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ABSTRACT

Enhanced blood perfusion in a tissue mass is an indication of neo-vascularity

and potential malignancy. Ultrasonic pulsed Doppler imaging is a safe and

economical modality for noninvasive monitoring of blood flow. However,

weak blood echoes make it difficult to detect perfusion using standard meth-

ods without the expense of contrast enhancement. Additionally, imaging

requires high sensitivity to slow, disorganized blood-flow patterns while si-

multaneously rejecting clutter and noise. An approach to address these chal-

lenges involves arranging acquisition data in a multi-dimensional structure

to facilitate the characterization and separation of independent scattering

sources. The resulting data array involves a linear combination of spatial,

slow-time (kHz-order sampling), and frame-time (Hz-order sampling) coor-

dinates. Applying an eigenfilter that exploits higher-order singular value

decomposition (HOSVD) can technically transform the array and reduce the

dimensions to yield power estimates for blood flow and perfusion that are

well isolated from tissue clutter. Studies using microcirculation-mimicking

simulations and phantoms enable the optimization of the filtering algorithm

to maximize estimation efficiency. These techniques are applied to murine

models of ischemia and melanoma at 24 MHz to form perfusion images. The

results show enhancements of tissue perfusion maps, which help researchers

access lesions without contrast enhancement. In a study aimed at peripheral

artery disease (PAD), the enhanced sensitivity and specificity of ultrasonic-

pulsed-Doppler imaging enable differentiation of perfusion between healthy

and ischemic states. In addition, the use of the new ultrasound imaging cou-

pled with other imaging modalities helps to illuminate the complex mech-

anism that mediates neovascularization in response to vascular occlusion.

Consequently, these techniques have the potential to increase the effective-

ness of existing medical imaging technologies in safe, cost-effective ways that

promote sustainable medicine.
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CHAPTER 1

INTRODUCTION

1.1 Significance of Perfusion Imaging

The characteristic patterns of blood flow are critical biomarkers indicating

cardio and vascular diseases. Currently, medical imaging modalities can ex-

amine multiscale blood circulation, ranging from fast, organized flows in the

heart and arteries to slow, disorganized perfusion patterns in capillaries of

organs and peripheral tissues. Periodic monitoring of the functional changes

in circulation contributes to the diagnosis of a wide range of clinical con-

ditions, including diabetic complications, neuropathies, peripheral vascular

and cardiovascular diseases, intracranial injury, and tumor growth. Imaging

is also necessary for investigating drug delivery and developing treatments.

The purpose of the circulation is to deliver oxygen and nutrients to tissue

cells and eliminate their metabolic wastes [1]. Since capillary beds surround-

ing the cells mainly take part in the exchange, visualizing them can indi-

cate abnormal transportation mechanisms such as ischemia, hypoxia, and

angiogenesis, which are critical for monitoring health, disease, and injury.

Observation of the flow in an individual capillary is, however, technically

challenging because the diameter is rather small (under 5 µm). Instead, the

arterioles and venules (10-200 µm) connected by capillary beds are more ac-

cessible. Measuring blood perfusion is an attractive alternative that can be

used to identify the local tissue need. The definition of perfusion is total flow

in a volume (mass) of tissue, and the range is from 1 to 10 ml/min/100g of

tissue [2, 3].

Contrast-enhanced magnetic resonance (MR), computational tomography

(CT), and optical and ultrasound (US) methods provide a comprehensive and

detailed picture of microvascular structure and perfusion [4, 5]. Injectable

contrast agents enable perfusion mapping through minimally invasive proce-
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dures [6]. The wide array of imaging modalities gives practicing physicians a

selection of techniques to manage each patient’s situation. Perfusion imaging

without contrast agents is preferred if the method proves reliable, affordable,

low-risk, and widely accessible. Current laser Doppler techniques offer safer

and less expensive contrast-free options for imaging surface perfusion in real

time, but can only measure up to 1 to 2 mm of depth [7]. Techniques in the

US are capable of a great depth of penetration and real-time processing but

are effective in imaging only with contrast enhancement [8, 9].

1.2 Problem Statement and Objectives

Contrast-enhanced ultrasound (CEUS) has already been applied to periph-

eral artery disease (PAD) studies to evaluate the perfusion of leg skeletal

muscle [10, 11]. In addition, quantitative perfusion analysis currently al-

lows an objective characterization of tumors [12, 13]. Although US imaging

without the use of contrast agents can be applied to clinical situations more

economically and safely, the approach is mostly restricted to measuring large

arterial vessels because of technical problems. Technical challenges involve

significantly low contrast, signal-to-noise ratio (SNR), and Doppler frequency

resolution arising from small blood volumes and low velocities. Voluntary and

involuntary movements of surrounding tissue worsen perfusion identification

for imaging.

This dissertation focuses on the US to provide highly sensitive perfusion

images without the need for injectable agents. The specific aims of this work

are to (1) develop optimal US imaging techniques by exploiting novel signal

processing techniques to overcome the limitations, (2) build adequate sim-

ulations, and in vitro and in vivo models, to verify the technique, and (3)

demonstrate that PAD studies are reliable through the quantitative analysis

of US perfusion imaging. The advancement of computational technologies

allows us to design and implement complex algorithms to improve diagnostic

sensitivity and specificity. The imaging techniques incorporate stochastic sig-

nal models of physical phenomena and measurements to extract information

specific to the clinical task. The methods are applied to existing commer-

cial US instruments, which makes these methods immediately valuable to

medical practice provided they are effective and reliable.
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Figure 1.1: Standard US Doppler acquisition and processing are illustrated.
A transducer emits repetitive narrow-band pulses to trace the displacement
of scatterers over time. The motion results in the phase change between
received echoes. A Fourier-based high-pass filter isolates blood signal from
strong clutter using the discrepancy of Doppler shifts (motion speed). Color
Doppler and power Doppler modes display the mean Doppler frequency and
signal power, respectively.

1.3 Review of US Doppler Imaging

Doppler techniques in the US focus on the measurement of blood flow [14].

The framework involves evaluating the variation of received echoes to de-

tect the movement of red blood cells (RBCs). As illustrated in Fig. 1.1, a

transducer transmits a series of narrow-band pulses at the same time inter-

vals and records consequent echoes. The technique in which pulsed-wave

(PW) is emitted is exploited more than the technique that emits continuous-

wave (CW) to distinguish echoes arising from two scatterers positioned at

different depths along a scan-line. The scatterer motion causes the phase

difference between received echoes at each fixed depth (slow-time ensemble)

from consecutively transmitted pulses. Modulation frequency (Doppler shift)

is proportional to axial motion speed.

Due to the benefit of spatial resolution, the PW technique facilitates imag-

ing to monitor vascular structure and local blood distribution. Standard

imaging modes include color Doppler (CD) and power Doppler (PD). Color

Doppler estimates the mean velocity at every depth position along every ad-
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jacent scan-line. Velocity information is presented in color and superimposed

on the gray-scale anatomical image (B-mode image). Power Doppler imaging

encodes the signal power computed by integrating echo amplitude to detect

the moving scatterers or measure their concentration.

Power Doppler has several advantages over CD in accessing a weak per-

fusion signal [15, 16]. Firstly, PD is less sensitive to acquisition noise than

CD. Color Doppler is likely to involve high estimation error since phase noise

randomly occurs when calculating the mean frequency shift. However, repre-

sentation of the noise is different in PD as the noise has uniformly low power

in general. Integrating a power spectrum thus results in relatively high SNR.

Secondly, PD is less dependent on the angle between flow direction and beam

propagation direction. While a Doppler shift is angle-dependent, the power

remains the same as long as it is detectable. Lastly, in PD, power compen-

sation for attenuation can improve perfusion quantification.

1.4 Clutter Filtering Technique

In data acquisition, the blood signal is corrupted by clutter mainly aris-

ing from moving tissue or vessel walls. Respiration is one of the dominant

sources, inducing gross displacement of tissue around the abdominal area.

Additionally, pulsation contributes to the periodic displacement of tissue

near arteries, and internal muscle continuously vibrates. The echo power

of clutter is around 20 to 100 dB stronger than that of blood [17, 18]. As

illustrated in Fig. 1.1, standard imaging uses a Fourier-based high-pass filter

to separate the blood signal from clutter [14]. The fast motion of RBCs in

arterial flow causes a high Doppler shift. However, when assessing slow flow

in the microvasculature, the blood and clutter components of the Doppler

frequency spectrum overlap significantly. To obtain a high ratio of blood-

to-clutter components, filtering needs to exploit other characteristics beyond

the motion speed.

Many studies proposed for clutter filtering are based on blind-source sep-

aration (BSS) [19, 20, 21]. These BSS methods take advantage of princi-

pal component analysis (PCA) or independent component analysis (ICA)

[22, 23, 24]. The techniques begin with assumptions that acquisition data

involve a set of independent sources and their exact properties are hardly
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known. The common process follows three steps: (1) Input data is converted

into specific coordinates associated with a statistical independent criterion

to separate the sources, (2) filtering is conducted by suppressing unwanted

source components in the new domains, and (3) filtered data is inversely

transformed into the original domains.

Eigenfilters based on PCA currently appear to perform better than stan-

dard filters for in vitro and in vivo tests [18, 25]. The filters are adaptive

in that temporal eigenbases are specific to the data and able to separate the

sources of echo decorrelation. The eigenvalues associated with echo power

of the sources facilitate the selection of blood-dominant bases. Dimension

expansion using singular value decomposition (SVD) provides even better

source separation as it preserves the characteristic differences between the

spatial and temporal response of the sources [26, 27]. Plane-wave techniques

can achieve higher acquisition rates to facilitate noise averaging when forming

SVD filters [28].

1.5 Dissertation Summary

The fundamental contribution of this dissertation is to increase the sensitivity

and specificity of US Doppler imaging to tissue perfusion. This research

is motivated by the discovery that altering the spatiotemporal sampling in

ways that build a multidimensional data array can enhance the sensitivity of

the measurement to physiological perfusion. Since an increase in sensitivity

naturally decreases specificity, novel statistical filtering techniques are needed

to isolate signal components specific to the clinical task.

Chapter 2 addresses a preliminary study to investigate the possibility of

statistical processing approaches. The efficiency of conventional PD methods

in discriminating flow states is examined by comparing measurement perfor-

mance to that of the Bayes methods using a multivariate Gaussian model [29].

In vitro experiments are conducted to observe that the statistical method is

more efficient provided that random scattering from blood and soft tissues

is well-represented by the temporal covariance matrix of echo data. All effi-

ciencies are measured by areas under receiver operating characteristic (ROC)

curves.

Chapter 3 focuses on multidimensional eigenfiltering for perfusion imag-
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ing. The role of the eigenfilter is to adaptively suppress clutter and noise

components from given stationary data samples prior to the estimation of

local perfusion. To better characterize the sources, the strategy involves ex-

ploiting statistics of multiple modes by adopting the following sampling pat-

tern. Doppler pulses sampled at kHz-order are acquired to form a Doppler

frame. Frames are recorded at 10 to 30 Hz. This echo data is organized

into a multidimensional array depicting slow-time, frame-time, and spatial

bases. Higher-order singular value decomposition (HOSVD) is a feasible tool

to incorporate statistics of the three modes to increase the separability of

independent sources.

Chapter 4 describes filtering optimization. Following HOSVD, filtering is

conducted by nullifying unwanted components. The accurate selection of

clutter-dominated and noise-dominated subspace is thus required to enhance

estimation efficiency. In this study, a comprehensive simulation is proposed

to extract features and build a robust classification model. The simulation

mimics US Doppler acquisition based on realistic models of tissue motions

and microvascular flows. The synthetic data is used to train and test the

classifier to minimize selection errors. All processes are validated using a

couple of in vitro and in vivo models.

In Chapter 5, perfusion imaging is applied to studies for peripheral artery

disease (PAD). The murine hindlimb ischemia is a typical experimental model

used to understand PAD and develop new therapies. The loss of muscle blood

flow occurs when the femoral artery of a healthy mouse is ligated. After

several days, angiogenesis rebuilds the vasculature enough to restore most of

the perfusion, and the use of the leg returns. The US imaging technique is

used to track muscle perfusion changes for two weeks. This imaging coupled

with other imaging modalities allows us to establish the complex angiogenic

process.
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CHAPTER 2

EFFICIENCY OF PERFUSION
ESTIMATORS

2.1 Introduction

The study examines the ideal (ID) discriminator of ultrasonically detected

blood-perfusion states. This statistical discriminant function leverages prop-

erties of the temporal covariance matrix of RF echo signals to describe echo

decorrelation within a scattering region caused by scatterer motion and noise.

The ideal discriminator fully incorporates temporal statistical information

about the random object scatterers into a scalar test statistic that maxi-

mizes the area under the receiver operating characteristic (ROC) curve [30],

or AUC, thus maximizing classification performance [31, 32]. Provided scat-

tering is an incoherent Gaussian process, all anatomical and flow information

is found within the covariance matrix of the object scatterers. The covari-

ance matrix for the object function is simply related to that for the pulse-echo

measurements using linear systems [33].

Heimdal and Torp [34] used a statistical discriminant function as a new

color-Doppler estimator in a manner similar to the analysis described below.

Later Hovda et al. [35] also applied statistical estimators in a technique they

called knowledge-based imaging. Both studies found the statistical approach

to flow estimation can be very sensitive to flow, but it requires knowledge

of the covariance matrices for all possible flow conditions. The goal in this

chapter is to use statistical estimators to assess the efficiency of standard

power Doppler methods.

The temporal covariance matrix for an imaging experiment is a combi-

nation of pulse properties, scatterer echogenicity, and scatterer movement.

When these properties are known, as they can be in phantom measurements,

the covariance matrix for specific flow conditions can be estimated from echo

samples. Then the ideal discriminator described in this chapter can be com-
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puted and its performance compared with standard methods to estimate flow

discrimination efficiency. Efficiency quantifies the fraction of available task

information being used by the estimator. Traditional power-Doppler meth-

ods are suboptimal discriminators because they fail to incorporate all of the

specific information about the interaction between pulse and scatterer mo-

tion interactions. This information is specific to each perfusion event but

unknown during clinical studies.

The first step in our approach is to estimate the temporal covariance ma-

trix of RF echo-data measurements obtained from a perfusion phantom. It

explores how the amount of RF echo data used for ensemble averaging influ-

ences covariance estimates. For this aspect of the study, principal component

analysis (PCA) [22] is applied to the echo covariance matrix to separate blood

echoes from tissue clutter and acquisition noise [20] in an attempt to reduce

the amount of echo data required to accurately estimate the covariance ma-

trix.

The next step is to show that power Doppler estimates employing FIR

clutter filters can be expressed in a manner analogous to the ID test statistic.

ROC curves are generated for comparisons of both methods. From perfusion

phantom data, ROC curves are estimated for discriminating between pairs

of flow states using conventional power Doppler methods. These results are

compared to the ID results to estimate the efficiency of conventional methods.

The final step is to show how the binary discrimination task may be extended

to more general flow conditions in a way that illustrates how inefficiency

reduces the visibility of flow in power Doppler images of the phantom.

2.2 Methods

2.2.1 Flow Phantom

Ultrasonic measurements were made using the perfusion phantom illustrated

in Fig. 2.1. The critical unit was a dialyzer cartridge consisting of a bundle

of hundreds of 0.2 mm inner-diameter polysulfone fibers (B. Braun Medical

Inc., Allentown, PA USA). Using a programmable syringe pump connected

to the cartridge, we steadily infused in a closed loop through the fibers either

pure water for the control state or blood-mimicking fluid (CIRS, Norfork,
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Figure 2.1: A dialyzer cartridge was used to mimic blood perfusion in a
clutter and noise environment. An ultrasonic linear array scans the
cartridge to acquire echo data in spectral Doppler mode. Perfusion rates
are controlled by a syringe pump infusing either water or blood-mimicking
fluid through the fibers while a peristaltic pump circulates the water
surrounding the fibers to simulate clutter. As shown, blood-mimicking fluid
flow was limited to a cross-sectional area of fibers about 25% (∼2 cm2) of
the total area.

USA) for the test state. In this way we simulated spatially directed blood

perfusion in the range of 0.0 - 2.0 ml/min over a cross-sectional area 2 cm2

approximately1. In addition to intra-fiber infusion, a second set of cartridge

connections allowed water to be pulsed into the cartridge outside the fibers.

Connecting a 1 Hz peristaltic pump in this way, we simulated clutter from

cardiac motion. A portion of the protective plastic case was removed to

provide an acoustic window, and then the entire cartridge was submerged in

degassed water at room temperature.

Flow is limited to just the most proximal 2 cm2 of the cross-sectional fiber

area so that net flows ≤2 ml/min provided representative scatterer velocities

within the fibers. We note that the density (1.24 g/cm3) and longitudinal

sound speed (2260 m/s) of the polysulfone fibers present a strong impedance

mismatch with the surrounding fluids, which reduces sound penetration and

echo SNR. However the ideal detector is limited by echo SNR in the same

1In vivo perfusion is the steady-state delivery of blood to a unit of tissue, often mea-
sured in units of flow per tissue mass. For example, reported perfusion measurements in
VX2 rabbit tumors spans a large range, from 13.5 ml/min/100 g using PET techniques
[36] to 0.2-1.1 ml/min/g using radioactive microspheres [37]. In this report, perfusion is
the directed flow of blood-mimicking fluid through a fixed ∼2cm2 cross sectional area of
25-cm-long packed microtubules; the total flow is varied between 0.1-2.0 ml/min.
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way as other estimation methods, so that discrimination efficiencies will be

relatively unaffected, even if this represents a somewhat more difficult envi-

ronment for perfusion estimation.

2.2.2 Signal Model

All modeling and analysis were conducted in Matlab . In a spectral-Doppler

acquisition, a single line of sight (Fig. 2.1) is repeatedly probed with N ′

narrow-band pulses as M ′ range echoes are recorded after each pulse trans-

mission. The result is an M ′ × N ′ matrix X′ with elements X ′[m,n]. Two

examples are shown as gray-scale images at the top of Fig. 2.2.

Column vectors of X′ describe temporal sampling along a fixed transducer

line of site; each vector is the RF echo signal from the nth pulse along the

“fast-time” axis xn with elements xn[m] and 0 ≤ m ≤ M ′ − 1. Row vectors

xm are echoes along the “slow-time” axis where echo signal samples are xm[n]

for 0 ≤ n ≤ N ′ − 1. Integer index m also indicates the distance z from the

transducer surface (depth) via z[m] = z0+cmT ′/2, where z0 is the distance at

which recording begins, c is the compressional wave speed, and T ′ is the fast-

time sampling interval. The time interval between pulse transmissions (and

slow-time samples) is T , 1/T is the pulse repetition frequency, and T ≥M ′T ′.

Since the fast-time axis also corresponds to depth, we may consider X′ as

composed of echoes recorded at M ′ depths each from N ′ pulses along the

slow time axis.

The temporal covariance matrix for zero-mean echo signals recorded at

depth z[m] is the expected value of the outer product of the mth row vector

in X′, i.e., Σx = E(xmxTm), where superscript T indicates vector transpose.

We assume the standard physical model of blood flow in Doppler ultrasound,

where there are three stochastic sources contributing to Σx [18, 20, 27, 28, 31],

and each source is assumed to be an independent zero-mean multivariate

normal random process. The three covariance sources are tissue scattering

represented by matrix C (for clutter), blood scattering by matrix B, and

acquisition noise by matrix E = σ2
eI. The quantity σ2

e is the noise variance

and I is an identity matrix. Unlike E, matrices C and B are not diagonal,

representing the fact that clutter and blood signals persist to some extent
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through time. They contribute to Σx through the filter of instrumentation,

Σx = Σc + Σb + E = HCHT + HBHT + σ2
eI , (2.1)

where H is the measurement-system matrix. In this model, all tissue and

blood information is contained in Σx.

In practice, an M × N subset of X′ is selected to form the smaller echo

matrix X, where M ≤ M ′ and N ≤ N ′. We then assume there may be a

non-zero mean and that the signal are ergodic, where spatial averaging is

used in place of ensemble averaging to estimate Σx. For M ×N echo matrix

X, the approximation is the N ×N covariance

Σx '
1

M − 1
(X− x)T (X− x) , (2.2)

with mean x =
1

MN

M−1∑
m=0

N−1∑
n=0

X[m,n] .

Ergodicity is possible when the impulse-response function is shift invariant

and the contributing sources are stationary for all M rows of X.

If more data are desired for averaging to improve the estimate of Eq. (2.2),

the N ′ samples in X′ may be partitioned to augment the number of rows. For

example, if we recorded N ′ = 1000 pulses at M ′ = 100 depths (total of 1.54

s at 650 Hz PRF), each row could be partitioned and rearranged into five

200-pulse packets to form a 500×200 matrix X, yielding covariance matrices

of size 200× 200.

2.2.3 Ideal Discriminator Approach to Perfusion Estimation

Assuming the covariance matrices can be accurately measured, consider a

measurement vector x (subscript m is understood). Its specific properties are

unknown except that it was recorded from one of two possible perfusion states

that we label 0 or 1. Echo signals from the two states are both multivariate-

normal zero-mean processes,

x ∼

{
MVN(0,Σx|0) for perfusion state 0

MVN(0,Σx|1) for perfusion state 1
, (2.3)
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where Σx|0 = Σc + Σb0 + E and Σx|1 = Σc + Σb1 + E. That is, Σx|i are Σx

measured for the ith state, where i = 0 or 1. The only difference between

these two echo-signal distributions is the perfusion rate via Σbi .

The classification task is to decide to which state x belongs. That task is

optimally achieved by the likelihood ratio test [38] given by the ratio of echo

probability density functions conditioned on the two states,

`(x) = ln
p(x|1)

p(x|0)
∼ 1

2
xT (Σ−1

x|0 −Σ−1
x|1)x = xTQx . (2.4)

The symbol ∼ is used to indicate that terms independent of x are discarded

since they do not influence classification performance [33]. Scalar `(x) is

the test statistic for the ideal discriminator, a quadratic function of testing-

data vector x. For convenience, we define the difference between inverse

covariances for the two states by the matrix

Q = Σ−1
x|0 −Σ−1

x|1 . (2.5)

In the following, we refer to echo data recorded for estimating Σx as train-

ing data. Alternatively the echo data indicated by x in Eq. (2.4) are referred

to as testing data. Training and testing are conducted on different sets. Σx

are estimated using Eq. (2.2) and training data. These matrices are nonsin-

gular because of the presence of acquisition noise; their inverses exist as long

as there are more samples than degrees of freedom. Σx and Q estimations

are described in Section 2.2.4 and illustrated in Fig. 2.2.

Decisions based on test vector x for which `(x) has been estimated are

expressed as

D(x) = step(`(x)− τ) , (2.6)

indicating the decision is state 0 when ` < τ and state 1 when ` ≥ τ for

threshold τ . For example, `(x|1) is correctly classified when D(x) = 1 and

incorrectly classified when D(x) = 0. To measure discrimination perfor-

mance, consideration of all possible threshold values is required as shown in

Section 2.2.7.

12



Covariance Matrix 

Estimation 

Feature Extraction 

+ 
+ - 

+ 
+ - 

Q

1

|0x

-
S

1

|0y

-
S

Covariance Matrix 

Estimation 

Feature Extraction 

1

|1x

-
S

1

|1y

-
S

Q

State 0 State 1 

Figure 2.2: Illustration of the procedure for generating data matrices X and
covariance matrices Σx|i. From covariance matrix inverses, Q are formed
(Eq. (2.5)) and Q̄ (Eq. (2.14) in Section 2.2.8). Echo vectors randomly
selected from within X′ (i.e., the small white rectangles in grayscale images
at top) are used to form X.
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2.2.4 Estimating Σx|i and Q

The top of Fig. 2.2 illustrates the process of randomly selecting data vec-

tors for X to estimate Σx. In this example, we recorded 3250 (650/s × 5

s) RF echo signal segments for a fixed-position 2 mm range gate (2 mm×
20 samples/µs)/(0.77 mm/µs)=52 samples) near the transmit focus of the

transducer. Throughout each 52×3250 matrix X′ (grayscale images at top

of Fig. 2.2), we assume the system response is linear time-invariant and the

random processes associated with the three sources are wide-sense stationary.

We then randomly select packets to form data sub-matrix X. The length and

number of packets selected depend on the experiment.

2.2.5 Standard Approaches to Perfusion Estimation

We can express standard power Doppler estimation using an expression sim-

ilar to Eq. (2.4) as follows for a single test vector x. Techniques that apply

a Fourier-domain wall filter to minimize clutter can be written as

¯̀= (Fx)T (Fx) = xTQPDx . (2.7)

F is a circulant N × N matrix that defines a high-pass filter. We define

QPD , FTF, which is different from Q that involves covariance matrices in

Eq. (2.4). For example, a DC-cancellation filter is

QPD = I− 1

N
1 , (2.8)

for N ×N matrix 1 in which every element is set to one.

2.2.6 QPD and Q Matrices

Figure 2.3 displays QPD (top row) and Q (bottom row) matrices as images.

QPD matrices are for the DC cancellation filter (A), a 12.25 Hz high-pass FIR

filter (B), and 60 Hz high-pass FIR filter (C). QPD are formed independently

of echo data because they are simply implementations of high-pass filters.

In contrast, Q are formed from echo signals recorded at specific perfusion

states. Parts (D), (E) and (F) show Q matrices for steady blood-mimicking

14



(D) (F) (E) 

Figure 2.3: The top row shows 100×100 QPD matrices for, respectively, a
DC cancellation filter, 12.25 Hz FIR high-pass filter, and 60 Hz FIR
high-pass filter. Each matrix in the top row implements the operation of
high-pass filtering and summing in the time domain via Eq (2.7) to yield
signal power measurements for conventional PD estimates. The 100×100
matrices (D), (E) and (F) are Q matrices for the ID estimator (unfiltered
echo data) at three perfusion rates, 0.4, 1.0 and 2.0 ml/min, respectively.
Each experimentally measured matrix is the difference between two inverse
covariance matrices via Eq (2.5), and has patterns characteristic of the pair
of flow states being compared. The covariance matrices forming Q in the
bottom row are stationary and thus Toeplitz; each was formed using an
ensemble of 50,000 packets to obtain low-noise estimates.
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perfusion at three rates compared with their controls. Because each is the

difference between two inverse covariance matrices, it is hard to intuit the

patterns in each case. The bottom row shows that Q matrices describe

experimental information specific to the combination of pulse properties,

echogenicity and perfusion properties that do not appear in the generic QPD

of the top row.

2.2.7 Discrimination Performance

Performance quantifies the ability to achieve a task. Flow-discrimination

performance is measured by comparing AUC values resulting when perfusion

estimates are used to differentiate distinct perfusion states.

Figure 2.4 illustrates the formation of ROC curves from histograms of

`(x|1) for test state 1 (0.4 ml/min blood-mimicking fluid flow) and `(x|0) for

control state 0 (0.4 ml/min water flow). The histograms provide estimates of

the probability of detection, PD = P (`(x|1) > τ), versus the probability of

false alarm, PF = P (`(x|0) > τ) [39]. That is, PD(τ) and PF (τ) are found by

summing the histograms from τ ≤ `(x) < ∞ over all possible τ to generate

the ROC curve shown on the right. Perfect detection yields AUC = 1, which

occurs when the two distributions do not overlap. A worthless detector

generates an AUC = 0.5 that results from the two probability distributions

being identical.

The efficiency η by which standard power-Doppler techniques distinguish

two perfusion states compared to that of the ideal discriminator for the same

task is computed using [33]

η =
Φ−1(AUCPD)

Φ−1(AUCID)
. (2.9)

Function Φ−1(·) is the inverse of the cumulative normal function, and AUCPD

and AUCID are areas under the ROC curves for the standard power-Doppler

and ideal-discriminator approaches, respectively.
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Figure 2.4: (A) Histogram of likelihood ratios ` found from phantom
measurements for two perfusion states. The distributions of clutter and
noise are the same for the two states, but the blood flow states are different.
Red and blue histograms represent `(x|1) and `(x|0), respectively. The
probability of correctly detecting blood-mimicking fluid perfusion is PD and
the false alarm probability is PF . These are found by integrating histograms
for `(x|1) and `(x|0) above threshold τ . (B) The ROC curve is a plot of PD
versus PF as discrimination threshold τ is varied. AUC in this case is 0.83.

2.2.8 PCA Filtering

When we know the echo covariance matrix, e.g., if we can precisely measure

it for known perfusion conditions, there is no need to separate the different

contributions since each known source of covariance becomes part of the ID

calculation. Clutter and noise filtering are required clinically because these

covariances are unknown. We were concerned that errors made while esti-

mating the covariance matrix might degrade classification performance below

the ideal (maximum) value. To address this concern, we studied how the size

of the echo-data training set influenced performance and report the results

below. During that study, we also asked if filtering the training data used to

estimate Σx to suppress clutter and noise might allow ideal performance to

be achieved with less training data.

This section describes our implementation of principal component analysis

specifically for reducing errors in covariance matrix estimates. Filtering out

sources that contribute to Σx is a reduction in dimensionality [18, 20, 22,

27, 28] that we seek to achieve by identifying matrix W that returns clutter-
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and noise-suppressed vector y from training echoes x. That is,

y = Wx , (2.10)

where x ∈ <N×1, y ∈ <J×1, and W ∈ <J×N for J ≤ N . W is chosen

to maximize the separability of likelihood functions p(y|0) = p(Wx|0) and

p(y|1) = p(Wx|1) for the two perfusion states; i.e., there is a function f such

that

W = arg max
W ′

f(p(W′x|0), p(W′x|1)) . (2.11)

W is found from an eigen-decomposition of the covariance matrix

Σx|i =
N∑
k=1

λkuku
T
k (2.12)

=
∑
k∈C

λkuku
T
k +

∑
k∈B

λkuku
T
k +

∑
k∈E

λkuku
T
k ,

where eigenvalues λk and eigenvectors uk are listed in descending order left

to right and grouped into three subspaces C, B and E as shown in Fig. 2.5.

Moving-tissue echoes (clutter) typically contribute the largest eigenvalues

to Σx|i, as tissue scattering is more echogenic than blood scattering. Also,

the spatially coherent and temporally periodic patterns of clutter motion con-

centrates their eigenmodes into a low-dimensional subspace with eigenvectors

{uk|k ∈ C}. In contrast, the weaker scattering of red blood cells generates

blood-echo components in lower-amplitude eigenvalues. As perfusion often

generates a more diverse pattern of scatterer motion than clutter, it forms

a somewhat larger-dimensional subspace with eigenvectors {uk|k ∈ B}. Ac-

quisition noise is typically the smallest-energy component of the echo-signal

covariance and it usually spans the entire basis.

Given that blood components in B correspond to eigenvalues at {k, · · · , k+

J − 1} (k = 3, 4, 5 in the simplified example of Fig. 2.5), then y is found

from the projection of signal vector x onto that feature space. In terms of

Eq. (2.10) we have

W = [uk,uk+1, · · · ,uk+J−1]T . (2.13)
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Figure 2.5: A simplified eigenspectrum of Doppler echo-signal vector xm
where eigenvalues λk are sorted in decreasing order. Values are grouped into
sets, C, B and E, that approximate the three sources contributing to Σx.

Consequently, J is the cardinality of set B since we assume the other sub-

spaces have no information useful for discriminating perfusion states. In

this study, we selected k and J for PCA filtering by discovering which sub-

group of eigenvalues maximized flow discrimination performance via AUC

measurements.

The eigenbasis cannot completely separate blood and clutter components

but, among all orthonormal bases of that dimension, it spans the maximum

clutter-signal energy such that the mean-square error between it and the true

clutter signal is minimized [17].

Applying PCA filtering to covariance matrix estimates, we have

Σy|i = WiΣx|iW
T
i , i = 0, 1 ,

˜̀(x) = xT (WT
0 Σ−1

y|0W0 −WT
1 Σ−1

y|1W1)x

= xT Q̃x . (2.14)

Q̃ ∈ <N×N has rank J < N , and so Q̃ is a reduced-rank version of Q. Q̃

estimation is illustrated in Fig. 2.2.
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2.3 Results

2.3.1 Data Acquisition

Echo data were recorded using a Sonix RP ultrasonic imaging system (Ultra-

sonix Medical Corp., Richmond, BC, Canada) and a linear-array transducer.

The transducer, located above the dialyzer cartridge, probes the fibers with

narrow-band pulses at a Doppler angle of 50 degrees. Tests with blood-

mimicking fluid provide perfused-state data including clutter, blood, and

noise signals. Control data were recorded by replacing the blood-mimicking

fluid with degassed water, thus maintaining the same clutter and noise signal.

Table 2.1 summarizes the experimental parameters.

Table 2.1: Acquisition Parameters

Parameter Value
Probe type Ultrasonix L14-5
Pulse center frequency 5.0 MHz
Doppler pulse length 4 cycles
In-plane transmit focal length 15.75 mm
In-plane transmit f-number 2.02
Testing ensemble size 40-100 pulses
Fractional bandwidth 20%
Axial range of sample volume 2 mm
Pulse repetition frequency 220-650 Hz
Fast-time sampling rate 20 MHz
PD line density (Fig. 2.10) 2.5/mm

2.3.2 Experimental Overview

Blood-mimicking fluid perfusion state 1 was compared to its water-only con-

trol state 0 to study perfusion detection in Experiment I. Comparison of

two different blood-mimicking perfusion states between 0 and 2 ml/min was

conducted to study perfusion discrimination in Experiment II. From his-

tograms of test statistic responses, e.g., Fig. 2.4, AUC values were computed

for conventional power Doppler and ID estimators and applied to Eq. (2.9)

to determine estimator efficiency.
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Figure 2.6: (A) Areas under ROC curves (AUCs) for perfusion detection
using different perfusion rates and estimators. The state 0 condition uses
water in place of the blood-mimicking fluid. The white bar indicates
ideal-discriminator (ID) performance, and the gray bars are the
performances of the conventional power-Doppler (PD) estimator for the DC
cancellation and FIR clutter filters. (B) Detection efficiency of Doppler
methods relative to the ID method. Error bars denote ±2 standard errors
for 300 trials.

Test statistics reported as conventional power-Doppler estimates were com-

puted using Eq. (2.7). Estimates involved echo data for which either a DC

cancellation filter, Eq. (2.8), or a high-pass FIR filter was applied. Ideal

discriminator (ID) test statistics were computed using echo data that was

unfiltered via Eq. (2.4) or PCA-filtered via Eq. (2.14). We will show in Exper-

iment IV that the only effect PCA filtering has on ID estimator performance

is to improve estimation accuracy with a smaller training set. Experiment

V illustrates how the ID formalism can be adapted for imaging under the

special situation where the covariances are known.

2.3.3 Experiment I: Detection

Experiment I provided data to compare perfusion-detection performances

of standard power-Doppler and ideal-discriminator approaches. In each case

blood-mimicking fluid perfusion measurements were compared to water-perfused

control measurements. Σx was estimated using a training set of 3000 vectors

each of packet size 100 recorded at PRF = 650 Hz.

Detection performance is summarized in Fig. 2.6, where testing sets are
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composed of 300 echo-signal vectors. Doppler estimator results involved an

FIR filter having a high-pass corner frequency that was selected to maxi-

mize AUC. Figure 2.6 (A) shows AUC values for the range of perfusion rates

tested relative to the corresponding control state. As expected, performance

for each estimator improves as flow rates increase because of better sepa-

ration between the clutter and blood components. Detection performance

estimated from power-Doppler versus ideal-discriminator test statistics is

summarized by the efficiency measurements shown in Fig. 2.6 (B). At flows

below 1 ml/min, PD estimators are less than 50% efficient.

2.3.4 Experiment II: Discrimination

Experiment II estimated the efficiency for perfusion discrimination of PD es-

timators. Here we measured the ability of the power-Doppler method to dis-

criminate various perfusion rates when compared to perfusion at 0.1 ml/min

in Fig. 2.7 (A) and (B). Comparisons are also made relative to 0.4 ml/min in

Fig. 2.7 (C) and (D). Discriminating two perfusion states is more challenging

than detection, as quantified by the lower AUC values in Fig. 2.7 (A) and (C)

relative those in Fig. 2.6 (A). Along with lower overall AUC values, we find

that PD estimators are also less efficient at discrimination than detection.

2.3.5 Experiment III: PRF and Frequency Resolution

We expect the pulse-repetition frequency (PRF) to have a different influence

on perfusion-detection performance than it does on arterial-flow estimation

since aliasing is not a limiting factor in perfusion estimation. For perfusion

estimation, the total time spanned by packet samples is very influential be-

cause it determines the frequency resolution of a Fourier basis. Conditions

that improve frequency resolution also increased the number of samples in

the B eigen-subspace, which improves perfusion discrimination.

Figure 2.8 shows the results of two experiments that demonstrate the value

of high-frequency resolution. In Fig. 2.8 (A), we increase the packet size by

increasing PRF without changing the total duration of slow-time measure-

ments to find no measurable change in ID detection performance. Conversely,

in Fig. 2.8 (B) we fix the packet size at 100 and allow the increase in PRF
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Figure 2.7: (A) Areas under ROC curves (AUCs) for perfusion
discrimination using different perfusion rates and estimators. In (A) and
(B), state 0 applies blood-mimicking fluid perfusion at a rate of 0.1 ml/min
while (C) and (D) use state 0 blood-mimicking fluid perfusion at a rate of
0.4 ml/mi. The white bar indicates performance of the ideal-discriminator
(ID), and the gray bars are that for the conventional power-Doppler (PD)
estimator for the DC cancellation and FIR clutter filters. Results at 0.4
ml/min in (A) and (B) are by definition the same as those at 0.1 ml/min in
(C) and (D). Error bars denote ±2 standard errors for 300 trials.
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Figure 2.8: Plots of detection AUC at 0.4 ml/min perfusion measured from
the ID test statistic as a function of pulse-repetition frequency (PRF). In
(A), the total time duration of the echo vector is fixed at 0.1864 s and the
vector size varies as 0.1538×PRF pulses. In (B), the vector size is fixed at
100 pulses while time duration varies as 100/PRF s. Error bars denote ±2
standard errors for 300 trials.

to decrease the total duration spanned by the packet. We find performance

decreases with the reduction in frequency resolution. The change in AUC

between PRF = 217 Hz (0.83) and 650 Hz (0.76) is modest, but the corre-

sponding change in efficiency via Eq. (2.9) is a factor of 2, which is highly

significant. The best performance for perfusion detection and discrimination

is found at a PRF less than 1 kHz and the largest packet size that preserves

signal ergodicity.

2.3.6 Experiment IV: Effects of PCA Filtering

Figure 2.9 illustrates how the number of echo vectors used to estimate the

covariance matrix influences ID performance with and without PCA filtering

of the training set. In Fig. 2.9 (A), where we used a packet size of 50 pulses,

a plateau is reached near AUC ' 0.65. We only need 400 training vectors to

achieve ideal-discriminator performance because the AUC does not increase

using a larger number of training vectors. In the plateau region, PCA filtering

has no influence on AUC. However, as the number of training vectors falls

below 400, we find AUC also falls as errors in covariance estimates increase;

below 400 training vectors, we are not estimating the ideal-discriminator

response. We see that the reduction in AUC values below 400 vectors is less

using PCA-filtered echo signals to estimate Σx because we generate fewer
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Figure 2.9: Changes in detection AUC at 0.4 ml/min as a function of the
number of vectors used to estimate the covariance matrices (training
samples) and test-vector length (packet size). Test-vector sizes are (A) 50,
(B) 100, and (C) 150 pulses. Points marked (o) are for the ID estimator in
which the echoes used to estimate covariance were unfiltered. Points
marked (x) use PCA-filtered echo signals. Note that the point at the far
right in each plot is for 3000 training vectors. Error bars denote ±2
standard errors for 300 trials.

covariance errors by suppressing the clutter and noise components.

Increasing the test vector packet size to 100 in Fig. 2.9 (B) and to 150 in

Fig. 2.9 (C) at fixed PRF raises the detection-performance plateau because

of increased in frequency resolution. However, we must increase the training

set to 800 vectors or more before a plateau is reached.

The data of Fig. 2.9 show that ID performance is not affected by echo-

data filtering, although PCA-filtering generates fewer covariance estimation

errors leading to performance estimates closer to the ideal discriminator. It

also provides evidence that clutter filtering is not fundamental to achieving

optimal discriminability when statistical properties of the echo signal are

known or can be measured; the need for clutter filtering depends on the

requirements of the perfusion estimator adopted.

The following computational times were measured using an Intel proces-

sor i5-4300U CPU, 2.50GHz running Matlab 2013b. The average time to

compute Q matrices (training) was 0.028 s without PCA filtering and 0.106

s with PCA filtering. The computational time for testing was 0.068 s per

data set.

25



Figure 2.10: Conventional power-Doppler image of phantom perfusion at
0.6 ml/min (right) and that obtained using the ID estimator (left) for the
same recorded echo data. Results are coded in color and overlaid on the
B-mode image. The image is a cross-sectional view of the dialyzer cartridge
diagrammed in Fig. 2.1.

2.3.7 Experiment V: Imaging

Figure 2.10 illustrates the effects of lower detection efficiency by comparing

standard Doppler estimation with a statistical estimator inspired by the ID

approach. Note that this method is only possible because we have training

sets of known perfusion rates.

Perfusion was estimated for the phantom of Fig. 2.1 by extending Eq. (2.4)

to M-ary hypothesis testing using

`k(x) = ln
p(x|k)

p(x|0)
' dk + xTQkx , (2.15)

where dk = log(|Σx|0|/|Σx|k|) is the logarithm of the ratio of determinants,

Qk = Σ−1
x|0−Σ−1

x|k and k ∈ {1, 2, · · · , 19, 20} denotes the 20 nonzero perfusion

states between 0.1 and 2.0 ml/min for which covariances were estimated. The

perfusion estimate at each location is found from Qk that maximizes the test

statistic,

D(x) = arg min
k

(`k(x)) . (2.16)

The procedure for estimating the covariance matrices is the same as that

in Section 2.2.4. Then we estimated `k(x) for all the test data in the 2-D

spatial window shown in Fig. 2.10. Test vectors consist of 40 (200 Hz × 0.2

s) slow-time echo signals at each window position over a 400-sample axial
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range ((15.4 mm × 20 samples/µs)/(0.77 mm/µs)=400 samples) and a 65

scan line lateral range ((25.8 mm)/(0.4 mm/scanline) = 65 scan lines). The

total number of test vectors is 400 × 65, one for each point in the white

box of Fig. 2.1, and each test vector has 40 samples. The image on the left

side of Fig. 2.10 was obtained by color coding the results of the test vector

by Eq. (2.16) at each pixel according to the 20 flow states possible and

superimposing those values on the B-mode image. A conventional Doppler

image with the same color mapping is shown on the right.

2.4 Discussion

The efficiency of conventional power-Doppler methods using FIR clutter fil-

tering for detecting and discriminating perfusion-like blood velocities without

contrast enhancement is in the range of 20-50%. This finding suggests there

may be more efficient label-free perfusion estimators. If we change acquisi-

tion processes to further enhance sensitivity and exploit not only temporal

but also spatial statistics, we would find a lower efficiency.

Equation Eq. (2.4) reveals that the strategy of the ideal discriminator is

to use the entire covariance matrix in decision making, which is only possible

if the states being compared are known statistically. Each echo covariance

matrix is a specific combination of properties of the interrogating pulse and

scatterer reflectivity and motion. Conventional power Doppler methods do

not apply the covariance matrix during the power calculation, meaning they

sub-optimally weight echo signals during the squaring and summing process.

Perfusion images are enhanced to reveal flows that are closer to the true

value by properly weighting each test vector with covariance information.

We demonstrated enhanced flow in the phantom via the image of Fig. 2.10;

however, this approach is only possible when the true covariance estimate

can be accurately estimated for a known flow condition. Future work in-

cludes development of statistical flow estimators that introduce covariance

matrix information into the process. Even if the method is sub-optimal,

independently validated in vivo testing will be able to quantify benefits. Im-

portantly, the methods described in this chapter can be applied to any new

estimator to measure its discrimination efficiency and compare those results

with standard approaches to evaluate efficacy.
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CHAPTER 3

MULTIDIMENSIONAL CLUTTER
FILTERING USING HOSVD

3.1 Introduction

The goal of ultrasonic power Doppler (PD) imaging is to display the magni-

tude of blood perfusion in tissue at each point in a scan plane. PD methods

are sensitive to red-blood-cell (RBC) movements, making them useful for as-

sessing ischemia and flow in tortuous vessels. Nonetheless, quantifying slow

and weakly scattering intrinsic perfusion signals remains a formidable chal-

lenge. The principal challenge is to increase the signal-to-noise+clutter ratio

(SNCR), which is addressed by either suppressing noise and clutter com-

ponents [40, 25, 28] or augmenting the blood-flow component with contrast

agents [8, 41, 9]. Our work focuses on non-contrast-enhanced approaches to

improving PD imaging.

We provide an initial demonstration of a simple echo-acquisition and data

filtering strategy that appears to substantially improve SNCR and Doppler-

frequency resolution. With some tuning of the filters, we clearly see regions

of slower perfusion that are not visible using established PD techniques. The

acquired data at each spatial location are arranged to have two temporal

dimensions: slow-time sampled on the order of kHz and frame-time sampled

on the order of Hz. Temporal sampling is adjusted to increase the density of

independent samples in the low-frequency Doppler spectrum where the weak

perfusion signal is strongest. We then increase the dimension of the clutter

filter to fully exploit the expanded dimensionality of the data, and employ

high-frequency pulses to further increase SNCR.

The recorded data array initially has two spatial dimensions (axial and

lateral) and two temporal dimensions (slow-time and frame-time). These

data are reordered to combine the two spatial axes into one, resulting in

a 3-D data array with one spatial and two temporal axes. We describe the
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information contained within this 3-D data array and a 3-D clutter filter that

separates blood components from clutter and noise.

Traditional filters have been employed in the slow-time domain to reduce

power at low temporal frequencies where clutter dominates [19]. The re-

sulting perfusion estimates are often averaged over a few spatial locations

and/or multiple frames to reduce variance in the estimates. However, under

conditions of slow flow, a significant portion of the perfusion signal may fall

into the attenuated frequency channels of the clutter filter. This issue is also

present for more general eigenfilters that operate on slow-time echo signals

[21, 18].

An alternative to 1-D slow-time filters has been to expand the filter di-

mension to use information from both space and time to isolate the blood

signal [40]. Two-dimensional filters are derived from the echo data using

singular-value decomposition (SVD). They exploit the spatial coherence of

clutter echoes as distinct from the more incoherent flow patterns of perfusion

when separating clutter and blood signals. Today, estimation of SVD-filtered

data often takes place along the spatial and slow-time axes. If frame-time

data are recorded, they are averaged to stabilize the SVD filter. Higher sam-

pling rates along the slow-time axis can be achieved with plane-wave imaging

techniques [28] that facilitate noise averaging when forming SVD filters from

the data.

We propose here to extend SVD filters to 3-D data arrays described above

using a higher-order SVD (HOSVD) technique [42, 43]. We will show data

that suggests this filter facilitates isolation of echo power from slowly mov-

ing and spatially disorganized RBC movement. HOSVD filter construction

yields one set of basis vectors for each of the three data dimensions within a

region of interest. Retaining all three data dimensions enables the adaptive

HOSVD filter to effectively separate signal components. We hypothesize that

by analyzing data along the frame-time axis, we can enhance the sensitivity

of PD imaging to blood perfusion echo signals. The challenge for users is

to find a subspace in the HOSVD core array that isolates perfusing blood

signals. Projecting the recorded echo data onto that subspace before com-

puting the signal power at each pixel dramatically increases PD sensitivity

to perfusion. The process of filter formation includes signal averaging that

improves filter stability. However, we must take care to select spatial regions

that include only wide-sense stationary echo data.
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To test the feasibility of the approach, these measurement methods are ap-

plied to muscle-perfusion imaging of healthy and ischemic mouse hindlimbs.

Perfusion in this model of surgically induced ischemia generates spatial pat-

terns of perfusion/ischemia [44] that we track to observe and compare with

alternative approaches.

3.2 Methods

3.2.1 Notation

The structure of the data array is central to understanding the method. Ar-

rays are described using the following notation. Scalars are written as lower-

case letters (a, b, · · ·), column vectors as bold lower-case letters (a,b, · · ·),
matrices as bold capital letters (A,B. · · ·), and multidimensional arrays or

tensors1 as bold calligraphic capital letters (A,B, · · ·). Integers i, i1, i2, i3 are

indices; e.g., the ith element of vector a is denoted as ai = a[i], the (i1, i2)th

element of matrix A as ai1,i2 = A[i1, i2], and the (i1, i2, i3)th element of

third-order tensorA as ai1,i2,i3 = A[i1, i2, i3].

3.2.2 Echo Data Arrays

Doppler-mode acquisition involves the recording of echoes following a series

of narrow-band pulse transmissions along one or more scan lines. After each

pulse transmission, M echoes are recorded at fast-time sampling interval T

(Fig. 3.1). Let x represent the complex envelope of the recorded echo signal,

i.e., the demodulated analytic signal [45]. Each element of M×1 vector x is a

complex number with real and imaginary components given by in-phase and

quadrature values. The mth fast-time sample, for 1 ≤ m ≤ M , corresponds

to axial depth z = z0 + (m − 1)cT/2 where z0 is the distance between the

transducer surface and the beginning of the recorded signal, and c is the

compressional wave speed.

1We use the term tensor to be consistent with the HOSVD literature. However, in
our usage, the term does not imply anything about the transformation properties of the
multidimensional data arrays.
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For each line of site, echo vectors are recorded N times following each of N

pulse transmissions to form a packet of echo data. Pulses are transmitted on

the slow-time interval T ′ > MT , where 1/T ′ is the pulse repetition frequency

(PRF). Conventional power and color Doppler acquisitions record a packet

of echo data for each of L adjacent lines of sight separated laterally by the

spatial interval D. All packets for one spatial frame form an (N ×M × L)

array of echo data that we call a Doppler frame. This conventional 3-D array

represents two spatial dimensions and a slow-time dimension.

K Doppler frames are recorded on the time interval T ′′ � T ′ to generate

the frame-time dimension of a 4-D data array. To measure perfusion, we set

T = 0.042 µs (24 Msamples/s fast-time sampling rate), T ′ = 1 ms (PRF = 1

kHz), and T ′′ = 0.11 s (frame-repetition frequency = 9 Hz). This 4-D data

array is represented by X̃ ∈ CN×M×L×K .

The second and third dimensions of X̃ are associated with axial and lateral

spatial domain, respectively, that are not separately analyzed. Therefore the

array is reordered as follows:

X ∈ CN×S×K , such that xn,s,k = x̃n,m,l,k, (3.1)

where s = m+ (l − 1)M and S = ML.

The common assumption is that echo data arise from three independent

physical sources: tissue clutter C, blood scattering B, and acquisition noise

N . Thus, X has three components,

X = C + B + N , (3.2)

where each has size N × S ×K. White acquisition noise ensures that X is

full-rank. Finally, B includes signals from fast arterial flow and slow capillary

perfusion.

3.2.3 Eigen-based Filters

For echo data well represented by a zero-mean Gaussian process, the correla-

tion (and covariance) matrix contains all of the statistical information for that

vector space. Eigenfilters decompose the multidimensional data array using

eigenvectors of the correlation matrix. These eigenvectors are orthogonal
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Figure 3.1: Data acquisition is illustrated. One IQ echo vector is recorded
for each pulse transmission. The fast-time sampling interval is T generating
an M × 1 vector. N echo vectors are recorded with interval T ′ at each line
of site. Repeating the acquisition process over L lateral lines of site with
spatial interval D makes one Doppler frame array. Recording K frames at
time interval T ′′ results in the 4-D array of IQ echo data X̃ ∈ CN×M×L×K .
The array is reformed as a 3rd-order tensor X ∈ CN×S×K where S = ML.

and uncorrelated, and, under the Gaussian assumption, their eigencompo-

nents are as statistically independent as possible. An eigenvalue divided by

the sum of all eigenvalues describes the fraction of variance contributed by

that eigenmode. Because tissue scattering is often more echogenic than blood

scattering, and both contribute more to the variance than noise, the com-

mon assumption is that clutter dominates the first few eigenvalues, blood the

next few, and the rest are noise. Eigen-based filters isolate the blood subspace

by identifying the clutter-blood and blood-noise interfaces and suppressing

eigenvalues outside the blood subspace [17, 18, 28]. The method used to

construct the filter depends on how many of the data dimensions we choose

to apply, as we now explain.
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1st-order Eigen-based Filter

Let X ∈ CN×S be a matrix indicating the αth Doppler frame of echo data

such that X = Xi3=α, α ∈ {1, · · · , K}. An empirical correlation matrix of

the temporal signal can be computed and then decomposed as follows.

RN = XX† = UΛU† ∈ CN×N , (3.3)

where † denotes conjugate transpose. Λ is a diagonal matrix of eigenvalues

sorted in descending order. The columns of unitary matrix U = [u1, . . . ,uN ]

are the corresponding eigenvectors for RN . From Eq. (3.3), X is easily de-

composed in terms of temporal eigenvectors using

X = UU†X =
N∑
i=1

uiui
†X . (3.4)

Identifying the rank of the clutter and blood subspaces by c and b, respec-

tively, data are processed using the 1-D eigen-based clutter filter,

B̂ =
c+b∑
i=c+1

uiu
†
iX . (3.5)

That is, only those eigenvectors associated with the blood subspace are used

to resynthesize the decomposed echo data, which is now represented by ma-

trix B̂. Subsequently, the power B̂ is mapped into the PD image.

Note that when the echo signals are wide-sense stationary and the impulse

response for the pulse-echo system is linear time-invariant such that the sys-

tem matrix is well approximated by a circulant matrix, then the eigenfilter

components are equal to Fourier components. The difference is that finite-

impulse response (FIR) clutter filters are generally fixed over the imaged

region while the eigenfilter described by Eq. (3.5) adapts to the echo data.

Similarly, an empirical correlation matrix of the spatial signal can be com-

puted and then decomposed using

RS = X†X = VΛ′V† ∈ CS×S , (3.6)

where eigenvalue matrix Λ′ has a different size but contains the same non-

trivial eigenvalues as Λ in Eq. (3.3). The columns of unitary matrix V =
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[v1, . . . ,vS] are eigenvectors in the spatial domain. Equation (3.6) is not

typically used for power estimation although it is an important component

of the second-order filters described below.

2nd-order Eigen-based Filter

SVD is an analogous tool for decomposing data spanning two vector spaces,

in this case time and space. Matrix X ∈ CN×S is decomposed using

X = UΣV† =
r∑
i=1

σiuiv
†
i . (3.7)

This form of X is known as the Casorati matrix [28], whose rows comprise

vectorized frames of the image series.2 Assuming white acquisition noise,

the rank of X is r = min(N,S), which is also the rank of Σ ∈ RN×S, a

diagonal matrix of singular values σi sorted in descending order. Analogous

to Eq. (3.5), the best estimation of the blood-signal matrix, in a least-squared

sense [28], is found by processing

B̂ =
c+b∑
i=c+1

σiuivi
† =

c+b∑
i=c+1

uiui
†Xvivi

† . (3.8)

Equations (3.5) and (3.8) both seek to identify the blood component of

echo-signal variance along the slow-time dimension. N is typically small,

which may not provide enough eigenmodes to uniquely identify the blood-

scattering subspace given the similarity of perfusion and clutter velocities.

Adding frame-time samples increases the number of eigenmodes in a way

that also increases the SNCR.

Power contained in filtered data B̂ ∈ CN×S is computed using

p[i2] =
1

N

N∑
i1=1

|B̂[i1, i2]|2, (3.9)

2Liang [46] showed that the spatiotemporal components of a Casorati matrix are at
least partially separable if X is low rank. With white acquisition noise, X is always full
rank, and yet for echo SNR & 20 dB the rank of the clutter and blood subspaces is much
less than the rank of X.
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Figure 3.2: The figure illustrates 1, 2 and 3-mode unfolding operation of
the 3rd-order tensor data X .

where p ∈ RS can be converted into an image P ∈ RM×L. Power estimates

are log compressed and scan converted when displaying the image for the

αth frame acquired.

3rd-order Eigen-based Filter

SVD methods can be extended to 3-D data by decomposing X ∈ CN×S×K

into three empirical correlation matrices. First, consider the following related

to tensor processing:

• Unfolding. A 1-mode unfolding operator X(1) = [X ]1 arranges elements

of tensor X ∈ CN×S×K into a matrix X(1) ∈ CN×SK where columns

of the matrix are slow-time signals. Likewise, 2-mode and 3-mode

unfoldings generate the matrix X(2) ∈ CS×KN and X(3) ∈ CK×NS where

columns of the matrices are space and frame-time signals, respectively.

These are illustrated in Fig. 3.2.

• Empirical correlation matrices are found using the unfoldings as fol-

lows:

RN = [X ]1[X ]†1 = UΛNU† ∈ CN×N

RS = [X ]2[X ]†2 = VΛSV† ∈ CS×S (3.10)

RK = [X ]3[X ]†3 = WΛKW† ∈ CK×K .
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Subscripts on the correlation matrices indicate the X dimension pre-

served. ΛN , ΛS and ΛK are diagonal eigenvalue matrices for the three

modes, and U, V and W are the corresponding eigenvector matrices.

• n-mode rank of tensor X equals the rank of the matrix generated by

n-mode unfolding,

rn(X ) = r([X ]n), n ∈ {1, 2, 3} . (3.11)

Thus, 1-mode, 2-mode and 3-mode rank of X is the same as the rank

of RN , RS and RK .

Analogous to Eq. (3.7), the HOSVD of X is

X = G ×1 U×2 V ×3 W (3.12)

=

r1∑
i1=1

r2∑
i2=1

r3∑
i3=1

gi1,i2,i3ui1 × vi2 ×wi3 ,

where× denotes an outer-product operation. See Section 3.2.4 for an element-

based description of the outer products.

G ∈ CN×S×K is a “core tensor” analogous to matrix Σ in Eq. (3.7). The

columns of U, V and W are the eigenvectors for the slow-time, spatial and

frame-time dimensions, respectively. Also r1, r2, and r3 are the n-mode ranks

of G. G is computed using the unitary property of eigenvector matrices,

G = X ×1 U† ×2 V† ×3 W† . (3.13)

Components of G are orthogonal in that the dot product between planes in

the array,

< Gin=α,Gin=β >= 0, α 6= β, ∀n,∀α, ∀β , (3.14)

and the squared norm of matrix ||Gin=j||2 equals a jth largest eigenvalue of

Rn for n = 1, 2, 3.

HOSVD filtering is analogous to that described for SVD filtering in Eq. (3.8).

However, note that the 1,2,3-mode rank of X are not necessarily the same,

and its core tensor G is not diagonal [42, 43]. Thus, an advantage of HOSVD

filtering is the added flexibility in defining the rank of the clutter and blood

subspaces.
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Figure 3.3: The top diagram describes HOSVD applied to 3rd-order tensor
data X . The bottom diagram illustrates a region in the core tensor being
selected to isolate the blood-perfusion signal.

The HOSVD filter applied to X (Fig. 3.3) yields the filtered echo-signal

tensor,

B̂ =

c1+b1∑
i1=c1+1

c2+b2∑
i2=c2+1

c3+b3∑
i3=c3+1

gi1,i2,i3ui1 × vi2 ×wi3

=

c1+b1∑
i1=c1+1

c2+b2∑
i2=c2+1

c3+b3∑
i3=c3+1

X ×1 ui1ui1
†

×2vi2vi2
† ×3 wi3wi3

† . (3.15)

Constants cn and bn are, respectively, the ranks of the clutter and blood sub-

spaces on i-th mode eigenspace. Section 3.4 describes an approach to finding

3-D regions within the G array that best represents the blood components

of echo power.

In contrast to Eqs. (3.5) and (3.8), which were analyzed by others [17], the

rank reduction provided by HOSVD filtering in Eq. (3.15) is not optimal in

the least-squares sense [47]. That is, the mean-square error between X and

one or more signal components may not be minimized by this filter. Nev-

ertheless, it is a good approximation and can be implemented more simply

and quickly than that of iterative methods that can obtain the least-squares

solution [48].
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3.2.4 Explanation of Outer-Product Notation

This subsection briefly explains the outer-product notation used in Eq. (3.12).

The n-mode outer product of IN -dimensional tensor A and matrix Z is

D = A×n Z ∈ CI1×...×In−1×Jn×In+1×...×IN

A ∈ CI1×I2×···×In−1×In×In+1×···×IN

Z ∈ CJn×In ,

where an element of tensor D is

di1...in−1jnin+1...iN =
In∑
in=1

ai1...iN zjnin .

The (`1, `2, `3)-th element of X ∈ CN×S×K is

x`1,`2,`3 =
N∑
i1=1

S∑
i2=1

K∑
i3=1

gi1,i2,i3u`1,i1v`2,i2w`3,i3 ,

which corresponds to a second line of Eq. (3.12).

3.2.5 Implementation

We assume perfusion is constant over the 17 slow-time samples (17 ms)

recorded in this study. However the echo-signal mean and covariance ma-

trix in the unfolded X , e.g., Eq. (3.10), do vary over the 6.4 mm × 14.4 mm

→ 200 × 240 = 48, 000 spatial samples and over the 17 frame-time samples

(1.9 s) typically applied to each PD image. Although we record 100 frames

(11.1 s), blocks of 17 frames are applied to any one estimate. See Table 3.1 for

data acquisition details. Since the number of spatial samples is much larger

than either of the time samples, the data are spatially windowed to compute

local filters. In this way, HOSVD filters adapt to properties of recorded data

along any of the array axes.

Beginning with the 4-D array X̃ ∈ CN×M×L×K , spatial window Ωj of size

N × Ṁ × L̇ × K̇ is applied J times to X̃ to make one PD image. Data

within the jth window are rearranged into Xj ∈ CN×Ṡ×K̇ = C17×224×17,

where Ṡ = ṀL̇ for Ṁ = 14 and L̇ = 16 samples. Each overlaps adjacent
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Figure 3.4: The sequence of operations leading to the formation of a
perfusion image is illustrated. The acquisition data within each window is
individually processed. HOSVD filtering isolates the blood-scattering
components of the echo signal. Echo power is computed by averaging over
slow-time and frame-time axes. The log-compressed power value is assigned
a spatial position in the PD image.
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windows by 0.13 mm axially and 0.24 mm laterally. A total of J = 1600

spatial windows and filters were applied per 6.4 mm×14.4 mm PD image.

We also window data along the frame-time axis if we wish to implement a

dynamic sequence of images. Figure 3.4 offers a graphical summary.

Similar to Eq. (3.9), the post-filtration signal power within windowed data

B̃j ∈ CN×Ṡ×K̇ is computed using

pj[i2] =
1

NK̇

N∑
i1=1

K̇∑
i3=1

|B̃j[i1, i2, i3]|2 , (3.16)

where pj ∈ RṠ. The elements of vector pj are log-compressed and scan

converted into a spatial segment of size Ṁ × L̇. These segments are then

assembled into a PD image. Final images may sum sequential PD frames

formed along the frame-time axis or display them as a dynamic sequence

with adjustable persistence. The latter is preferred if perfusion varies over

the acquisition time.

In summary, three eigenanalyses are performed on X via Eq. (3.10). From

the three sets of eigenvectors generated, the core tensor is formed via Eq. (3.13).

We then select a region within the core tensor that contains information

about perfusion and zero the other elements via Eq. (3.15). This process

yields the perfusion subspace whose elements are squared and summed in

Eq. (3.16) to estimate the signal power mapped into PD images. In vivo

experiments discussed below show that the perfusion subspace is confined to

a small region within G. Therefore we find it is fast and easy to exhaustively

search for values of cn and bn in Eq. (3.15) that yield the “best” perfusion

maps shown in the results below.

Echo data were recorded using a Vevo R 2100 system and a MS400 lin-

ear array (FUJIFILM VisualSonics Inc. Toronto, Ontario, Canada). The

transducer transmits 2-cycle pulses with a 24 MHz center frequency. All pro-

cessing was implemented in Matlab 2013b on an Intel processor i5-4300U

CPU, 2.50 GHz. The highest computational burden is filter construction,

which was performed using a truncation technique [49] to minimize running

time. The average time to compute the 1600 windows for one PD image

frame is 19.1 s.
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Table 3.1: Acquisition parameters

Parameter Value
System Visualsonics Vevo 2100
Probe type MS 400
Pulse center frequency 24.0 MHz
Doppler pulse length 2 cycles
Fast-time samples size (Axial length) 200-272 (6.4-8.7 mm)
Fast-time sampling rate 24.0 MHz
Slow-time samples size (Scan time) 17 (0.017 ms)
Slow-time sampling rate 1.0 kHz
Frame-time samples size (Scan time) 100 (11 s)
Frame-time sampling rate 9 Hz
Scan-line numbers (lateral length) 240-250 (14.40-15.00 mm)
Scan-line density 16.67 lines/mm

3.2.6 In vivo Perfusion Imaging

A murine model of partial hindlimb ischemia was used [50] to study the fea-

sibility of our methods for in vivo perfusion imaging (Fig. 3.5). Each mouse

was anesthetized with 1.5% isofluorane vaporized in O2 at a rate of 1 L/min

via nose cone. Each animal underwent hindlimb occlusion of the right femoral

artery, following the procedure described previously in [50, 44] without dis-

turbing non-femoral peripheral flow to the right leg or any blood flow to the

left leg. Briefly, the anesthetized mouse was placed on a 37 ◦C heating pad,

a small incision was made on the right leg to expose the femoral vasculature,

and dual ligation of the femoral artery was performed distal to the profun-

dus branch to induce unilateral hindlimb ischemia. To confirm the occlusion

and the reduction of blood flow in ischemic hindlimb, animals were imaged

with a Laser Doppler Imager (moorLDI, Moor Instruments, UK) before, and

immediately after ligation. For US scanning at 24 hrs post-surgery, the anes-

thetized animal was placed in a supine position with hindlimbs extended,

and the transducer scanned the shaved inner hindlimb along a longitudinal

cross section that included muscle, bone and vasculature.

Figure 3.5 (B) displays a B-mode view of the anatomy. Although mea-

surements were made on three mice, we will show results of scanning con-

tralateral limbs of two mice specifically to compare methods. All experiments

were performed with the approval of the Institutional Animal Care and Use

Committee of the University of Illinois at Urbana-Champaign following the
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Figure 3.5: (A) An anesthetized mouse placed on a heated surface in a
supine position is scanned with a linear array. (B) A longitudinal cross
section of the hindlimb is displayed as a B-mode image.

principles outlined by the American Physiological Society on research animal

use.

3.3 Results

We recorded 100 sequential Doppler frames (11.1 s) from the right (ischemic)

and left (healthy control) hindlimbs one day after right femoral-artery liga-

tion. Only the first 17 frames are included in each of the PD images shown

below. Images in Figs. 3.6 - 3.10 are from one animal, while the left image

in Fig. 3.11 is from a second animal undergoing identical procedures.

3.3.1 First-order Filter

We begin by processing only the first Doppler frame in the array; specifi-

cally, X = Xi3=1 ∈ C17×200·240×1. Applying the spatial window described in

Section 3.2.5, the data matrix used to form the jth spatial window for first-

order eigenfilters was Xj ∈ C17×14·16. Computing the temporal correlation

matrix in Eq. (3.3) and filtering the data using Eq. (3.5), we constructed the

perfusion images found in Fig. 3.6.

The first row of Fig. 3.6, (A) and (B), displays images obtained without

filtering to show the full clutter component in the PD signal. Arrows indi-
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Figure 3.6: Power Doppler (PD) images are shown without a B-mode
component. These images are formed using a first-order eigenfilter and
slow-time eigenbases. Left and right columns are images of ischemic and
normal hindlimbs, respectively. Thin arrows indicate bone echoes and thick
arrows indicate fast arterial flow. The numbers at the top of each image
indicate the range of indices passed through the filter in the summation of
Eq. (3.5). Since the possible range is 1-17, lower rows are more heavily
filtered images.

cate echoes from bone surfaces. The second row, (C) and (D), shows filtered

images formed by discarding the first (most energetic) slow-time eigencompo-

nent and preserving eigencomponents 2-17. Third row images, (E) and (F),

discard the first three slow-time eigencomponents, leaving 4-17. Discard-

ing the three most energetic eigenvalues removes many of the clutter echoes

from both images, although the bone reflections remain. More importantly,

there is no apparent discriminability between the ischemic and control states

except for the appearance of a segment of arterial flow as indicated by the

larger arrows in (F) near the proximal skin surface of the control hindlimb.
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Figure 3.7: PD images using a 2nd-order SVD filter based on slow-time and
spatial eigenbases to show primarily arterial flow. Left and right columns
are images of ischemic and normal hindlimbs, respectively. Thick arrows
indicate a region with fast arterial flow. The numbers at the top of each
image indicate the range of indices passed through the filter in the
summation of Eq. (3.8). Possible range: 1-17.

3.3.2 Second-order Filter

The same data were processed by the second-order SVD filter via Eq. (3.8).

Figure 3.7 shows the resulting PD images using slow-time and spatial eigen-

bases. As in Fig. 3.6, the three rows describe three levels of filtering given

by numbers in the upper right corner. Virtually all echoes are eliminated

in images (E) and (F) except for the arterial flow near the skin surface in

the control hindlimb. Comparing Figs. 3.6 and 3.7, we see the effectiveness

of including the spatial axis of the data array for clutter suppression. How-

ever, the slow-time axis offers very little sensitivity to perfusion signals; the

remaining signal power indicates a segment of arterial flow (arrows).
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Figure 3.8: PD images using the full 3-D data array and HOSVD filter to
show perfusion. Left and right columns are images of ischemic and normal
hindlimbs, respectively. Filter parameters shown at the bottom of an image
apply to the normal and ischemic images in that row. As filter parameters
change, vascular structures emerge (arrows in (E) point to one branch)
while clutter and noise components fade. The normal flow image (F) is
uniformly perfused, although the signal strength near the bottom surface of
the leg is low because of acoustic attenuation. In contrast, the ischemic
hindlimb in (E) with lost femoral-arterial flow shows perfusion-deficit
patches and prominent vessels that now contain low-speed blood flow from
the remaining peripheral vessels. Note that the same echo data are used to
form images in Figs. 3.6 – 3.8.

3.3.3 Third-order Filter

We again analyzed the same echo data array but now employing all three

dimension using the HOSVD filters of Eq. (3.15). In the bottom row of

Fig. 3.8, we see the emergence of vascular structures that are not at all

apparent with 1-D and 2-D filters in Figs. 3.6 and 3.7. There are three sets

of filter indices, i1, i2, i3, that specify the ranges in G passed by the 3-D filter.

These are given at the bottom of the images, where values shown apply to

both images in that row. Here we see perfusion and slow vascular flow but

very little fast flow or clutter. The advantages brought to bear in these result

45



are threefold. First, the use of frame-time data enhances SNCR for perfusion.

Second, employing all three data-array axes increases the effectiveness of

clutter filtering. Third, we use more data than that applied to the results of

Figs. 3.6 and 3.7, which greatly suppresses acquisition noise.

In Fig. 3.9, we compare results of first-, second-, and third-order clutter

filters for displaying the slow-time arterial flow (first three rows of images)

and frame-time perfusion (last three rows of images). All results are ob-

tained from the same echo-data array, viz., X ∈ C17×200·240×17. For the first-

and second-order filters, 17 post-filtered images are averaged over either the

slow-time or the frame-time axes to take full advantage of all echo data. The

third-order filter first decomposes the entire data array before projecting onto

the appropriate subspace. The entire echo-data array influences each image

displayed in Fig. 3.9. In each case, we selected filter parameters that provided

the clearest visualization of RBC movement. From one set of recorded echo

data, we can see the effects of filter order and data-array axis (eigenbasis)

on the ability to visualize fast or slow-flow patterns in normal and ischemic

hindlimbs. In particular, compare the noise levels in the third-order filter re-

sults with first and second-order results. A noticeable contrast improvement

is observed.

The full impact of using 3-D data may be appreciated when we threshold

and color code the power signals before overlaying them on the B-mode

image (Fig. 3.10) as is traditionally displayed for clinical applications. We

use a blue color map to display the slow-time-axis power (arterial flows) seen

in Figs. 3.9 (E) and (F) and a red color map to display the frame-time-axis

power (blood perfusion) from Figs. 3.9 (K) and (L). Colored PD images are

displayed in the third row of Fig. 3.10. The inset shows 160 µm-dia vessels

are clearly resolved.

The first and second rows of Fig. 3.10 display FIR-filtered PD images, and

the third row shows HOSVD-filtered images. All are computed from the same

echo-data array. We applied a fixed 25 Hz high-pass FIR filter in (A) and (B)

and a 150 Hz high-pass FIR filter in (C) and (D). While surface vessels and

bone artifacts can be seen in the 25 Hz FIR-filtered and the HOSVD images

of Fig. 3.10, only HOSVD images show slow flow within interior vessels of

the ischemic hindlimb and uniformly perfused muscle in proximal regions of

healthy controls. Sensitivity is reduced in distal muscle regions of all images

as sound attenuation reduces SNCR.
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Figure 3.9: Comparisons of the visually clearest examples of first-, second-,
and third-order filters applied to the slow-time data axis (A-F) to display
arterial flow and to the frame-time data axis (G-L) to display perfusion.
Each image is based on same 17 frames of echo data.
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Figure 3.10: PD images are compared using standard FIR clutter filtering
(first row: 25 Hz high-pass, second row: 150 Hz high-pass) and adaptive
HOSVD filtering (third row) applied to the same data array. Notice that
perfusion in the control limb is fairly uniform, except in distal regions
where the SNCR is low. Conversely, the ischemic limb shows patchy
perfusion throughout. The inset shows an enlargement of microvessels.
Given that the PD pixel dimensions are 32 µm axially and 60 µm laterally,
we are resolving 160 µm-dia vessels axially and 300 µm-dia vessels laterally.
Axial resolution for 24 MHz pulses with 12 MHz bandwidth is ∼ 128 µm.
The blue and red colorbars indicate, respectively, color maps related to
slow-time power (dB) and frame-time power (dB).
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3.4 Discussion

These preliminary data suggest the proposed changes in acquisition and fil-

tering can greatly increase the sensitivity of ultrasonic power-Doppler perfu-

sion imaging without contrast enhancement. The HOSVD filter allows us to

separate fast and slow flows that we indicate with blue and red color maps

in Fig. 3.10 (arrows in top row of Fig. 3.11 also indicate arterial flows). We

were fortunate to capture a portion of the femoral artery in the ischemic

image. This ligated vessel appears prominently in the perfusion image be-

cause it is weakly fed from collateral vessels. Also, at 24 MHz, the ischemic

hindlimb perfusion image inset in Fig. 3.10 (E) clearly displays vessels with

diameter smaller than 200 µm. These small vessels are less visible in the con-

trol hindlimb (F) where surrounding capillary perfusion reduces small-vessel

contrast (not shown).

Baseline perfusion, which is 17 ml/min/100g in the normal hindlimb [51],

falls to 60-70% of that value following femoral ligation [50]. Consequently, a

5-10 g hindlimb muscle has normal capillary flow in the range of 1-3 ml/min.

A key element of successful HOSVD filtering is selection of the clutter and

blood subspaces within core tensor, G. The standard selection method is

based on eigenvalue information and echogenic properties of the sources as

mentioned in Section 3.2.3. Since there are only a few prominent elements

in G, we now just try various filter ranges and inspect the resulting PD

images to determine the “best” filter parameters. The following techniques

using eigenvector information could guide a more objective and automated

partitioning of G.

The top left PD image in Fig. 3.11 represents a different normal mouse

hindlimb. Here we see two segments of arterial flow as indicated by arrows

and the blue-green color. On the right, we reproduce the ischemic hindlimb

image from Fig. 3.10 that displays no fast blood flow patterns. In both

images, we box a region of interest that includes directed vascular flows away

from the transducer; on the left, flow velocity is in the range 2-15 mm/s and

on the right the flow velocity is in the range ±0.2 mm/s.

In the second row of Fig. 3.11, we display the first nine odd spatial eigenvec-

tors as gray scale images. These are taken from data in the boxed regions in

the figures above. The absolute values of elements in each spatial eigenvector

are reshaped back into the shapes of the 2-D image patches. Looking closely,
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Figure 3.11: The two columns illustrate analyses of data within local
regions of three images. Top row shows adaptive HOSVD images of normal
and ischemic hindlimbs. White arrows indicate arterial flows, and boxes
indicate analysis regions that include a vessel. The second row shows 9 of
the first 18 spatial eigenvectors, some showing linear shapes similar to
vessels seen in top row images. Third and fourth rows depict the power
spectrum of slow-time and frame-time eigenvectors, respectively. The
vertical axis is temporal frequency with the origin at the center, and the
horizontal axis indicates eigenvectors along the corresponding axes, of which
there are 17. Each column of the four spectral images is the absolute-square
Fourier transform of the corresponding eigenvector. Eigenvectors between
the red arrows were passed by the HOSVD filter for the images displayed in
this report. Eigenvectors outside these ranges were removed by the filter.

50



we see the linear shape of the vessel within each eigenvector that is similar to

that in the boxed image region above, except for the first eigenvector. The

uniformity of spatial eigenvector 1 suggests it is dominated by clutter, while

the appearance of a vessel-like structure in the other eigenvectors suggests

they are influenced by directional blood flow in the vessel. For this reason,

we eliminate at least the first spatial eigenmode through HOSVD filtering.

Images of the slow-time eigenvector spectra (third row in Fig. 3.11) and

frame-time eigenvector spectra (fourth row) further reveal information about

blood flow. In the first eigenvector spectrum (left-most column of the spectral

images) the only nonzero value is at zero-frequency; consequently the first

eigenvector offers no information about movement and should be discarded.

The linear spectral pattern in the normal hindlimb slow-time spectral image

between eigenvectors 5-10 (third row, left in Fig. 3.11) suggests a strong sig-

nal is present for fast directed blood flow. Because this flow is away from

the transducer, the linear pattern appears along the negative-frequency axis,

which shows there is directional flow information available. Notice the spec-

trum shows evidence of aliasing as the linear structure wraps from negative

to positive frequencies at eigenvector 13. There is no linear spectral pattern

for the normal hindlimb image in the corresponding frame-time spectrum

(fourth row, left in Fig. 3.11) as expected for the slow, disorganized RBC

movement associated with capillary perfusion. The red arrows along the ab-

scissa indicate the upper and lower bounds on the eigenvector pass band set

for HOSVD filtering.

There is also an asymmetric linear spectral pattern in the ischemic hindlimb

image between eigenvectors 3-9 in the frame-time spectrum (fourth row, right

in Fig. 3.11). This corresponds to the relatively slow but downward-directed

flow within the large vessel in the ischemic tissue. We know it is slow flow

because it is found in the frame-time spectrum and the linear pattern indi-

cates the flow is directed. Conversely, the slow-time eigenvector spectrum

for the ischemic leg (third row, right in Fig. 3.11) is symmetric and diffuse,

indicating no directed fast flow in this region.

Future work includes imaging at lower transmission frequencies and higher

frame-time rates to assess clinical utility in human subjects. The low frame

rate used for the murine model is unlikely to span the wider range of perfusion

velocities found in human tissue.
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3.5 Conclusion

In this preliminary study, we found that expanding the dimension of the ac-

quired echo-data array and then strategically reducing the data dimension

using adaptive HOSVD filters leads to images that suggest improved perfu-

sion sensitivity. At this point in development, the method offers images of

signal power that describe relative flow and perfusion patterns.

HOSVD filtering appears to enhance the distinct information provided by

each axis of the 3-D data array, enabling visualization of blood components

of the echo signal while effectively suppressing clutter and noise components.

The addition of frame-time data as a separate array dimension appears to

allow increased sensitivity to slower flows through a longer acquisition period

without discarding fast blood flow echoes offered by the slow-time array axis.

One 3-D acquisition processed via HOSVD effectively displays both blood

components.

Although we apply power-Doppler processing here, we note that the eigen-

vector spectra seen in Fig. 3.11 contain information about the direction and

spatial coherence of RBC movement. In principle, color-flow imaging is pos-

sible. We applied 24 MHz ultrasonic pulses to couple the method to the

small mouse model which enabled sub-millimeter vessel diameter flows to be

imaged with 5-mm tissue penetration.

The price paid for adding the frame-time axis in the echo-power estima-

tor is that each PD frame requires more than 1 s worth of data acquisition.

Since perfusion is normally steady or slowly varying, the long acquisition

could be inconsequential depending on the application. The added sensitiv-

ity and lower noise justify the extra time and effort, especially when imaging

stationary echo data that describe steady RBC movements, as for the ap-

plication described in this chapter. Little effort has been made thus far to

minimize the time required to compute one PD image frame, which now

stands at 19.1 s.
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CHAPTER 4

CLUTTER FILTER OPTIMIZATION

4.1 Introduction

Pulse-echo power Doppler (PD) imaging is highly sensitive to slow disorga-

nized movements of red blood cells (RBCs), and therefore it is a natural

choice for microvascular and perfusion imaging. PD signals are insensitive to

blood speed and direction but highly vulnerable to tissue clutter and acqui-

sition noise sources. The most effective PD methods for perfusion imaging

without contrast enhancement are those that maximize the sensitivity of

echo signals to RBC movements in ways that can be uncoupled from clutter

and noise signal sources. This chapter explores a new approach to perfusion

imaging with a focus on clutter filter design.

Detailed overviews of clutter filtering research are found from the liter-

ature, including [17, 18, 52]. Originally, Fourier-basis clutter filters were

applied (e.g., FIR, IIR). The Doppler equation provided a direct interpreta-

tion between temporal Fourier coefficients and blood velocity. However, it is

now well accepted that Fourier-basis filters do not provide the best separa-

tion between tissue and slow-moving blood echoes [20, 17, 53]. Eigenbases

are a generalization of Fourier bases that can adapt to specific data sets and

thus have the potential to provide more separability between the blood and

tissue subspaces. Eigenfilters result from a decomposition of the echo-data

temporal correlation matrix. In contrast, SVD-basis filters are able to fully

exploit the spatiotemporal nature of each echo acquisition [54, 25, 28]. 2D

SVD generates both temporal and spatial bases, so that the characteristically

strong echoes of spatially coherent tissue movements can be more readily sep-

arated from the weaker echoes of spatially incoherent blood perfusion echoes.

Recently, high frame-rate acquisition techniques have been coupled to 2-D

SVD clutter filters to provide exciting new opportunities for microvascular
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imaging in brain, kidney and thyroid tissues [28, 52].

In Chapter 3, we found that probing tissues with multicycle bursts of

Doppler pulses over long durations can significantly increase the sensitivity

of echo signals to peripheral perfusion RBC movement. RBC sensitivity

increases if we reorder the time axis into two array dimensions, labeled slow-

time and frame-time axes, to produce a 3-D echo-data array. 3-D data arrays

are decomposed using higher-order SVD (HOSVD) techniques [42, 55, 43] to

produce three orthogonal basis sets corresponding to slow-time, spatial, and

frame-time vector spaces. We also found that enhanced perfusion signals

could be uncoupled from clutter by decomposing the data array and locating

the blood subspace within the 3-D core tensor elements. However, subsequent

phantom studies reported below suggest the eigen-bandwidth for clutter plays

a key role in clutter-blood subspace separability.

To identify the clutter eigen-bandwidth, we are proposing a statistical

classifier applied to each core-tensor element. The classifier decides if a core

element is predominantly from a clutter source based on a vector of five signal

energy and similarity features estimated from the decomposition eigenvalues

and eigenvectors. Encouraged by a similar approach described by Baranger

et al. [52] for 2-D SVD filters, we arrive at different but consistent findings.

Signal subspaces and clutter filter designs are explored through echo simu-

lations, where all data properties are known exactly; phantom experiments,

where data properties are known statistically; and in vivo experiments, where

the data properties are most realistic.

4.2 Methods

4.2.1 Notation

To distinguish various types of data arrays, we adopt the following notation:

• Scalars are lower-case or capital letters a, b,N,M . . .

• Column vectors are bold lower-case letters a,b . . .

• Matrices are bold capital letters A,B · · ·
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Figure 4.1: Color-flow acquisition is illustrated resulting in
multidimensional data array X̃ . A linear array transmits sound pulses into
tissue and receives echoes along a line of site. Signals from the receive
aperture are beamformed, fast-time sampled, decomposed into baseband
quadrature signals and stored as an M -point complex IQ vector. N
transmissions in slow time at a ∼1 kHz pulse repetition frequency (PRF)
are made for each of L lateral lines to compose one 3-D Doppler frame.
Recording K frames at a ∼10 Hz frame repetition frequency (FRF) yields
the 4-D data array X̃ ∈ CN×M×L×K . The 4-D array is reordered to form
3-D array X ∈ CN×S×K , where S = ML.

• Multidimensional arrays (tensors) are bold calligraphic capital letters

A,B . . .

• Array elements: The ith element of vector a is denoted ai = a[i], the

(i1, i2)th element of matrix A is ai1,i2 = A[i1, i2], and the (i1, i2, i3)th

element of 3-D array (tensor [55]) A is ai1,i2,i3 = A[i1, i2, i3] = Ai1,i2,i3 .

Sets for integers, real numbers and complex numbers are represented as Z, R
and C, respectively. For example, a ∈ Z[0,N ] indicates a is an integer scalar

and 0 ≤ a ≤ N .

4.2.2 Echo-Signal Model

First, let us review the acquisition model. We define the spatiotemporal

structure of the data array resulting from the narrow-band pulsed-Doppler
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acquisition illustrated in Fig. 4.1. Each beamformed quadrature (IQ) echo

waveform x(t) is sampled on the fast-time interval T as x(tm) where tm = mT

and m ∈ Z[1,M ]. M is the number of temporal samples recorded following

each pulse transmission. Scaling the time axis, we form the axial waveform

x(zm) = x(z0 + ctm/2) where c is the sound speed and z0 is the distance

between the transducer surface and the onset of the range gate. Repeatedly

transmitting N pulses at each line of site on the slow-time interval T ′ > MT

results in 2-D spatiotemporal echo signal x(tn, zm), where tn = nT ′ and

n ∈ Z[1,N ]. Indexing the transmit and receive apertures laterally on the

interval D yields L echo lines within one Doppler frame. Each 3-D Doppler

frame x(tn, zm, yl) has a slow-time dimension and two spatial dimensions

including yl as the lateral position of the lth echo line; l ∈ Z[1,L]. Finally, K

Doppler frames are recorded at frame-time interval T ′′ > T ′ to form the 4-D

echo-data array

X̃ = x(tn, zm, yl, tk) ∈ CN×M×L×K , (4.1)

where tk = kT ′′ and k ∈ Z[1,K].

Second, we describe a linear model for simulating Eq. (4.1). Echoes from

perfused tissues are assumed to arise from discrete red blood cell (RBC) and

surrounding tissue reflectors, the latter is referred to as tissue clutter. Dis-

crete acquisition time t = tn,m,l,k is the clock time passing during a complete

4-D acquisition. Scattering functions ci(z, y, t) and bj(z, y, t) define the ith

discrete tissue reflector and the jth RBC, respectively, at spatiotemporal

location (z, y, t). Further, let h(z, y) be the spatially invariant pulse-echo

impulse response of the ultrasonic instrument. Consequently, the echo-data

array X̃ can be modeled as a 2-D spatial convolution,

X̃n,m,l,k = Γ

(∫∫
Ω

dzdy h(z − (z0 + cmT/2), y − yl)

×
[ Jc∑
i=1

ci(z, y, tn,m,l,k) +

Jb∑
j=1

bj(z, y, tn,m,l,k)

])
+ en,m,l,k, (4.2)

where Γ(·) is the operator that converts RF signls to in-phase and quadrature

(IQ) components [45], Ω is a 2-D region indicating the spatial extent of

the acquisition, and Jc and Jb are the numbers of discrete tissue and blood
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scatterers, respectively, in Ω. Also e is additive white-Gaussian acquisition

noise. Equation (4.2) is more simply expressed as the sum of three 4-D arrays

describing clutter C̃, blood B̃, and noise Ñ sources via

X̃ = C̃ + B̃ + Ñ . (4.3)

Ratios of signal power between contributing sources arerCB = 10 log10 (‖C̃‖2/‖B̃‖2)

rBN = 10 log10 (‖B̃‖2/‖Ñ ‖2) ,
(4.4)

where ‖·‖ indicates the `2-norm and rCB and rBN are clutter-to-blood and

blood-to-noise ratios, respectively, each expressed in decibels.

4.2.3 Tissue and Blood Motion

The ith tissue scatterer randomly positioned in Ωc ∈ Ω (see Fig. 4.2) is

represented by the Dirac delta

(4.5)ci(z, y, t) = α(i)
c δ
(
z − (zc0 + zc(t))

(i) , y − (yc0 + yc(t))
(i)
)
,

where α
(i)
c ∼ N(mαc , σ

2
αc) is a normally distributed echo amplitude assigned

to the ith tissue scatterer, and (z
(i)
c0 , y

(i)
c0 ) is its position in Ωc at t = 0. Tissue

displacement vector fc(t), which applies at t > 0, describes the temporal

movements of all tissue scatterers in Ω relative to the initial positions. It

includes the sum of 2-D breathing η(t) and muscle vibration ξ(t) vectors:

f (i)
c (t) = (zc(t), yc(t))

(i) = η(t) + ξ(t) for t > 0

and where

η(t) = β[
∑

n′ e
−(t−n′∆t)2

2σ2
r , 0]

ξ(t) = γ sin(w0t)[ cos(θ), sin(θ)] .

(4.6)

Symbol n′ is an integer, ∆t indicates the interval between breaths, and β

and σr specify the range and rate of breathing movement oriented along the

z axis. Parameters γ, w0 and θ determine the oscillation strength, frequency

and direction, of muscle vibration. The directions of the two sources of clutter

movement are not aligned to each other nor are they synchronous, although

each function is applied simultaneously to all scatterers in Ωc.
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Figure 4.2: Simulation of tissue perfusion is illustrated. Scattering field Ω
consists of nonoverlapping regions of tissue scatterers in Ωc and moving
RBCs in Ωb. On the top right, we show a time series for the entire field Ω
in which all scatterers (illustrated below left) undergo large-scale
low-frequency periodic rigid motion mimicking respiration. In addition,
scatterers in regions Ωc undergo rigid-body vibration at higher frequency
and smaller amplitude, while vascular RBCs in regions Ωb undergo
blunt-flow translation with known velocity.

Similarly, the position of the jth RBC is

(4.7)bj(z, y, t) = α
(j)
b δ

(
z − (zb0 + zb(t))(j) , y − (yb0 + yb(t))(j)

)
,

where the RBC echo amplitude is α
(j)
b ∼N(mαb

, σ2
αb

) and (z
(j)
b0 , y

(j)
b0 ) is the

initial position within Ωb ∈ Ω.

Blood displacement vector f
(j)
b (t) = (z

(i)
b (t), y

(i)
b (t)) describes temporal

movement of the jth RBC at times t > 0 relative to its initial position.

RBC movement is also modeled as the sum of two 2-D vector sources,

f
(j)
b (t) = η(t) + ζ(j)(t) for t > 0 (4.8)

where ζ(j)(t) = t[v(j)
z sinϕ(j), v(j)

y cosϕ(j)] .

The components of velocity v
(j)
z , v

(j)
y and the Doppler angle ϕ(j) are constant

in time but vary spatially within Ω as illustrated, for example, by the vascular

patterns in Fig. 4.2. Since respiration is a rigid-body translation of vessels
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Figure 4.3: The decomposition of 3-D data array X using HOSVD is
illustrated. Element gi1,i2,i3 is an element of the 3-D core tensor G. That
element is associated with slow-time eigenvector ui1 and eigenvalue λi1 ,
spatial eigenvector vi2 and eigenvalue λi2 , and frame-time eigenvector wi3

and eigenvalue λi3 .

with the surrounding tissues, η(t) is the same as that given by Eq. (4.6).

Equations (4.6) and (4.8) update Eqs. (4.5) and (4.7) at each time interval.

The results of Eqs. (4.5) and (4.7) are summed in Eq. (4.2) and convolved

with impulse response h(z, y) to simulate RF echo signals. In this study,

h(z, y) is a shift-invariant, 2-D Gaussian pulse with sinusoidally modulated

amplitude along the z axis. The IQ components of the RF echo signals

composing the 4-D complex-valued array X̃n,m,l,k are found by demodulating

the analytic RF echo signals [45], as shown in Eq. (4.2).

4.2.4 Decomposition of Data Array X

The slow-time dimension of data array X̃ , with values sampled on the order

of kHz, is most sensitive to echoes from fast vascular flows. Its frame-time

dimension, sampled on the order of Hz, is most sensitive to slow spatially

incoherent perfusion echoes. The two spatial dimensions provide essential in-

formation about the spatiotemporal heterogeneity of primarily tissue echoes.

Both spatial axes can be reordered into a single array-axis dimension for the

purpose of building a clutter filter. We do this by applying lexicographic
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transformation operator Ψ, resulting in

X = Ψ(X̃ ), such that xn,s,k = x̃n,m,l,k, (4.9)

where X ∈ CN×S×K , s = m + (l − 1)M and S = ML. In Chapter 3, we

showed how to decompose X using higher-order singular-value decomposi-

tion (HOSVD). Reducing the data array from 4D to 3D speeds the HOSVD

compute time.

HOSVD is a multilinear generalization of 2-D SVD analysis [42, 43]. As

illustrated in Fig. 4.3, decomposing X generates core tensor1 G ∈ CN×S×K

with core elements gi1i2i3 and three orthogonal matrices: U ∈ CN×N whose

columns u are slow-time-mode eigenvectors, V ∈ CS×S whose columns v

are spatial-mode eigenvectors, and W ∈ CK×K whose columns w are frame-

time-mode eigenvectors. The expression is

X = G ×1 U×2 V ×3 W (4.10)

=
N∑
i1=1

S∑
i2=1

K∑
i3=1

gi1,i2,i3ui1 × vi2 ×wi3 ,

where ×n denotes n-mode outer product as defined in [42, 43]. The eigen-

values for each of the three modes are given by
Slow-time mode: λ

(1)
j1

=
∑S

i2=1

∑K
i3=1|gj1,i2,i3|2

Spatial mode: λ
(2)
j2

=
∑N

i1=1

∑K
i3=1|gi1,j2,i3|2

Frame-time mode: λ
(3)
j3

=
∑N

i1=1

∑S
i2=1|gi1,i2,j3|2

(4.11)

Eigenvalues for each mode are arranged in decreasing order.

Our main interest is to preserve echo signals originating from blood perfu-

sion while suppressing other echo-signal contributions. We can filter the echo

data by identifying the 3-D subspace in G dominated by perfusion echoes and

suppressing values outside the perfusion subspace. Since signal power from

clutter, blood, and acquisition-noise sources can occupy the same subspace,

the filtering process is not straightforward.

1Modal planes in G are orthogonal; i.e.,
∑

i1

∑
i2
gi1,i2,a gi1,i2,b =∑

i1

∑
i3
gi1,a,i3 gi1,b,i3 =

∑
i2

∑
i3
ga,i2,i3 gb,i2,i3 = 0 unless a = b.
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4.2.5 Clutter Filtering

The strategy is to classify each core element (i1, i2, i3) as clutter or non-

clutter based on five features described below. Elements identified as “clutter

dominant” are discarded.

Feature Selection

• Normalized Eigenvalues: Three of the five features are from the nor-

malized eigenvalue spectra. The slow-time eigenvalue spectrum is nor-

malized using

λ̄
(1)
i1

=
log10 λ

(1)
i1
− log10 λ

(1)
min

log10 λ
(1)
max − log10 λ

(1)
min

∈ R[0,1], (4.12)

where λ
(1)
max = λ

(1)
1 and λ

(1)
min = λ

(1)
N . Similarly, the normalized spatial

and frame-time eigenvalue spectra are λ̄
(2)
i2

and λ̄
(3)
i3

, respectively. In

each normalized spectrum, the first value is largest and equal to 1.

When clutter is significant, subsequent spectral values at i1, i2, i3 > 1

associated with clutter remain close to 1 (Fig. 4.4, top right). Large

eigenvalues arise from the most echogenic components of X̃ that are

typically associated with stationary or rigid-body tissues dynamics.

• Tissue Structure Similarity: The magnitude of each spatial eigenvector,

si2 = |vi2|∈ RS×1, which are columns of V, can be reformatted into a

2-D image Si2 ∈ RM×L. Eigenimage S1 is associated with the largest

(first) eigenvalue. It resembles the B-mode image for the region of

interest. Other eigenimages from V that are influenced by tissue clutter

will have similar structural patterns. In contrast, eigenimages most

influenced by blood signals or noise will appear dissimilar to S1. The

fourth feature, d, compares the first eigenimage with each of the others

using Pearson’s correlation coefficient via operator Υ(·) to quantify

similarity.

di2 = Υ(s1, si2) (4.13)

=

∑S
n=1(s1[n]− s̄1)(si2 [n]− s̄i2)√∑S

n=1(s1[n]− s̄1)2

√∑S
n=1(si2 [n]− s̄i2)2

,
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Figure 4.4: The diagram describes a classification of each eigenelement for
clutter filtering. To determine the state of (j1, j2, j3)th core element,
features are extracted from eigenvectors and eigenvalues. Normalized
eigenvalues are associated with source echogenicity. The eigenimage using
spatial eigenvector provides structural information as we will show in
Fig. 4.6. Provided that 1st eigenimage S1 most likely involves tissue
structure, the correlation between the 1st image and j2th image informs
contribution of the j2th eigenspace for tissue clutter. The last feature is
associated with strong rigid motion. Data acquired for the moment tend to
be corrupted by strong clutter. The time points can be recognized by
similarity matrix Q obtained by computing correlation between
frame-images. The feature measures the contribution of the j3th eigenspace
for the time-points (corruption). The Gaussian mixture (GM) classifier
makes a decision using the features.
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where di2 ∈ R[−1,1], and s̄1, s̄i2 are the means of all samples in vectors

s1, si2 . Large positive d values indicate core elements with significant

clutter contributions to X . (see Fig. 4.4, right.)

• Rigid-body Motion Corruption: Adding a frame axis to extend the

echo-data array enhances sensitivity to both blood perfusion and mov-

ing tissue clutter. The magnitude of motion over the frame-time axis is

identified by comparing echo power images obtained by the kth Doppler

frame using

Pk[m, `] = 10 log10

(
1

N

N∑
n=1

|X̃ [n,m, `, k]|2
)
. (4.14)

The similarity between echo power in two frames is

Q[j, k] = Υ(Pj,Pk), (4.15)

where matrix Q ∈ RK×K . The sudden, large-amplitude, coherent mo-

tion characteristic of clutter creates distinct patterns in Q (see Fig. 4.4,

right) where echo power is far less correlated. Negative correlations are

possible, but, in practice, correlations from rigid-body motion remain

positive. The mean correlation between the kth and jth frames is

q[k] =
1

K

K∑
j=1

Q[j, k] ∈ R[0,1]. (4.16)

Large coherent displacements, like those from breathing, result in small

correlation values. Vector q can thus be used as a basis to test if a frame

is corrupted by clutter motion. The inner product

ri3 =
K∑
k=1

q[k]|wi3 [k]|2∈ R[0,1] (4.17)

provides r, a scalar feature quantifying motion corruption in a data

frame. Note that |wi3 [k]|2 results from a Hadamard (element-wise)

product of wi3 with itself. Small values of r indicate a frame is cor-

rupted by coherent motion.

Each core tensor element is classified based on feature vector z computed
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for that element; from Eqs. (4.12),(4.13),(4.17),

zi1,i2,i3 = [λ̄
(1)
i1
, λ̄

(2)
i2
, λ̄

(3)
i3
, di2 , ri3 ]T . (4.18)

GM Classifier

Each core element was classified as clutter dominated L0 or non-clutter dom-

inated L1 using the following likelihood ratio test classifier:

D(z) =

L0, if p(z|L0)/p(z|L1) > τ

L1, if p(z|L0)/p(z|L1) ≤ τ .
(4.19)

Threshold τ depends on error risks [38]. p(z|L0) and p(z|L1) are probability

density functions (pdfs) conditioned on states L0 and L1, viz., p(z|Li) ∼
Normal(z̄i,Σi), i ∈ {0, 1}. We will show that both pdfs are found by applying

training data.

From simulated echo data with known states, likelihood functions are mod-

eled as linear mixtures of three multivariate Gaussian functions (GM models):

p(z|Li) =
3∑
j=1

Aij
1√

(2π)3|Σij|
e(− 1

2
(z−z̄ij)†Σij

−1
(z−z̄ij)) , (4.20)

where z† is the conjugate transpose of z. Amplitudes Aij, mean vectors

z̄ij, and covariance matrices Σij are for the ith state and the jth (of three)

mixture model functions. A three-component mixture model was found to

provide acceptable model accuracy and reasonable computational time.

Training

Simulated echo signals are computed from training media similar to the per-

fused tissue regions illustrated in Figs. 4.1 and 4.2. First, we set the blood

and noise terms to zero in Eq. (4.2) to compute the clutter-only component,

C̃ ∈ CN×M×L×K , and reformat the result via Eq. (4.9) to find C ∈ CN×S×K .

Next, Eq. (4.2) is applied to the same model, now including all scattering

components, to simulate perfusion data X̃ with clutter and noise. The 4-D

array is reformatted to find X ∈ CN×S×K and decomposed with HOSVD

to compute core tensor G ∈ CN×S×K . Rectangular subspaces within G of
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increasing size, beginning with element i1 = i2 = i3 = 1 and growing to

i1 = N, i2 = S, i3 = K, are progressively selected to form all possible es-

timates of clutter subspace ĜC . Core elements outside the selected regions

are set to zero. Reconstructing the echo data matrix from Eq. (4.10), but

using ĜC in place of G, we estimate the clutter-only signal, Ĉ. Subspace ĜC
giving clutter echo-signal estimate Ĉ that most closely matches the known

clutter-only signal C becomes the final subspace estimate, GC . The objective

function is

GC = arg min
ĜC
||C − Ĉ||2

w.r.t


Ĉ =

∑
(i1,i2,i3)∈ĜC gi1,i2,i3ui1 × vi2 ×wi3

ĜC = {∀(i1, i2, i3)|0 < i1 < ci1 ,

0 < i2 < ci2 , 0 < i3 < ci3} .

(4.21)

The feature vectors for core elements within GC are labeled L0; others are

labeled L1. Training results in a hard threshold being set for subspace pars-

ing.

Testing

With knowledge of the clutter subspace from Eq. (4.21), we can estimate the

parameters in Eq. (4.20). Specifically, equivalent Matlab R2016a functions

gmdistribution.fit or fitgmdist apply the expectation-maximization (EM)

algorithm to find maximum-likelihood estimates of the three-component Gaus-

sian mixture model parameters, Aij, z̄ij, and Σij . Finally, combining Eqs. (4.20)

and (4.19), we are now prepared to simulate test data (independent of the

training data) to test this clutter filter. First, we discuss a method for filter-

ing acquisition noise.

4.2.6 Noise Filtering

Several techniques for suppressing additive white-Gaussian noise in a data

array have been thoroughly studied [56, 57, 58]. Following clutter filtering,

the noise-filtering approach we adopt is to find the blood-signal rank for

the correlation matrix of each data-array mode, ri, and to zero eigenvalues

beyond ri. In a tensor model, the blood-signal rank can be different for
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the slow-time, spatial, and frame-time correlation matrices. We adopt a

minimum description length (MDL) method for estimating the blood-signal

rank of each matrix [58]. For example, the rank of the slow-time correlation

matrix is estimated as

r1 = arg min
r
−2 log

{∏N
i=r+1[λ

(1)
i ]1/(M−r)

1
M−r

∑M
i=r+1 λ

(1)
i

}SK(M−r)

(4.22)

+r(2M − r) log(SK).

Similarly, we estimate r2 and r3. Data are noise filtered by discarding the

noise-dominated subspace using the hard threshold GN = {i1, i2, i3|(i1 >

r1) ∨ (i2 > r2) ∨ (i3 > r3)} where ∨ indicates logical ‘or’. What remains is

the blood subspace GB.

4.2.7 Velocity Discrimination

We found that the slow-time eigenvector can be used to parse speed ranges for

blood components of the post-filtered echo signal. The frequency spectrum

of each slow-time eigenvector is found using the DFT expression

U [k] =

∣∣∣∣ 1

N

N∑
n=1

ui1 [n] exp(−i2πnk/N)

∣∣∣∣, (4.23)

where ui1 [n] is an nth element of eigenvector ui1 . Slow-time frequency f =

k/NT ′ is converted into the axial component of blood speed v using the

Doppler equation v = cf/2fc, where c and fc are the wave speed and pulse

center frequency. The weight indicating contributions to the eigenvector from

speed range [vmin, vmax] is found from

ωi1 =
∑
k

U [k]w[k], w[k] =

1 if vmin < | cf2fc
|< vmax

0 otherwise.
(4.24)

The weight is used to apply a soft-threshold in the slow-time mode.

Velocity discrimination combined with clutter and noise suppression yields

an estimate of the target blood-echo signal

B̂ =
∑

(i1,i2,i3)∈GB

gi1,i2,i3(ωi1ui1)× vi2 ×wi3 . (4.25)
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4.2.8 Filter Scale

Echo frames up to several cm2 in area are recorded for as long as 10 s to

capture blood perfusion patterns. However, the heterogeneous space-time

properties of tissue suggest that one filter cannot be expected to apply to

all data in an acquisition. Instead we divide data arrays into statistically

homogeneous blocks that may overlap, and we develop filters for each.

The jth of J data blocks is expressed as X̃j ∈ CṄ×Ṁ×L̇×K̇ , where Ṅ < N ,

Ṁ < M , L̇ < L and K̇ < K. Each block is reshaped into Xj ∈ CṄ×Ṡ×K̇ ,

where Ṡ = ṀL̇, and individually processed via HOSVD. The subspace se-

lection for the jth filter is determined only by the statistical characteristics

of data in that block.

4.3 Results

4.3.1 Simulation

A primary purpose for including simulation data is to explore the clutter-

filter GM classifier described in Section 4.2.5. The classifier was trained and

tested using simulation data and then applied in the phantom and in vivo

tumor studies shown below. Figure 4.5 (A) illustrates 6 of 12 heterogeneous

regions Ω from which echo data are simulated for classifier training. The size

of each field is 1 mm ×1 mm and vessel diameters range between 10 and

100 µm. The center frequency of pulse transmissions is either 10 or 15 MHz.

Point scatterers are initially uniformly distributed in tissue regions Ωc and

vascular regions Ωb. Tissue regions are further divided into Ωc1 and Ωc2 with

different echogenicity. Displacements of all scatterers over time follow the

tissue and blood motion functions described in Section 4.2.3. Included in the

12 training fields, clutter-to-blood ratios were varied over the range 15 dB<

rCB < 40 dB and the blood-to-noise ratios over the range 5 dB< rBN < 30

dB via Eq. (4.4). For training, 1800 data arrays were produced from the 12

regions and multiple combinations of parameters. All modeling and analysis

parameters are summarized in Tables 4.1 and 4.2.

Training and testing data are simulated using identical parameters, al-

though the data sets are statistically independent from each other. Figure 4.5
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Figure 4.5: Examples of training and testing fields that were used to
develop a clutter-filter classifier are shown with echo simulations. (A) Each
of the 6 fields shown is composed of tissue Ωc1 ,Ωc2 and vascular Ωb regions.
A 15 MHz pulse-echo impulse response is illustrated in (B). For the test
field in (C), the pre- and post-filtered power Doppler (PD) images are
shown in (D) and (E) for 15 MHz pulses. White boxes indicate regions
containing fine vascular structures.

(C) displays one of the testing fields. Array data are processed for HOSVD

clutter filtering then noise filtering. Figure 4.5 (D) and (E) show that vascu-

lar structures are clearly visualized in the post-filtered power-Doppler (PD)

map but not in the pre-filtered PD map. The 50 µm vessels are not resolved

at 15 MHz.

Figure 4.6 provides examples from echo simulations of classification feature

vector z components. Figure 4.6 (A) shows significant overlap between blood

and clutter components, except for the largest eigenvalues where clutter dom-

inates. Figure 4.6 (B) displays the first three and middle three eigenimages,

{Si2|i2 = 1, 2, 3, 21, 22, 23}. The first three eigenimages show tissue-related

speckle because their eigenvectors are mostly influenced by tissue scattering

(clutter). In contrast, vessel-like patterns found in the object of Fig. 4.5 (C)

appear in eigenimages 21-23, showing how those eigenvalues are dominated

by vascular flow. Finally, the dip in frame-time correlation in Fig. 4.6 (D)
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Figure 4.6: Measured components of feature vector z analogous to those
diagrammed in Fig. 4.4. These measurements are from echo simulations
based on the test field of Fig. 4.5(C). (A) Contribution of the eigenvalues
for clutter (◦) and blood (4) signals (Eq. (4.12)) are shown. Only the first
40 components of the spatial eigenmode are shown. (B) Six eigenimages S1,
S2,S3,S21,S22 and S23, and the similarity measures di2 (Eq. (4.13)). (C)
Mean correlation coefficients q[k] between the kth frame and others
(Eq. (4.16)) are plotted. (D) Also shown is the contribution of the i3th
frame-time eigenvector (wi3) to the rigid-motion corruption coefficient ri3
(Eq. (4.17)).
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Table 4.1: Echo Data Simulation Parameters

Category/Function Parameter Value/Range

Tissue scatterers ci(·)
in field Ωc1

Numbers Jc1 4000
Echo amplitude mean ᾱc1 15
Echo amplitude STD 1

Tissue scatterers ci(·)
in field Ωc2

Numbers Jc2 1200
Echo amplitude mean ᾱc2 25
Echo amplitude STD 1

Blood scatterers bi(·)
in field Ωb

Numbers Jb 1000
Echo amplitude mean ᾱb 1,2,3,4
Echo amplitude STD 1

Source power ratio
Clutter-to-blood rCB 15-40 dB
Blood-to-noise rBN 5-30 dB

Rigid-body motion
(η(t))

Amplitude β 0-400 µm
Breath interval t0 10 s
Interval σ 0.5 s

Vibration (ξ(t))
Amplitude γ 0-60 µm
Frequency w0 7.5 rad/s
Direction θ 0-2π rad

Blood flow (ζ(t)) Speed 1-3 mm/s

identifies those frames most corrupted by a rigid-body motion that simulates

the effects of breathing.

Errors in Blood-Signal Estimation

Simulation enables direct error estimation as all states are known. Let frac-

tional error be defined as ε = ‖B − B̂‖2/‖B‖2 where ‖B‖ is the known

blood-echo power (see Eqs. (4.2) and (4.3)) and ‖B̂‖ is the estimated power

from Eq. (4.25). When the clutter and noise filters are highly effective, ε ' 0.

Conversely, if filters are poorly designed and they remove all of the blood sig-

nal, then ε ' 1. Although it is possible to obtain error values greater than

one, in practice, we find 0 < ε < 1 as shown below.

We measure two fractional errors: εbest computes B̂ from training data

while εGM computes B̂ using testing data. Since εbest uses exactly known

training data, these errors are unavoidably generated by applying a hard

threshold to data where the clutter and blood subspaces overlap. εGM are
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Table 4.2: Experimental Parameters

Parameter Simulation Phantom In-vivo Tumor
Axial samples (M) 52 100 168-272
Axial sampling rate 40.0 MHz 12.5 MHz 24.0 MHz
Axial size 1 mm 6.2 mm 5.4-8.7 mm
Slow-time samples (N) 15 17 17
Slow-time sampling rate 1.0 kHz 1.0 kHz 1.0 kHz
Frame-time samples (K) 30 30 30
Frame-time sampling rate 20 Hz 15 Hz 10-15 Hz
Scan-line numbers (L) 50 53 120-234
Scan-line density 50/mm 4/mm 16.67/mm
Lateral size 1 mm 13.2 mm 7-14 mm
Spatial samples (S=LM) 2.6k 5.3k 20k-64k
Sub-block size (Ṅ×Ṡ×K̇) 17×2.6k×30 17×576×30 17×2.5k×30

Slow-time division (J1) 1 1 1
Spatial division (J2) 1 15 400
Frame-time division (J3) 1 1 1
Block numbers (J=J1J2J3) 1 15 400
Classification threshold (τ) 1 1 1

obtained under testing conditions and are consequently a more practical mea-

sure of filter performance.

Figure 4.7 illustrates how classification errors are influenced by clutter

motion and flow speed. For the full range of conditions β < 400 µm, γ <

60 µm, and ν < 3 mm/s, classification errors εGM − εbest remain relatively

constant between 0.1 and 0.2. However, increasing the rigid-body clutter

amplitude expands the extent of the clutter subspace in the core tensor.

This larger clutter eigen-bandwidth increases the overlap between clutter

and blood subspaces, thus increasing fractional error. Alternatively, higher

blood-flow speeds reduce the clutter-blood subspace overlap by shifting and

expanding the blood subspace to smaller eigenvalues (larger index elements,

i3).

4.3.2 Flow Phantom

A phantom study was conducted to assess microvascular flow estimation un-

der experimental conditions. Figure 4.8 is a diagram of a dialysis cartridge

containing a bundle of 0.6 mm inner-diameter cellulose fibers (Spectrum Lab-
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Figure 4.7: Fractional errors εGM and εbest as functions of (A) flow speed for
clutter amplitudes β and (B) vibration strengths γ at 2 mm/s flow speed.
Points and error bars denote sample means and standard deviations of the
mean, respectively. Large clutter motion and slow blood speeds generate
the largest classification errors because of subspace overlap.
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Figure 4.8: A flow phantom mimicking blood circulation consists of a
dialysis cartridge and two pumping systems. A syringe pump infuses either
water (control state) or blood-mimicking fluid (perfusion state) constantly
into 0.6 mm fibers. A peristaltic pump circulates water pulses outside the
fibers for clutter motion. A linear transducer scans the cartridge through
an acoustic window for echo acquisition.

oratories Inc., Rancho Dominguez, CA USA). Flow in the fibers was con-

trolled by a programmable syringe pump injecting at a constant rate either

pure water for the control state or blood-mimicking fluid (CIRS, Norfork, VA

USA) for test states. In addition, pulsatile water flow was generated outside

the fibers using a peristaltic pump to induce sinusoidal clutter motion at

frequencies between 0 and 0.5 Hz. We removed a portion of the thick plastic

case protecting the cellulose fibers and wrapped that area with paraffin film

(Parafilm, Bemis Co. Inc., Neenah WI, USA) to provide an acoustic window

and housing structure for pulsatile clutter generation. The cartridge was im-

mersed in degassed water for ultrasound scanning. A Vevo 2100 system with

an MS200 linear array operated at 12.5 MHz (FUJIFILM VisualSonics Inc.

Toronto, Ontario, Canada) was used to acquire IQ echo data in color-flow

mode for off-line processing.

We compared five flow states: control state i = 1 has stationary water in

the fibers, 0 ml/min; i = 2 has stationary TM blood, 0 ml/min; i = 3 has

TM blood at 1 ml/min; i = 4 has TM blood at 2 ml/min; and i = 5 has

TM blood at 3 ml/min. At each flow state, we acquired data at four clutter

motion levels: j = 1 is no motion (peristaltic pump off), j = 2 is pumping

with rotation frequency 0.16 Hz, j = 3 at 0.33 Hz, and j = 4 is 0.5 Hz.

These values span the 12-20 breath/min range. There were 12 acquisitions

recorded per state and motion level, each 2 seconds in duration (30 Doppler

frames). Power Doppler maps Pk were formed for regions 6.2 mm axially by

13.2 mm laterally (see white boxes in Fig. 4.9). All experimental and filter
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Figure 4.9: PD images of 0.6 mm-dia cellulose-fiber flow phantom at 12.5
MHz. Each is a filtered PD map superimposed on the corresponding
B-mode image. Columns display two clutter levels. Rows display the
control and 2 ml/min flow states. Color bar indicates signal power.

parameters are summarized in the column of Table 4.2 labeled “phantom.”

Figure 4.9 displays examples of PD maps superimposed on their B-mode

images for two clutter levels. Post-filter signal power was found to increase

with clutter level. The changes were quantified by computing pixel average

sijk = 1
ML

∑
(m,l) Pk[m, l] for every PD image. Figure 4.10 shows values for

the 12 acquisitions, s̄ij = 1
12

∑12
k=1 sijk, for flow state i and clutter motion

level j. We see that post-filter signal power (dB) increases linearly with flow

rate. Unfortunately, the rate of increase depends on the clutter motion level.

The slope change with clutter level in Fig. 4.10 is consistent with our

findings in the simulation results. Increasing the levels of clutter energy

for fixed flow states increases the overlap of blood and clutter subspaces

within the core tensor. The overlap is greatest for the slowest flow velocities.

Because we employ a hard threshold, the increase in post-filter signal power

with clutter level at the smallest blood speeds is expected. High-amplitude

rigid-body clutter motion generates incomplete separation of tissue and blood

signals with the effect of reducing PD image contrast as discussed below.
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Figure 4.10: Post-filtered echo power versus input flow for four clutter
levels. Error bar indicates standard errors from averaging results of 12
acquisitions.

Figure 4.11: A murine model of melanoma is illustrated. A mouse
implanted with tumor cells is scanned in a prone position. Data are
acquired at 24 MHz with the Vevo 2100 over three weeks.

4.3.3 In vivo Tumor Study

To further test our imaging methods, we scanned implanted mouse melanomas,

in vivo. Tumor cells injected subcutaneously into the flank of male black

C57BL/6 mice (Charles River Laboratories, US) were investigated over time

as tumors grew in size and vasculature. Figure 4.11 illustrates the scan posi-

tioning. Echo data were acquired 1, 2, and 3 weeks post-implantation using

the Vevo 2100 system and the MS400 transducer at 24 MHz (see Table 4.2).

Mice anesthetized with 1-3% isofluorane are scanned to acquire 3 s of echo

data (30 sequential Doppler frames at 10 Hz frame rate). The 24 MHz pulses

provide high B-mode spatial and contrast resolutions, allowing tumors to be

readily located as hypoechoic regions. The clutter-filter classifier that was
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trained using simulation data was applied to the tumor data to identify core

elements belonging to the clutter subspace. We also applied the methods of

Section 4.2.7 to set velocity windows for slow flow (<4 mm/min) and fast

flow (>4 mm/min) regions. The PD map was determined from the blood

signal measured using Eq. (4.25).

Figure 4.12 displays one example of low- and high-flow PD images acquired

at weeks 1-3. One week post-implantation, the small nascent tumor appears

as a hypoechoic region of enhanced perfusion. The tumor grows rapidly after

one week, increasing its microvascular density. This tumor has only a few

larger vessels with higher velocity flows. Note that the breathing rate of the

anesthetized mouse was slowed, making it easy to acquire 3 s of echo data

between breaths. In this example, clutter was primarily from stationary and

vibrating tissue.

4.4 Discussion

From the simulation, phantom, and in vivo tumor results, we find a consis-

tent picture regarding the performance of the clutter filter proposed for PD

imaging from a 3-D echo array. The classifier-based filter works well when

the amplitude of clutter motion is small and spatially uniform, e.g., rigid-

body motion. In that case, the clutter subspace is relatively narrow band

and confined to the first few eigenstates. Consequently, the clutter and blood

subspaces in G are largely disjoint, and thus the clutter subspace is readily

suppressed with little effect on the blood subspace using a hard-threshold

filter. In other words, feature vector z from Eq. (4.18) in conjunction with

the classifier of Eq. (4.19) is able to correctly label core elements of G. Our

clutter filter is well designed for these tumor imaging conditions because the

clutter eigen-bandwidth is narrow.

In contrast, clutter-signal power in the phantom data was pulsatile, with

a broad-band clutter subspace that overlapped the TM-blood subspace. We

set the filter classifier to capture all of the blood power, and as a result

the post-filter signal power contains more clutter power at slow flows than

at fast flows. For this reason, power-Doppler image contrast was reduced in

Fig. 4.10 as more clutter power was introduced. In addition, the resistance to

flow through the dialysis fibers at the lowest flow states was highly variable;
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Figure 4.12: PD images of a murine melanoma 1 to 3 weeks after
implantation. Tumor size and microvasculature clearly increase with time.
The left column displays PD maps of microvascular flow and perfusion for
blood speeds <4 mm/s while those in the right column are flows >4 mm/s.
All imaging was implemented in MATLAB 2015b on an Intel processor
i5-4300U CPU, 2.50 GHz. HOSVD computation was performed using a
truncation technique supported by Tensorlab toolbox (www.tensorlab.net)
to minimize running time. The time to compute all processing for one PD
image (5.4mm×7mm, 1 week) is around 1 min.
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we found that few fibers often carried most of the flow at higher speeds. As

flow increased above 2 ml/min, flow among fibers became more uniform. In

effect, the flow phantom posed more challenges to successful clutter filtering

than in vivo tumor imaging.

To improve clutter filtering when tissues move with high amplitude and

eigen-bandwidth, we are searching for additional z components that can

specifically identify those physical attributes. Such features might emerge

from multimodal perfusion imaging investigations if another modality can

provide appropriate independent information (Chapter 5). Alternatively, we

are seeking soft-threshold decision functions that can recognize when more

than one signal source is contributing to a core element. It is clear from

the tumor images of Fig. 4.12 that peripheral microvascular imaging offers

clutter conditions where our methods work very well.

Note that the simulation and phantom data in our report each provide

small-vessel flow conditions but no capillary-perfusion-like signal, the latter

being characterized by the slowest and most spatially disorganized red-blood-

cell (RBC) movements. Both microvascular flow and perfusion are present

in Fig. 4.12 as it was in a previous report involving ischemic mouse hindlimb

images (Chapter 3). Perfusion is well represented in the power-Doppler spec-

trum that does not depend on the Doppler angle, but, unlike color-flow im-

ages, PD images offer no velocity information. We are able to obtain some

speed ranging by partitioning eigenvector spectra (Section 4.2.7). We showed

in Chapter 3 that eigenvector spectral images display distinct linear patterns

when RBC movement is directed, as in vessel flows, and diffuse patterns when

RBC movement is disorganized as in capillary perfusion. The 3-D eigenspace

provided by HOSVD processing offers a wealth of specific information about

scatterer movement that is encoded in pulse-echo signal arrays.

4.5 Summary and Conclusions

The sensitivity of PD images to tissue perfusion was increased by creating a

frame-time axis in the acquired echo-data array in addition to the slow-time

and spatial axes. The frame-time axis provides a high density of Doppler

spectrum samples at frequencies corresponding to tissue perfusion signals.

The perfusion signal was uncoupled from tissue clutter using a 3-D SVD
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that generates a 3-D core tensor and three sets of eigenvectors describing the

slow-time, spatial, and frame-time features of the echo signals. In this report,

we describe a feature-vector classifier with elements computed from the 3-D

eigenspace. Three of the features report eigenvalue energy and two are simi-

larity measures. This statistical classifier examines each core-tensor element

to decide if it is predominantly of clutter or non-clutter origin. Coupling the

clutter filter with an acquisition noise filter and velocity discriminator, we

image fast and slow blood-flow states in vivo. The method works well for

narrow eigen-bandwidth clutter signals but generates progressively reduced-

contrast PD images as the clutter eigen-bandwidth increases. This approach

to microvascular/perfusion imaging performs well in peripheral vasculature

imaging.
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CHAPTER 5

CLINICAL APPLICATION

5.1 Introduction

Peripheral artery disease (PAD) is a prevalent disorder that becomes dis-

abling when poorly managed. PAD reduces circulation in the extremities

because of atherosclerosis, diabetes, and other microvascular maladies. Af-

fected patients are vulnerable to debilitating systemic cardiovascular events

like strokes and infarcts. PAD affects more than 8 million people in the USA

today and is expected to affect 20 million by 2050 given a sedentary lifestyle

in an aging population [59].

As PAD progresses, the narrowing vasculature results in a decreased per-

fusion and increased hypoxia. These changes can activate revascularization

processes [60]. Angiogenesis, which is triggered under hypoxic conditions,

leads to the formation of new capillary beds from preexisting vessels. Arte-

riogenesis, which is triggered by changes in the biomechanical properties of

the vasculature as a result of decreased blood flow, leads to the enlargement

of preexisting arteriolar connections.

The evaluation of interrelated functional parameters is required to under-

stand the progression of PAD and the bodily response to the disease. The

parameters include blood perfusion and oxygenation levels in different muscle

tissues. The aim of the research is to employ an integrated multimodal ap-

proach to study PAD with ultrasound (US) imaging, photoacoustic imaging

(PA), and laser speckle contrast imaging (LSCI). The research is also aimed

to validate our US perfusion imaging proposed in previous chapters. The

enhanced sensitivity enables differentiation of perfusion between healthy and

ischemic states. The images also allow tracing perfusion changes in a deep

region of interest while angiogenesis progresses.
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5.2 Method

5.2.1 Murine Ischemic Model

The operation protocol to induce peripheral ischemia is described in the

method section in Chapter 3. Briefly, male black (C57BL/6) mice (Charles

River Laboratories, US) were subjected to the right femoral artery ligation

and they were serially scanned with the imaging modalities before and imme-

diately after closing the incision to confirm the ischemic status. The imaging

proceeded at various time points up to two weeks post-surgery to monitor

spatiotemporal changes. All experiments were performed according to the

guiding principles of the American Physiological Society and approved by

the Institutional Animal Care and Use Committee.

5.2.2 US Imaging

A subset of seven (n=7) animals were used for perfusion assessment employ-

ing US. Animals were imaged prior to ligation surgery and at a series of

post-operative time points (10, 20, 30, 40, 50, and 60 minutes, and 1, 2, 7,

and 14 days). Echo data were acquired using a Vevo 2100 system and an

MS 400 linear-array transducer (FUJIFILM VisualSonics Inc. Toronto, On-

tario, Canada). The acquisition and processing parameters are summarized

in Table 5.1. The total imaging methods are described in Chapter 3.

5.2.3 Laser Speckle Contrast Imaging

Seven (n=7) animals imaged previously with ultrasonic power Doppler were

also scanned using laser speckle contrast imaging prior to ligation surgery

and at a series of post-operative time points (10, 20, 30, 40, 50, and 60

minutes, and 1, 2, 7, and 14 days). Images were obtained using a moorFLPI-

2 laser perfusion imager (Moor Instrument, UK) operated from a Windows-

based computer system installed with the moorFLPI software (moorFLPI

Measurement V3.0, Moor Instruments, Devon, UK). High-resolution speckle

images were acquired using a 768 × 576 pixel grayscale charge-coupled device

camera set to record each frame for a duration of 60 seconds. In addition, the
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Table 5.1: Parameters

Parameter Value
Axial (fast-time) samples (M) 200-272
Axial sampling rate 24.0 MHz
Axial size 6.4-8.7 mm
Slow-time samples (N) 17
Slow-time sampling rate 1.0 kHz
Frame-time samples (K) 100
Frame-time sampling rate 9 Hz
Scan-line numbers (L) 240-250
Scan-line density 16.67 lines/mm
Lateral size 14.4-15.0 mm
Spatial samples (S=LM) 48000-68000

Sub-block size (Ṅ×Ṡ×K̇) 17×768×30
Slow-time division (J1) 1
Spatial division (J2) 1600
Frame-time division (J3) 10
Sub-block numbers (J=J1J2J3) 16000

feet of three (n=3) mice were imaged prior to surgery and at 1 hr, 1 day, 2

days and 7 days post-surgery. For collateral circulation assessment, the skin

was removed from the right hindlimb of the animal. The mice were imaged

prior to surgery, and subsequently at 2, 10, and 25 min post-ligation.

5.2.4 Photoacoustic Imaging

Another subset of seven (n=7) mice was used for PA imaging. Each ani-

mal was imaged with Endra Nexus 128 PA tomographer (Endra, Inc., Ann

Arbor, MI, USA) at (20, 30, 40, 50, and 60 minutes, and 1, 2, and 7 days)

post-surgery. Images were acquired at 750 and 850 nm using continuous

rotation mode with a 6 second rotation time. A 3D reconstruction was

performed for each image, and signal intensity was accumulated over an 8

mm thick slab. The signal in each PA image was quantified by determin-

ing the mean PA signal in a 2 mm2 region of interest (ROI). A ratiometric

signal was determined by taking the ratio of signal at 750 nm to 850 nm.

Data was processed using the freely available Horos software (Horos Project,

https://www.horosproject.org/).
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Figure 5.1: Perfusion quantification using US and LSCI. US and LSCI
images were obtained at multiple time points before and after femoral
artery ligation. The white rectangular windows in the images represent
individual ROIs over which perfusion was averaged. In the US images, the
difference between the pre- and post-operative state was computed for each
mouse sample. Subsequently, the mean and SEM of this difference were
plotted at each time point. The graph shows 0 dB pre-ligation (i = 1) as a
reference, and the relative changes for all post-ligation timepoints (i > 1).
In the LSCI images, the ratio between an ischemic right hindlimb region
and its corresponding healthy left hindlimb region was computed, and their
difference (plus unity, such that all values are relative to 1) was plotted.

5.2.5 Perfusion Trend Analysis for Ultrasound and Laser
Speckle Contrast Imaging

Perfusion images obtained through power Doppler US were used to track

tissue perfusion changes over the course of two weeks. Through imaging the

animal hindlimbs at various time points (before and after ligation), we were

able to track the average perfusion changes over the regions illustrated in

Fig. 5.1. These regions intentionally exclude arteries in order to focus on

tissue perfusion. The depth of each region was set to less than 6 mm to

provide a consistently high echo signal-to-noise ratio. The average perfusion

during the ith time point in the jth mouse is represented as

pij, i ∈ {1, · · · ,M}, j ∈ {1, · · · , N}, (5.1)
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where M and N are the number of time points and mice included in this

study, respectively. We compute the change in perfusion over time as qij =

pij − p1j where p1j is the pre-ligation regional perfusion value. The temporal

variation is analyzed by plotting sample mean q̄i = 1
N

∑N
i=1 qi and standard

error of the mean (SEM) q̃i =
√

1
N

√
1

N−1

∑N
i=1(qi − q̄i)2 for every time point

i.

The trend for LSCI was obtained by a comparable procedure, but we report

the ratio of signal from the right ischemic hindlimb to that of the left control

hindlimb:

rij = 〈p(R)
ij 〉/〈p

(L)
ij 〉, (5.2)

where 〈p(R)
ij 〉 and 〈p(L)

ij 〉 are perfusion averages over the boxes on right and left

hindlimbs, respectively. Because the spatial absolute image values are highly

sensitive to ambient light conditions, we normalize the perfusion change using

gij = rij − r1j + 1 and plot the mean and SEM for gij at every time point.

5.2.6 Blood Oxygenation Analysis for Photoacoustic Imaging

Because the oxygenated (HbO2) and deoxygenated (HbR) forms of hemoglobin

have different near-infrared absorption properties, PA is able to detect the

relative level of blood oxygenation. Briefly, the amplitude of the acquired PA

image describes the local energy absorption at wavelength λi. This in turn

can be expressed as φ(λi, x, y, z), with a spatial average φ̄(λi). The contribu-

tion of the two forms of hemoglobin to the spatial mean absorption can be

represented as

φ̄(λi) = εHbR(λi)[HbR] + εHbO2(λi)[HbO2], (5.3)

where εHbR and εHbO2 are the molar extinction coefficients of HbR and HbO2

at wavelength λi, respectively. The operator [·] denotes the relative concen-

tration of hemoglobin. In this study, we used three wavelengths, λ1=750 nm,

λ2=800 nm, and λ3=850 nm. The two concentrations can thus be estimated
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by a least squares solution as

[
[HbR]

[HbO2]

]
=

(
εHbR(λ1) εHbO2(λ1)

...
...

εHbR(λ3) εHbO2(λ3)


)†

φjk(λ1)
...

φjk(λ3)

, (5.4)

where (M)† = (MTM)−1MT denotes pseudo-inverse of the matrix M . The

relative change in oxygenation is consequently given as η = [HbR]/[HbO2].

We employed the table in [61] for corresponding molar extinction coefficients.

A total of seven (7) mice were scanned at several time points before and after

ligation. We computed each ratio ηjk where j and k are indices of the time

point and sample, respectively, and finally plotted the sample mean and SEM

for every time point to trace the change.

5.3 Results

The primary goal of monitoring the circulatory system using multiple imaging

techniques is to find an accurate, continuous, and non-invasive strategy that

can help assess changes in tissue perfusion and the breakdown of homeostasis.

Although several methods have been established for perfusion imaging in

the clinical setting, none by itself can offer the fine resolution and variable

ranges of depth necessary for detecting microvascular changes. To bridge

this divide, we adopted three complementary imaging techniques (US, PA,

and LSCI) with various penetration depth (see Table 5.2). These imaging

modalities enable us to “connect the dots” between changes in blood flow

through microvascular networks shortly after the onset of ischemia, all the

way through to large-scale changes in blood supply seen days or weeks later

(Fig. 5.2).

Table 5.2: Non-Invasive Imaging in Small Animal PAD Model

Imaging Modality Depth Pixel/Voxel representation
US (24 MHz) 4-6 mm Echo power in dB scale
PA 3-4 mm Optical absorption
LSCI 1 mm Optical power in flux scale
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Figure 5.2: Representative multimodal imaging data presented at a series of
time points (prior to and following ligation). Each column shows how a
different circulatory parameter changes over time as the mice recover. The
first column highlights perfusion as a series of 10 mm × 15 mm vertical
cross sections of ischemic tissue imaged using US. Prior to ligation,
perfusion generally appears strong, except for the distal regions of the limb
where the signal appears to be diminished primarily due to acoustic
attenuation. The second columns show PA images of the ischemic tissues
excited at 750 nm (for HbR detection, green color) and 850 nm (for HbO2

detection, red color). The third column represents LSCI images of the legs
in a horizontal view. The right hindlimbs (appearing on the left side of the
images) underwent femoral artery ligation, while the left hindlimbs were
used as controls within each animal. The fourth column represents LSCI
images of feet.
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Figure 5.3: Changes in perfusion and hypoxia over a logarithmic timeline.
Points marked (◦) and (�) are for perfusion estimates using US and LSCI,
respectively. Points marked (C) indicate the ratio of deoxygenated to
oxygenated hemoglobin (HbR/HbO2) as measured via PA. (A)–(D), are
plots of each measure individually. The mark (∗) above each point indicates
a statistically significant (p < 0.05) difference from the pre-ligation state.
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Ultrasound enables estimation of deep-tissue peripheral perfusion

For each of seven experimental mice, US imaging sessions were performed

before the surgical ligation, every 10 minutes after surgery (up to an hour),

and at 1, 2, 7 and 14 days to monitor spatiotemporal changes in blood

perfusion. We found that within the first 10 minutes, a significant drop in

the perfusion signal was detected (see Fig. 5.3 (A)). The lowest perfusion

levels, however, were not observed until the 1 or 2 days post-surgery. By day

7 perfusion was found to have recovered to near pre-ischemic level.

LSCI reveals the rapid dynamics of the subcutaneous tissue per-

fusion While the deep tissue (imaged with US) showed a relatively slow

decrease in blood profusion after surgery, the dynamics of the surface tissue

(assessed via LSCI) were considerably faster. The LSCI signal was observed

to continuously decrease over the entire first hour after ligation, and by day

1 had already started to recover (see Fig. 5.3 (B)). Indeed, while the deep tis-

sue showed its lowest level of perfusion at the day 2 timepoint, the superficial

tissue measurements indicated almost complete recovery. This is likely due

to the fact that surface tissue contains a higher density of collateral blood

vessels, which, during vascular occlusion, can help to rapidly recover blood

perfusion [62].

LSCI demonstrates a slow perfusion recovery in lower extremities

The traditional approach of assessing perfusion in a laboratory setting in-

volves imaging the feet of animals using LSCI. As shown in Fig. 5.3 (C), we

observed an immediate decrease in the ischemic-to-non-ischemic perfusion

ratio followed by a slow but steady recovery that takes up to 14 days.

Photoacoustic imaging imparts functional microvascular parame-

ters In contrast to ultrasonic and laser Doppler imaging, photoacoustic

imaging is capable of quantifying several important physiological parameters,

including levels of oxygenated (HbO2, detected at 850 nm) and deoxygenated

(HbR, detected at 750 nm) hemoglobin. Using light at wavelengths in the

near-infrared region we found that the ratio of HbR to HbO2 increased ap-

proximately 1.2-fold after ligation (see Fig. 5.3 (D)), and maintained this

high level throughout the first day. Some recovery was seen by day two,

however by day seven, the ratio had reverted to its pre-ligation value.
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5.4 Discussion

One of the primary drivers of this investigation was to explore applications

of a new power Doppler US technology sensitive enough to not require exoge-

nous contrast enhancement when detecting spatiotemporal changes in muscle

perfusion. Although US imaging has been a mainstay in the healthcare in-

dustry for over 60 years, and it is widely used for the detection of blood

circulation, its limited sensitivity in low-flow conditions has rendered it un-

suitable for imaging the peripheral microvasculature until now. The power

Doppler US methodology we employed in this study can detect relative per-

fusion changes within capillary beds using conventional instrumentation that

samples and filters echo data in new ways. Using this method, we monitored

the 14 day ischemia-reperfusion time course in healthy mice throughout the

hindlimb (Fig. 5.3 (A)). We used 24 MHz (about 3 times the frequency of

clinical imaging) because of the small size of the hindlimb. This method

offers a safe and low cost approach to serially assess tissue perfusion.

We used this power Doppler method, along with several other imaging

techniques, to construct a comprehensive timeline of the bodily response to

peripheral vascular occlusion at the physiological levels. In the deep tissue,

we found a slow decrease in the perfusion feature that manifested over the

course of approximately 48 hours (although the shallower tissue showed a

considerably faster drop-off). The ability to perform fast serial assessments

also proved critical to the possible detection of a reactive hyperemia response

shortly after ligation. Although modest in size, we note an increase in tis-

sue perfusion at the 20 min time point relative to the 10 and 30 minute

values (a similar uptick in oxygenation was noted at the 30 min time point

(Fig. 5.3 (A&D)). One possible explanation may lie in a surge of endothelial

nitric oxide (NO) production stimulated by the hypoxia conditions. Previ-

ous studies have shown that: (1) NO modulates the consumption of oxygen

when blood flow is restricted by competitive inhibition of cytochrome oxidase

[63], (2) hypoxic tissue expression increased levels of vascular endothelium

growth factor (VEGF), which in turn gives rise to endogenous release of

NO. Additional studies will be required to establish the role of NO in short-

term perfusion and to investigate possible therapeutic effects of NO on the

ischemic microenvironment.

With the utility of our new ultrasonic power Doppler technology estab-
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lished, we next sought to use it as part of a broader multimodal imaging

strategy to study the onset of and recovery from PAD. To that end, we em-

ployed LSCI and PA over the study time course to non-invasively inspect

superficial blood perfusion and oxygenation, respectively.

Within the surface tissue, the LSCI data showed that hindlimb recovery

from ischemia occurs considerably faster than in deeper tissue. While the US

imaging revealed that it took approximately 7 days to show signs of vascular

recovery within the muscle mass, the surface tissue was clearly recovering as

early as 48 hours post-ligation. The simplest explanation for this observation

lies in the differences in vascular physiology of the surface and deep tissues. In

addition to angiogenesis, there exists a secondary type of vascular remodeling

which involves the growth of preexisting collateral arterioles into functional

collateral arteries. Dubbed arteriogenesis, this type of blood vessel growth is

regulated not by hypoxia, but by the changes in sheer stress that accompany

the decrease in blood pressure associated with ligation [64, 65]. Because

the vascular density in the surface tissue is generally quite high (presumably

due to selection pressure favoring fast wound healing), arteriogenesis in these

tissues might lead to the recovery of blood flow much faster than would be

possible relying on angiogenesis alone.

For patients with PAD, amputation of the extremities may become nec-

essary in situations where there is extensive tissue death due to prolonged

ischemia. Indeed, the clinical presentation of severe ischemic ulcers or frank

gangrene are recognized as the sixth stage of PAD manifestation according

to Rutherford’s classification [66]. We therefore investigated perfusion within

the feet of our animals using LSCI and found that blood flow recovered more

slowly in the feet than in the distal muscle mass, taking approximately 14

days on average (in close agreement with reports by other authors) [67]. This

slow recovery highlights the necessity of developing new screening methods

capable of detecting PAD early on, before irreparable damage is done.

PA with a penetration depth of 5 mm enables label-free imaging of mi-

crovascular flow with high signal-to-noise ratio. This allows users to easily

differentiate superficial capillaries and deep tissue vessels [68], but it can

also be used to characterize functional microvascular parameters including

HbO2 and HbR concentrations [68, 69]. We found that 20 min after ligation,

the ratio of HbR/HbO2 increased (suggesting hypoxia), and this enhance-

ment continued until approximately two days after ligation, when the blood
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oxygenation began to rise (Fig. 5.3 (D)). Because the US measurements indi-

cated that perfusion did not show signs of recovery until day 7, these results

seem to indicate that blood oxygen levels can recover early in the angiogenic

response.
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CHAPTER 6

CONCLUSION

Ultrasound imaging combined with novel signal processing techniques has

much potential to increase diagnostic accuracy, leading to better treatment

options. The purpose of this research is to develop optimal blood perfu-

sion imaging methods that remain safe and are available at a low cost for

widespread clinical use. Forming a multidimensional array using a unique

sampling method can increase sensitivity to disorganized perfusion without

reducing sensitivity to directed arterial flow. The proposed HOSVD filter-

ing technique effectively isolates blood components from tissue motion. This

technique takes advantage of the full range of statistical information in the

echo signal to decouple the independent scattering sources in adaptively de-

termined vector spaces. The classifier, using extracted features , maximally

nullifies clutter and retains blood components. The experimental results,

attained using in vivo melanoma tumor imaging at 24 MHz, show signifi-

cant clutter rejection without a loss of perfusion signal. Comparisons with

other imaging modalities in well-known murine ischemic model enable us to

establish the clinical potential of US imaging for the diagnosis of PAD.

Medical imaging is undergoing a transformation, becoming an essential

contributor to medical data sciences. Data-driven techniques for image re-

construction and interpretation are revolutionizing how we attain patient in-

formation and images to make ideal medical decisions. Advanced computing

power enables us to implement data processing based on complex statisti-

cal models. At the center of all diagnostic and therapeutic methods is the

need to assess blood flow and perfusion. Our innovation in this regard is to

modify echo acquisition and expand dimensionality to increase the sensitivity

of non-enhanced US imaging to very slow and disorganized flows. Statisti-

cal filtering appropriately reduces data dimensionality to improve perfusion

specificity. Methods can be implemented on an existing commercial scan-

ner, which increases the utility of Doppler techniques without redesigning
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the instrument.

Future work would consider methods for use at diagnostic frequencies (5-12

MHz) to (1) explore other organ systems in the animal models and (2) adapt

the technique for human use. Low frequencies increase penetration depth

at the expense of the signal power of RBCs. To compensate for this sensi-

tivity, the role of acoustic beamforming is important. Standard processing

delays and sums the echoes from multiple sensors in the transducer receive

aperture merely to alleviate white noise. Access to the pre-beamformed data

makes it possible to develop more flexible filtering techniques to extract weak

blood components. The processing of a large amount of data requires high-

performance computing. Developing fast decomposition algorithms and im-

plementing them using a graphics processing unit (GPU) are needed to speed

up image formation.
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