaNNCM is not expected to accurately model
the material properties in the first few passes. We therefore
begin AutoP with relaxed convergence criteria (larger values
of Cn

max and Cn
μ) that gradually become more restrictive.

B. Measurements From Linear-Elastic Phantoms

An imaging phantom was constructed from a mixture of
deionized water, gelatin powder, and cornstarch acting as a
scattering agent. The phantom was comprised of a 50 × 50 ×
50mm3 cube of a soft background gel (≈7.15 ± 0.18 kPa,
8% gelatin by mass) with three stiff, cylindrical inclusions.
Each inclusion was 10 mm in diameter and 50 mm long.
Mechanical contrast was controlled by the ratio of gelatin to
water and each inclusion was a different stiffness (≈10.93 ±
0.57, 14.15±0.71, or 20.51±0.84 kPa, 10%, 12%, and 14%
gelatin by mass, respectively). The phantom was manufactured
in the same manner described in a previous report [25]
and separate samples of each gelatin mixture were stored to
independently estimate Young’s modulus values via macro-
indentation methods [39].

We used the same experimental setup described in [25].
Compressive loads were applied to the phantom over four
equal axial displacement increments of the US probe. Total
probe motion was 1.44 mm, 3% of the pre-loaded phantom
height. After applying each load increment, axial force and
probe position were measured and an RF echo frame was
acquired. The speckle-tracking algorithm GLUE [40] was
applied to the echo data to estimate axial displacements in the
field of view. Axial forces, probe displacements, and internal
displacements over all four load increments constitute one set
of force-displacement data. Fig. 3 shows six different data
sets collected. Sets 1–3 were all acquired by compressing
downward onto the top surface but with different lateral
placements of the US probe. Sets 4–6 were acquired by
keeping the probe centered laterally, but rotating the phantom
90◦, 180◦, and 270◦ around x3, respectively. Two additional
data sets were acquired where the imaged regions was centered
on the x2 axis like Data Set 1, but the probe moved in
elevation, along x3, by ±4mm. We refer to these data sets
as Data Set 1� and 1��, respectively. Total forces applied by
the US probe ranged from 17.95 to 21.22 mN.

C. Finite Element Model

A simple FE model was created for use in AutoP and to
generate the noise-free data sets described in the next section.
The FE model FEM-1 is a 2-D, rectilinear FE mesh with
50 nodes per edge (Fig. 4) to represent the phantom. The
ultrasound probe was modeled as a rigid body in frictionless
contact with the top surface of the phantom model, approxi-
mating the condition created by the US gel. The bottom nodes
of the phantom mesh were fixed to mimic contact between the

Fig. 3. The cubic phantom was imaged from four sides. Data sets 1–3
were obtained with the US probe along the same surface but at different
lateral positions. For sets 4, 5, and 6, the phantom was rotated 90◦,
180◦ and 270◦ about x3, respectively, while keeping the probe laterally
centered.

Fig. 4. Rectilinear meshed used in FEM-1. Highlighted nodes indicate
locations where displacement data was provided in FEAε. (a) Displace-
ments are given at every node in the ROI, (b) at nodes separated by a
minimum of 1.5mm, or (c) at nodes with a minimum 3mm separation.

gelatin phantom and rubber pad. The full mesh was composed
of 2516 nodes (5032 DOF) and 2401 plane-stress elements
(CPS4 in Abaqus 6.13). Given that 4-node quadrilateral ele-
ments contain four integration points, a total of 9604 stress-
strain pairs are computed in each of two FEAs, labeled FEAσ

and FEAε, which are described in Sect. II-A. Force loads,
when applied as boundary conditions (BCs) in FEAσ or in
a forward problem, were defined as concentrated forces to
the top of the probe model. Similarly, probe displacements in
FEAε were defined as BCs for the entire probe model. Note
that FEM-1 refers to the mesh and method of applying BCs.
All FEAs were solved with ABAQUS 6.13 commercial finite
element software.

D. Simulated Force-Displacement Measurements

First, we tested AutoP employing CaNNCMs and noise-free
force and displacement data. Three different material property
distributions (Figs. 5a-c) were created to generate simulated
measurements. Model 1 consists of a stiff Gaussian-shaped
inclusion with a peak stiffness of 30 kPa embedded in the
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TABLE I
FOUR CASES FOR APPLYING AXIAL DISPLACEMENTS IN AUTOP.

CASES 2–4 ARE ILLUSTRATED IN FIG. 4

center of a 10 kPa background. Model 2 was a replicate of
the gelatin phantom described in Sect. II-B. Young’s modulus
values for the background and three inclusions were selected
to be the same as those estimated via macro-indentation for
each gelatin material. Model 3 corresponded to a rabbit kidney
embedded in a block of gelatin with background Young’s
modulus 5.61 kPa. Modulus values for the kidney were based
on previous results using AutoP and linear-elastic MPNs [41].
Models 1 and 3 were chosen to enable comparison with results
reported earlier where stress-strain data were known [36].

Force-displacement data were generated by solving a for-
ward FEA using FEM-1 and the target Young’s modulus
distributions of Models 1–3. The same forces and loading
geometry of Data Set 1 were applied to the model and
displacements were computed at all nodes. Each simulated
data set contained noise-free data over four load increments.

E. Simulated RF Images

Simulated RF echo frames were generated to test the
capabilities CaNNCMs in the presence of noise. A detailed
description of the method used to generate these images is
provided in the supplementary material. The two simulated
sets were intended to emulate Data Set 1 with different SNR
in the RF echo data: one with 30dB SNR and one with 15dB
SNR. We refer to the former as Data Set 1† and the latter
as Set 1††.

F. AutoP Analyses

CaNNCMs were trained in AutoP using force-displacement
data obtained in three ways. First, forward FE modeling
simulated noise-free displacements at each node in the FE
mesh. Second, the same simulated displacements were entered
into an RF echo simulator to simulate noisy experimental
data. Both data sets have exactly-known displacements and
material properties. Third, RF echo signals were recorded
experimentally from phantoms. All tests used the same training
parameters described in Appendix A. Any differences in how
CaNNCMs were trained lie in how the force-displacement data
were sampled. We will show in Sect. III that changes to the
input data do not imply a need to alter training parameters.

Several different training cases were used that differed in the
number of axial displacements applied in FEAε. Table I sum-
marizes these four cases. For case 1, displacements are given at
every node in the mesh. Cases 2–4 only used displacements in
the ROI. The ROI is the region corresponding to the size of the
displacement image after speckle-tracking was applied to the
RF frames. Case 2 (Fig. 4a) indicates all nodes in the ROI were
assigned displacements. For Cases 3 and 4 (Figs. 4b and c,
respectively), axial displacements were only given at nodes

with a minimum separation of 1.5 mm and 3 mm, respectively.
These are the variable sampling settings selected to explore the
role of displacement sampling in AutoP convergence.

Upon completion of AutoP, each CaNNCM was used to
reconstruct a map of the Young’s modulus distribution. Image
reconstruction was performed by setting a constant strain
vector ε = [0.003 0.005 0.0001] and computing the stiffness
matrix D̂i j using (17) in Appendix B. The Young’s modulus
distribution E(x) was then estimated by varying x in the
domain of the mesh and evaluating the function

E(x) = Sσ

Sε2
x

D̂22(1 − ν2), (14)

where ν = 0.5 and Sε2
x is the axial component of the spatial

scaling vector at xi . The choice of constant strain vector is
not important so long as it resides within the range of training
data. We chose small values for each component to ensure the
strain was within range, and we emphasized the axial strain
and used D22 in the modulus estimate because the models
were axially compressed.

Young’s modulus distributions estimated by the CaNNCMs
were compared to the target maps shown in the top row
of Fig. 5. Errors were computed as

eE
x = |Etarget

x − E N N
x |

Etarget
x

(15)

where Etarget
x is the target Young’s modulus distribution and

E N N
x is the CaNNCM estimate. Because displacements are

only provided in the field of view for Cases 2–3, we do not
expect the CaNNCM to accurately estimate Young’s modulus
values outside of the ROI where no displacement measure-
ments are acquired. We therefore compute eE

x only within the
ROI for all cases.

The following describes each of the CaNNCMs trained.
1) Simulated Force-Displacement Data: A total of six

CaNNCMs were trained in AutoP using noise-free force-
displacement data generated from the three simulated models.
One network was trained for each model using Case 1 and
Case 2 displacement sampling. The results from training
these networks demonstrate the ability of CaNNCMs to learn
material properties when the sampling space is reduced.

2) Simulated RF Echo Data: Another six CaNNCMs were
trained using force-displacement data gathered from the sim-
ulated RF echo frames with varying amounts of echo noise.
Three CaNNCMs for Data Set 1† and three for Set 1†† using
Cases 2–4 sampling distributions. Results from these analyses
demonstrate how reducing the number of sampling points
affects the ability of CaNNCMs to learn material properties
and geometry in the presence of noise.

3) Gelatin Phantom: We trained 12 CaNNCMs with experi-
mentally measurement force-displacement data. The first three
were trained with Data Set 1 and sampling Cases 2–4. Results
obtained from these CaNNCMs and those trained with data
acquired via the simulated RF data guided the choice of
sampling for the remaining CaNNCMs. Using Case 3 sam-
pling, one CaNNCM was trained with each of Data Sets 2–6,
1�, and 1��, one with Sets 1–3 simultaneously, and one
with Sets 1, 1�, and 1�� simultaneously. Results from these
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Fig. 5. (Top Row) Target Young’s modulus distributions for
Models 1–3. Young’s modulus reconstructions from CaNNCMs trained
with noise-free simulated displacements for Case 1 (Middle row) and
Case 2 (Bottom row). The white box indicates the boundaries of the ROI.
Color scales at the top of the figure apply to all images within the column.

CaNNCMs demonstrate the ability of CaNNCMs to learn
material properties under different loading scenarios, how the
inclusion of multiple independent data sets affects the Young’s
modulus estimates, and how sparser sampling influences the
learned material and geometric properties.

III. RESULTS

Young’s modulus images reconstructed by CaNNCMs
trained with noise-free force-displacement data are displayed
in Fig. 5. Errors in the modulus estimates computed with (15)
are compiled in Table II for all CaNNCMs. Also included in
the table are the processing times and total number of AutoP
training iterations performed. For all three Models, reconstruc-
tion error increased slightly when the displacement sampling
was reduced to the ROI only (i.e., from Case 1 to Case 2).
CaNNCMs trained for Model 1 required the most number of
AutoP iterations and were unable to capture the peak stiffness
of the inclusion. We observed this type of behavior in [36]
for the same Model. It could be corrected by increasing the
number of iterations performed when solving (9). For example,
increasing the number of spatial scaling update iterations from
50 to 150 for Model 1, Case 2, the peak stiffness estimated
by the CaNNCM is ≈25 kPa (actual is 30 kPa) and the
modulus reconstruction error decreases to 0.1291 ± 0.0753.
However, preliminary results showed that in the presence
of noise, using a large number of iterations could result
in overfitting thus magnifying the influence of noise in the
Young’s modulus reconstruction. It is possible that the addition
of a regularization term in (9) could reduce the sensitivity to

TABLE II
YOUNG’S MODULUS RECONSTRUCTION ERRORS AND AUTOP RUN

TIME. MODELS ARE ILLUSTRATED IN FIGS. 5A-C. SETS ARE

ILLUSTRATED IN FIG. 3. CASES ARE DESCRIBED IN TABLE I.
SIMULATED RF DATA SETS WITH 30 dB AND 15 dB SNR ARE

DENOTED † AND †† , RESPECTIVELY. A SUPERSCRIPT LETTER

INDICATES SUBFIGURE IN FIG. 8. THE LAST COLUMN

INDICATES THE FIGURE NUMBER OF THE CORRESPONDING

YOUNG’S MODULUS IMAGE

the number of iterations and noise at the cost of increased
computational complexity.

Fig. 6 displays the Young’s modulus images reconstructed
by CaNNCMs trained with force-displacement data from Data
Sets 1, 1†, and 1††. Across the columns left to right, the images
correspond to Cases 2, 3, and 4, respectively. We observe
that the smallest error occurs for Set 1††, Case 3, albeit
said CaNNCM required the largest number of AutoP train-
ing iterations. We also note that, for the CaNNCMs trained
with Set 1, there is a trade-off between reconstruction error
and artifacts in the images. For example, Fig. 6g displays
the Young’s modulus image with the smallest error for the
row, corresponding to Case 2. The error slightly increases
for Case 3 (Fig. 6h), but fewer noise artifacts are present.
Generally, the trend appears to be that the effect of noise
increases as the displacement sampling density increases. The
influence of noise can be decreased by reducing sampling
density at the cost of resolution and reconstruction accuracy.
Note that this applies to the case where only a single data set
is used during training. For these reasons, we chose Case 3
sampling for training the remainder of the CaNNCMs with the
experimental measurement data.

Interestingly, a stiffening artifact appears between the top
of the ROI and phantom surface in the images recon-
structed by CaNNCMs trained with experimentally measured
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Fig. 6. Comparisons of Young’s modulus image reconstructions from RF
echo signals for three levels of noise and different displacement sampling
densities. Force-displacement measurements from rows 1 and 2 are from
simulated echo data at 30 and 15 dB SNR. Row 3 is from experimental
phantom measurements with echo SNR in the same range using Data
Set 1. Columns from left to right correspond to sampling Cases 2–4.

force-displacement data (Figs.6g–i), but not when trained with
simulated RF Data Sets 1† or 1†† (Figs. 6a–f). It is likely
due to noise occurring in both the force and displacement
measurements. Displacements estimated from the simulated
RF frames contain noise, but the force measurements are
exact. Furthermore, displacements imposed when generating
the simulated RF data were obtained from a 2-D FEA whereas
the experimental measurements are a 2-D approximation of a
3-D object.

Young’s modulus reconstructions by CaNNCMs trained
with experimental measurement data are shown in Fig. 7.
We indicate in the bottom-right of each image the Data Set(s)
used for training in AutoP. As expected, the Young’s modulus
estimates are most accurate within the ROI. Reducing the
size of the ROI (Figs. 7d,e) did not inhibit the ability of
the CaNNCM to learn the correct material properties. The
exception is the inclusion at the bottom of the ROI in Fig. 7d,
where said inclusion is only partially within view. Material
properties estimated by each CaNNCM are consistent, barring
Figs. 7g and 7i. These correspond to Data Sets 4 and 6, where
the phantom was rotated by 90◦ and 270◦, respectively, before
data acquisition. Both CaNNCMs learned the correct locations
of all three inclusions, but the estimated Young’s modulus of
the two stiffest inclusions are inaccurate.

It is difficult to identify the source of the error. To deter-
mine if the issue was caused by the relative locations of
the inclusions within the ROI, we created a simulated RF
data set (using the same methods described previously) to
mimic Data Set 4. A CaNNCM trained with these data (not
shown) was able to accurately estimate modulus values for

Fig. 7. Young’s modulus image reconstruction by CaNNCMs trained from
experimental measurements. Bracketed numbers in the lower-right cor-
ner of each image indicates the Data Set(s) used to train the CaNNCM.
The dotted frame indicates the region over which displacements were
estimated.

Fig. 8. Maps of Young’s modulus error for the four tests indicated
by superscript letters in Table II. The error is the difference between
the target distribution and that computed by the CaNNCM. Red/green
indicates the CaNNCM-estimated Young’s modulus was too large/small.

all three inclusions. Furthermore, if we compare displacement
errors computed by (12) and (13) for CaNNCMs correspond-
ing to Figs. 7a and 7g, there is no significant difference
(cn

max = 0.0796 , cn
μ = 0.0694 compared to 0.0812 and 0.0692,

respectively). Meaning, the CaNNCMs are estimating material
properties consistent with the data.

From a qualitative standpoint, including multiple data sets
during training (Figs. 7c, f) improves the appearance of the
reconstructed image. Contrary to our expectation, the recon-
struction error increases when multiple data sets are used.
To explore why this occurred, we generated images of the
Young’s modulus error by computing the difference between
the target and reconstructed Young’s modulus images. Error
maps are displayed in Fig. 8 and the CaNNCMs are indicated
in Table II by a superscript. The largest errors occur at the
boundaries of the inclusions; most notably, for the stiffest
inclusion located at the bottom of the ROI. These maps
suggest the largest errors are due to CaNNCMs learning the
incorrect geometry. Specifically, the stiffest inclusion appears
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too small, particularly for CaNNCMs trained with experi-
mental data. Neglecting geometric errors, we observe that
when multiple experimentally measured data sets are used in
training (Fig. 8d), the CaNNCM more accurately estimates
the Young’s modulus of the inclusions. The increased error
reported in Table II is mostly attributed to over-estimating the
Young’s modulus of the background gelatin, by up to 5 kPa
in the most extreme cases and mostly toward the boundary
of the ROI. It is unclear at this time if errors are larger
near the boundary because of artifacts introduced through
speckle-tracking, the distance between the ROI and phantom
boundaries, or because we are limited to a 2-D approximation
of a 3-D problem.

IV. DISCUSSION

We have implemented CaNNCMs in AutoP to build data-
driven constitutive models that learn stress and strain pro-
files of linear-elastic materials from force-displacement data.
Adjusting the NN architecture to learn both material property
and geometric information expands the abilities of AutoP by
removing any prior assumptions of material property distrib-
utions. Additionally, a single CaNNCM can model heteroge-
neous materials where previously multiple NNCMs would be
necessary. Unlike networks used in prior work, CaNNCMs are
able to model both discrete and continuous material property
distributions regardless of the chosen mesh geometry. This is
a critical step toward the use of AutoP in clinical imaging
where accurately segmenting images is not always feasible
nor possible.

QUSE acquisitions are well suited to data-driven mod-
eling due to the enormous information content in each
force-displacement data sample. Quasi-static loading gives
the force stimulus time to propagate throughout the entire
object before measurements are acquired. Each displacement
therefore carries information of not only local material prop-
erties, but of the whole contiguous object. AutoP exploits
this fact by using FEA to propagate a sparse sampling of
force-displacement measurements throughout an entire object
model for estimating stresses and strains. Several model-based
inverse approaches also rely on FEA to compare computed and
measured displacements while estimating the material parame-
ter distribution that best fits the data (e.g., [19], [24], [42]).
However, CaNNCMs trained with AutoP learn stress-strain
behavior consistent with the measurement data without prior
assumptions of material properties.

A trained CaNNCM can be related back to a known con-
stitutive model to estimate material parameters after learning
stress and strain profiles. We chose to estimate Young’s
modulus distribution via the stiffness matrix to demonstrate
a capability of CaNNCMs not possible with model-based
methods. When computing D22 in (14), there is still no
assumption of the constitutive model. We effectively recovered
the stiffness matrix from the data. Further development of
CaNNCMs for non-linear and viscoelasticity imaging can
make use of this ability to uncover the fundamental mechanical
behavior governing the data, which may allow for discovery
of the most relevant material parameters.

The additional task of learning the geometric shape of
the medium requires a higher displacement sampling density
compared to our previous report [25]. Our choice of simu-
lated and experimental measurement data combined with the
four displacement sampling Cases was intended to provide
insight on the trade-off between sampling density, resolution,
and modulus estimation accuracy. Results from CaNNCMs
trained with noise-free force-displacement data suggest that
restricting sampling to the ROI has a slight negative affect
on the accuracy of reconstructed Young’s modulus images.
Data acquired from simulated RF frames and Data Set 1
of the experimental measurements better illustrate the trade-
off in Fig. 6. In the presence of noise, dense sampling
resulted in more accurate Young’s modulus estimates, but
artifacts due to noise become more apparent. Conversely,
as sampling becomes increasingly sparse, noise artifacts are
reduced at the cost of decreased resolution and accuracy of
material parameter estimates. We observed this same behavior
in several cases, although we provide only one example of
Case 2 sampling with experimental measurements (Fig. 6g).
That said, a cubic phantom with three parallel cylindrical
inclusions limits the conclusions that can be drawn. Comparing
Figs. 6g–h, the noise artifacts do not obstruct any of the
inclusions and are thus not detrimental to the final image.
However, it is possible that fine structures could be hidden
in more complex media. Further investigation into the best
sampling strategy will require data acquisition on an object
with more complex geometry.

We expected CaNNCMs trained with multiple data sets to
provide more accurate Young’s modulus estimates. This was
not the case. The argument can be made that qualitatively,
Figs. 7c and 7f are improvements over training with any
one data set: the inclusions are better resolved and fluctua-
tions due to noise are reduced. It is unlikely that increasing
the number of passes in AutoP would improve the results
considering displacement errors (cn

max and cn
μ) computed for

the convergence check do not continue to decrease by the
end of pass 10. Some of the error can be attributed to the
2-D approximation of 3-D problem, which helps explain why
Figs. 6a–f are much more accurate than Figs. 6g–i. Extending
CaNNCMs to learn volumetric material properties will help
us better understand how noise affects the material properties
and geometry learned by the networks. We find the quality of
Young’s modulus images depends on the coupled effects of
spatial sampling and noise, which are not the same as those
seen in other applications of QUSE.

Developing our approach into a clinically feasible imaging
modality will require we 1) reduce the CaNNCM training time
and 2) adapt the network architecture to account for 3-D mate-
rials exhibiting non-linear and viscoelastic mechanical behav-
iors. Given that other groups have increased FEA computation
speed by several orders of magnitude using GPUs [43]–[45],
we believe AutoP training time can be greatly reduced using
a custom FEA solver utilizing GPU resources. Changes to the
CaNNCM architecture are not likely to require adjustments
to the general AutoP stages specified in Sec. II-A. Previous
investigations using NNCMs for modeling complex material
properties required adjustments to the FEA formulation and
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network architecture (e.g., [30]–[33], [37]), but no changes
were made to the overall process of AutoP. Due to the
significant structural difference of CaNNCMs compared to
NNCMs, we provided a new description of AutoP as a method
to minimize an objective function that will be applicable to the
general CaNNCM architecture comprised of a MPN and SN.
Regardless of network changes, the same problem is solved
in each stage of AutoP. The differences resides in how to
reformulate each problem based on the CaNNCM structure
(e.g., how to change (9) to accommodate a SN with different
inputs/outputs) . Future investigations can therefore describe
these changes as necessary.

V. CONCLUSION

Cartesian neural network constitutive models trained in the
Autoprogressive method can learn spatially-varying linear-
elastic material properties from force-displacement measure-
ments. Young’s modulus images can be reconstructed by
relating the stress-strain behavior learned by CaNNCMs to a
chosen constitutive model after training. CaNNCMs are robust
to measurement noise and can model the internal structure of
both discrete and continuous material property distributions.
Current limitations of the method as applied to linear-elastic
media suggest a need for 3-D model building and more
efficient FEA computation.

APPENDIX A
AUTOP TRAINING PARAMETERS

Each CaNNCM was trained over 10 passes for each data
set based on experience. A Young’s modulus value of 5 kPa
and a strain range of ±0.01 was selected for linear-elastic pre-
training. FEAσ and FEAε were computed by applying loads
to FEM-1 as described in Sect. II-C.

A four-load training “window” was also incorporated
which includes stress-strain data from prior training steps in
stages [2]–[4] of the current AutoP iteration. Fig. 2a illustrates
the example where training step 3 of pass 3 would also include
stresses and strains from training steps 1 and 2 of pass 3 and
training steps 3 and 4 of pass 2.

Furthermore, frame invariance was enforced by rotating the
stress-strain data 90◦ and appending the rotated pairs to the
original set, effectively doubling the number of stress-strain
pairs. Any rotation angle could be used, but we chose 90◦
because it is easily implemented by swapping the normal
components of the data, as we described in our initial report
of AutoP [25]. Building frame invariance into the training
data means the material properties learned by the CaNNCM
are independent of the chosen coordinate system. With the
given training window and enforcement of frame invariance,
a total of 19208 stress-strain pairs are used to train the MPN
(Nx × Np × Nσ = 19208 in (6) starting in the second pass.

Spatial scaling values were computed using
[37, Algorithm 1] (N = 50, Nσ = 8 due to frame invariance
and training window, spatial scaling update rate η = 0.5). The
MPN had two hidden layers of six nodes each, whereas the
SN had five hidden layers with ten nodes each. The MPN was
trained using the resilient propagation (RPROP) algorithm [46]

over 15 epochs. Conversely, the SN training was implemented
in TensorFlow using the Adam optimizer [47] (with default
parameter settings) and a learning rate of 0.03.

Convergence criteria changed as training progressed. Con-
vergence criteria were initialized as (0.65, 0.5), using the
notation (Cn

max, Cn
μ). These reduced to (0.4, 0.3), (0.3, 0.2),

and (0.2, 0.01) at the beginning of passes 2, 3, and 4, respec-
tively. The last set of criteria were also used in passes 5–10.
We chose to set a limit of two AutoP iterations per training
step, regardless of whether convergence criteria were satisfied.
An upper limit ensures that iterations do not continue indef-
initely. We chose a maximum of two based on preliminary
results.

APPENDIX B
COMPUTING STIFFNESS MATRIX FROM CANNCM

Hashash et al. [48] derived an analytical function for
computing the stiffness matrix Dij from the weights and
activations of a MPN. Note that the “activation” of a node
is the weighted sum of the inputs to said node before passing
through the activation function. The same analytical function
can be used to compute the stiffness matrix for a CaNNCM
in response to an input strain with a minor adjustment:

Dij (x) = ∂σi (x)

∂ε j (x)

Sσ
i

S
ε j
x

= Sσ
i

S
ε j
x

D̂i j (x) (16)

where

D̂i j = (1 − tanh( fi )
2)

×
Nh2∑

c=1

[
wic(1 − tanh( fc)

2)

×
Nh1∑

b=1

{
wcb(1 − tanh( fb)

2)

×
Ni∑

a=1

(
wba(1 − tanh(ε j )

2)

)}]
. (17)

In (17), the values fi , fc, and fb are the activations of nodes
in the output layer, second hidden layer, and first hidden layer,
respectively. Nh2 is the number of nodes in the second hidden
layer, Nh1 is the number of nodes in the first hidden layer, and
Ni specifies the number of nodes in the input layer. Weights
from node p in layer N − 1 to node q in layer N are denoted
as wqp.
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