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ABSTRACT

The purpose of any medical imaging device is to acquire timely diagnostic information

in a manner that poses the lowest cost and risk to patients and society. Ideally, medical

imaging systems are designed by maximizing the benefit-to-cost ratio from a set of labo-

ratory measurements that define “image quality” in the sense that they predict diagnostic

performance in clinical applications. For ionizing radiation modalities, where risks can

be high, the science of image quality has been well developed since the early days in the

1970s, and these principles are now integrated throughout industry and the practice of

medicine. In medical sonography, however, these methods are not as advanced for at least

two reasons.

One reason is that ultrasound is a very low-risk and low unit-cost modality. Because

there is no risk caused by ionizing radiation in ultrasound imaging , the motivation for

building a regulatory system to integrate academic developments into industry has been

low. Yet, the use of ultrasonic imaging in medical practice worldwide is second only to

X-ray imaging in terms of unit sales and exams per year. Task-based optimization of

any highly used technology like sonography can have a major positive effect on society

through healthcare cost reduction. The second reason, found in my dissertation, is that

the mechanisms of the sound-tissue interactions generating object contrast in sonography

are fundamentally different than those of photon-based imaging. These differences pose

profound challenges on how laboratory measurements of image quality should be applied in

system design and evaluation, and have prevented the image science of medical sonography

from being advanced as quickly as other modalities with respect to ideal observer analysis.

The unique contributions of my dissertation research are to develop ideal observer

analysis for B-mode sonography as a design and evaluation tool. Specifically, our team

developed methods for expressing common diagnostic features of tumors as statistical

equations so that we could compute the test statistic of the ideal discriminator from log-

likelihood ratios that are unique to each clinical exam. We then obtained mathematical

approximations to the exact test statistic expressions that could be implemented in signal

processing algorithms and applied to the echo signals of images. This approach was shown
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to improve the information content of the data as well as human observer performance.

My contributions to the team effort were to develop and test (a) iterative adaptive

filters that are applied to beamformed echo signals to add task-specific information into the

image formation process; (b) several methods for measuring the spatiotemporal impulse

response of commercial systems; (c) a definition for visual task information in sonography;

(d) a closed-form expression that directly links task information to image quality features,

which forms a basis for image quality assessments and design specifications; and (e)

concepts that unite alternative approaches to array beamforming under a single analytical

framework. This dissertation and associated peer-reviewed publications have helped to

define the image science of medical sonography. Our applications have thus far focused on

benign-malignant discrimination of breast lesions, but we believe the methods described

within have much broader potential.
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CHAPTER 1

INTRODUCTION

1.1 Breast cancer and diagnosis

Breast cancer affects one in eight women during their lives, making it the most commonly

diagnosed cancer and the second most common cause of cancer death after lung cancer

in women. In the United States, it is estimated that 209,060 new cases of breast cancer

(207,090 women, 1970 men) would be diagnosed in 2010, and 40,230 breast cancer deaths

(39,840 women, 390 men) were expected [1]. Much research effort has been focusing on

understanding the basic mechanism of the disease, and developing methods to detect it

early as well as treat it effectively. Cancer is a group of many related diseases, caused by

the uncontrollable division of transformed cells. They form a malignant tumor that can

break through basement membranes to invade locally, and gradually spread to all parts

of the body through the bloodstream or the lymph system. The growth of a cancerous

tumor can be divided into several stages,

Stage 0 Non-invasive

Stage I Up to 2 cm in size

Stage II Spreads to lymph nodes

Stage III Larger than 5 cm in size and locally invasive

Stage IV Spreads to other parts of the body

Early detection and diagnosis of breast cancer are crucial to the successful treatment

and cure. If a tumor is detected when it is less than 1 cm, the patient has 85% chance

of cure as opposed to 10% if detected later. There are several methods for breast cancer

detection. The simplest method is palpation. Typically, malignant lesions are stiffer than

surrounding tissues, so one can feel by pressing finger tips into the surface skin of the

patient. However, palpation cannot detect small and deep tumors. In such cases, an

imaging technique is usually required. Once a breast abnormality is detected, a biopsy

may be done. This procedure removes a tissue sample for examination under a microscope.
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It is the standard method in present-day practice to obtain a true diagnosis [2].

X-ray mammography is the most effective scanning tool for early detection of breast

cancer. Early detection and treatment have been shown to reduce the patient mortality

by 30% [3]. Mammograms are 2-D projections of the breast created by ionizing radiation.

They offer 50-100 µm resolution for visualizing suspicious masses and microcalcifications.

Unfortunately, the procedure is uncomfortable and even painful to many women. The

ionizing radiation exposures also damage the breast tissues and these damaging effects

accumulate inside the body. Therefore, other imaging techniques have been sought as an

alternative modality for breast cancer diagnosis.

Recent studies have demonstrated the effectiveness of ultrasound imaging in detecting

breast cancer [4–6]. Although it was explored as a breast imaging technique as early

as the 1960s, its true value was not recognized until the 1980s when real-time B-scan

transducers with high frequencies and electronic focusing were introduced. Since that

time, breast ultrasound is routinely used to determine if a mammographic abnormality or

clinically palpable mass is cystic or solid [7]. Compared to mammography, ultrasound is

safer, cheaper and more comfortable to women. It offers higher object contrast for some

lesion types, but has lower spatial resolution. Therefore, ultrasound is unable to image

small structures such as microcalcifications, tiny calcium deposits which are often the first

indications of breast cancer. Conventional ultrasound imaging is now routinely applied

in clinical settings as an adjunct to mammography and physical examination.

1.2 Motivation

The development of computational technologies allows us to implement some complex

signal processing and beamforming strategies on ultrasound instruments for improving

their image resolutions. Their goal is to focus the transducer beam uniformly through-

out the field of view. However, each technique is a trade-off among echo signal-to-noise

ratio (eSNR), safety, cost, and contrast, spatial, and temporal resolutions. Each affects

diagnostic performance for specific clinical tasks. Diagnostic performance is evaluated,

often subjectively, by experts using the systems in medical practice. Yet, there is no

clear and direct connection between engineering considerations and clinical diagnosis.

Furthermore, there now exists greater flexibility in the ability to reconfigure system plat-

forms for patient-specific exams, particularly in high-end commercial instruments. Such

adaptability has already significantly increased the performance-to-cost ratio for general

sonography over the past decade. In light of the increased capabilities of modern ul-
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trasonic imaging systems to adapt to different scanning settings, it becomes important

to optimize sonographic imaging designs to most effectively detect and identify signs of

breast cancer.

A brute-force approach to optimization is simply to run clinical studies spanning the

range of possible pulse-acquisition settings, signal-processing algorithms, and image dis-

play settings. To be most effective, these studies would need to consider different lesion

and background characteristics such as lesion depth, degree of invasion, and background

echo texture. However, clinical studies of such magnitude are essentially infeasible be-

cause of time and expense considerations. As a result, a rational optimization approach

is favored, in which theoretical analysis and models of visual detection are used to iden-

tify a few promising configurations for investigation in clinical studies. The goal of this

dissertation is to develop an analytical framework where the engineering properties listed

above are related mathematically to the diagnostic performance, measured in a manner

that generates metrics equivalent to receiver-operating characteristic (ROC) analysis, the

industry’s gold standard for evaluating imaging systems [8].

1.3 Objective assessment of image quality

Image quality, for scientific and medical purposes, must be defined in terms of how well

desired information can be extracted from the image. The new definition leads to objective

assessment of image quality (OAIQ) or a task-based approach for designing the imaging

system. In this approach, the system is evaluated on the basis of observers’ performance

on a specific task. The approach is an application of statistical detection theory first used

in radar imaging during World War II, with scientific background provided decades earlier

by Hotelling, Thurstone, and Neyman and Pearson [9]. It has subsequently been applied

to the evaluation of medical imaging systems by Swets and Pickett [10, 11], Wagner and

Brown [12], Barrett and Myers [8], and many others.

Wagner was the first proposing the use of visual task information to evaluate the

quality of a system or an image reconstruction. He described imaging systems as devices

that transfer task information from the objects being examined to observers [13]. The

image formation then was divided into two stages, the initial acquisition (detector) and the

display. Acquisition is where information radiated or scattered from the object is recorded.

The display stage involves configuration as an image, including any reconstruction or

image processing algorithm, scan conversion, or gray-scale mapping for consumption by

an observer. The observer can be an expert human or an algorithm evaluating criteria
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based on decision theory with the performance evaluated through the ROC analysis [14].

Prominent among the latter is the ideal observer (IO) that adopts the log-likelihood ratio

as the test statistic and combines all available information to make the best decision [8].

The ideal observer performance, therefore, is optimal and serves as a measure of the

task-relevant information content of the imaging data.

In 1985, Wagner and Brown published their landmark paper on unified SNR the-

ory [12]. They first introduced the ideal observer signal-to-noise ratio, SNRI , as a metric

to quantify the IO performance. Under the normal distribution for the test statistic,

SNRI is related to the ideal observer performance, measured by using the area under the

ROC curve (AUC), through the error function [15]. In the paper, Wagner and Brown fac-

torized SNRI into task information at the input and the noise equivalent quanta (NEQ)

of the imaging system over the spatial frequency domain. This neat factorization shows

analytically that the standard performance of an imaging system depends on the task and

a physical parameter of the system. NEQ is the product of the three Fourier descriptions,

specifying the image contrast, spatial resolution, and noise power spectrum [12]. NEQ

was first defined by Shaw as the minimum number of X-ray quanta required to produce

an image at a given SNR [16]. The more efficient the system at “transferring” quanta, the

closer the NEQ is to the actual number of quanta used the make the image. But in the

IO approach, NEQ becomes the number of quanta or photons the image is worth to the

IO who makes perfect use of each quantum. NEQ is also represented to the contribution

of the system to the ideal performance. Imaging systems therefore could be compared by

just simply comparing their NEQs. In fact, the NEQ curve has been used regularly by

companies seeking approval from the Food and Drug Administration for their products.

Later, Barrett et al. extended the concept of NEQ to generalized noise equivalent quanta

(GNEQ) for the problem of signals known exactly but the background known statisti-

cally – the SKE/BKS paradigm [17]. The approach has been also generalized to include

shift-varying systems, random signals and backgrounds, and non-stationary noise [18].

The SNR analysis and those extensions have greatly facilitated rigorous performance pre-

dictions for imaging systems, but primarily for photon-based modalities. It is limited to

sonographic systems with much of work still remaining for general treatment [12].

1.4 OAIQ for ultrasound imaging modality

Sonographic systems include a demodulation in the display stage. This nonlinear process

makes the statistical analysis become complicated. The IO approach was first applied to
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sonography by Wagner and Smith [19, 20] in their award-winning papers of 1983. They

derived the IO viewing B-mode images for the binary task of low-contrast lesion detection.

To obtain the closed-form expression for the IO, however, Wagner and Smith made numer-

ous limiting assumptions. Among them, they assumed no measurement noise, only large-

area low-contrast lesions may be present, the system provided shift-invariant focal-zone

impulse responses, and speckle spots rather than pixels determine statistical properties

of image data. They realized that diagnostic information in a sonogram is contained in

speckles, and proposed acoustic speckle spot density in the spatial domain as the analogy

to radiographic photon density in the frequency domain. This is a reasonable assumption

for the special case of non-diffracting Gabor pulses that generate fully developed speckle.

Speckle density is related to information density since it is the number of independent sig-

nal samples presented to observers on which they base decisions. Outside the focal zone,

however, speckle patterns can be correlated over very long ranges. In any case, indepen-

dent sample density may be estimated from signal coherence lengths [21]. Their work

provided design criteria that guided subsequent work in speckle reduction [22], beamfor-

mation [21], post-processing [23], and transducer selection [24]. However, the stringent

assumptions listed above needed to achieve the closed-form expression made the analysis

far from representing realistic clinical imaging conditions.

Modern ultrasound systems provide users an option for recording digitized radio-

frequency (RF) or in-phase-quadrature (IQ) signals [25], allowing us to shift the framework

from B-mode images to RF signals. In this domain, the signals are generated by known

and linear processes that we can model for the IO analysis. Deriving the IO on RF signals

avoids these limiting assumptions made when analyzing task information with B-mode

images. The IO performance measures information transfer at the acquisition stage of

recording; that is, up to the point of demodulating beamformed RF signals before scan

conversion. Combining IO performance with measurements using the Smith-Wagner and

human observers, it is possible to follow the flow of task information from the patient

through each stage of image formation ultimately to the diagnostician. Extending the

IO analysis on the RF domain, however, introduces new challenges. There is a funda-

mental difference in data statistics between the two imaging modalities of radiography

and sonography. In radiography, the image was generated from medium attenuation of

the incident photon field, which modifies the receive-signal amplitude. Poisson photon

statistics are accurately modeled at the output elements of a detector as multivariate

normal (MVN) when photon counts are sufficiently large. The imaging contrast created

from the photon absorption process is encoded in nonstationary pixel means. Variations

in the mean object function linearly map into variations in the mean image data, and so

5



the test statistic of the ideal observer is a linear function of the image data. Since the

data has MVN distribution, the test statistic is normally distributed as well. Therefore it

is common to conduct an observer study, compute the area under the ROC curve (AUC),

and connect the AUC to SNRI , which can be related to instrumentation properties. In

sonography, however, breast lesion features were introduced into tissue scattering func-

tions by spatially modulating the variance of acoustic impedance. Thus the diagnostic

task is specified entirely by the object covariance matrix, which leads to the quadratic

form of the IO. Although the distributions of the imaging data are still modeled by the

MVN densities, the normal distribution, or normality condition, for the IO test statis-

tic may be lost under the nonlinear form. The normality condition is also hard to be

verified since the test statistic involves inverses of high dimensional covariance matrices.

Computing the IO test statistic also introduces the practical challenge to the framework.

1.5 Dissertation goals and proposal research

The limitations stated above provide opportunities for further engineering developments.

Over the last five years, I have conducted several studies for my dissertation, which

include implementing an analytical framework for system designs using the IO approach,

exploring the IO and translating its equations into optimal signal processing strategies to

improve the sonogram quality. The specific aims of the dissertation are listed below.

1. Objective assessment of sonographic quality. Without the normality condi-

tion for the ideal observer test statistic, relation between SNRI and the ideal per-

formance is no longer as rigorous as in photon-based imaging. The interpretation of

engineering metrics in terms of observer performance becomes uncertain. Thus, we

need a new interpretation for the ideal performance, measured through AUC, for

our sonographic tasks. The new interpretation will allow us to follow Wagner and

Brown’s framework and establish an ideal observer analysis for medical sonography

on par with radiographic modalities.

2. Post-filtering. We have proposed the use of a power series expansion to meet the

computational challenge in calculating the test statistic in the initial study of the

research [26]. The first-order approximation of the power series reveals a Wiener

filtering operator on the RF domain before taking the envelope image. Through psy-

chophysical studies, the filter was found to help human observers improve their per-

formance in detecting and discriminating four of five typical features in breast cancer
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diagnosis using sonograms, but to reduce the performance on anechoic/hypoechoic

discrimination. The reduction has guided subsequent exploration of the ideal ob-

server. A better approximation is needed to include a greater range of practical

conditions. The new filter, translated from the new approximation of the IO, may

adaptively tune to the echo statistics wherever there is diagnostic information. The

goal of these filters is to maximize the efficiency at which the human observer can

access the diagnostic information.

3. Beamforming. Several beamformers have been applied in breast sonography, and

they show improvements in image contrast and resolution on some demonstration

images. However, a question of how diagnostic performance is improved through the

implementation of the beamformers remains unanswered. Therefore, we extend the

IO analysis to develop a framework for finding the optimal beamforming strategy

on each specific task. In the framework, beamformers are interpreted from approxi-

mations of the ideal strategy. They are evaluated based on the conditions for which

those approximations hold.

4. Measurements/reconstructions of spatiotemporal impulse response. This

study comes from a practical challenge when implementing beamformers and filters

derived from the ideal observer framework on experimental data. We found the

pulse-echo spatiotemporal impulse response of the ultrasonic system plays a central

role in modeling the RF signals, deriving the IO, and developing data processing

strategies suggested by the ideal observer. It is crucial to accurately estimate the

pulse-echo impulse response of a commercial system; otherwise, the results obtained

from the framework may not be achieved on experimental data. Therefore, accurate

measurements of the pulse-echo impulse response function are pursued as a part of

this dissertation work.

1.6 Dissertation outline

The rest of this dissertation is organized as follows. Chapter 2 presents background for

the research. The sonographic tasks used in the studies have been identified by isolating

five typical features that physicians look for in breast cancer diagnosis using sonograms.

Signals of the imaging formation inside the ultrasonic system, from the object being

scanned to the final B-mode images for observation, are analyzed and modeled. At the

end of the system, the image quality is evaluated through performance of some observers,
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including both human and computational models. These observers are described along

with the metrics quantifying their performance.

Chapter 3 establishes the rigorous framework for evaluating sonographic quality that

builds on the radiographic tradition. The Kullback-Leibler divergence, a fundamental

metric to quantify the discrimination information in information theory, is introduced

to measure task information on the RF data. Without using the normality condition,

the divergence is related to the area between the two curves representing probabilities

of detection and false-alarm as functions of the threshold. It is analogous to the area

between detection and false-alarm curves under the ROC curve, which also specifies the

discrimination information brought by the data but in a different coordinate system.

Thus the ideal performance can be interpreted as a description of the discrimination

information but measured through concepts of Bayesian statistical decision theory. The

new interpretation allows us to follow an example of Wagner and Brown’s SNR analysis

to derive an NEQ-like term for sonography. We named it the Acquisition Information

Spectrum (AIS). The term quantifies the efficiency of a sonographic system for transferring

diagnostic information from patients to recorded RF data [27,28].

Chapter 4 extends the IO exploration in [26] to find a better strategy to process data

before the demodulation. The new exploration leads us to an adaptive filter that better

matches the optimal processing of the ideal observer. A binary segmentation is used to

modify the Wiener filter to local statistics. Observer performance is enhanced for all five

of the diagnostic features examined when compared with the DS beamformer but with

additional computational overhead. The concepts are demonstrated on a commercial

system by imaging a tissue-mimicking phantom where results include a realistic, shift-

variant model for the system impulse response [29,30].

Chapter 5 extends the IO framework to each element of the transducer for the beam-

forming investigation. It shows that the minimum-variance (MV), Wiener-filtered (WF),

and other beamformers can be derived as approximations to the ideal observer’s strategy

under each discrimination task. Performance of five beamformers has been analyzed for

breast lesion discrimination. Four of the five include matched filtering of receive-channel

signals before summation, because there is no loss of task information in the RF sig-

nals through the matched filtering operator. Differences among beamformers occur in

subsequent steps, depending on how they process RF signals for demodulation [31,32].

Chapter 6 presents two methods to measure the spatiotemporal impulse response of

ultrasonic systems. The accurate measurements are difficult to obtain or generate by some

software programs because small, unknown perturbations in the linear array geometry

can make significant changes in the pulse-echo field patterns. Two methods following

8



the linear model for pulse-echo RF data are introduced, one using scattering spheres and

the other using reconstructions from projections of line scatterer echoes. While the first

method mostly involves experimental implementations, the second method is similar to

image reconstruction used in photon transmission or emission computed tomography [33].

Finally, Chapter 7 summarizes this research, and outlines possible future directions

for this dissertation work.
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CHAPTER 2

BACKGROUND: IMAGE MODELING AND
PERFORMANCE ASSESSMENTS

2.1 Introduction

In medical imaging, analysis of the system is possible only by modeling each component,

from the object at the input, the system used to generate image data, to the decision

made by a human or computational observer. Our model for ultrasound imaging analysis

is illustrated in Figure 2.1. The image formation includes the acquisition and display

stages [12]. The acquisition stage produces discrete-time RF echo signals given by vector

g from continuous objects f(x, t) via the continuous-to-discrete linear imaging operator

H that describes all aspects of pulse transmission, echo reception, and beamforming. The

display stage is where RF echo data are mapped into B-mode image vectors b through the

discrete-to-discrete nonlinear display operator O. This operator includes post-summation

filtering, envelope detection, scan conversion, gray-scale mapping, and image processing

leading to final envelope images.

The imaging data or final B-mode can be studied by some observers to extract features

regarding the possible objects being scanned. In breast sonography, the features might

indicate a lesion, or some characteristics that classify a detected lesion (e.g., as benign or

malignant). However, those features are distorted by the acquisition and random processes

inside the system before being displayed to the observers. Based on the information

obtained, the observer infers the class of the object that is at the input of the imaging

system [8]. In Figure 2.1, the imaging system has three observers. The first is human,

whose measurements are time consuming to obtain and fraught with many sources of

potential uncertainty. Human observer performance is limited by training and the internal

noise of eye-brain systems. Yet it is the state-of-the-art for medical diagnosis (path [a]).

The performance is measured by using the two-alternative-force-choice (2AFC) method

and through the receiver operating characteristic (ROC) analysis, in which the area under

ROC curve (AUC) is often considered as the overall performance for human observers.

The largest AUC value is 1 for perfect discrimination performance, and the smallest

is 0.5 resulting from use of a worthless diagnostic test. The same images can be read
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Figure 2.1: Ultrasonic image formation is diagrammed to explain task-based performance
analysis. Path [a] describes image formation leading to the human observer. Path [b] indicates
the same images can be viewed by model observers such as the Smith-Wagner observer [19,20].
Path [c] indicates the ideal observer observes RF echo data, whose performance serves as an
yardstick for calculating other observers’ efficiency. All observer performance are measured
through 2AFC observer experiments and in terms of the proportion of correct responses, PC .

by a computational observer (also called model observer, path [b]) to minimize reader

variability and to speed the reading process. Often, the performance of a model observer

is related to the human observer or other observers for comparison.

The most important component of the analysis is the ideal observer (IO) applied to

RF data (path [c]), adopting the log-likelihood ratio between the two classes of data as the

test statistic. The IO combines all available information to make its decision and thus it

achieves optimal task performance [8]. If the average performance from a panel of expert

radiologists is significantly less than ideal, the system should be re-designed but only if

it is determined that the acquisition stage of image formation (including output power,

noise, transducer properties, and beamforming aspects) is limiting human performance.

Sometimes task information is present in the image but difficult to observe; for example,

flowing-blood echoes are found in recorded echo signal but are difficult to see without

Doppler processing and color overlays. When the display stage abates human perfor-

mance, image processing is often very helpful. Although the ideal observer performance

is optimal, we must first obtain complete statistical knowledge of the data under consid-

eration to compute its response. For that reason, the ideal observer analysis is limited to

tasks far simpler than clinical diagnosis. It is well suited to component tasks involving spe-

cific signals that are known exactly in backgrounds known exactly (SKE/BKE tasks), or

to signals known exactly where the background is known statistically (SKE/BKS tasks).

The IO approach was first applied to B-mode image data because that is what humans

view for diagnosis [19,20]. RF data contain the phase of the echo signal, which can provide
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more diagnostic information even if it is not readily accessible to the human eye-brain

system. RF data are usually demodulated to discard phase information in the image

presented to humans for diagnosis. The ability of modern ultrasonic systems to digitize

and store RF signals allows us to propose an investigation of the IO in the RF domain,

which means that the IO acts on all available information. Another advantage of moving

to the RF domain is that we simplify the statistical model by applying a linear system

approach when computing the IO test statistic.

In subsequent sections, we describe how to model the formation of signals inside the

ultrasonic system, analyze the acquisition of RF data, derive the IO on the RF, and

calculate its response through a power series expansion.

2.2 Scattering object

2.2.1 Formation of malignant and benign lesions

Figure 2.2: Anatomy of the female breast (Reprinted by permission of Copyright Clearance
Center from Patrick Jr. [34], Annual Review of Biomedical Engineering, vol. 6, 109-130,
c⃝ 2004 Copyright Clearance Center).

The quality of an imaging system partially depends on the task it performs; therefore,

it is appropriate to review some basic background of the breast tumor being scanned

inside the body. The morphology of a breast is illustrated in Figure 2.2. It is a glandu-

lar organ with the glandular tissue embedded into a stroma, which consists of fibroblast
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cells, smooth muscle cells, nerve cells, and the extracellular matrix (ECM). The glandu-

lar tissue includes ductal trees that are composed of ducts and lobules. A typical tree

consists of one lactiferous duct starting from one opening on the nipple, branching into

segmental, subsegmental, and terminal ducts, each capped by lobules. The inner surface

of ducts and lobules is covered by a single layer of luminal epithelial cells and a layer of

myoepithelial cells. The main function of the epithelial cells is the secretion of milk while

the myoepithelial cells are able to contract, increasing the pressure on the duct to push

milk to the opening at the nipple. Figures 2.3(a),(b) diagram scanning a breast ultrason-

Figure 2.3: The gross and micro-anatomy of breast tissue: (a) Scanning the breast
ultrasonically. (b) Sonogram. (c) The normal mammary lobule, in which A is an acini space
and LC (lobular carcinoma) is the surrounding loose connective tissue stroma. (d) Basement
membrane BM separating LC from parenchymal tissues; LC contains fibroblast cells F and
blood vessels V; parenchymal tissues include a layer of the myoepithelial (ME) cells and the
luminal epithelium (LE) (From Insana and Oelze [35], reprinted with consent of the authors,
c⃝ 2008 American Scientific Publishers).

ically and give a sample sonogram showing a breast lesion. The normal mammary lobule

of the breast is shown in Figures 2.3(c),(d). The epithelial cells are separated from the

stroma by the basement membrane (BM), which is a layer of extracellular collagen. The

signaling molecules are attached on the BM for the interaction between epithelial cells

and surrounding stroma. These molecules are essential for normal breast development

and cyclic monthly maintenance. In a normal condition, the organization of a breast is a

balance between the tendency of the epithelium to stabilize morphometry by producing

BM and the stroma that induces structural changes by selectively eroding the BM [35].
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Figure 2.4: The progression of breast cancer in lobular (a,b) and ductal (c,d) (From Insana
and Oelze [35], reprinted with consent of the authors, c⃝ 2008 American Scientific Publishers).

The development of breast cancer within a mammary lobule or duct is illustrated in

Figure 2.4. Roughly 90% of all breast cancers begin in these tissues. Genetic alterations

or regional environment changes to epithelial cells make them grow in an uncontrollable

way. Cancer cells then form a mass called a tumor. The BM, serving as a barrier

between the epithelial cells and stroma, is degraded and finally broken down. The loss

of the BM regulation initiates neoplastic transformation, and the widespread breakdown

of the BM is a histology indicator for malignant conversion. Cancer cells breaking away

from tumors can be carried to other parts of the body through the bloodstream or the

lymph system. They settle and grow in new locations. The process is called metastasis.

Biochemical signaling and physical contact between the epithelial cells and surrounding

connective tissues promotes neovascularization, inflammation, and a structural remodeling

of the ECM. The remodeling follows the formation of myofibroblasts from normal stroma

fibroblasts. Ultrasonic methods allow observation of the effects of this remodeling process

even if cells cannot be resolved directly.

An ultrasonic scan of a malignant lesion is shown in Figure 2.5(a) with its boundary

poorly defined and irregular. Those features are caused by the stroma surrounding the

diseased duct or lobule trying to prevent the epithelial cells from expanding. The malig-

nant lesion most often has a hypoechoic sonographic appearance. This appearance can be

explained by the edema of the tissue combined with changes in the collagen that scatters

ultrasound.

Lesion growths in the breast also can be benign tumors that cannot metastasize. The
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Figure 2.5: Ultrasonic scans of breast lesions that are (a) malignant, (b) a cyst (benign).

formation of a benign lesion is described in [36]. The developing, maintaining, and invo-

lution of the lobules, acini, and the smaller ducts are sensitively regulated and hormone

dependent. Changes in epithelial cells that disturb the hormonal influences may lead to

delay or absence of hormone-related changes, which, in turn, may lead to aberrations or

variations in the breast. This process is usually associated with the accumulation of fluid,

milk, mucin, or cells within the lumen of the distended lobule. The process may result

in structures that are detectable with ultrasound examinations. They are recognized as

benign lesions although they represent the variations and aberrations of the normal de-

velopment and involution of the breast. The most common type of benign lesion is a

cyst, which is illustrated in Figure 2.5(b). Since the cyst contains fluid, its sonogram

has a sharply outlined round or oval mass, well-defined anterior, and anechoic interior, in

contrast to the sonogram of the malignant lesion.

2.2.2 Discrimination tasks

By consulting with a radiologist 1 and combining with the BI-RADS atlas [37], five typical

breast lesion features that radiologists often consider when discriminating malignant from

benign lesions are selected for the study [26]. Those features are divided into five visual

discrimination tasks by defining a malignant S1 and benign S0 matrix pair for each task.

Listed in order of malignant and benign, Task 1 involves detecting a low-contrast hypoe-

1Dr. Karen Lindfors, UC Davis Medical Center, Sacramento, CA
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choic lesion versus a no-lesion background; Task 2 requires discrimination of an elongated

eccentric lesion from a circular lesion; Task 3 is discrimination of a soft, poorly defined

boundary from a well-circumscribed lesion; Task 4 requires discrimination of spiculated

boundary irregularities from a smooth circular boundary; and Task 5 involves discrimi-

nating a very weakly scattering hypoechoic interior from an anechoic interior. The profiles

of the five tasks are illustrated in Figure 2.6 with the task difference in the bottom row.

In Task 1, the observer is challenged to detect a small, low-contrast lesion; therefore, the

lesion diameter is set at 3 mm and the contrast inside S1 is tuned for controlling the task

difficulty. In the other tasks, the discrimination information is on the boundary (Tasks

2-4) or in the interior contrast of the lesions (Task 5). In those tasks, the lesion diameter

is set at 5 mm with the contrast inside S0 set at 5% of the background. In Tasks 2-5,

the difficulty of the tasks is controlled by systematically varying the degree of difference

matrix S1 − S0. To quantify differences on a common scale, we define an object contrast

factor as the integrated absolute value of the task difference, given by

C = ∆x∆y
∑
i

|[S1 − S0]ii | , (2.1)

where ∆x ,∆y are the sampling intervals on the imaging data. Observer performance is

plotted as a function of the object contrast factor to observe how performance varies with

task difficulties.

Another important sonographic feature discriminating between benign and malignant

lesions is the prominent posterior shadow of malignant lesions as illustrated in Fig-

ure 2.5(a,b). We find this because the absorption of acoustic energy by the epithelial

cells in malignant lesions is often greater than that in cystic fluid or other benign lesions.

We do not consider the shadow feature in this research.

2.2.3 Mechanism of sonographic contrast

Solid breast tumors often appear as hypoechoic regions in sonograms. It is thought that

cancerous tissue reflects sound energy less than the surrounding tissues because the effects

of cellular hyperplasia, edema, and fibrosis reduce scattering. The backscattered pressure

amplitude is known to generally increase with the volume density of collagen and elastin

found in tissues [38]; however, fluid retention and increased cell density strongly compete

with fibrosis to determine tissue echogenicity.

When incident ultrasound waves are introduced into glandular breast tissues, they

are scattered by acoustic impedance heterogeneities. The tissue structures of greatest
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five tasks. The lesion diameter is 3 mm in Task 1 and 5 mm in the other tasks. The task
difference S1 − S0 is shown in the bottom row of the figure [26].

interest are the sparse microvasculature and dense cell nuclei and extracellular protein-

fibers, mostly collagen and elastin. These structures are randomly oriented reflectors

generally smaller than the ultrasonic wavelength. Consequently, tissue reflectors are often

modeled as diffuse, weakly-scattering random media (Rayleigh scatterers) that generate

incoherent backscatter. As these fields are digitally received at a phase-sensitive sensor,

they form spatially correlated RF echo samples that appear in B-mode images as fully

developed speckle patterns [39].

These sound-tissue interactions can be understood by considering the solution to the

inhomogeneous wave equation for Rayleigh scattering [40]. The scattered pressure ampli-

tude expressed in the frequency domain is proportional to the square of spatial frequency.

Transforming back to the spatial domain, scattered pressure is seen to be proportional

to the second derivative (curvature) of object impedance along the direction of incident

field propagation [39]. Therefore, it is the surfaces of impedance heterogeneities that

scatter sound waves. For example, positioning within a Rayleigh scattering background

a large disk with a different average sound speed (varying impedance mean) but equal

scatterer number density (same impedance variance), we will find the sonogram will only

show reflections at disk surfaces normal to the incident wave field. Ignoring coherent

scattering in this study, we model tissue scatterers as a spatial distribution of surfaces

represented by zero-mean random fields, where object contrast is derived from scatterer
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Figure 2.7: A graphical model of the sonographic process to generate standard B-mode
images in an ultrasonic system.

surface density. Thus scattering is simulated by multiplying a uniform background co-

variance matrix by a feature template S (S shown in Figure 2.6) that defines the geo-

metric shape of the 2-D simulated lesion. That is, f(x, y) = WGN(x, y)×
√
1 + S (x , y),

where WGN ∼ N (0, σ2
obj). Consequently, the covariance matrix for object vector f ∼

MVN(0,Σobj) is Σobj = σ2
obj(I + S), where I is the identity matrix and S is a diagonal

matrix re-arrangement of S(x, y) with non-zero elements defining the feature geometry.

2.3 Signal modeling

The image formation process diagrammed in Figure 2.1 is graphically extended in Fig-

ure 2.7 without any observer. It begins with a feature template Si representing object

classification i = 0, 1 indicating benign or malignant, respectively. As analyzed in Section

2.2.3, the scattering object f(x) is formed by multiplying the template with a zero-mean,

white Gaussian random field of variance σ2
obj. The random field is stationary in time but

spatially variable. The template and random field are multiplied to generate a scattering

field representing amplitude-modulated, incoherent Rayleigh scattering with the spatial

feature Si encoded in their spatial fluctuations (the covariance matrix) [40]. Scatterers are

spatially random in an ensemble sense; however, multiplication by the feature template

makes object scattering spatially nonstationary.

The interaction of pulse-echo ultrasound with the scattering media is represented by
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the system operator, H. It is well approximated by a linear transform under the first Born

approximation [41]. By assuming the system is also shift-invariant (LSIV) and working at

the focal region, H can be characterized by a pulse-echo spatiotemporal impulse-response

h(x0, t) given by

h(x0, t) = ht(x0, t) ∗
z
ht(x0, t) ,

where ht(x0, t) is the spatial impulse of the transducer due to a point scatterer at x0 of the

focal region, and the z axis is for the axial direction [42]. At this moment, we assume that

RF data is beamformed by using the delay-and-sum (DS) strategy. The entire process is

summarized by the equations for RF and B-mode data,

g = Hf(x) + n and b = Og .

Measurement noise is represented by the additive vector n. It is modeled by an inde-

pendent white Gaussian noise process N (0, σ2
nI). Since H is approximated by a linear

operator, the first equation can be written in terms of a matrix multiplication by using

lexicographical reordering, given by

g = Hf + n . (2.2)

The pulse-echo spatiotemporal impulse response of the system is spread over the mth row

ofH to yield RF echo sample g[m]. Under the assumption of shift invariance, H is a block-

Toeplitz matrix but approximated by the corresponding circulant one, which provides

advantages for computation [8,26]. The spatiotemporal impulse response used to construct

matrix H is generated by the Field II program [43, 44], with parameters extracted from

a commercial system (SONOLINE AntaresTM – Siemens Medical Solutions, Mountain

View, CA) [30]. This impulse response makes the image generation more realistic than

that of the initial study [26] which modeled the sonographic system as a Gabor pulse.

Imaging system parameters were used in the echo simulations and the measurements are

described below.

Beamformed RF echo waveforms are sampled at 40 MHz. This temporal sampling

corresponds to a spatial sampling along the beam axis of 0.02 mm for a c = 1540 m/s

tissue-like sound speed. The lateral sampling interval is set at 0.2 mm, equal to the

element pitch. We set a 40-mm transmit/receive focal length and a 96-element (∼20 mm)

active aperture (f/2 in plane). The array has 192 total elements separated by a 0.02 mm

element kerf. The elevational element length is 25 mm and it is focused at 40 mm. We

applied a two-cycle excitation voltage and measured a 53% pulse-echo bandwidth about a
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Figure 2.8: The simulated pulse-echo spatiotemporal impulse response used to generate RF
data.

7.0 MHz center frequency. The beamformed, echo SNR was also measured at 32 dB near

the focal length. Dynamic focusing and aperture growth features of the pulse simulator

were disabled. The 2-D simulated pulse-echo spatiotemporal impulse response shown in

Figure 2.8 is recorded to form a vector that becomes one row of the system matrix H.

Note that because of the reordering of data into vectors, matrix Si represents the 2-D

objects in Figure 2.6 as a diagonal matrix. The speckle texture on the B-mode image

is similar to what is found in breast sonograms. However, the model does not include

some of inhomogeneities of breast tissues such as layers of fatty tissues, ducts, Cooper’s

ligaments, and fibroglandular tissue, nor have we simulated the wave front distortions that

occur with heterogeneous media. Consequently, the background of the image simulation

surrounding the lesions is more uniform than that in clinical sonograms.

An advantage of working in the sampled RF data domain is that the signal is well

modeled by a noisy linear transformation of the object as specified by system matrix H

and noise variance σ2
n. The ideal observer applied to the RF data is provided in the next

section.

2.4 The ideal observer

2.4.1 The test statistic

This section begins by denoting hypotheses Hi for the i
th condition of the object (i = 0, 1).

With the generation of the scattering function described above, the object vector f has a

zero-mean multivariate normal distribution (MVN) under both hypotheses, with a non-
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stationary and diagonal covariance matrix σ2
obj(I + Si) where σ2

obj is background-region

variance. Multivariate normal processes remain multivariate normal following linear trans-

formations. Thus, passing the object through the noisy linear transformation in (2.2)

results in another zero-mean Gaussian process for RF data g under each class. The

covariance matrix becomes

Σi = σ2
objH(I+ Si)H

t + σ2
nI . (2.3)

The covariance matrices for both classes still capture all the relevant statistics of the task,

but they are no longer diagonal because of blurring by the imaging system via H. The

likelihood function of the data g under each class is a zero-mean MVN given by

g|Hi ∼ MVN (0,Σi) . (2.4)

This is a signal-known-exactly (SKE) task with the diagnostic feature (signal) encoded in

the covariance matrixΣi. The scalar test statistic of the IO response to this discrimination

task is derived from the log-likelihood ratio [15,26],

λ(g) = ln
p1(g)

p0(g)
, (2.5)

where pi(g) is the probability density function under hypothesis Hi. By removing all

additional terms that do not relate to the data, the test statistic T (g) 2 is simplified to

T (g) =
1

2
gt(Σ−1

0 −Σ−1
1 )g . (2.6)

Decisions are made by comparing the test statistic T (g) to a threshold t. The performance

of the IO is measured using the ROC analysis. The region of interest is the area under

the ROC curve (AUC), which we will show later can be related to information theoretic

measures for computing observer visual efficiency. The ideal performance also can be

calculated as the proportion of correct responses PC from a 2AFC observer experiment.

This method allows us to measure the performance without determining the shape of the

ROC curve.

Although the test statistic of the IO is well defined, calculating it is very challenging

because of the high dimensionality of the covariance matrices. For example, if the scatter-

ing object can be represented by a 128×128 matrix, the corresponding covariance matrix

2In this dissertation, both λ(g) and T (g) are considered as the test statistic, λ(g) is for analysis, while
T (g) is for computation.
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has the size of 16384×16384. Therefore inverses cannot be computed in a straightforward

manner. To resolve this problem, a power-series expansion of the covariance matrices was

proposed to compute matrix products involving inverse covariance matrices [26].

2.4.2 Power series inversion

The power series expansion for the inverse of an image covariance matrix in (2.6) relies

on its decomposition into background and task-specified components, given as

Σi = σ2
objH(I+ Si)H

t + σ2
nI

= Σs +∆Σi , (2.7)

where Σs = σ2
objHHt + σ2

nI is the stationary background term and ∆Σi = σ2
objHSiH

t is

the nonstationary task feature term. From [45], a matrix inverse can be expanded into a

power series via

(I−A)−1 =
∞∑
k=0

Ak , (2.8)

which holds if the eigenvalues of A are between –1 and 1. To apply (2.8), covariance

matrix Σi in (2.7) is decomposed into the form

Σi = Σ1/2
s

(
I+Σ−1/2

s ∆ΣiΣ
−1/2
s

)
Σ1/2

s (2.9)

to find the inverse covariance matrix expansion

Σ−1
i = Σ−1/2

s

(
I+Σ−1/2

s ∆ΣiΣ
−1/2
s

)−1
Σ−1/2

s

= Σ−1/2
s

(
∞∑
k=0

(
−Σ−1/2

s ∆ΣiΣ
−1/2
s

)k)
Σ−1/2

s . (2.10)

By assuming H is a circulant matrix, it can be diagonalized by a Fourier transform,

H = F−1TF , (2.11)

where F is the 2-D forward discrete Fourier transform matrix, and T is a diagonal matrix

whose elements are the eigenvalues of H [8]. Consequently, Σs can be decomposed as

Σs = F−1NsF, (2.12)
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where Ns is also diagonal with elements

[Ns ]ii = σ2
obj |[T]ii |

2 + σ2
n . (2.13)

Thus the only inverse required is of the stationary component, Σs , which is quickly

computed by the Fourier technique. Terms from (2.6), gtΣ−1
i g, can be written as

gtΣ−1
i g = gtΣ−1/2

s

(
∞∑
k=0

(
−Σ−1/2

s ∆ΣiΣ
−1/2
s

)k)
Σ−1/2

s g

= gt

(
∞∑
k=0

(
−Σ−1

s ∆Σi

)k)
Σ−1

s g, (2.14)

which yields iterations for calculation, given as

qk+1 = −Σ−1
s ∆Σiqk and

pk+1 = pk + qk+1. (2.15)

The iterative process is started with p0 = q0 = Σ−1
s g.

The rate of convergence of the test statistic depends on each task condition. For Task

1, the series converges within error specifications after just one iteration. However, it

requires 50 iterations in Tasks 2-4 and up to 100 iterations in Task 5. Once the test

statistic is calculated, IO performance can be measured through ROC analysis.

2.4.3 Performance through ROC analysis

ROC analysis is the standard method for assessing observer performance for binary clas-

sification problems [10]. The ROC curve depicts the probability of detection PD as a

function of the false alarm rate PF . PD is also called the sensitivity of the test for detect-

ing malignant features that are present. Those curves can be generated from histograms

of test statistic responses for each of the two classes of data in Figure 2.9(a). These his-

tograms approximate probability density functions, qi(λ) of the test statistic λ(g) under

each hypothesis Hi (i = 0,1). Selecting threshold t and integrating, we find the cumulative

distributions PD and PF as we sweep through the range of t (see [8], Chapter 13),
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Figure 2.9: (a) The pdfs of the test statistic λ under two hypotheses and (PD ,PF ) at a
specific threshold t. (b) An ROC curve with three threshold levels [8].

PD(t) = Pr (λ(g) > t |H1) =

∫ ∞

t

dλ(g) q1(λ)

PF (t) = Pr (λ(g) > t |H0) =

∫ ∞

t

dλ(g) q0(λ) . (2.16)

With t from −∞ to ∞, PD and PF range from 0 to 1. Plotting PD against PF the ROC

curve is generated as in Figure 2.8(b). The three points labeled A, B and C represent

three pairs (PD ,PF ) calculated at different thresholds t. AUC is a common figure of merit

for evaluating overall observer performance; it is given by

AUC =

∫ 1

0

dPF PD (PF ) . (2.17)

With the test statistics derived from the log-likelihood ratio, the IO maximizes PD at

each value of PF , which is the Neyman-Pearson criterion [46]. Consequently, the ROC

curve of the IO is guaranteed to have the maximum possible AUC.

2.4.4 2AFC interpretations

The ideal observer performance can be calculated from the correct percentage resulting

from a 2AFC experiment without determining the shape of ROC curve [15]. AUC in
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(2.17) is

AUC = −
∫ ∞

−∞
dt PD(t)

d

dt
PF (t) . (2.18)

Combine with (2.16) to obtain

AUC =

∫ ∞

−∞
dtq0(t)

∫ ∞

t

dλq1(λ)

=

∫ ∞

−∞
dtq0(t)

∫ ∞

−∞
dλq1(λ)step(λ− t)

= Pr[λ(g|H1) > λ(g|H0)] , (2.19)

where the step function equals 1 for positive arguments and 0 for negative arguments.

Equation (2.19) is the basis of the numerical procedure for estimating AUC from a 2AFC

experiment which is often used in human observer studies [26].

In the experiment, we normally generate 2000 pairs of RF data for the observer study

to compute λ(gi,j). We define the score for trial j (1 ≤ j ≤ 2000) as

oj = step (λ(g1,j)− λ(g0,j)) . (2.20)

Since oj = 0 or 1 only, the net scores yield PC and therefore AUC for the observer.

2.4.5 Performance metrics

By comparision with other commonly used observer performance metrics, the ideal ob-

server AUC is converted to the detectability index through

dA = 2erf−1(2AUC− 1) . (2.21)

As AUC varies from 0.5 to 1, the range of dA is from 0 to infinity. Subscript A refers to

a detectability computed from AUC.

The IO performance also can be quantified through the ideal observer signal-to-noise,

SNRI , which is calculated from moments of the test statistic λ(g),

SNRI =
λ1 − λ0√
(σ2

1 + σ2
0)/2

, (2.22)

where λi and σ2
i are means and variances conditioned on hypothesis Hi being true. It

measures the separation between the two pdfs for λ, illustrated in Figure 2.9(a) in units
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of their common standard deviation. When λ is normally distributed, SNRI is related to

AUC through the error function [15] (see Appendix A)

AUC =
1

2
+

1

2
erf

(
SNRI

2

)
, (2.23)

and therefore dA = SNRI .

The normality condition is usually adopted – explicitly or implicitly – in photon-based

imaging modalities. Barrett and colleagues [15] have shown that if the log-likelihood ratio

is normally distributed in one hypotheses, it must also be normally distributed under the

other with the same variance. The normality condition has unified AUC and SNRI for

the ideal observer performance.

2.5 Human observer

In medical practice, the decision maker is a human observer whose performance depends

on diagnostic information available from the observed images. The performance depends

on the ability of the imaging device to record task information in the RF echo signal,

the effects of any additional post-processing, display algorithms, and intrinsic limitations

including training and internal noises inside the eye-brain system. Therefore, maximizing

accessible diagnostic information in a sonogram requires an efficient transfer of task infor-

mation at each step in the process. A big difference in performance between human and

ideal observers provides a reason to search for a post-processing algorithm that enhances

accessibility of the information to humans and reduces the performance gap.

As with IO, human observers can be evaluated using the 2AFC paradigm that also

yields a proportion of correct responses (PC). PC is converted to the detectability index

for human observer, dH = dA|Human, to calculate the efficiency of transferring informa-

tion from the RF echo signals to the human decision maker. Human and ideal observer

performance difference are quantified by the observer efficiency [47],

ηH =

(
dH
dI

)2

, (2.24)

where dH and dI = dA|IO are the detectability indices of human and ideal observers for

images generated at the same object contrast factor. When efficiency is low, dI can be

so large that it is difficult to calculate accurately in the 2AFC procedure. Psychophysical

studies have found that the detectability indices are usually related linearly to object
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contrast factors. Hence, there are advantages to defining η as the ratio of squared feature

contrasts for the two observers having the same detectability index; that is [26],

ηH =

(
CI

CH

)2

, (2.25)

where CH and CI are the contrast factors for human and ideal observers that generate

equivalent performance, dA = dH . For statistical reasons, we adjust task difficulty in

simulated image to achieve PC ∼ 0.7− 0.8 for human observers.

When human and ideal performance are comparable, the efficiency approaches one,

and in that case, the human observer is able to use all available diagnostic information in

the data to perform the visual task. If the efficiency is much less than one, either post-

processing data is inappropriate or the human observer is inefficient at extracting relevant

information from the data to perform the task. A low value for ηH is an indication that

post-processing data could be beneficial.

Human observer studies are expensive, time consuming, and occasionally unstable even

with training. Therefore, computational observers that mimic human performance have

many advantages [14]. These observers help narrow down the list of different approaches

in designing the system before performing human observer experiments as the ultimate

measure of visual discrimination efficiency.

2.6 Wiener filter as approximation to ideal strategy

By truncating the power series expansion of (2.10) at k = 1, the inverse covariance matrix

Σ−1
i is approximately

Σ−1
i ≃ Σ−1

s −Σ−1
s ∆ΣiΣ

−1
s . (2.26)

Therefore

Σ−1
0 −Σ−1

1 ≃ Σ−1
s (∆Σ1 −∆Σ0)Σ

−1
s

= Σ−1
s H∆SHtΣ−1

s , (2.27)

where ∆S = σ2
obj(S1 − S0) defines the task information. Substitute (2.27) into (2.6) and

we find

T (g) ≈ 1

2
gtΣ−1

s H∆SHtΣ−1
s g . (2.28)

The matrix product HtΣ−1
s g is equivalent to applying a Wiener filter to the RF data.

Hence, the strategy of the first-order approximation to the IO is to filter the RF data,
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square the result, multiply it by the task information, and compare the scalar result to a

threshold to make a decision. The first-order approximation only holds for low-contrast

tasks. We can see that HtΣ−1
s g is a Wiener-filtered echo signal by applying the Fourier

decompositions of H and Σs from (2.11) to (2.13). We have HtΣ−1
s = F−1WF, where

W is a diagonal matrix with its elements on the main diagonal given by

[W]ii =
[Tt ]ii

σ2
obj |[T]ii |

2 + σ2
n

. (2.29)

[T]ii are eigenvalues of H. Since the IO combines all information available to make the

best decision, Wiener filtering of RF data may help the human observer capture some

important information for the diagnosis. The first-order approximation of the ideal strat-

egy in (2.28) suggests that the RF data be Wiener filtered before computing the B-mode

images. Since the filter involves Σ−1
s , the stationary component of the covariance matrix,

we name it the stationary Wiener filter to discriminate it from another filter derived in

this research. In the first study [26], the stationary Wiener filter was found to improve

human observer performance in the first four of the five tasks in Figure 2.6. Further

details on the results are provided in Chapter 4.

2.7 Summary

This chapter describes the ultrasonic system as a linear model. By analyzing various

features of sonograms that distinguish benign and malignant lesions, we proposed a panel

of five discrimination tasks for five typical features, and classified the input signal (i.e.,

the scattering object) into two hypotheses in each task. Each feature is translated into

conditional probabilities – likelihood function – that quantify the visual task. These

scattering objects lead to RF echo-signals used to derive the ideal observer acting on data

in the RF domain. Calculating the IO response involves a computational challenge of

inverting high-dimensional covariance matrices. The calculation is accomplished by using

a power series expansion. All observers are evaluated by using the 2AFC method and their

performance is measured through the ROC analysis. We also introduce the derivation

of the stationary Wiener filter in the RF domain as the first-order approximation of the

ideal strategy [26]. Note that we are not measuring human detection efficiency for medical

diagnostic tasks under clinical situations. We control all aspects of the tasks and provide

observers with significant prior information not available clinically, so as to specifically

measure the advantages of various signal processing approaches that affect performance.
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CHAPTER 3

OBJECTIVE ASSESSMENT OF IMAGE QUALITY
IN SONOGRAPHY

3.1 Introduction

Before continuing to describe our research, we briefly review the derivation of Wagner’s

unified theory in radiography and the ideal observer of B-mode images, both developed

nearly thirty years ago [12,19,20]. Our extension of the ideal observer framework to the RF

echo domain for sonography introduces new challenges not experienced in photon-based

imaging methods. These difference are also emphasized in Section 3.1.3.

3.1.1 Wagner’s unified theory

The SNR theory published by Wagner and Brown in 1985 [12] broke new ground in

medical imaging by providing an analysis for modern medical imaging system design,

evaluation, and optimization. The theory was derived for low-contrast detection tasks

in photon imaging with assumptions of a linear shift invariant (LSIV) system, stationary

additive Gaussian noise, and SKE/BKE paradigm. We begin by considering a test statistic

operating on image data that leads to the derivation of the ideal observer.

In radiography, Poisson photon statistics are accurately modeled at the output ele-

ments of a detector as multivariate normal (MVN) when photon counts are sufficiently

large. The imaging contrast is created by photon absorption with important diagnostic

features encoded in the object mean. Spatial variations in the mean of the object function

f̄ map linearly into variations in the mean of the imaging data ḡ. In the context of 2AFC

studies, therefore, radiographic data g under each hypothesis Hi (i = 0,1) is given by the

same linear imaging equation

g = Hfi + n , (3.1)

Portions of this chapter are reprinted, with permission, from N.Q. Nguyen, C.K. Abbey, and M.F.
Insana, “Detectability index describes the information conveyed by sonographic images,” in Proceedings
of the IEEE Ultrasonics Symposium (in press), c⃝ 2011 IEEE.
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where fi is the object function. Unlike image modeling in (2.3) and (2.4) for sonography,

task contrast Si is encoded in the mean of the object functions. For the SKE/BKS task,

fi becomes deterministic and fi = Si. n ∼ MVN(0,Σn) with Σn = σ2
nI. The pdf pi(g) of

data g under hypothesis Hi (i = 0,1) is given by

pi(g) = (2π)−K/2(det(Σn))
−1/2exp

(
−1

2
(g −Hfi)

tΣ−1
n (g −Hfi)

)
, (3.2)

where K is the dimension of g. The IO test statistic is given by

λlin(g) = log
p1(g)

p0(g)

= −1

2
(g −Hf1)

tΣ−1
n (g −Hf1) +

1

2
(g −Hf0)

tΣ−1
n (g −Hf0) . (3.3)

After removing terms that do not relate to data g, we obtain a simpler form given by

Tlin(g) = [H(f1 − f0)]
t Σ−1

n g . (3.4)

For the SKE/BKE task, ∆S = f1 − f0, and the ideal observer test statistic derived from

the log likelihood ratio is now linear in g,

Tlin(g) = (H∆S)tΣ−1
n g . (3.5)

The lesion signal-to-noise ratio SNR2
I is

SNR2
I =

(E1{Tlin} − E0{Tlin})2

(var1{Tlin}+ var0{Tlin})/2
, (3.6)

where Ei{Tlin} and vari{Tlin} are means and variances under hypothesis Hi. From (3.1)

and (3.2), we have

E1{Tlin} − E0{Tlin} = (H∆S)tΣ−1
n (H∆S) , (3.7)

and

vari{Tlin} = cov(gi)

= (H∆S)tΣ−1
n cov(n,n)Σ−1

n (H∆S)

= (H∆S)tΣ−1
n (H∆S) for i = 0, 1 . (3.8)
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Thus,

SNR2
I = (H∆S)tΣ−1

n (H∆S) . (3.9)

Under the LSIV/stationary assumption, (3.6) can be written in terms of continuous func-

tions in the 2-D spatial frequency domain u = (u, v) as

SNR2
I =

∫
∞
du |∆S̃(u)|2 NEQ(u) , (3.10)

where |∆S̃(u)| is the Fourier transform of ∆S and NEQ(u) is the noise equivalent quanta,

given by

NEQ(u) =

∣∣∣H̃(u)
∣∣∣2

σ2
n

=
H̃2(0) MTF2(u)

NPS(u)
, (3.11)

in which H̃(0) is the gray-scale large-area transfer function specifying the contrast resolu-

tion, MTF is the modulation transfer function related to the spatial resolution, MTF(u)

= H̃ (u)/H̃ (0), and NPS is the noise power spectrum of the system. Thus, NEQ is a

product of three Fourier descriptions of the imaging system performance.

Because Tlin(g) is a linear combination of normally distributed data, it is also normally

distributed. Under this condition, the ideal observer performance as quantified by AUC

is related to SNRI through the error function (Appendix A). In summary, the Wagner-

Brown SNR theory factorizes the diagnostic performance to separate the influences of the

engineering metrics of the system via NEQ and task information at the system input via

∆S in the frequency domain. The factorization in (3.10) is the basis for relating laboratory

measurements of the system responses to task-dependent observer performance.

Barrett et al. [17] have extended NEQ to include a lumpy background by introducing

the generalized NEQ (GNEQ) for objects with a background modeled by a Gaussian

random field – the the SKE/BKS task. Particularly, fi = f i + fb , where f i is the mean

including the task, and fb is the random Gaussian background, fb ∼ N (0, σ2
obj). Task

information is ∆S = f1 − f0, and GNEQ is given by

GNEQ(u) =

∣∣∣H̃(u)
∣∣∣2

σ2
obj

∣∣∣H̃(u)
∣∣∣2 + σ2

n

. (3.12)

Writing in terms of MTF, H̃ (0), and noise power spectrum, we have

GNEQ(u) =
SNR0 ×MTF2(u)

σ2
obj

(
SNR0 ×MTF2(u) + 1

) , (3.13)
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where SNR0 , |H̃ (0)|2σ2
obj/σ

2
n is the pixel SNR outside the target area.

It appears from (3.11) and (3.12) that the system can be optimized via maximization

of NEQ (or GNEQ). The expression, however, is derived under strict assumptions of the

system and noise, as well as for low-contrast detection tasks. For more complicated tasks

or imaging systems where LSIV/stationary assumptions are violated, the system and task

properties cannot be factorized. In spite of those limitations, the theory has great utility

for predicting performance and was applied to many photon imaging modalities, includ-

ing X-ray radiography, computerized tomography (CT), positron emission tomography

(PET), and nuclear magnetic resonance (NMR) [8, 18]. The work, however, is still lim-

ited to sonographic modalities. This approach must be adapted for use in sonography

because of fundamental differences in the physics of sonographic contrast compared to

radiographic contrast.

3.1.2 Ideal observer of B-mode images

Smith, Wagner, and their co-workers were the first to derive the ideal observer acting

on B-mode images [19, 20]. Besides the LSIV assumptions for the imaging system and

low-contrast detection task, however, they further restricted assumptions to exclude acqui-

sition noise and they sampled speckle spots rather than pixels to avoid pixel correlations

when specifying statistical properties of data. A 2AFC psychophysics study was applied

under the SKE/BKE task assumption. For each task, an observer must decide between

two hypotheses:

H0 : the lesion in image 0 is malignant and the lesion in image 1 is benign or

H1 : the lesion in image 0 is benign and the lesion in image 1 is malignant.

Denoting bi as the B-mode image under the i th hypothesis, a decision function for the

ideal observer is the ratio of a likelihood function, given as

ΛB(b0,b1) =
p(b0,b1|H1)

p(b0,b1|H0)
, (3.14)

where p(b0,b1|Hi) is the joint conditional pdf of the data of images b0 and b1 under Hi.

With the assumption of complex, multivariate Gaussian random process for RF data, the
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B-mode image data have a Rayleigh distribution [19], given by

p(b0,b1|H0) =
M∏
i=1

b0i
ψm

exp

(
−b20i
2ψm

) M∏
j=1

b1j
ψb

exp

(−b21j
2ψb

)

p(b0,b1|H1) =
M∏
i=1

b0i
ψb

exp

(
−b20i
2ψb

) M∏
j=1

b1j
ψm

exp

(−b21j
2ψm

)
, (3.15)

where the parameters 2ψm and 2ψb are the mean backscattering intensities, respectively,

for the malignant and the benign lesion images. M is the number of independent data

samples in the target area available for the decision maker. This number is smaller than

K, the dimension of data column vectors g and b [19].

Substituting (3.15) into(3.14), we find

ΛB(b0,b1) =
M∏
i=1

exp

[
b20i
2

(
1

ψm

− 1

ψb

)] M∏
j=1

exp

[−b21j
2

(
1

ψm

− 1

ψb

)]
. (3.16)

Taking the log of the likelihood ratio we obtain

λB(b1,b2) =

(
ψb − ψm

2ψmψb

)( M∑
i=1

b20i −
M∑
j=1

b21j

)
= atb2

0 − atb2
1, (3.17)

where the sums in the first equation in (3.17) are taken over all independent image samples

inside the lesion area. The second equation represents the log-likelihood in terms of

energies of whole images, in which a is a vector of weights; ai = 0 for pixel i outside the

lesion, and ai = (ψb − ψm)/(2ψmψb) for pixel i inside the lesion.

The decision then is made based on the comparison

λB(b0,b1) = atb2
0 − atb2

1 ≷ 0. (3.18)

The decision favors hypothesis H1 for positive values and H0 otherwise. A sufficient test

statistic is therefore

λB(b) =
M∑
i=1

b2i . (3.19)

So instead of calculating the test statistic decision variable as in (3.18), we calculate each

sum separately for each image and compare the two. The moments of the test statistic
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under each hypothesis are [20]

E [λB |H1] = 2Mψm ; E [λB |H0] = 2Mψb

var [λB |H1] = 4Mψ2
m ; var [λB |H0] = 4Mψ2

b . (3.20)

The lesion SNR on B-mode images is given by

SNRB =
E [λB |H1]− E [λB |H0]√

(var [λB |H1] + var [λB |H0])/2

= M 1/2 ψm − ψb√
ψ2
m + ψ2

b

= M 1/2Cψ

=

√
A

Sc

Cψ , (3.21)

where A is the area of the lesion, Sc is the speckle correlation size [19, 20], and Cψ is

a signal-to-noise ratio. Cψ is a function of the contrast for a small signal difference.

Therefore,

SNR2
B =

A

Sc

SNR0C , (3.22)

where C is the lesion contrast need to be detected and SNR0 is the speckle signal-to-noise

ratio, whose inverse is the speckle contrast. For Rayleigh distributed envelope data, SNR0

= 1.91 is a constant [19].

Thus, the detection SNRB is factorized into the task information (A,C ) and a system

dependent effect (Sc) in the spatial domain, which is analogous to radiographic photon

density in the frequency domain. The Rayleigh distribution also requires the assumption

of the fully developed speckle, which holds for a medium composed of randomly positioned

point scatterer with a density greater than about 10 scatterers per pulse volume. Speckle

density in the image data is related to information density in the object data since the

speckle density is the number of independent signal samples presented to observers on

which they base decisions. Outside the focal zone of the transducer, however, speckle

patterns can be correlated over very long ranges. In any case, independent sample density

may be estimated from signal coherence lengths [21].

Although the closed-form expression for the detection SNRB was achieved for special

cases, the assumptions are rarely held under clinical imaging conditions. If these limiting

assumptions could be reduced, a more general form would be found, and we would have

a valuable analysis tool for task-based system design decisions.
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3.1.3 Challenges in assessment of sonographic quality

Extending the objective assessment of sonographic visual discrimination performance to

the RF data allows us to relax some of the stringent assumptions because the RF data are

well modeled by a linear transformation of the scattering object. However, the analysis

of RF data introduces new analytical challenges. First, the test statistic involves inverses

of high-dimensional covariance matrices that could not be calculated straightforwardly.

This computational issue has been resolved in our initial study by applying a power series

expansion to approximate each of the matrix inverses [26]. Second, the quadratic form of

the test statistic for RF data may diverge significantly from a normal distribution, and

therefore AUC is not clearly related to detectability in the SNRI measure. Under MVN

distribution for g, the test statistic follows a χ2 distribution [48]. A normal distribution

can be adopted for T or λ under some conditions, but validity is difficult to verify be-

cause of the high dimensionality of the covariance matrices. Test statistic normality is

very important if we are to separate ideal performance into task information and engi-

neering metrics of the imaging system, which is very convenient for system evaluation

and optimization [12]. Even if it is reasonable to assume normality, the quadratic form

of the ideal observer test statistic still prevents Wagner’s SNR theory from being applied

directly to sonographic modalities.

In the next sections, we show that the connection in (2.23) between the ideal AUC

and the SNRI adopted for radiographic data becomes uncertain in our sonographic tasks.

We also establish a rigorous relationship between the ideal observer performance, task

information, and engineering metrics to evaluate sonographic quality. We first focus on

how the measurement of ideal performance describes task information conveyed in the RF

data. By setting the ideal observer analysis in a broader approach that involves optimizing

metrics rooted from information theory [49], we introduce the Kullback-Leibler divergence

(J) to the framework as the primary metric and relate it to existing metrics of AUC and

SNRI . J is a fundamental metric in information theory that measures the divergence

between the two distributions of data [50]. The relation is found analytically under the

normal distribution of the test statistic. Without the normality condition, Monte Carlo

studies must be used to evaluate relations among those metrics. From the connection

between AUC and J , we are able to separate the diagnostic performance into task and

imaging instrument properties by developing the Acquisition Information Spectrum (AIS)

quantity for sonographic systems, which is equivalent to NEQ in photon imaging. AIS

describes the effectiveness of the system in transferring diagnostic task information from

the object to the RF data of the acquisition stage in sonographic imaging process.
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3.2 Task performance and information

3.2.1 Kullback-Leibler divergence

A broader approach to image evaluation relies on performance metrics that are rooted

in information theory. These metrics include divergence, discrimination, and entropy

with the likelihood ratio playing a central role in their measurements [49]. Describing

an imaging system as a device that transfers task information from object to observer,

channel capacity, based on Shannon entropy [51], is a figure of merit that can be used.

Shaw [16] considered imaging devices as a communication channel and computed the

channel capacity based on Shannon entropy to show that the information stored in data

resulting from the imaging process is given by the detective quantum efficiency (DQE), a

quantity related to SNR2
I through integration. In the context of the 2AFC experiments

in this research, we find that the Kullback-Leibler entropy is more appropriate [52]. To

see this, we start with Bayes’s theorem for two class discrimination

P(Hi |g) =
P(Hi)pi(g)

P(H0)p0(g) + P(H1)p1(g)
, i = 0, 1 , (3.23)

in which P(Hi |g) and P(Hi) are the probabilities of Hi with and without knowledge of g,

respectively. Applying (3.23) to the log-likelihood ratio yields

ln
p1(g)

p0(g)
= ln

P(H1|g)
P(H0|g)

− ln
P(H1)

P(H0)
. (3.24)

The first and second terms in the right-hand side of (3.24) are discrimination information

supporting H1 with and without knowledge of g. Thus, the difference in the left-hand side

ln [p1(g)/p0(g)] is the information brought by g for discrimination in favor of H1 against

H0 [50]. Average information is given by

λ̄1:0 =

∫
dg p1(g) ln

p1(g)

p0(g)
, (3.25)

where integration is over the data sample space. Similarly, the average information in

favor of H0 against H1 is specified by

λ̄0:1 =

∫
dg p0(g) ln

p0(g)

p1(g)
. (3.26)
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Figure 3.1: (Left) Plots of PD and PF as functions of the decision threshold t. The area
between the two curves equals the Kullback-Leibler divergence, J . (Right) The corresponding
ROC curve (in reverse).

The two quantities, λ̄1:0 and λ̄0:1, are summed together to form J as a net measure of the

divergence of information contained in g for discriminating between the two hypotheses,

J = λ̄1:0 + λ̄0:1 =

∫
dg (p1(g)− p0(g)) ln

p1(g)

p0(g)
. (3.27)

J is a unitless scalar that quantifies the difficulty of discriminating between distributions

p0(g) and p1(g) based on the information contained in the data.

To establish a connection between J and the ideal observer AUC, we first relate J to

probabilities of detection PD(t) and PF (t) in (2.16) by

J =

∫ ∞

−∞
dt [PD(t)− PF (t)] . (3.28)

See Section B.1, Appendix B for the proof.

Equation (3.28) is illustrated in Figure. 3.1(left) by showing J as the area between

the two curves PD and PF over the range of t. The corresponding ROC curve is plotted

on the right with a reversed abscissa. While the ROC curve depicts PD as a function of

PF , the main diagonal (from (0,0) to (1,1)) depicts PF as a function of itself, and the

area under it equals 0.5. If the data provide no information, AUC = 0.5 and PD becomes

identical to PF . Therefore, δ (the area between PD and PF ) can also be considered as

information brought by data but measured through the ideal observer performance. It
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can be calculated as

δ =

∫ 1

0

dPF [PD − PF ]

=

∫ ∞

−∞
dtq0(t) [PD(t)− PF (t)] . (3.29)

Comparing to (3.28), we find the relation between J and AUC depends on the distribution

of the test statistic q0(t) underlying hypothesis H0. Under the normality condition, we

can prove

J =
(λ1 − λ0)

2

(σ2
1 + σ2

0)/2
. (3.30)

See the proof in Section B.2, Appendix B.

Combining (3.30) with (2.22) and (2.23), we obtain

AUC =
1

2
+

1

2
erf

(√
J

2

)
, (3.31)

or J = d2
A = SNR2

I . Thus, the relation between J and AUC then reduces to the error func-

tion, in a manner similar to the radiography situation. Without the normality condition,

the AUC cannot be computed in a closed form, although it can be measured experi-

mentally. Therefore, Monte Carlo studies are used to evaluate numerically the relations

among those metrics.

3.2.2 Monte Carlo studies

The main challenge in calculating J from (3.27) is computing the matrix determinants

in the likelihood ratio. However, (3.28) allows us to calculate J without first calculating

determinants since they act to shift both curves on Figure 3.1(left) along t by the same

interval, and do not affect the area measured between the two probability distribution

curves. Consequently, J can be found by plotting PF and PD based on the test statistic

T (g) instead of λ(g), which is already calculated through a power series expansion.

We investigate the relation among performance metrics over the five tasks of breast

sonography, given in Figure 2.6. First, we computed figures of merit d2A, SNR
2
I , and J as a

function of object contrast by using (2.21), (2.22), and (3.28). The numerical calculations

began with 2AFC observer studies involving simulations of 2000 RF echo data pairs of g

for each feature contrast in each task. dA was computed from AUC by applying (2.21).

SNR2
I was computed from the moments of T (g). The test statistic is considered to have
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Figure 3.2: Comparison of detectability index d2A, J, and SNR2
I for the five visual tasks

considered. Each of the three curves in a graph is plotted as a function of the object contrast
factor. The legend in the plot of Task 5 applies to all plots [32].

converged when the increment changes less than 0.001% after each iteration. J was found

numerically from plots of PD(t) and PF (t) was computed from histograms of T values.

To control for case variability, we used the same RF echo data pairs to calculate these

three figures of merit at each object contrast. Plots of the results for the five tasks are

found in Figure 3.2.

The confidence intervals for d2A values are calculated by considering AUC as a binomial

variance. For each task, feature contrast ranges from AUC = 50% to AUC ≃ 99%;

the latter value corresponds to d2A ≃ 10. Above this range, AUC reaches 100% and

comparisons are inaccurate.

Figure 3.2 shows that all three metrics are identical for the large area of signal dif-

ference in Tasks 1, 3, and 5. The test statistic may be considered normally distributed

in those tasks. However, there are some differences among metrics in Tasks 2 and 4,

indicating that the normality condition may not be satisfied. There are bigger difference

between d2
A and SNR2

I , up to 14.5% for Task 2. In all tasks, the J values are equivalent

to d2A. The greatest difference between J and d2A is in Task 2, approximately 5%, and still

within the confidence intervals of d2A.

Thus, over the five discrimination tasks investigated, the standard detectability index
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d2A is better approximated by J than SNR2
I . Consequently, AUC for the ideal observer

describes the information of divergence conveyed in the RF data. Estimates of the ideal

performance from SNR2
I , measuring the distance of the ideal observer response, can be

affected by small deviations from normal of the test statistic, which may happen in sono-

graphic tasks.

3.2.3 Normal log likelihood ratio

The differences among three metrics d2A, SNR2
I , and J vary over the five tasks. The

observation leads us to a conjecture that the normality condition depends on the task

information. In Tasks 1, 3, and 5, where the task difference S1 − S0 (see Figure 2.6) is

large and spans the whole lesion, the test statistic is assumed to be normally distributed, or

the normality condition is satisfied, since those performance metrics of the ideal observer

are nearly identical to each other. However, in Tasks 2 and 4, where the task difference is

small and limited to areas near the edges of lesions, the normality condition is questionable

since there is a big gap between d2A and SNR2
I .

This conjecture on the normality condition in sonographic tasks can be validated

by changing the average of lesion brightness in variance masks for Tasks 2 and 4, and

by doing so, the signal areas are changed to keep the ideal performance at comparable

levels. First, we set the lesion brightness at 90% of the background, making those tasks

low contrast. The object contrast factor is reduced and the signal area ∆S needs to be

expanded to maintain the observer performance. The three metrics for those tasks are

shown in Figure 3.3(a,b). In those tasks, d2A, J , and SNR2
I are identical, indicating the

normality condition holds. The normality condition is also illustrated through a histogram

of the test statistic for Task 4 with benign data shown in Figure 3.3(c). The histogram

fits well to the Gaussian curve plotted with the same mean and variance estimated from

the histogram.

In the other direction, the average brightness lesion is reduced to 1% of the background,

making those tasks very high contrast. The task difference becomes even smaller when

ideal performance reaches 100%. The performance metrics are shown in Figure 3.4(a,b).

In those tasks, d2A, J , and SNR2
I become more divergent from each other. In Task 4, J is

slightly out of the confidence interval d2
A. The biggest divergence is still between d2

A and

SNR2
I in Task 2, up to 30%. An example of the test statistic histogram for Task 4 with

benign data is shown in Figure 3.4(c). Its shape has a deviation from the Gaussian curve

drawn with the same mean and variance. Visual tasks with such a high contrast resolution,

however, do not create much challenge in breast cancer diagnosis. Such anechoic regions
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Figure 3.3: Comparisons of detectability indices d2A, J , and SNR2
I for Tasks 2 (a) and Task 4

(b) with low contrast. Legend in Task 4 applies to Task 2. The contrast inside the lesion is set
to be 90% of the background. (c) An example of the test statistic histogram in Task 4 and the
Gaussian curve with the same mean and variance for low contrast.
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usually indicate a cyst with fluid and are easily detected as benign by physicians. Solid

breast tumors often appear as hypoechoic regions in sonograms; therefore, low-contrast

tasks have received more attention in breast cancer diagnosis using sonograms.

3.3 Acquisition information spectrum

3.3.1 Information analysis

In this section, we derive an equivalent factorization for the ideal performance on RF

signals. The derivation must be adapted to the model that encodes features in second-

order statistics of data, e.g. the covariance matrix. Numerically, results in Section 3.2.2

show that for the quadratic form of the test statistic, the ideal observer AUC or its

detectability index d2
A better describe the divergence between the two classes of data J

than the divergence between the two class of the ideal observer response SNR2
I . We derive

the NEQ-like quantity for the sonographic system on the basic of this new relation. Like

Wagner and Brown [12], we assume LSIV/stationary assumptions for the system with

detecting a low-contrast lesion task (Task 1).

From (3.27), we can write

J = E1{λ(g)} − E0{λ(g)}

= E1{T (g)} − E0{T (g)} , (3.32)

where Ei{·} is the mean underlying hypothesis Hi (i = 0,1), λ(g) and T (g) are given

in (2.5) and (2.6), respectively. By replacing the expression of T (g) into Ei{·}, one can

obtain

Ei{T (g)} =
1

2
Ei{gt(Σ−1

0 −Σ−1
1 )g}

=
1

2
Ei{Tr

[
(Σ−1

0 −Σ−1
1 )ggt

]
} , (3.33)

for i = 0, 1. Switching between Ei{·} and Tr [·] and recalling that g|Hi ∼ MVN(0,Σi),

we obtain

Ei{T (g)} =
1

2
Tr
[
(Σ−1

0 −Σ−1
1 )Σi

]
for i = 0, 1 . (3.34)

Replacing (3.34) into (3.32), the Kullback-Leibler divergence J can be expressed in alge-
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braic form as [53]

J =
1

2
Tr
[(
Σ−1

0 −Σ−1
1

)
(Σ1 −Σ0)

]
, (3.35)

where Tr(·) is the trace of the matrix. As usual, the challenge to computing J in this form

is the inversion of covariance matrices. In [26], each inverse is expanded in a power series,

which allows them to be computed precisely. It is shown numerically that the power series

expansion effectively converges after one iteration in detecting low-contrast feature tasks.

Therefore, we can substitute the first-order approximation form of (2.26) into (3.35) and

obtain

J ≃ 1

2
Tr
[
Σ−1

s (∆Σ1 −∆Σ0)Σ
−1
s (Σ1 −Σ0)

]
, (3.36)

where Σs and ∆Σ0,1 are given in (2.7). The only matrix to be inverted in this approxima-

tion is Σs which is stationary, and therefore efficiently computed using Fourier methods.

From the numerical result in Section 3.2.2, we can substitute the standard detectability

index d2A for J in low-contrast tasks to be consistent with the literature on ideal observer

analysis. With Σs and ∆Σi from (2.7), (3.28) becomes

d2A ≃ 1

2
Tr [Ks∆SKs∆S] . (3.37)

where Ks = HtΣ−1
s H and ∆S = σ2

obj(S1 − S0), which is the task information.

Under the LSIV/stationary assumptions, Ks is stationary and can be diagonalized

using Fourier techniques, given by

Ks = F−1K̃sF, (3.38)

where F is the 2-D forward DFT matrix [8]. Since K̃s is diagonal, its elements can be

represented by a single index, K̃s(k, k) = K̃s(k). Similarly, ∆S = F−1∆S̃F, and therefore

(3.37) may be expressed as a double sum over frequency indices

d2A ≃ 1

2
Tr
[
K̃s∆S̃K̃s∆S̃

]
=

1

2

∑
k

∑
l

K̃s(k)∆S̃(k, l)∆S̃(l, k)K̃s(l). (3.39)

Because ∆S is nonstationary, ∆S̃ is not diagonal but spread over the 2-D spatial fre-

quency domain. However, ∆S is real and diagonal, so ∆S̃ is Hermitian and circulant, i.e.

∆S̃ (l , k) = ∆S̃ ∗(k , l) = ∆S̃ (l − k), in which ∆S̃ (k) is the Fourier transform of ∆S but

re-arranged into a column vector before taking the transform.

Expressing (3.39) as a continuous function of the 2-D spatial frequency variable, u =
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(u, v), we have

d2A ≃ 1

2

∫
∞
du

∫
∞
du′ K̃s(u

′)
∣∣∣∆S̃(u− u′)

∣∣∣2 K̃s(u)

=

∫
∞
du
∣∣∣∆S̃ (u)

∣∣∣2 {1

2
K̃s(u

′) ∗ K̃s(−u′)

}
(u)

=

∫
∞
du
∣∣∣∆S̃(u)∣∣∣2 AIS(u) , d2Ks . (3.40)

where dKs is a detectability index based on K̃s given by

K̃s(u, v) =

∣∣∣H̃(u, v)
∣∣∣2∣∣∣H̃(u, v)

∣∣∣2 σ2
obj + σ2

n

. (3.41)

|H̃(u, v)| is the magnitude of the system transfer function and σ2
obj and σ

2
n are, respectively,

the variance of the object background and noise processes.

Comparing (3.40) with(3.10) derived by Wagner et. al., we find there is an object

contrast factor |∆S̃(u)|2 in both equations, and that NEQ in radiography is replaced by

the autocorrelation function (ACF) of K̃s(u, v) for sonography. We name the sonographic

quantity Acquisition Information Spectrum, or AIS(u, v) = 1
2
ACF{K̃s(u, v)}. When AIS

is multiplied by |∆S̃|2 and integrated, we have measured the task information found in

the RF data g at the acquisition stage of image formation.

3.3.2 Properties of AIS

The differences in contrast mechanisms between sonography and radiography are found

by comparing |∆S̃(u)|2 for the two modalities as well as NEQ and AIS. To illustrate the

differences, we turn to dimensional analysis, and label the units of object function f as

[obj] and the units for measurement data g and n as [data]. For 2-D radiography, the

units of NEQ are [obj-mm]−2 and for |∆S̃|2 they are [obj-mm2]2, so that integration of the

product over 2-D frequency as in (3.16) yields a unitless SNR2
I . However, for sonography,

the units of AIS are [obj2-mm]−2 and for |∆S̃|2 they are [obj2-mm2]2. Modality differences

in |∆S̃|2 units are reflected in feature contrast mechanisms that are in the covariance

rather than the mean of the object function. Thus AIS is dimensionally different from

NEQ because the information for performing the task is embedded in the second-order

structure of the data.

K̃s(u, v) is analogous to GNEQ in (3.12) [17] but here are two important differences.
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Figure 3.5: (Right) One-dimensional AIS(u) and Ks(u) curves are plotted versus spatial
frequency along the beam axis for Task 1. We show results from two system configurations:
the center frequency and percentage bandwidth of the two system are PSF 1 = 7.2 MHz/69.3%
and PSF 2 = 6.3 MHz/38%. The pulses are measured from the SONOLINE Antares system
generated by varying the excitation voltage waveform. (Left) B-mode images (top row) for the
two images are shown (in linear scale) along with scaled images of the pulses (bottom row).

First, the background randomness described in (3.41) is always present in sonography

because it is due to coherent speckle present in the RF echo signal. Second, since AIS =
1
2
ACF(K̃s) for sonography and not K̃s, there is a broader system responsiveness to object

contrast than one expects from MTF(u) = |H(u)|/|H(0)| alone. Also the bandpass

nature of the RF echoes means that AIS always has three lobes centered at zero frequency.

Examples of AIS are shown in Figure 3.5 for spatial frequencies from 0 to 25 mm−1. The

shape of the AIS is different from that of the NEQ in photon imaging plotted in Figure 3.6.

NEQ has a peak at the origin and is monotonically decreased with the increments of the

spatial frequency [13]. The difference may come from the phase component presented in

RF sonpgraphic data. The AIS shape will be validated in Chapter 4.

In 2-D radiography, NEQ(u) measures the number of photons per unit area of the

image that convey task information over the spatial frequency u. NEQ(u) is a task-

independent measure of how well the imaging system transfers information from the object

to the recorded data. In sonography, AIS(u) measures the number of “independent RF

data samples” that convey information over u. It describes the transfer of information

from object to RF echo data. Because it does not include display-stage processing, AIS

only partially addresses image information for the acquisition stage.
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Figure 3.6: Examples of NEQ for three X-ray photographic (XRP) systems (Reprinted by
permission of IEEE from Wagner [13], IEEE Transactions on Medical Imaging, vol. MI-2,
no. 3, pp. 105-121, c⃝ 1983 IEEE).

It may be easier to interpret the results by writing (3.41) as

K̃s(u, v) =
SNR0 ×MTF2(u, v)

σ2
obj

(
SNR0 ×MTF2(u, v) + 1

) , (3.42)

where SNR0 , |H(0, 0)|2σ2
obj/σ

2
n is the pixel SNR outside the target area, and 0 ≤ MTF

≤ 1. When MTF2 ≃ 1 and SNR0 ≫ 1 within measurement bandwidth B, K̃s = 1/σ2
obj

over B, and Wiener filtering is maximally effective at decorrelating data. AIS is maxi-

mum under these conditions, meaning the system transfers information with maximum

efficiency, and there is a peak at the origin AIS(0) = B/σ4
obj.

Under conditions where the product SNR0× MTF2 ∼ 1, K̃s is more narrow band and

B is smaller. The amount of task information transferred by the system is then reduced

overall. Figure 3.5 gives two examples ofKs and AIS functions for configurations measured

from a commercial imaging system along with the Task 1 spectrum, |∆S̃(u)|2. The Ks

functions are nearly constant over spatial frequencies corresponding to the temporal band-

width of the transducer because the scattering function is modeled as a white-Gaussian

noise process. Detection of large low-contrast lesions is a low spatial-frequency task, so it

might seem that high temporal bandwidth imaging systems might not aid in this detection

task. However, the autocorrelation function within AIS means that detectability at all
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Figure 3.7: Comparison of detectability indices d2A and d2Ks can be made for four low-contrast
tasks. d2Ks is computed using (3.32) while dA is converted from AUC through Monte Carlo
studies. All values are plotted as functions of object contrast. The legend in Task 4 applies to
all plots. The lower-right corner shows variance profiles for four low-contrast tasks, including
detection (Task 1), eccentricity (Task 2), hard/soft boundary (Task 3), spiculation (Task 4).

frequencies increases approximately linearly with bandwidth under high SNR0 conditions.

The temporal-frequency parameters of ultrasonic transducers are implicitly described

by (3.42). Acquisition-stage variables related to center frequency, bandwidth, and beam

focusing properties enter the analysis through MTF and SNR0 in well-known ways [54].

Large-area contrast resolution [12], as described in |H(0)|2, is also embedded in the MTF

and SNR0. Thus (3.40) describes the information available to form a diagnostic image for

low-contrast lesion detection.

3.3.3 Predicting performance

Equation (3.40) provides a fast computation for ideal observer detectability index without

using Monte Carlo studies. The validity of assumptions made in the derivation was

tested by comparing in Figure 3.7 the predicted performance from d2Ks to the ROC-based

performance d2A measured from Monte Carlo simulations. d2Ks predicts performance at

low-contrast tasks where the first-order approximation to matrix inverses holds. It is

compared to d2A over four low-contrast tasks modified from the panel of the five typical

tasks in Figure 2.6. Among those four tasks, Task 1 (low-contrast detection) is repeated,
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Tasks 2-4 are from combinations between low-contrast detection and edge discrimination

tasks. In those tasks, the lesion brightness is set to be 90% of the background. In

Task 1, the lesion contrast is varied from 0 to –1.8 dB for AUC ranging from 0.5 to

0.93 (corresponding to d2A from 0 to 4.5). Numerical results show that d2Ks is within the

confidence interval of d2A in Tasks 2-4, while it begins to be out of the range in Task 1

when the contrast resolution is around –1.8 dB, indicating the condition for which the

first-order approximation starts being violated.

3.4 Summary and discussion

Using an information metric developed by Kullback and Leibler [52] and the 2AFC ex-

perimental paradigm, we have connected the information (J) to commonly used observer

performance metrics in medical imaging: area under the ROC curve (AUC), detectability

index (dA), and lesion signal-to-noise ratio for the ideal observer (SNRI). The connections

are all derivable in closed form when the decision variable is normally distributed.

When the distribution of the ideal observer test statistic is non-normal, Monte Carlo

studies were used to compare J , d2A, and SNR2
I numerically. We first developed a method

for estimating J from forced-choice image pairs that enabled us to relate the various

figures of merit. We measured disagreements between J and SNR2
I not explained by

computational error when the latter is estimated from moments of the test statistic.

Numerical results show agreement between J and d2A for each task and all contrasts

considered, which establishes the equivalence between ideal observer performance and

task information.

The results show that in some visual tasks where the signal area is large compared with

the echo-signal coherence area imposed by the coherent imaging system, the normality

condition may be assumed regardless of underlying distributions. However, for tasks

requiring discrimination of boundary features, the signal area may be too small and the

condition is lost. The failure of the normal assumption means that SNR2
I calculated

from moments of the ideal observer response underestimates information transfer. It is

recommended that AUC or dA should be used as the primary figure of merit for evaluating

and optimizing sonographic systems.

The equivalence of J and d2A follows the example of Wagner and Brown in radiography

[12] when seeking connections between instrument properties and ideal performance. This

approach is a significant advance over our previous study [55], where we began searching

for NEQ-like quantities. The AIS quantity describes the efficiency of the imaging system
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at transferring information from the object to the RF echo data, and importantly it

provides a rigorous link to laboratory metrics for assessing image quality. It can be

combined with the task spectrum to predict task-dependent information transfer. Thus

we have established an objective assessment of sonographic quality in the context of a

common analysis framework used by many throughout the radiography literature. And

similarly to NEQ, the AIS also provides a convenient way to report the ideal observer

performance without using the Monte Carlo studies.
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CHAPTER 4

POST-PROCESSING

4.1 Introduction

The ability of modern ultrasonic systems to digitize and store RF data increases the op-

portunity to explore post-recording processing of data before obtaining the final envelope

image. The image formation process in Figure 2.7 is extended in Figure 4.1 to include

operator W as a supplemental filtering step applied to data in the RF domain. Several re-

search groups have applied signal processing techniques to RF data to reduce speckle size

and enhance B-mode image resolution [56–59]. However, diagnostic information cannot

be increased by further processing. Therefore, any image processing algorithm applied

post-detection must be evaluated in the context of how effectively the technique removes

irrelevant information and enhances the observer’s accessibility to diagnostic information.

The assessment should emerge from the exploration of the ideal observer, which is the

appropriate measure of diagnostic information.

By analyzing the ideal observer equations, we can interpret them as the signal process-

ing strategies the observer uses to extract information from data to make the best decision.

In the initial study [26], it was found that the first-order power series approximation to the

ideal strategy was equivalent to a stationary Wiener filter applied to the beamformed RF

signals. The resulting envelope images yielded a measurable improvement in performance

when the task was discriminating low-contrast lesion features. However, performance was

reduced for high-contrast lesions, even if the discrimination task is itself low contrast,

specifically when observers were asked to discriminate anechoic and hypoechoic lesions

(Task 5). These previous findings suggested that, for imaging situations where there are

large signal heterogeneities, filters must adaptively tune to the echo statistics wherever

there is diagnostic information.

In this chapter, we extend the analysis to include a greater range of practical conditions

Portions of this chapter are reprinted, with permission, from N.Q. Nguyen, C.K. Abbey, and M.F.
Insana, “An adaptive filter to approximate the Bayesian strategy for sonographic beamforming,” IEEE
Transactions on Medical Imaging, vol. 30, no. 1, pp. 28-37, c⃝ 2011 IEEE.
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Figure 4.1: A graphical representation of the imaging process to generate sonographic images
extended to include an additional filtering step applied to RF data before envelope detection
(bottom row). The standard B-mode images are beamformed using conventional
delay-and-sum beamforming (top row) [30].

by improving the first-order approximation. The proposed method addresses deficiencies

in the application of the power series expansion to calculate the inverse of the covari-

ance matrices, which in return yields a better approximation. The new approximation

leads to an iterative Wiener filtering (IWF) approach that re-tunes the filter in regions of

variable echo SNR to generate IWFB-mode images. Iteration increases task information,

thus enabling the filter to adapt to variable tissue scattering conditions, but it requires

a segmentation algorithm beforehand to identify regions that can benefit from iterative

filtering. Most segmentations of medical ultrasound images are performed on B-mode im-

ages [60,61]. However, our segmentation is performed on the WFB-mode images because

of the reduced speckle correlation length. This modification allows us to more accurately

segment lesions and with less computation time. The results show that the new filter

makes an improvement in visual performance for diagnostic information contained within

the lesion interior, the task where we find a reduction in performance after Wiener filter-

ing, while keeping the performance on par with that of the Wiener filter in other tasks.

The concepts are demonstrated on a commercial system by imaging a tissue-mimicking

phantom where results include a realistic, shift-variant model for the system impulse

response.
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4.2 Iterative Wiener filter (IWF)

4.2.1 IWF as an approximation of the ideal strategy

By analyzing the power series expansion of the IO, it is found that the ability of the

stationary Wiener filter to improve human observer performance depends on the accuracy

of the first-order approximation. The first-order approximation to matrix inverses (I +

Si)
−1 ≃ I− Si is a good one when Si ≪ I, which is true for low-contrast features. When

that is not the case, as in Task 5, the covariance matrix cannot be separated into stationary

and non-stationary components. Instead we form average and difference components,

Σa = H(σ2
objI+ Sa)H

t + σ2
nI and ∆Σ = 0.5H∆SHt (4.1)

where

Sa = 0.5σ2
obj(S1 + S0) and ∆S = σ2

obj(S1 − S0) .

As with the stationary Wiener filter, we expand the matrices in a power series and

truncate after the first term to find

Σ−1
0 −Σ−1

1 ≈ 2Σ−1
a ∆ΣΣ−1

a . (4.2)

The new first-order approximation of test statistic λ becomes

λ(g) ≈ 1

2
gtΣ−1

a H∆SHtΣ−1
a g . (4.3)

Similarly to the derivation of the stationary Wiener filter, the first-order approximation

of (4.3) provides insights into ideal strategies for discrimination. The factor HtΣ−1
a g =

(gtΣ−1
a H)t is recognized as the new filtering strategy acting on RF echo signals. To com-

pare with the stationary Wiener filter HtΣ−1
s derived from (2.28), the average covariance

between two states is applied instead of the stationary background covariance. The ad-

vantage of this change is to allow the signal strength to vary significantly within any one

image, provided the difference between the two images remains small. The disadvantage

of the new filter is that Σa is the covariance matrix of a non-stationary process, so we

cannot use Fourier techniques to quickly compute its inverse.

The power series approach may be applied to decompose Σa into stationary and non-

stationary components, Σa = Σs + σ2
objHSaH

t , yielding an iterative formula for HtΣ−1
a g
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given by

qi+1 = −σ2
objH

tΣ−1
s HSaqi and

pi+1 = pi + qi+1 . (4.4)

The iterative scheme is initialized by q0 = p0 = σ2
objH

tΣ−1
s g. Equation (4.4) begins

with the stationary Wiener filter, and iteratively converges to pi+1 = σ2
objH

tΣ−1
a g using

the power series inverse approximation for Σa. We refer to the result as the adaptive or

iterative Wiener filter and the corresponding envelope as the IWFB-mode image [30]. To

compare with the stationary Wiener filter, the iterative Wiener filter is combined with the

average task information Sa through the iterations. Thus IWFB-mode images can adapt

to the task as specified by Sa, provided that Sa is known. To make this filter practical in

the clinical environment where Sa is not known a priori, we propose a method to find it

from S0 and S1, which are estimated after image segmentation.

4.2.2 Segmentation to introduce task information

We adopted a segmentation algorithm that makes use of a Markov random field (MRF)

model to segment images into two grayscale levels. The core of the method is the adaptive

clustering algorithm proposed by Papas, which was applied for images consisting of very

few levels [62]. The algorithm begins from development of a model for the posterior

probability density function p(x |y), where y is the observed image segmented into regions

x. At the site s of the image, xs = i means that the site belongs to region i. By Bayes’s

theorem, we have

p(x |y) = p(y |x )p(x ), (4.5)

where p(x ) is a prior density of the region process, which imposes spatial continuity,

and p(y |x ) is the conditional density of the observed image, given the distribution of the

regions. It constrains the region magnitude to be close to that of the data. By using

MRF, the density of x is given by a Gibbs density [63,64], while the conditional density is

modeled as a white Gaussian process with mean µi and variance σ2
i characterizing region

i. The decision is made by MAP rule based on the combined probability density function

p(x |y). This is done pixel-by-pixel in the whole image and in many iterations until we

converge on x. “Adaptive” means parameters µi and σ
2
i are updated after each iteration.

The algorithm was first used to segment the ultrasound B-mode images by Ashton

and Parker [65]. However, the magnitude of conventional B-mode images has a Rayleigh

distribution, which does not allow use of this method directly. Therefore, in their work,
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Ashton and Parker first decomposed B-mode images into multiple layers (wavelet decom-

position), and based on the central limit theorem, they assumed the intensity of pixels at

the lowest level has a Gaussian distribution. Segmentation is then applied for each layer

from the lowest to the highest resolution. This process is computationally intensive. In

our application, we modified the process by segmenting the WFB-mode image instead.

There are some advantages to using the Wiener filtered image despite any errors due to

variable echo SNR. First, the Wiener filtered data approximates a deconvolution of RF

data followed by B-mode rendering. The WFB-mode image has reduced pixel correla-

tion and provides greater region delineation compared with B-mode images. Also, the

logarithm of image values is approximately Gaussian distributed as required for segmen-

tation purposes with an acceptable error. Thus, performing segmentation on WFB-mode

images simplifies the complexity and shortens computation time. Figure 4.2(a) shows an

example of the estimated shape of the variance profile obtained from segmentation and

Figure 4.2(b) shows the errors incurred when comparing the segmented image with the

exact signal. Segmentation errors reduce the effectiveness of IWFB-mode processing and

therefore will adversely affect human observer performance.

Figure 4.2: Segmentation of the variance profile from the Wiener filtered envelope (a) and its
error to compare to the exact signal (b).

The pixel whitening effects of the Wiener filter enable us to consider WFB-mode

images as a coarse estimate of the scattering object, f(x), so that we can roughly estimate

σ2
obj from the mean square pixel value of the background region. Si may be estimated by

measuring the mean-square image value inside the lesion and dividing it by the estimated

σ̂2
obj. However, we modify the process slightly by just dividing the squared magnitude of

each pixel inside the lesion by σ̂2
obj. This modification is made to adapt to the statistical

properties of speckled image data inside the lesion region.

Figure. 4.3 shows example images processed three different ways: the standard B-
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Figure 4.3: Examples of (a) standard B-modem, (b) WFB-mode, and (c) IWFB-mode
images of benign and malignant pairs of Task 5 (linear scale) [30].

mode, applying the stationary Wiener filter, and applying the iterative Wiener filter with

segmentation before taking the envelope. The main effect of the stationary Wiener fil-

ter is to clarify lesion edges, while that of the iterative Wiener filter is to clarify lesion

contrast. While the effects apparent in these sample images are subtle, the overall per-

formance improvement for train human observers was significant, as we show below. The

disadvantage of the iterative Wiener filter is that it is computational expensive because

of segmentation and iterations.

4.2.3 Human observer studies

Human observer studies are conducted at the Visual & Image Understanding Laboratory,

University of California, Santa Barbara. Humans are shown pairs of standard B-mode

images in one study and pairs of Wiener filtered (WFB-mode) or iterative Wiener filtered

(IWFB-mode) images in other studies. They are asked to identify the one image with

malignant features using the 2AFC testing paradigm [9,26]. Examples of these images are

shown in Figure 4.3. Observers also view the signal template in a separate image showing

them the malignant feature they are asked to identify.

The goal of this human observer study is to compare different imaging methods to

evaluate the effectiveness of post-beamforming spatial filtering of the RF echo signals that

is applied before envelope detection. Observers were informed of all feature parameters

such as target amplitude and location. After a training period, each observer viewed

400 randomized image pairs per study and the proportion of correct responses, PC , was
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Figure 4.4: Average proportion correct for five human observer studies involving three forms
of signal processing as illustrated in Fig. 4.3 and the five diagnostic tasks described in Section
2.1.2. Error bars indicate standard errors [30].

measured. From PC we can compute dA and AUC metrics. The correctness of each

response was immediately indicated. The background-region echo SNR was 32 dB for

all simulated images, which was measured experimentally using tissue-like phantoms.

Five observers each participated in 15 studies involving five tasks under three imaging

conditions labeled B-mode, WFB-mode, and IWFB-mode. Although all images in this

study are statistically independent, we controlled for case variability by applying different

filters to the same RF data.

Human observer results are summarized in Figure 4.4. We find humans viewing B-

mode images for Tasks 1-4 yield the lowest performance compared with images where fil-

tering was applied. Filtering before envelope detection preserves more of the task informa-

tion that is normally lost at the display stage. Both filters increased human performance

about the same amount except for Task 5 where Wiener filtering reduced PC substantially

from 79% for B-mode images to 63% for WFB-mode images. Task 5 results are examples

of what occurs when the linear approximation to the covariance matrix inverse fails to

hold. The Wiener filter formed in this way is well matched to the background but not to

the interior of the lesion area where the discriminating signal was located. The Wiener

filter inappropriately amplified lesion noise, where eSNR < 0 dB (signal is dominated by

noise). Because this stationary Wiener filter does not take the task into consideration,

it can be expected to enhances human performance only when specific properties of the

task are not very important. Meanwhile, the iterative WF significantly improved perfor-
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mance for Task 5 because it includes task information estimated from the images in the

filter. The IWF performance improvement comes at the cost of approximately fivefold

increase in computational load. Variations of the degree of improvements over the five

tasks just underscore the task-dependent nature of performance. As designers, we need

to understand which clinical exam conditions warrant the extra effort.

4.3 Observer efficiency

4.3.1 Smith-Wagner observer

The test statistic λB derived in (3.19) by Smith and Wagner can be considered as the

exact test statistic for the ideal observer on B-mode images for Task 1 [66]. Applying this

observer as the ideal observer on B-mode images to other tasks forces us to ignore the

violations of the assumptions. Acknowledging these violations, we refer it as the Smith-

Wagner (SW) observer. To adapt the SW observer to other tasks, we modify the test

statistic to become [26]

λSW(b) = bt(S1 − S0)b . (4.6)

This model is used to quickly evaluate human observer performance [14]. This ob-

server is similar to the first-order approximation of the IO when it matches the observed

data with the task information. In photon imaging [14], it is shown that the observer

performance is highly correlated to the human observer. We apply it to all five tasks of

breast sonographic diagnosis while acknowledging it is an approximation, albeit the best

we have today.

Assuming the utility of the SW observer, ηH defined in (2.24) can be decomposed into

ηH = ηSW × ηH|SW , (4.7)

where ηSW is the efficiency of the SW observer acting on envelope images with respect

to the ideal observer acting on RF data, and ηH|SW is the efficiency of the human ob-

server with respect to the SW observer, with both acting on B-mode images. Separating

efficiency in this manner enables us to identify sources of information loss. ηSW is a mea-

sure of information lost by the demodulation process, and ηH|SW is a measurement of

information lost by the human-observer system.
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4.3.2 Post-filtering
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Figure 4.5: (a) Human observer efficiencies measured on B-mode, WFB-mode, and
IWFB-mode images, ηH from (2.25). (b) SW observer efficiency, ηSW. (c) Human efficiency
relative to the SW observer, ηH|SW. Values in (a) equal the product of corresponding values
from (b) and (c). Note that the ordinate scaling of the relative efficiency axis is changed
among the figures [30].

The three efficiencies obtained from the human and ideal observer performance mea-

surements above and that from applying the SW observer to the same data are plotted

in Figure 4.5. Part (a) is the efficiency of human observers relative to the ideal observer.

It is the product of results in parts (b) and (c) that describe the component efficiencies

on the right-hand side of (4.7). Part (a) shows that humans are between 0.2% and 40%

efficient at discrimination for the five tasks. Discrimination performance is better for the

large-area contrast tasks (1,5) than for the edge-detection tasks (2-4), but there seems

to be room for improvement overall. Except for Task 4, where humans struggle to see

the spiculated boundary (part (c)), it appears that most of the information is lost in B-

mode images during the envelope detection process (part (b)). RF-echo filtering greatly

improves the passage of task information through the envelope detection process. Sur-

prisingly, filtering seems to hamper accessibility of task information by humans, but the

net effect is that filtering improves human performance for all five tasks. These results

58



B
en

ig
n

M
al

ig
n
an

t

(a) (b) (c) (d)

Variance profiles 

of Task 4

S
1

S
0

S
1 -S

0

Figure 4.6: Examples of B-mode images for Task 4, including (a) Standard B-mode images;
(b) WFB-mode images; (c) IWFB-mode images; and (d) SKEB-mode images.

are very enlightening from a designer’s perspective, because it points to the stage where

information is lost and therefore possible solutions.

An example of common lesion segmentation errors is shown in Figure 4.2. The errors

can have a large effect on human observer performance. To analyze how the information is

lost due to segmentation, we test the iterative Wiener filter under the assumption that we

know the underlying variance profiles (SKE paradigm); that is, segmentation is perfect.

We name the new envelope as SKEB-mode images. Figure 4.6 shows examples of B-mode

images for Task 4, in which (a) is for standard B-mode; (b) is for the the WFB-mode; (c)

is for IWFB-mode; and (d) is for SKEB-mode. To compare with the stationary Wiener

filter, the iterative Wiener filter reduces the speckle size and enhances the contrast inside

the lesion as well. However, it does not improve the shapes of lesions much. The shapes,

however, becomes much clearer on the SKEB-mode images.

By using the SW observer, we can quickly evaluate the observer efficiency for the

SKEB-mode, and plot it along with other efficiencies on Figure 4.7. The numerical results

show that the SW observer performance on SKEB-mode images is comparable to that

of the ideal observer over the five tasks. The SW observer efficiency on SKEB-mode

images is almost perfect over the five tasks (ηSW ≃ 100%), reflecting that the error in

segmentation is the only source of loss when transferring diagnostic information from RF

data to IWFB-mode. Although the SKEB-mode is computed under unrealistic conditions,

the substantial increase in efficiency over Tasks 2-5 suggests that the observer performance

will be increased with a better segmentation.
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Figure 4.7: The SW observer efficiency over the five tasks on the envelope images, including
SKEB-mode.

4.3.3 Interpretation of the ideal response

The equivalence of the SW observer performance on SKEB-mode images to the ideal

performance shows that the power series expansion in (4.1) effectively converges after one

iteration in all five tasks. Or the first-order approximation of the test statistic in (4.3)

can be used to make the decision for the ideal observer. Denoting f̂ , HtΣ−1
a g as the

iterative Wiener filtered RF data under SKE paradigm, (4.3) can be written as

λ(g) ≈ 1

2
f̂ t∆Sf̂ . (4.8)

By denoting f̂j = bSKE ,j e
iϕj as the j th element of column vector f̂ , ϕj is the phase

component of f̂ at element j, and bSKE is column vector of the IWFB-mode image with

SKE, we have

λ(g) ≈ 1

2
f̂ t∆Sf̂ =

1

2

∑
j

f̂ ∗j [∆S]jj f̂j

=
1

2

∑
j

[∆S]jj b
2
SKE ,j = bt

SKE∆SbSKE . (4.9)

Thus, the test statistic does not change if the filtered RF data f̂ is replaced with its

envelope bSKE . This equivalence provides us an interpretation of the ideal observer re-

sponse as it counts the speckle spots on SKEB-mode images within the signal difference

area S1 − S0, which is vital to decision making. By assuming speckles have identical

probability distributions, the test statistic follows a normal distribution if the number of

those speckles is large enough. This conclusion verifies the conjecture in Chapter 3 on the

normality condition of sonographic tasks. In Tasks 1, 3, and 5, where the task difference
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Figure 4.8: (Left) Variance maps of the sine-wave detection task (Top); the B-mode images
generated from the variance maps (middle); and the corresponding WFB-mode (bottom)
images. (Right) The AIS with task information over the axial spatial frequency. Task A is at
0.35 mm−1 corresponding to the map variance in the left; Task B is at 8.77 mm−1; and Task C
is at 20.24 mm−1.

is large, the test statistic is normally distributed (central limit theorem). However, the

condition is lost in Tasks 2 and 4 where the signal difference is small. The number of

speckles that falls into the task difference area is not big enough to invoke the central

limit theorem.

4.3.4 Information spectrum on B-mode images

The AIS curve developed in Chapter 3 only addresses the information conveyed in the

RF data at the acquisition stage. It does not include the display stage where RF signals

are demodulated to form B-mode images. In this section, we investigate how information

is lost through the demodulation process as a function of spatial frequency. The only

computational tool we have to assess the B-mode image quality is the Smith-Wagner

observer. Yet, its response is not the exact log-likelihood ratio on B-mode images; there-

fore, we only can analyze the information loss in terms of task information. Specifically,

we challenge the observers with sine-wave detection tasks. Those tasks were originally

designed to determine the ability of the human observer to access phase information [67].

The sine-wave signal is generated by using the Gabor pulse and its detection task is set

in the context of 2AFC experiments. The variance map is shown in Figure 4.8(left,top).

From those maps, the task spectrum is generated and plotted in Figure 4.8(right) as Task
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Figure 4.9: Comparison detectability indices of d2
A converted from area under ROC of the

ideal observer, d2
Ks calculated from (3.32), and d2

B and d2
WB calculated from the performance of

the Smith-Wagner observer.

A. The AIS curve is also plotted in the figure (the dashed line). With a narrow band

response, the task information is similar to a Dirac delta function. Multiplying it by the

AIS and integrating over frequency as in (3.32) is similar to sampling AIS at the spatial

frequency associated with Task A. By increasing the frequency of the Gabor pulse in the

variance map, we can sample AIS at different values of the spatial frequency (Tasks B

and C). Those tasks allow us to map AIS discretely in terms of d2
Ks .

From each pair of variance maps, we generate 2000 pairs of RF signals for calculating

the ideal observer performance in Monte Carlo studies. The ideal performance is then

converted to d2
A for comparison with d2

Ks . Since the AIS curve is derived for low-contrast

detection, the amplitude of the Gabor pulse is set to be –25 dB relative to the background

so that the first-order approximation of (3.36) is not violated with variations of the pulse

magnitude. Both d2
A and d2

Ks are plotted in Figure 4.9 for comparison. Both curves have

two peaks and one valley at the same locations. The first peak is at origin while the

second one is at 18.89 mm−1. The detectability index minimum is nearly at a spatial

frequency of 9.44 mm−1. The frequency at the minimum depends on the bandwidth and

center frequency of the ultrasound pulse. d2
Ks is usually 7-9% lower than d2

A, relative to

its magnitude. This corresponds to an error of 1-2% in ideal observer performance. The

consistency between d2
A and d2Ks validates the shape of AIS plotted in Figure 4.8.

To understand the information lost through demodulation, we take the envelope of RF

data to form B-mode images. Performance over the envelope images is evaluated by using

the Smith-Wagner observer. The performance is then converted to d2B for comparison with

d2
A. The Wiener filter has been applied to RF data to evaluate its ability to recover the

information loss over the frequency. Since the tasks are all low-contrast detections, we do
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not need to use the iterative Wiener filter. The SW observer is also applied to WFB-mode

images and its performance is converted to d2WB. Examples of B-mode and WFB-mode

images are shown in Figure 4.8(middle and bottom). The detectability indices d2B and

d2WB are plotted in Figure 4.9.

From the figure, d2B is only about 25% of d2
A, suggesting that 75% of information is

lost through demodulation. The shape of d2B is similar to that of NEQ in photon imaging

(Figure 3.6). It goes to zero for all frequencies greater than 7 mm−1. We explain this

result by noting the spatial resolution of B-mode images is limited by the size of the

speckle. And the speckle size prevents all information at a spatial resolution less than

7 mm−1 from being visualized. By Wiener filtering, we can recover the information at the

first lobe of the AIS curve. d2WB is identical to d2
A and they go to zero at 9 mm−1. The

Wiener filter is very effective on low-contrast detection tasks; but even so, the information

content in WFB-mode cannot be higher than that in the raw RF data. Once d2WB reaches

zero, it cannot increase, because the spatial resolution of WFB-mode images is limited by

the speckle size (after decorrelation), just as it is with B-mode images. Thus, the Wiener

filter only can recover information in the first lobe of AIS. How to recover information in

the second lobe of the AIS remains a topic for future investigation.

4.4 Experimental implementation

In this section, we demonstrate the concepts of Wiener and iterative Wiener filters on a

commercial system and experimental data by imaging a tissue-mimicking phantom. Those

filters include a realistic, shift-variant model for the system impulse response.

4.4.1 Line spread function

Filtering was applied to echo data acquired from the SONOLINE Antares system with a

VF10-5 transducer. System parameters were nominally the same as those applied to the

simulations. Data are recorded without applying time-gain-compensation. We still use

a fixed-focused beam for both transmitting and receiving with a focal length of 40 mm

and no appodization. The configuration helps show the dependence of the speckle area

on image depth and the improvement that is seen when Wiener filtering is applied. The

system was used to image a cyst phantom (Model #539, ATS Laboratories, Bridgeport,

CT). The manufacturer-reported speed of sound in the phantom is 1450 m/s and the

attenuation coefficient slope is 0.5 dB cm−1 MHz−1. The delay and sum beamformed
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Figure 4.10: Log-compressed images for a line target phantom measured using the
SONOLINE Antares system at 7 MHz. (a) B-mode image, (b) WFB-mode image with
shift-invariant impulse response assumed, (c) WFB-mode image with shift-variant impulse
response assumed and the multi-LSF filter applied, and (d) the plots of three lateral lines
(normalized) across the target at the depth of 37 mm, in which plot A is for the B-mode image
in (a), plot B is for the WFB-mode image in (b) with shift-invariant impulse response, and
plot C is for the WFB-mode image in (c) with shift-variant impulse response [30].

echo SNR in the phantom was measured to be 32 dB near the 40-mm focal length.

The Wiener filter was developed using the measured line-spread function (LSF), which

is the pulse-echo impulse response integrated over the elevational axis. The line scatterers

are of 0.12 mm diameter nylon monofilament. Since phantom objects are two dimensional

(line and cylinder inclusions oriented to give point and circular targets in the scan plane),

the LSF is most appropriate to use in the system matrix H of the Wiener filter.

The LSF varied with depth as shown in the B-mode image of Figure 4.10(a), which is

used to investigate the shift-variant impulse responses for Wiener filtering. For the shift-

invariant impulse response, H is assumed to be a circulant matrix for experiment data and

composed from a single LSF recorded from a line scatterer positioned at the 40-mm focal

length. For the shift-variant impulse response, H is composed from five LSFs recorded

at regular 2 mm intervals between 34 and 45 mm distances (2 mm isoplanatic patches).

Applying the method described in Appendix C, a Wiener filter for a shift-variant system

was formed. To reduce LSF noise to negligible levels for filter development, we recorded

and time-averaged 1000 frames from stationary line scatterers.

Figures 4.10(b,c) show WFB-mode images for filters made assuming shift-invariant

and shift-variant systems, respectively. While the impulse response of the B-mode image
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in Figure 4.10(a) is strongly depth-dependent, the WFB-mode image in Fig. 4.10(b) shows

improved spatial resolution near the 40 mm focal length. However, the shift-variant filter

used in the image of Figure 4.10(c) demonstrates a more uniform and improved spatial

resolution. Nevertheless, deconvolution remains incomplete because of low-level side-lobe

energy.

4.4.2 Cyst Phantom Experiment

The same two Wiener filters were applied to an 8 mm diameter, anechoic, circular target

in the phantom that was positioned at a depth of 40 mm. The B-mode image is shown in

the upper left corner of Figure 4.11, where speckle correlation area is large and nonuni-

form over the plane. Average speckle size is reduced in the WFB-mode image (upper

right) filtered by only one LSF recorded at 40 mm depth. However, speckle is not spa-

tially uniform, and the cyst boundary is distorted because the RF data is filtered with

an unmatched LSF. The WFB-mode image generated with multiple shift-variant LSFs

(bottom left) has a more circular boundary and uniform small speckle, but at the cost of

increased computation (see Appendix C). Finally, the corresponding IWFB-mode image

(bottom right) has enhanced contrast and is able to most clearly represent a cyst-like

target. Segmentation errors tend to erode the margin and suggest a more complicated

boundary than the simple circle we know is present.

4.5 Discussion

The ideal observer approximation is extended to improve visual discrimination for high-

contrast features by introducing an iterative Wiener filter. IWFB-mode images decorrelate

speckle, as do WFB-mode images, but are able to better preserve contrast resolution

for contrast-limited tasks, e.g., Task 5. The human-observer performance studies show

that the IWF provides the same high discrimination level as the stationary WF for a

low-contrast large-area detection task (Task 1), and three boundary discrimination tasks

(Tasks 2-4). However, the IWF significantly improves visual discrimination efficiency

for a high-contrast large-area task (Task 5), where echo non-stationarity from object

heterogeneity degrades the stationary WF. The improvement in performance comes at the

cost of approximately fivefold increase in computational load (the IWFB-modes require

20 s on a dual-core PC, 2.13 GHz Processor, 2G RAM). The performance of the IWF

depends solely on the error in the segmentation to extract the breast lesion from the
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Figure 4.11: Images of a cyst-like, 8 mm circular target centered at a 40 mm depth for a
commercial system (linear scale). Standard B-mode image (upper-left), WFB-mode image
with shift invariant H (upper right), WFB-mode image with shift variant H (lower left), and
IWFB-mode image (lower right) [30].

background.

The deconvolution methods improve feature discriminations because the density of

independent image samples available to observers increases as the average speckle area

is reduced. The additional information is helpful for contrast-limited large-area Tasks 1

and 5 as well as those involving resolution-limited edge discrimination, Tasks 2-4. The

Wiener filter produces significant improvements when the impulse response is known

exactly and the image data are from a wide-sense stationary distribution. The Wiener

filter fails when the assumptions are violated, as occurred with the Wiener filter in Task

5, and yet it is robust enough for use with commercial systems. Performance improves

across all five tasks for IWFB-mode images because we added task-specific information

in filter development when it was necessary. We strive to develop beamformers that are

fast and robust across the wide spectrum of clinical features, and yet can adapt when

necessary to special conditions. The ideal observer approach provides a framework for

that development.

Human visual discrimination efficiency for the five lesion features considered is less

than 10% for B-mode imaging. Spatial filtering was found to improve the transfer of

object information into the image data, but it reduces somewhat the ability of humans

to access the information. Thus there is a potential role for image processing of the final

envelope image to increase accessibility. Note that the Smith-Wagner observer [20] was
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developed as the ideal observer for Task 1 but is unlikely to perform optimally for other

tasks.

In combination with sine-wave detection tasks, the SW observer also allows us to

observe the loss of information on the AIS curve when data is demodulated through the

final B-mode image. The demodulation reduces the squared detectability index to 25%

relative to those of the ideal observer on the main lobe of the AIS while disabling all

information in the other lobe. By Wiener filtering before demodulation, we can fully

recover the information at the main lode, but could not obtain any information in the

other two side-lodes of the curve.

Task performance of spatial-filter beamformers is improved significantly by including

any shift variance in the pulse-echo impulse response in the filter as seen in the phantom

experiments. The greatest challenge when applying this method in the clinical envi-

ronment is to estimate accurately the pulse-echo impulse response for the Wiener filter.

However, it is very difficult to measure the impulse response function for commercial sys-

tems, because this function is affected by phase abberations, imperfection of transducers,

and undesirable artifacts inside the systems. In this research, we found that a line-spread

function can be used to develop Wiener filters in place of the impulse response when

imaging cylindrical objects. Accurate estimation of point-spread functions throughout

the field will be needed to improve clinical imaging. Loss of visual discrimination from an

inaccurate point-spread function is also an interesting topic and motivates further study.

For any pulse-echo experiment, the most effective processing – from the perspectives

of both an optimal Bayesian observer (information transfer) and from psychophysically

measured human observer performance – requires detailed knowledge of the system im-

pulse response to decorrelate RF signals and thereby reduce the effects of speckle in the

resulting image.
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CHAPTER 5

BEAMFORMING

5.1 Introduction

Currently, the delay-and-sum (DS) beamformer is a standard method used by most com-

mercial ultrasound imaging systems. Signals from received channels in the array aperture

are delayed and summed to form an A-scan line. The beamformer is optimal, provided

that RF signals are sampled on those channels without any distortion or blurring [68].

With the presence of the pulse-echo spatiotemporal impulse responses at transducer ele-

ments, however, ultrasonic systems fail to meet this ideal condition. The image quality

achievable with the DS beamformer, therefore, is fundamentally limited by loss of co-

herence among RF signals, which lowers eSNR and degrades spatial and contrast reso-

lutions. In such a case, filtering operators can be incorporated into the DS to improve

performance [69].

Advances in computational speed make it realistic to consider applying complex filter-

ing operators in real-time in combination with the DS [56]. Among them, the minimum-

variance (MV) beamformer is prominent as applied to breast sonography. Several in-

vestigations have found improvements in spatial and contrast resolutions using the MV

approach [70–77]. This method was pioneered by Capon for seismic applications as a high-

resolution method for estimating the frequency-wavenumber power spectral density [78].

The goal of the MV beamformer is to select receive-channel filters that minimize the

weighted array power output in all directions except along the beam axis. The MV

beamformer can be derived using several approaches, and the results have many names,

including linear constrained minimum variance (LCMV), minimum variance distortion-

less response (MVDR), minimum power distortionless response (MPDR), and adaptive

beamforming [68, 76]. However, if physical parameters of the system are known exactly,

they all lead us to the same solution.

Portions of this chapter are reprinted, with permission, from N.Q. Nguyen, C.K. Abbey, and M.F.
Insana, “Analysis of minimum-variance and Wiener-Filtered beamforming strategies,” in Proceedings of
the IEEE Ultrasonics Symposium (in press), c⃝ 2011 IEEE.
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The MV beamformer can be followed by a scalar filter to form the minimum mean

square error (MMSE) beamformer, which generates the MMSE estimate of the input

signal. The MMSE beamformer is derived as an optimal linear processor. If both signal

and noise vectors are Gaussian processes, it becomes the best processor, surpassing even

nonlinear ones [68, 79]. Recently, the MMSE was applied to sonography in terms of a

Wiener beamformer, and found to improve contrast resolution compared with the MV

approach, especially under low echo-signal-to-noise (eSNR) conditions [80].

Although both MMSE and MV beamformer were shown to improve image quality met-

rics, there remains a larger question of how to predict and compare their performance for

achieving diagnostic objectives. In this chapter, we propose using ideal Bayesian observer

analysis as a basis for beamformer design and evaluation, which builds upon our initial

development in [31]. One advantage of the ideal observer methodology is its ability to re-

late sonographic instrument properties (resolution and noise figures) directly to observer

performance for features that can be specified exactly [26,30] (see Chapter 3). Observers

are trained humans or algorithms that evaluate criteria according to the rules of decision

theory. Another advantage of this approach is the ability to track task information flow

through the image formation and diagnostic processes. Since the ideal observer provides

an upper bound for task performance, comparisons with practical-observer performance

define the efficiency of each beamformer to maximize the information content in the image

accessible by observers.

In subsequent sections, the MV beamformer is expressed as a first-order approximation

to the ideal observer strategy. It is decomposed into two operators. The first operator

applies a matched filter (MF) to each receive-channel signal that is composed of the

channel’s pulse-echo impulse response. This operator helps compress data without losing

any diagnostic information. After summation, the compressed RF echoes are applied by

the second operator, which actually is an inverse filter, prior to envelope detection. The

goal of the second operator is to preserve the diagnostic information through demodula-

tion. In efforts to improve upon the first-order approximation, the MMSE beamformer

has emerged. Since it has the form of the Wiener filter, we name it the Wiener filtered

(WF) beamformer. Through our framework, the performance of each beamformer can

be predicted and compared with others based on the conditions of the tasks and system

properties, for which the first-order approximations hold. Their performances are then

measured for over five discrimination tasks involving breast lesion features. The results

varied predictably depending on the nature of the task and on how well each beamformer

was able to approximate the strategy of the ideal observer for the task.
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Figure 5.1: A graphical model for image formation that includes beamforming. The
acquisition stage is extended to each element of the transducer where the data are initially
acquired [31].

5.2 Ideal observer approach to beamformers

5.2.1 System model for transducer element signals

The image formation model for beamforming is graphically illustrated in Figure 5.1, where

the acquisition operator H in Figure 2.7 is extended to describe individual received ele-

ments of the linear array transducer. Consequently, the imaging equation in (2.2) becomes

gT =


g0

g1

...

gN−1

 =


H0

H1

...

HN−1

 f +


n0

n1

...

nN−1

 = HT f + nT , (5.1)

where gT is a vector of RF echo signals from all receive channels before delay and sum-

mation. Hi is the multiplication matrix at element i and HT is a combination of multi-

plication matrices from all transducer elements for generating pre-beamformed RF data

gT . nT is the acquisition noise. Assuming noise on the ith channel is an independent and

identical WGN process with variance σ2
n,T , the variance of the beamformed noise signal

is σ2
n = Nσ2

n,T , where N is the number of elements in the receive aperture. Denoting B
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as a beamforming operator, we can write

g = BgT and H = BHT ,

where g andH are the RF data and system matrix after beamforming, respectively. If B is

a linear operator, we can write the beamforming process in terms of matrix multiplications

as

g = Hf + n , where g = Btgt , H = BtHT , and n = BtnT . (5.2)

In (5.2), Bt is used instead of B to be consistent with notations used in the beamforming

literature.

Each lesion feature has a unique benign-malignant signature pair that are labeled i = 0

or 1, respectively. The probability density function (pdf) of object scattering for the ith

class of data is still modeled by a zero-mean, uncorrelated, nonstationary, multivariate

normal process:

pi(f) = MVN(0, σ2
obj(I+ Si)) for i = 0, 1 . (5.3)

σ2
obj(I + Si) is the covariance matrix, I is the identity matrix, and diagonal matrix Si

defines deviations in uniform background tissue scattering that specify features of the ith

class. The pdf for pre-beamformed RF data gT underlying Hi is given by

pi(gT ) = MVN(0,ΣT ,i) for i = 0, 1 , (5.4)

where

ΣT ,i = σ2
objHT (I+ Si)H

t
T +Σn , (5.5)

which is the covariance matrix of the pre-beamformed echo RF signals. Σn = σ2
T ,nI, but

the size of I is much larger to accommodate the size of gT .

The ideal observer’s strategy for distinguishing the two classes of data is described by

a test statistic given as the log-likelihood ratio,

λ(gT ) = ln
p1(gT )

p0(gT )
−→ 1

2
gtT (Σ

−1
T ,0 −Σ−1

T ,1)gT . (5.6)

The right side of (5.6) is formed by eliminating additional terms that do not depend on

gT . In following sections, the ideal observer test statistic is explored to find beamforming

strategies for gT .
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5.2.2 Ideal observer exploration

The beamforming strategy of the ideal observer is hidden within the compact expression

of (5.6). We can obtain insights by applying the Woodbury matrix inverse identity [8] to

the inverse of covariance matrices as given by

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 , (5.7)

provided matrices A and C are invertible.

Applying (5.7) to the expression for Σ−1
T ,i in (5.5) (i = 0,1), we obtain

Σ−1
T ,i = Σ−1

n − σ2
objΣ

−1
n HT

(
(I+ Si)

−1 + σ2
objH

t
TΣ

−1
n HT

)−1
Ht

TΣ
−1
n . (5.8)

By setting Kn , σ2
objH

t
TΣ

−1
n HT and Ψi = (I+ Si)

−1 +Kn, the test statistic becomes

λ(gT ) =
σ2
obj

2
gt
TΣ

−1
n HT

(
Ψ−1

1 −Ψ−1
0

)
Ht

TΣ
−1
n gT . (5.9)

The expanded expression for λ(gT ) in (5.9) reveals the first strategy of the ideal

observer for beamforming. The term Ht
TΣ

−1
n gT is recognized as the matched filtering of

gT provided the acquisition noise is stationary and uniform, Σn = σ2
n,T I. For the highly

rectangular shape of HT , multiplying pre-beamformed RF data by its transpose allows

us to compress the volume data into a column vector of the A-scan line’s dimension.

Besides, we realize in (5.9) that gt
TΣ

−1
n HT = (Ht

TΣ
−1
n gT )

t , thus, the IO test statistic can

be computed through the matched filtered RF data gT . The form of λ(gT ) in (5.9) reveals

that the ideal performance is preserved through the matched filtering operator, although

it is an irreversible process which compresses the data. Matched filtering, however, only

preserves the information up to the end of the acquisition stage. There is no guarantee

that information will survive demodulation to arrive intact in the B-mode image in a

form accessible by observers. In fact, there is a significant loss of task performance

if the envelope image is computed immediately after matched filtering. In our initial

development, numerical studies for matched filtered (MF) beamformed RF data over five

discrimination tasks show that the information left after demodulation range from 10%

in Task 1 to 1.6% in Task 2 [31].

We showed in (4.9) that if the ideal observer response can be factorized in terms of

a filtered RF signal squared and the task information, the response remains unchanged

if the RF is replaced by its envelope. This equation means that ideal performance is

preserved through demodulation. Therefore, in the following step, we decompose the
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matrix coefficient Ψ−1
1 −Ψ−1

0 in (5.9) into the task information and an operator applying

to MF beamformed RF data. The decomposition usually requires some approximations

due to the acquisition noise in RF data.

5.2.3 Approximations to the ideal strategy

By assuming the columns of HT are linearly independent or Kn is invertible, we apply

(5.7) to Ψi in (5.9) and find

Ψ−1
i = K−1

n −K−1
n

(
K−1

n + I+ Si

)−1
K−1

n . (5.10)

Substituting (5.10) into (5.9), we have

λ(gT ) =
σ2
obj

2
gt
THTΣ

−1
n K−1

n (Φ−1
0 −Φ−1

1 )K−1
n Ht

TΣ
−1
n gT , (5.11)

where Φi = I+K−1
n + Si and i = 0 or 1.

The ideal observer test statistic in (5.11) can be explored further by adopting the

first-order approximation (I+A)−1 ≃ I−A to calculate Φ−1
i [26], where A , K−1

n + Si.

By doing so, we obtain

Φ−1
i ≃ I− (K−1

n + Si) , (5.12)

and

λ(gT ) ≃
σ−2
obj

2
gt
THTΣ

−1
n

(
Ht

TΣ
−1
n HT

)−1
(S1 − S0)

(
Ht

TΣ
−1
n HT

)−1
Ht

TΣ
−1
n gT

=
σ−4
obj

2
gt
TBMV∆SBt

MVgT , (5.13)

where ∆S = σ2
obj(S1 − S0) is the task information and BMV = Σ−1

n HT (H
t
TΣ

−1
n HT )

−1

is recognized as the MV beamformer [68]. Details on the form of this beamformer are

discussed in the next section. The first-order approximation in (5.13) describes MV

beamformed echo signals Bt
MVgT that are squared and multiplied by the task informa-

tion. Equation (5.13) suggests an MV beamformer should be applied to RF data gT

for maximizing diagnostic information through demodulation provided the first-order ap-

proximation in (5.12) is valid.

The approximation can be improved with a new decomposition of Φi = (K−1
n +I)+Si .

Consequently,

Φ−1
i ≈ (K−1

n + I)−1 − (K−1
n + I)−1Si(K

−1
n + I)−1 , (5.14)
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and

Φ−1
0 −Φ−1

1 ≈ (K−1
n + I)−1(S1 − S0)(K

−1
n + I)−1 . (5.15)

Substituting (5.15) into (5.11), we obtain

λ(gT ) ≈
σ2
obj

2
gt
TΣ

−1
n HTK

−1
n (K−1

n + I)−1(S1 − S0)(K
−1
n + I)−1K−1

n Ht
TΣ

−1
n gT

=
σ2
obj

2
gt
THT (σ

2
objH

t
THT + σ2

nI)
−1(S1 − S0)(σ

2
objH

t
THT + σ2

nI)
−1Ht

TgT

=
1

2
gt
TBWF∆SBt

WFgT , (5.16)

in which the second expression is obtained by using Σn = σ2
nI and Kn = σ2

objH
t
THT/σ

2
n.

In (5.16), Bt
WF = (σ2

objH
t
THT +σ2

nI)
−1Ht

T has the form of the Wiener filter. We name

it Wiener-filtered (WF) beamformer. Similarly to the case of the MV beamformer, (5.16)

suggests a WF beamformer should be applied to the RF data provided the first-order

approximation in (5.14) is valid.

Thus, we have shown that MV and WF beamformers are both approximations of

the ideal strategy. In both cases, they spatially decorrelate the RF echo signals before

demodulation, which preserves more task information as compared to the delay-and-sum

(DS) and matched filter (MF) beamformers. Based on the analysis, we predict that the

WF beamformer outperforms the MV beamformer if the eigenvalues of K−1
n are large.

The requirement that the inverse of Kn exist and be well conditioned challenges the

experimental validation of our analysis. A full treatment is provided in Appendix D,

Section D.1.

5.3 Connections to other studies

5.3.1 Minimum variance beamformer

BMV in (5.13) can be derived as the minimum variance distortionless response (MVDR)

beamformer [68]. To see that, we combine the matrix Bt into the imaging equation to

obtain

BtgT = BtHT f +BtnT . (5.17)

The constraint of no distortion implies BtHT = I, the identity matrix, while the

interference from noise after beamforming, E [|BtnT |2], needs to be minimized. Since

E [|BtnT |2] = E [nt
TBBtnT ] = Tr(BtΣnB), the problem of MVDR beamforming can be
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summarized as

minimize
B

Tr (BtΣnB)

subject to BtH = I , (5.18)

which gives Bopt = Σ−1
n HT (H

t
TΣ

−1
n HT )

−1 (see Appendix D, Section D.2).

The solution of (5.18) is recognized as the Frost beamformer [81]. It is the same as

the Capon beamformer when the impulse responses from received elements are known. In

our analysis, known impulse responses were required to model the ideal observer when the

signals are known statistically. In much literature, the MV beamformer is implemented

from Capon beamforming without knowledge of the impulse responses [70–73]. For the

Capon beamformer, the RF data is modeled at an instant of time t,

x(t) =


x0(t)

x1(t)
...

xN−1(t)

 , (5.19)

where xi(t) is the RF signal at element i of the transducer. The beamformer output y(t)

and its energy is given by

g(t) = w(t)tx(t) and

P(t) = E
[
|g(t)|2

]
= w(t)tRxx(t)w(t) , (5.20)

where w(t) = [w0(t),w1(t), ....,wN−1(t)]
t and wi(t) is the aperture weight of element i,

and Rxx(t) = E [x(t)x(t)t ] is the spatial covariance matrix of RF data. The beamforming

problem is formulated as

minimize
w

w(t)tRxx(t)w(t)

subject to w(t)ta = 1 , (5.21)

where a is a steering vector. For ultrasound beamforming, a is usually a vector of ones,

equivalent to focusing beam energy only at a steering angle of 0o. The optimal w(t) for

(5.21) is given by [71]

wopt(t) =
R−1

xx (t)a

atR−1
xx (t)a

. (5.22)

The solution in (5.22) is sometimes called adaptive beamforming because the calculation
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of w(t) is adapted to the incoming RF data x.

To see the similarity between BMV and wopt , we first re-write BMV as

BMV = Σ−1
n HT

(
Ht

TΣ
−1
n HT

)−1
= Σ−1

T ,iHT

(
Ht

TΣ
−1
T ,iHT

)−1
, (5.23)

for i = 0 or 1 (see Appendix D, Section D.3). Thus, BMV can also be calculated from

RF data underlying either hypothesis Hi. Another concern is whether wopt includes an

inverse operator like BMV does, even though it was derived without knowing the impulse

responses of transducer elements. The question can be answered intuitively as follows:

Assuming that wopt in (5.22) works perfectly, the impulse response of the system after

beamforming will be one at 0o and zero elsewhere, which forms a direct delta function

for the pulse-echo impulse response. Because the input object is modeled as a set of

independent scatterers and scanned by the ideal system, the output RF data is not blurred

and the spatial covariance matrix of w(t)tx(t) is diagonal. Since Rxx(t) is a covariance

matrix of correlated data, w(t)t must include an inverse operator to de-correlate the data.

Although both (5.18) and (5.21) are set to the same solution, their implementations

may provide different answers. In (5.18), the covariance matrix is known from the signal

modeling. A low-rank approximation may be required to handle the poor condition of

matrix Ht
THT . In (5.21), the covariance matrix is estimated from output data, using the

sample matrix inversion (SMI) method. The convergence of the SMI method, and the

distributions of the largest eigenvalues in SMI as well, are very open problems and beyond

the scope of this research [82,83].

5.3.2 Wiener filtered beamformer

The second beamformer Bt
WF = (σ2

objH
t
THT + σ2

nI)
−1Ht

T has the form of a Wiener fil-

ter. However, it differs from the Wiener filter derived in our initial study [26], in which

(σ2
objH

t
THT +σ2

nI)
−1 and Ht

T are swapped. This difference reflects a strategy of the ideal

observer in beamforming. The observer first compresses RF data before processing it to

arrive at a test statistic needed to make the decision.

The WF beamformer can be derived in the MMSE approach [68]. We also consider

the WF beamformer as a solution of a general problem of Tikhonov regularization, given

by [84]

minimize
f

|gT −HT f |22 + γ|f |22 , (5.24)
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where γ is a regularized parameter (γ > 0). Tikhonov regularization gives a solution of

f̂opt = (Ht
THT +

γ

σ2
obj

I)−1Ht
TgT , (5.25)

provided f is the scattering object from a low-contrast lesion, or Σf ≃ σ2
objI.

Without the regularization term, the solution of (5.25) becomes f̂opt = f̂MV = Bt
MVgT .

Because Bt
MVHT = I, the reconstruction error is given by

|̂fMV − f |2 = |Bt
MVHT f − f +Bt

MVn|2 = |Bt
MVn|2 , (5.26)

which can be quite high, particularly ifHT is poorly conditioned. Thus, the regularization

term helps avoid the ill-conditioned HT . The optimal regularized parameter γ, however,

is usually unknown and in practical problems often determined by an ad hoc method.

By using the ideal observer analysis, we find the optimal regularized parameter γ = σ2
n,

or the solution of the regularization problem becomes the WF beamforming operator. In

Appendix D, Section D.1, it is also shown that the WF beamformer is tolerant toward the

ill-conditioning of HT , while the MV beamformer is reduced to the pseudoinverse H+
T .

The outperformance of the WF beamformer in comparison to the MV can be observed

through first-order approximations of (5.12) and (5.14). The approximation of (5.14)

is much better if the eigenvalues of K−1
n are large, where Kn , σ2

objH
t
TΣ

−1
n HT . A

large K−1
n is equivalent to the poor condition of HT or low eSNR. These findings are

in agreement with those from other studies [80], but we found them from an analytical

framework developed on the basis of the ideal observer. Performance of those beamformers

is demonstrated through numerical results in the next section.

5.4 Simulation

5.4.1 Implementation using Field II program

The 2-D pulse-echo impulse response for each transducer element is generated by using the

Field II program [43,44], modeling after the SONOLINE Antares system (Siemens Medical

Solutions, Mountain View, CA) with transducer VF10-5. The transducer array has 192

total elements separated by a 0.02 mm element kerf. By setting a 40 mm transmit/receive

focal length and f/2 in plane, the active aperture ∼ 20 mm, equivalent to 96 elements. The

element impulse responses and that of the corresponding DS beamformer are generated
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Figure 5.2: Pulse-echo impulse responses in 2-D of transducer elements. The last image (DS)
is for the delay-and-sum beamformer.
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Figure 5.3: The normalized eigenvalue spectrum of Ht
THT with cut-off at –40 dB to

implement the MV beamformer [32].

and illustrated in Figure 5.2

Based on the pulse-echo impulse response from element j, we construct multiplication

matrix Hj and form system matrix HT for pre-beamformed RF data. Since HT is very

large, a circulant assumption was made for each Hj, providing advantages in computation

[26]. The MV beamformer involves the ill-conditioned matrix product (Ht
THT )

−1
, which

requires a low-rank approximation. Figure 5.3 shows the normalized eigenvalue spectrum

ofHt
THT . By cutting off frequency contributions less than –40 dB, the percentage of total

power contained in the discarded eigenvalues is less than 0.03%. The MV is implemented

as the pseudoinverse of HT [68].

Figure. 5.4 shows an example of B-mode images for Task 4 with the spiculated “ma-

lignant” lesion on the top in all cases. Four beamfomers are used to generate four pairs

of images, including DS, MF, MV, and WF. Visually, the MF beamformer has the largest

speckles. Both WF and MV beamformers reduce speckle sizes and make lesion boundaries

become clearer. Comparing WF and MV beamformed B-mode images, the WF appears
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Figure 5.4: Examples of B-mode images for Task 4, implemented with four beamformers,
including DS, WF, MV, and WF.

to have a better spatial resolution but lower contrast resolution.

5.4.2 Results

The image quality of the envelope images is first evaluated through two basic metrics of

contrast and spatial resolution. The images of a benign lesion in Figure. 5.4 are selected to

evaluate the contrast resolution through beamforming techniques. The contrast resolution

between a cyst and the background can be measured as [85]

C =
Sout − Sin√
S 2
out + S 2

in

, (5.27)

where Sin is the mean signal measured inside the cyst and Sout is the average signal

measured from the same size region outside the cyst. By setting the contrast of the cyst

equal to 5% the background at the benign variance profile for generating the benign B-

mode, the contrast resolutions on envelope images for four beamformers are as follows:

CDS = 0.6486, CWF = 0.6552, CMV = 0.6140, and CWF = 0.4035, corresponding to DS,

MF, MV, and WF beamformers. Thus MV and WF beamformers reduce the contrast

resolution, especially for the WF.

The spatial resolution on B-mode images is limited by the size of the acoustic speckles.

The smaller size speckle provide for better spatial resolution. Therefore, the size of the

speckle spots can be used to evaluate the spatial resolution. Speckle size is measured

through the normalized autocovariance function (ACVF) of the B-mode image of fully

developed speckles [21]. An example of a B-mode image with its normalized autocovari-
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Figure 5.5: (a) An example of fully developed speckles. (b) Normalized autocovariance
function used to calculate the speckle size. (c) Lateral cut through 0. (d) Axial cut through 0.

ance function, including one pulse on a noisy background, is shown in Figures 5.5 (a,b).

The size of the speckle is measured at full width at haft maximum (–6 dB) of the pulse

in both axial and lateral directions (Figures 5.5(c,d)) .

The ACVF’s of DS, MF, MV, and WF are plotted in axial and lateral directions as in

Figure. 5.6. The size of the speckle spots on DS B-mode images is about 0.158 mm in the

axial and 0.454 mm in the lateral cuts. The MF beamformer broadens the speckle size in

the axial (0.219 mm) and the lateral (0.473 mm) directions. The MV and WF both make

the speckle area smaller, but between them the WF is a little better. The speckle size in

the MV B-mode is 0.098 mm in the axial and 0.178 mm in the lateral axes, while in the

WF B-mode, the sizes are 0.087 mm and 0.104 mm, respectively.

Beamformer performance is quantified using observer efficiency that characterizes the

loss of task information through demodulation. The ideal observer is combined with

the SW observer for B-mode images in (4.6) to calculate the efficiencies of transferring

diagnostic information from RF data to B-mode for each beamformer. The efficiencies

of the four beamformers applied to five lesion features are plotted in Figure 5.7. The

efficiency of MF is always the lowest. The WF and MV make substantial improvements
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Figure 5.6: Autocovariance function of speckle images through DS, MF, MV, and WF
beamformers, showing (a) axial cut through x = 0 and (b) lateral cut through z = 0.
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Figure 5.7: Observer efficiencies on B-mode images with different beamformers. An efficiency
of 1 indicates that all task information is passed from RF echo signals into B-mode images.
Error bars indicate one standard error.
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Figure 5.8: The envelope images of the MV and WF, and the WFapp B-mode implemented
from the same RF data (a), along with the efficiency of the SW observer on those beamformers
(b).

for the first four tasks, but in Task 5 (anechoic/hypoechoic), the efficiency of WF is

reduced to approximately that of the DS (10.08% vs 8.85%). In Task 5, efficiency for MV

is larger (15.71%).

To analyze the performance of the MV beamformer relative to the WF beamformer

in Task 5, we notice that the low-rank approximation used to implement the MV has

changed the system model. Therefore, we implement the WF beamformer with the same

low-rank approximation for comparison between the WF and MV beamformers and refer

to it as WFapp. The images of WFapp B-mode and its observer efficiency are plotted

in Figures 5.8 (a,b) to compare with the other two beamformers. In Figure 5.8(a) the

B-mode image from the WFapp appears to have the spatial resolution on par with the

MV and somewhat improved contrast resolution. On the efficiency chart in Figure 5.8(b),

the improvement of WFapp in comparison with the MV is very small in the first four

tasks (less than 2%) but is significant for Task 5 (7.45%). In comparison with the WF

beamformer computed at full rank, WFapp has lower efficiency in the first four tasks, but

higher efficiency in Task 5 (23.16% vs 10.08%).

5.5 Discussion

In acoustic beamforming as applied to the formation of medical B-mode images, two

irreversible processes reduce task information. The first occurs at the acquisition stage,

where signals from all transducer elements are combined into a single A-scan line. The

second occurs in demodulation at the display stage, where the phase component of RF data

is discarded as required to interface with the human eye-brain system. Any information
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loss involving these two processes cannot be recovered at the final envelope images.

By using the ideal observer analysis, we found that ideal performance is still reached

through matched filtering. Thus, the MF beamformer preserves task information trans-

ferred from multiple received channels to the beamformed RF echo signals. In ultrasonic

systems, however, beamformed RF signals are not the final images accessible by human

observers. More information would be lost if demodulation is applied to the MF beam-

formed RF data [31]. The MF beamformer should be followed by de-blurred operators,

which occur with MV and WF beamformers, to help preserve task information.

We found by applying ideal observer analysis that the minimum variance (MV) and

Wiener filter (WF) beamformers each approximate to the ideal strategy. The difference

between WF and MV beamformers is the additional term σ2
nI in the inverse operator, in

which σ2
nI arose from a more accurate first-order approximation to the covariance matrix

inverse. The better first-order approximation of the WF beamformer improves the SW

observer performance. Therefore, WF should outperform MV in all five tasks. The im-

provement is significant when (σ2
objH

t
THT/σ

2
n)

−1 has large eigenvalues (low eSNR or poor

conditionedHT ). Implementation of the MV, however, requires a low-rank approximation

that changes the system model. The noise filtering advantages of rank reduction are well

matched to the spatial-frequency requirements of Task 5, improving the MV beamformer

performance.
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CHAPTER 6

MEASUREMENTS OF THE SPATIOTEMPORAL
PULSE-ECHO IMPULSE RESPONSE

6.1 Introduction

In the ideal observer analysis, the system matrix H (or HT for pre-beamformed signals)

plays a central role in modeling, developing beamforming algorithms, and post-processing

filters suggested by the ideal strategy. Therefore, it is very important to have an accurate

H, which is most reliably obtained from experimental data. As described in Chapter

2, Section 2.3, H is constructed from the pulse-echo spatiotemporal impulse response or

point-spread-function (PSF) of the system, which can vary in space and time. An accurate

measurement of the PSF is difficult to obtain. The PSF is also difficult to model accurately

from some software programs [43, 44] because even small, unknown perturbations in the

linear array transducer geometry can make significant changes in measured pulse-echo

field patterns compared with modeled patterns, especially in the near-field.

A simple measurement is accomplished in the scan plane from local autocovariance esti-

mates applied to fully developed image speckle [19] (see Figure 5.5). Coherent summation

of reflected pressure waves measured at the transducer surface from randomly distributed

scattering media results in B-mode speckles whose dimensions indicate in-plane spatial

resolution, but only under the limiting conditions where maximum coherence is achieved

(focal zone). It is well known that speckle correlation lengths for off-focus field locations

and conditions that distort pulse phases, e.g., aberration media, underestimate the spatial

extent of the impulse response and provide no direct phase information.

Better PSF estimates for 1-D arrays are obtained from RF signals of a line-scatterer

reflection, provided the scattering material does not acoustically resonate near the carrier

frequency. Beam profile phantoms with line scatterers are commercially available, e.g.,

ATS #539 (ATS Industries, Bridgeport CT). The echo pattern appears as a point response

Portions of this chapter are reprinted, with permission, from N.Q. Nguyen, C.K. Abbey, R.D. Yapp,
and M.F. Insana, “Tomographic reconstruction of the pulse-echo spatiotemporal impulse response” in
Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 7629, pp. 76290F.1-11,
c⃝ 2010 The international society for optics and photonics.
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in the scan plane, but is actually a LSF, which is the PSF integrated over the elevational

dimension of the transducer aperture. Depending on the elevational beamwidth, the LSF

may or may not be a good approximation of the PSF.

In this chapter, we propose two methods to measure the PSF that both follow the

linear pulse-echo model describing RF data developed by Zemp et al. [41]. In the first

method, the PSF is measured by scanning a single scatterer that approximates a Dirac

delta function applied to the system input. In the second method, the function is recon-

structed by processing echoes obtained from a line scatterer rotated in a plane normal

to the beam axis. Applying a linear pulse-echo model of echo formation, LSF echoes

are shown to yield projections of the sound beam that may be reconstructed to estimate

the PSF. Projections are linear transformations of the PSF along lines in space. Recon-

struction from projections is an inverse problem that can be solved through application

of singular value decomposition (SVD) [8]. Our approach has similarities to standard

filtered backprojection used in photon transmission or emission tomography [86], but a

major geometric difference is that the detector does not rotate with the projection source.

Pulse-echo projections from 1-D arrays contain a large null space that limits reconstruc-

tion accuracy. Some methods have been proposed for improving the reconstructed results.

Mathematically, we show that the null space can be filled by using the 2-D transducer

array or moving the transducer in the elevation direction. Without a 2-D array, however,

this method is not feasible experimentally due to the time consuming aspects of data

acquisition and the errors that are added during the long acquisition process. Therefore,

the algebraic reconstruction technique (ART) has been applied. It was demonstrated in

X-ray computed tomography that ART has improvements over the filtered backprojection

method for situations of incomplete data or limited angle projections [87].

6.2 Scattering spheres

In this method, we use a gelatin gel volume into which 0.04 mm diameter glass spheres

are randomly suspended. The density of the glass is 2.38 g/cc and the speed of sound in

glass is 5570 m/s. The density and sound speed of the gelatin is 1.06 g/cc and 1500 m/s.

With a pulse center frequency of 10 MHz, the sphere diameter is less than one third of

the wavelength and thus the high-scattering point targets are reasonable approximations

to delta functions. Figure 6.1(a) shows the experimental setup for the measurement. The

sampling frequency of the SONOLINE Antares system is 40 MHz, which is equivalent

to a resolution of 0.0193 mm in the axial direction. Therefore, an automation controller
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Figure 6.1: (a) Experimental setup including a motion controller and a phantom, (b)
transducer VF 10-5, and (c) a holder that attaches the transducer to the motion controller.

(Parker Daedal), with a micrometer graduation of 10−4 mm in all three dimensions, is used

to adjust the position of the transducer. To guarantee the transducer is perpendicular to

the surface of the phantom, a transducer holder (Figure 6.1(c)) is designed for mounting

the transducer (Figure 6.1(b)) to the controller.

Figure. 6.2(a) shows a B-mode image through a cross section of the gel in the axial-

lateral plane. Notice how the impulse response varies with distance. Because the spheres

are so small, the image shows the envelope of weak and noisy impulse responses at different

spatial locations. For zero-mean additive noise, eSNR is increased by a factor of 1000 by

averaging 1000 RF echo signals without moving the transducer. Recall that the transducer

VF 10-5 being used is a linear array. A fixed focus of 40 mm was set on both transmit

and receive. The lateral array pitch is 0.2 mm. The PSF are most compact near the

focal length but broaden in both near-field and far-field regions. Moving the transducer

in elevation at 0.5 mm increments, we acquired many planes to synthesize the 3-D PSF

for the system. Figure (6.2)(b) shows an axial cut of this function at a distance of 52 mm

(far-field) with the phase varied over the elevation-lateral plane.

Figure 6.3 shows axial cuts of RF echo signals through the lateral-elevational plane

recorded at three distances: near-field, focal, and far-field. The sections are through

planes of generally curved functions (with respect to constant phase fronts) that have not

been demodulated. The elevation cuts of the corresponding PSFs through the axis origin

are presented in Figure. 6.4. The dark line on each image indicates the position of the

cross section shown in Figure 6.3.

This method is fast and convenient; however, it has two disadvantages. First, the

scattering signals from tiny glass spheres are weak, so measurements may be affected by
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Figure 6.2: (a) A log-compressed B-mode image of a cross section of a gelatin block with a
random distribution of 0.04 mm diameter spheres. eSNR is improved by averaging 1000 RF
data frames. (b) A cut in the lateral-elevation plane at a distance of 52 mm (far-field), formed
by moving the transducer in elevation at 0.5 mm increments.
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Figure 6.3: The axial cut of 3-D pulse-echo spatiotemporal impulse response in the
near-field, focal-length, and far-field distances. Distances are in mm. When more than one
sphere is in the field, where are multiple copies of PSFs.
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Figure 6.4: The elevation cuts through 0 of 3-D pulse-echo spatiotemporal impulse responses
at near-field, focal-length, and far-field distances. Distances are in mm.

scattering from gel impurities and surface reflections. These are apparent in Figures 6.3

and 6.4. Second, the shift-varying impulse response requires scatterers to be placed far

enough apart to not interfere and yet dense enough to capture the spatial variations in the

impulse response. These problems can be avoided by reconstructing impulse responses

from line scatterers as described in the next section.

6.3 Reconstruction from projections of rotating line

6.3.1 Background

The scan of a line rotated in a plane normal to the beam axis is illustrated in Figure 6.5.

Zemp et al. [41] modeled the formation of RF echo signals g as a linear system given by

g(t) =

∫
dx h(x, t)f (x) + n(t) . (6.1)

Scattering function f is represented in object space at vector position x = (x , y , z ). Object

functions are linearly mapped into data g recorded at acquisition-time-dependent vector
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Figure 6.5: Geometry of the linear array and line scatterer (represented as Dirac deltas) are
illustrated. The array coordinates p, q are sampled on the spatial intervals X,Y , respectively.
The line scatterer, with coordinates x, y, z, is rotated in the xy plane about the z axis with
angle φ [33].

t = (t1, t2, t3) through the pulse-echo spatiotemporal impulse response h. Function n

is signal-independent, white Gaussian noise originating from the measurement process.

Echo acquisition is a mapping of spatial objects into temporal data, while B-mode image

formation restores the spatial context for human interpretation. To reconstruct h from g

projections, we must first describe essential space-time relationships among objects, RF

data, and images.

Echo data are acquired as a sequential linear array, first along range time t1 to yield

an A-line, then along cross-range time t2 to yield a frame, but the acquisition may be

extended to “elevational time” t3 for dynamic imaging or volumetric acquisitions. The

total acquisition time is t = t1 + t2 + t3. Echoes are sampled in range at time t1 = ℓT , for

integer 1 ≤ ℓ ≤ L and at constant interval T . The t1 axis is approximately proportional

to the image depth axis z via t1 = 2z/c for sound speed c. Cross-range echo sampling

corresponds to the lateral p axis of the array in Figure 6.5. We have t2 = mLT for M

lines per frame and −M/2 ≤ m ≤ M/2. The t2 axis is proportional to the lateral image

axis p via t2 = pLT/X, p = mX, and array pitch X. For the 1-D arrays in Figure 6.5, the

elevational axis is a point at q = 0, and so we set t3 = rMLT for 1 ≤ r ≤ R to track the

time between frames, MLT , for a total acquisition time t = RMLT . However, for echo-

volume acquisitions using a 2-D linear array, t3 = rMLT/Y records acquisitions along

the q axis of the 2-D array, and the volumetric frame rate is 1/RMLT . Conversion from

temporal to spatial coordinates using a 1-D array is summarized by the scan-conversion
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imaging equation,

t = Px , or

(
t1

t2

)
=

(
2/c 0

0 LT/X

)(
z

p

)
. (6.2)

Zemp et al. [41] showed that the pulse-echo spatiotemporal impulse response h(x, t)

reduces to the PSF when the field position of a point scatterer is fixed and a frame is

acquired, i.e., PSF(t) = h(t|x). Analogously, the spatial sensitivity function (SSF) is

obtained when acquisition time is fixed and a point reflector is scanned in space, ssf(x) =

h(x|t). Also, for isoplanatic regions of the beam, the impulse response is shift invariant

and, consequently, a function of a single variable, h(t−Px). In isoplanatic regions, (6.1)

becomes a convolution in the spatial domain, g(t) = [h ∗
x
f ](t) + n(t).

6.3.2 Problem formulation

Projections in pulse-echo ultrasound are echo signals reflected from a line scatterer rep-

resented by a product of Dirac deltas

f(x) = δ(x cosφ+ y sinφ)δ(z − z0) . (6.3)

This object function is a line in the xy plane at distance z0 that is scanned by an array

along the p axis. The line is then rotated about the z axis to angle φ. Consequently,

(x, y, z) are object coordinates, (p, φ, t1) are echo-data coordinates, and there is a mapping

among them.

Applying (6.3) to (6.1), and ignoring the noise term, we express the echo signal as a

function of φ,

g(t, φ) =

∫
dy

∫
dx h(x, y, z0, t) δ(x cosφ+ y sinφ) , (6.4)

where integration is over the entire xy plane and the results hold only at z = z0. Since

shift invariance can be assumed at a fixed distance, h(x, t) = h(t−Px). Combining (6.2)
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and (6.4) gives (see Figure 6.6),

g(t1, t2, φ) =

∫
dy

∫
dx h

(
Xt2
LT

− x, 0− y,
ct1
2

− z0

)
δ(x cosφ+ y sinφ)

g(p, φ, t1) =

∫
dy

∫
dx h(x, y,

ct1
2

− z0) δ [(p− x) cosφ− y sinφ]

g(s) , g(p, φ) =

∫
drh(r) δ(p cosφ− r · n(φ)) . (6.5)
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Figure 6.6: Geometry used to acquire echo projections and reconstruct the impulse response.
Positioning a line scatterer in the xy plane at distance z = z0, we explore h(x, y, t1|z0, t2, t3)
abbreviated as h(x, y, t1). Rotating the line scatterer about the z axis, we record projections
g(p, φ, t1) that are modeled by transformation Rh(x, y, t1). Reconstruction is implemented by
the pseudoinverse, ĥ(x, y|t1) = R+g(p, φ|t1), which when computed for all t1 gives ĥ(x, y, t1).
The PSF at location x, y, z0 is PSF(t1) = ĥ(t1|x, y). The operator R maps information in
object coordinates x, y, z0 into data coordinates p, φ, t1, while the inverse operator R+ maps
them back [33].

The first form of (6.5) explicitly recognizes that we acquire data in range, cross-range,

and at different projection angles. The second form performs the convolutional shifts on

the delta function instead of h and substitutes p for t2. The last form of (6.5) expresses

the echo data as a modified sinogram for each range time t1; henceforth the t1 and z axes

are implied. The modification from the traditional CT projections is that the detector

does not rotate with the line scatterer, and therefore the delta function depends on p cosφ

instead of p as in computerized tomography. We have used s = (p, φ) as a position vector

in data space. Note that while φ ranges from 0 to π, p is limited by the field of view

[–a, a] of the system, where 2a is the width of the transducer or the field of view. In
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object space, we indicate field points using position vector r = (x, y) and line-scatterer

orientation using the unit direction vector n(φ) = (cosφ, sinφ). Now interpretation of

the expression in terms of projection geometry becomes clear: each echo signal is made up

of impulse response contributions that lie along a line connecting the center of the active

array aperture to all points on the line scatterer, viz., p cosφ = r · n(φ) (see Figure 6.5).

Finally, sinogram generation is written compactly using operator R via

g(s) = [Rh](s) ,
∫
drh(r) δ(p cosφ− r · n(φ)) , (6.6)

where R : L2(R2) → L2([0, π]× [−a, a]).
Thus, h(s) can be reconstructed through the inverse operator R+. The diagram for

the whole reconstruction of 3-D pulse-echo spatiotemporal impulse response is illustrated

in Figure 6.6.

6.3.3 Filtered backprojection

By using the SVD method, the reconstruction ĥ(r) is given by

ĥ(r) =
[
R+g

]
(r)

=

∫ π

0

dφ

∫ a

−a

dp

∫
dρ |cosξ| e j2πρ·re−j2πρpcosθδ(ξ − φ)g(p, φ)

=

∫ π

0

dφ

∫
dρ |ρ| e j2πρr·n(φ)|cosφ|

∫ a

−a

dp e−j2πρpcosφg(p, φ) , (6.7)

if −a cosφ ≤ r · n(φ) ≤ a cosφ, and equals 0 otherwise. See Appendix E.

Equation (6.7) is similar to the expression for conventional filtered backprojection

methods [86]. The difference is the factor cosφ of the last equation in (6.7) that does not

appear in CT reconstructions. This expression is the 1-D spatial Fourier transform of g,

to which the ramp filter

w(r, φ) , w(r · n(φ)) =
∫
dρ |ρ| ej2πρr·n(φ) (6.8)

is applied, and the results for each projection angle are summed to reconstruct the impulse

response ĥ. The main limitation in our experiment is that the integration variable p is

scaled depending on the rotation angle of the line scatterer. As φ increases from 0 to

π/2, the length of the p cosφ axis decreases from typically 40 mm (the field of view) to 0

mm. If the p axis was continuously sampled, all information would be recovered with this
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approach. However p is sampled on an interval equal to the array pitch, X = 0.2 mm,

i.e., p = mX, where typically M = 192, and therefore information is lost increasingly as

φ→ π/2.

To implement the solution of (6.7) numerically, we first replace r → (x , y) and n(φ) →
(cosφ, sinφ). Thus, the condition −a cosφ ≤ r · n(φ) ≤ a cosφ equivalent to

−a ≤ x + y tanφ ≤ a . (6.9)

The line-scatterer angle is discrete in the range from 0 to 180o, e.g., φn = π(2n− 1)/180

for 1 ≤ n ≤ 90. For the moment, also set |ρ| = 1. Then we can combine (6.7) and (6.8)

to find the unfiltered backprojection estimate hu,

ĥu(x, y) =
∑
n

∫
dρ ej2πρ(x cosφn+y sinφn)| cosφn| G(ρ cosφn, φn)

=
∑
n

ĥu(x, y, φn) . (6.10)

We define

G(ρ cosφn, φn) =

∫
dp e−j2πρp cosφn g(p, φn) (6.11)

as the 1-D spatial Fourier transform, and ĥu(x, y, φn) as the unfiltered backprojection

result for angle φn, which can be written as

ĥu(x, y, φn) =

∫
d(ρ cosφn) e

j2πρ(x cosφn+y sinφn) G(ρ cosφn, φn)

=

∫
dρ′ ej2πρ

′(x+y tanφn) G(ρ′, φn)

= g(x+ y tanφn, φn) , where ρ′ = ρ cosφn . (6.12)

Equation (6.12) describes how to take 1-D projection data and create one unfiltered

backprojection line. First, at each φn, the data can only be acquired at the field of

view, i.e., y = 0 and –a≤x≤a. In the case of non-zero y, if x + ytanφn > a or x +

ytanφn < −a, ĥu(x, y, φn) = 0 since it does not satisfy the condition of (6.9). Otherwise,

g(x + y tanφn, φn) is interpolated from g(x, φn). Thus, the best strategy at each φn is

zero-padding g(x, φn) so that the projection data can cover the range of x+y tanφn, then

interpolating and re-arranging to obtain ĥu(x, y, φn) from g(x, φn). The zero-padding

creates a large null space in the sinogram that may limit the reconstruction accuracy of

ĥ.

The null space can be filled by increasing a to +∞, or we must be able to obtain
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Figure 6.7: The diagram for expanding the range of acquired data by using a 2-D transducer
or scanning the 1-D in the elevation direction (q axis).

the data at x + y tanφn outside the field of view [–a, a]. Figure 6.7 illustrates the idea.

Projecting h(x , y) at point A out of [–a, a] is equivalent to projecting it at point B which is

inside the interval of [–a, a]; however, B is off the p axis. Mathematically, the equivalence

can be proved as follows:

g(x + ytanφn, φn) =

∫ ∫
dx′dy′h(x′, y′)δ((x + ytanφn)cosφn − x ′cosφn − y ′sinφn)

=

∫ ∫
dx′dy′h(x′, y′)δ((x − x ′)cosφn + (y − y ′)sinφn)

, g(x , y , φn) , (6.13)

Thus, we can obtain the data outside the field of view by moving the transducer in the

elevation direction, or using the 2-D array transducer.

The last two steps of the process are to apply a 1-D ramp filter w(r, φn) from (6.8)

to each ĥu(r, φn) line, i.e., remove the earlier assumption that |ρ| = 1, and then sum the

results over all angles:

ĥ(r) =
∑
φn

[w ∗ ĥu](r) =

[
w2D ∗

∑
φn

ĥu

]
(r) . (6.14)

The second form is preferred because it is computationally faster and mathematically

equivalent to applying a 2-D ramp filter to the summation once, rather than applying

a 1-D filter to each line. The process is repeated for each range time t1 to build up a
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3-D reconstruction of the impulse response ĥ(x, y, t1), as we show in Figure 6.6, but keep

in mind that the results are for a single distance, z = z0. If we repeat the experiment

for different distances, we can find ĥ(x, y, z, t1) ≃ h(x, t), which approximates the full

pulse-echo spatiotemporal impulse response for the ultrasonic imaging system.

6.3.4 Algebraic reconstruction technique

We do not have a 2-D array transducer for acquiring data. Mechanically translating a 1-D

transducer in the elevation direction is time consuming for each angle φn. Furthermore,

data on a sinogram must have the same phase for reconstructing a cross section. The

range time t1 at a single distance of z0 of all RF projections must be the same, or at least

their differences must be within a temporal resolution of 1/fs = 0.025 µs, where fs =

40 MHz is the sampling frequency of the ultrasound machine. It makes the method of

scanning 1-D arrays in the elevation direction become infeasible for experimental imple-

mentations. Therefore, a reconstruction method that is better adapted to managing the

loss of information in each 1-D projection is sought.

The filtered backprojection method reconstructs the object based on the Fourier trans-

form of projections. Since the transducer cannot rotate with the line scatter, however,

the integration variable p was scaled by a factor of cosφ in the Fourier transform of the

projection at angle φ. In comparison with a standard CT reconstruction, the projection

in this reconstruction is sampled unevenly with a scale of cosφ. On the other hand, the

total number of samples is fixed and equal to the number of A-scan lines in one RF

data frame. This situation leads to truncated or missing projections when φ approaches

π/2. It was shown in conventional CT that in such a situation the reconstruction can

be amended by using the algebraic reconstruction technique (ART) [86, 87]. The method

is an iterative process to solve a set of linear equations whose unknowns are elements

of the cross section being reconstructed. In [86], ART was introduced along with several

other modified versions for improving the performance and speed of implementation, such

as the simultaneous iterative reconstructive technique (SIRT) and simultaneous algebraic

reconstruction technique (SART). In this study, however, we apply only the simplest tech-

nique, ART. Details are provided in [88–90]. The equation that must be solved by ART

is given by

g = Ah , (6.15)

in which h is a vector column arranged from the discrete cross section h(x, y). Matrix A

is constructed from linear convolutions between h(x, y) and a rotating line, which mimics
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line projections. g is a vector column arranged from the sinogram. For solving (6.15), the

solution is updated at the k th iteration by

h(k+1) = h(k) + λk
gi − ⟨ai ,h(k)⟩

∥ai∥22
ai , (6.16)

in which ai is the i th row of matrixA, g i is the i th component of g, and λk is the relaxation

parameter. Usually 0 ≤ λk ≤ 2. The iterative process can be started from an arbitrary

vector h(0), and h(k) converges to a vector in subspace L given by

L =
∩
i

{h|⟨ai ,h⟩ = gi} , (6.17)

provided that L is not an empty set [90].

Equation (6.16) can be interpreted as follows. At iteration k, the reconstructed version

h(k) is re-projected at the same angles and subtracted from the sinogram. The residual

then is back-projected, scaled, and updated to the function. In this process, projections

which contain full information (with φ around 0o) can be utilized through iteration for

generating the missing information in truncated projections; therefore, they can contribute

more to the reconstructed solution than other projections which are truncated by the

limitation of the field of view. The iterations give the ART an advantage over the filtered

backprojection method where all projections contribute to the solution equally. Another

advantage of ART in comparison to other iterative techniques provided in [91–93] is that

there is no interpolation or estimation for missing information from the given set of the

projections; therefore, ART can avoid accumulating errors through iterations.

6.3.5 Simulation

We applied the Field II Ultrasound Simulation Program [43, 44] to model 3-D impulse

responses with typical system parameters of the SONOLINE Antares system. The VF10-

5 1-D linear array transducer was modeled. We simulated echo projections g(p, t1, φ)

or g(p, q, t1, φ) from the linear model of the ultrasonic system [41]. An advantage of

simulations is that reconstructions can be verified through comparisons to the original

PSFs generated by the Field II program.

The system parameters used to model the PSFs are the same as those used in previous

chapters. Range time t1 = ℓT is sampled at 40 MHz (T = 25 ns and therefore the spatial

range sampling is cT/2 = 0.0193 mm for c = 1487 m/s). The lateral sampling interval,

X = 0.2 mm, equals the element pitch. We set a 40-mm transmit/receive focal length
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and a 96-element (∼20 mm) active aperture. The array has 192 total elements separated

by a 0.02 mm kerf. The elevational element length is Y = 25 mm. We applied a two-

cycle excitation voltage to the transducer and found a nearly Gaussian-shaped pulse-echo

amplitude spectrum with a 53% bandwidth that is centered at ∼7 MHz. Since Field II

is most accurate in the focal zone and far-field, we generated PSFs at spatial positions

x = (0, 0, 40 mm) and (0, 0, 60 mm). These PSFs are shown in Figures 6.8(a) and

6.9(a), respectively. Since the responses are three dimensional, we display the pressure

amplitudes separately in the axial-lateral plane (elevational cut) and the lateral-elevational

plane (axial cut). Projection data are recorded along the p axis for a 1-D transducer array,

or both the p and q axes for 2-D array (see Figure 6.1). In each case, projections were

acquired at 90 angular locations, 1o ≤ φ ≤ 179o in steps of 2o, and no measurement noise

was added.

The reconstruction procedure is as follows. Recall that the p axis is sampled, p = mX

for −M/2 ≤ m ≤ M/2, where the pitch of the array is X = 0.2 mm and there are

M = 192 total array elements and 192 A-scan lines. We will adopt the same sampling

interval for the y axes, such that x = mX and y = m′X. For 2-D array reconstruction,

ĥu(m,m
′, φn) can be obtained directly from projection data as we step along m and m′.

For 1-D array reconstruction, we go to g(m +m′ tanφn, φn) interpolated from g(m,φn).

However, values of m +m′ tanφn that extend outside the range −M/2 ≤ m′ ≤M/2 must

be set to zero because we have no values to interpolate, and information is lost. For ART,

we start from the solution of a 1-D array. The relaxation parameter is set to 0.25, and the

number of iterations is 50. Every row of matrix A is scanned once in each iteration. The

results from 2-D array and 1-D array reconstructions, as well as from ART, are shown in

Figures 6.8(b,c,d) and 6.9(b,c,d) for the PSFs at focal and far-field respectively.

On the figures, we can see that there are errors in the 1-D array reconstruction. The

errors are acceptable in the focal region when the PSF is compact. However, they become

severe at far-field as the PSF is broadened. In the axial cut of Figures 6.9(c), the two ends

in the elevational axis of the phase rings are not reconstructed completely due to missing

information. These errors generate artifacts along the lateral axis in the corresponding

elevational cut. By using ART, those rings can be fully recovered and the artifacts in the

elevational cut are also removed. The results from ART are on par or even better than

those from 2-D array reconstruction. However, iterations of ART create some noise in

the background of the reconstructed images. That reconstruction noise can be observed

clearer on the axial cut of Figures 6.8(d).
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Figure 6.8: 3-D pulse-echo spatiotemporal impulse responses positioned at focal region of (0,
0, 40 mm) is generated by using the Field II program (a), reconstructed by using 2-D
projections (b), reconstructed by using 1-D projections (c), and reconstructed by using the
ART at each cross section (d). The 3-D function is displayed by the axial cut at 40 mm and
the elevation cut at the origin.
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Figure 6.9: 3-D pulse-echo spatiotemporal impulse responses positioned at far-field of (0, 0,
60 mm) is generated by using the Field II program (a), reconstructed by using 2-D projections
(b), reconstructed by using 1-D projections (c), and reconstructed by using the ART at each
cross section (d). The 3-D function is displayed by the axial cut at 60 mm and the elevation
cut at the origin.
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Figure 6.10: A 3-D PSF in near-field as reconstructed from experimental data with (a) 1-D
array projection and (b) ART. The 3-D function is displayed by the axial cut at 20 mm and
the elevation cut at the origin.

6.3.6 Experimental implementation

We recorded measured RF echo signals g(p, t1, φ) by fixing a line scatterer and rotating a

linear array transducer that was mounted in a fixture that provides positioning accuracy.

The line scatterer was a 100 µm-diameter metal wire placed in degassed water at room

temperature. All of the system parameters and geometric details described above for

simulations were applied experimentally. Dynamic focusing and aperture growth were

disabled on the system. The echo SNR of the system relative to the wire echo was

approximately 32 dB for each recorded frame. However, at each angle, we acquired 100

RF frames that were averaged to reduce the effects of electronic noise. The echo SNR for

the averaged projections increased to 52 dB, and thus we considered the RF data to be

noiseless.

The reconstructed PSFs from the measurement at the 20 mm, 40 mm, and 60 mm

distances are shown in Figures 6.10, 6.11, and 6.12, respectively. They correspond to

near-field, focal region, and far-field of an f/2 in-plane aperture. The 2-D array trans-

ducer is not available in the lab, and we also do not scan 1-D arrays in the elevation

direction due to errors added in long acquisition. Each PSF at those locations is re-

constructed by using 1-D array reconstruction and then amended using ART. The 1-D
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Figure 6.11: A 3-D PSF in focal region as reconstructed from experimental data with (a)
1-D array projection and (b) ART. The 3-D function is displayed by the axial cut at 40 mm
and the elevation cut at the origin.

A
x
ia

l 
(m

m
)

Lateral (mm)

E
le

v
at

io
n

 (
m

m
)

(a)

A
x

ia
l 

(m
m

)

Lateral (mm)

E
le

v
at

io
n
 (

m
m

)

(b)

Figure 6.12: A 3-D PSF in far-field as reconstructed from experimental data with (a) 1-D
array projection and (b) ART. The 3-D function is displayed by the axial cut at 60 mm and
the elevation cut at the origin.
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array reconstruction results have errors due to the missing information as observed with

simulation results. Besides, additional errors come from the misalignment between the

line scatterer and the transducer. ART is implemented on experimental data beginning

with a 1-D reconstruction; however, the improvements on experimental data are not as

much as those obtained in simulation. In the focal region, the field pattern in the axial

cut of Figure 6.11(b) is somewhat worse because it is a little affected by background noise

from ART. However, ART makes some improvements on the axial cut of PSF in far-field

(Figure 6.11(c)) as the phase patterns become clearer by comparison with the results from

1-D array reconstruction.

6.4 Discussion

By comparison with the first technique of scanning glass spheres suspended in gelatin,

the line scatterer is easier to position at known distances, and provides much stronger

scattering signals. The high eSNR of the line scattering signal allows a clearer visualization

of the phase changes on reconstructed results of the lateral-elevation plane. However, in

the far-field, where the function is less compact, the 1-D array reconstruction could not

reconstruct the PSF well along the elevational direction. Reconstruction errors are caused

by missing data in the sinogram. The line scatterer also creates ringing effects in the axial

direction that have not been observed with measurements of scanning scatters.

The filtered backprojection reconstruction from data acquired using a 1-D array is ef-

fective when the data are sampled uniformly and contribute equally to the reconstruction.

In our problem, since the transducer could not rotate with the line scatterers, projection

data are truncated or even limited when the scanned angle is about π/2. For this case,

ART can be implemented as a supplement to 1-D array reconstruction to amend the re-

sult. Although results from ART have many improvements over 1-D array reconstruction,

the technique does not work effectively on experimental data for several reasons. Matrix

A modeling used for iterations is constructed from linear convolutions between axial cuts

of the 3-D PSF and a rotating line. It models interference between sound pressure and the

line scatterer. However, the sound pressure is a continuous signal. Modeling the interfer-

ence process discretely with the sparse sampling interval of 0.2 mm may not be accurate

and can have adverse effects on results. Better matrix A modeling for the interference is

needed. Another reason is the presence of errors in projection data. Errors arise from the

misalignment between the line scatterer and the transducer surface, and any changes in

the water temperature during acquisition.
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With the sampling frequency of 40 MHz, the axial sampling interval is about 0.02 mm.

This resolution requires a precise alignment of the line perpendicular to the ultrasound

beam axis. Otherwise, we cannot form a sinogram correctly. We found under the stan-

dard laboratory conditions that projection data in far-field are shifted by 3 pixels in

distance if the water temperature changes by 0.1o. Thus, this method needs significant

automation for fast, efficient implementation. Nevertheless, it still provides an analysis

for reconstruction the 3-D pulse-echo spatiotemporal impulse response. The function is

necessary for constructing a deconvolution filter or a beamformer of the RF data. The

results also describe the acoustic field in the lateral-elevational plane, which can be useful

for optimizing transducer design or in developing techniques for image improvement and

tissue characterization.
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CHAPTER 7

CONCLUSIONS

7.1 Summary

The ability of modern ultrasonic systems to digitize and store RF echo signals has in-

creased the flexibility of processing the data before computing final B-mode images. As-

sessment of a new re-configured system or a processing algorithm applied to data in

medical imaging research, however, is complicated. Individual physical parameters, such

as contrast and resolution, are incomplete characterizations because they do not fully

consider the compromise among the metrics that all contribute to address various clini-

cal tasks. This dissertation provides the analytical framework that connects engineering

tradeoffs for system design directly to diagnostic performance on achieving specific tasks.

The main contributions of this dissertation are summarized below.

Develop objective assessment of sonographic data. Extending the ideal ob-

server acting on the RF data introduces new analytical challenges to the framework. Due

to physical properties of sound-tissue interactions, important features for the breast can-

cer diagnosis are embedded in the spatial fluctuations of the scattering signals. This RF

data modeling leads to a quadratic form of the test statistic. Under the nonlinear form,

the normal distribution for the test statistic may be lost, and connection of the diagnostic

performance to engineering metrics of the imaging system, developed rigorously for pho-

ton imaging modalities, becomes uncertain. By relating the Kullback-Leibler divergence

to the area between the two probabilities of detection and false alarm curves, we have

proposed the use of the divergence to index the ideal performance. Under the normally

distributed test statistic, the information metric is proved analytically to equal the SNRI ,

a metric that quantifies the ideal performance through the separation of the ideal observer

responses for each class of data. When the normality condition is lost, which happens

in some sonographic tasks, the metric is found numerically as a better representation for

the ideal performance. The new interpretation allows us to establish the AIS concept for

sonography equivalent to the NEQ from radiography. The AIS describes the efficiency

104



of transferring diagnostic information from the object to RF data over spatial frequency,

providing a foundation for medical ultrasonic imaging system design. AIS also provides a

convenient method to compute the ideal performance without using Monte Carlo studies.

The nature of sound-tissue interactions changes the source of object contrast in sonog-

raphy, which means that AIS has a more complicated frequency structure than NEQ in

radiography. This treatment is focused on the acquisition stage of image formation that

can only help designers adjust acquisition parameters to maximize RF data information.

Some signal processing algorithms are needed to ensure accessibility of the information

to human observers at final B-mode images.

Post-processing. Another challenge is calculating the inverses of covariance matrices

with high dimensionality in the quadratic form of the ideal observer. The computation

was first accomplished by using the power series expansion for each inversion, in which

the covariance matrix is decomposed into background and task components. Analysis of

the power-series expansion at one iteration first reveals the role of Wiener filtering in the

RF domain before computing the envelope image. The resulting envelope images yield

measurable improvements in human observer performance when the task is detecting a

low-contrast lesion or discriminating different features on the lesion boundary. However,

performance was reduced when observers were asked to discriminate anechoic and hy-

poechoic lesions. In that task, the condition for the accurate first-order approximation

is found to be violated. A better first-order approximation was made. The new approx-

imation leads us to the iterative Wiener filter, which is a combination the Wiener filter

with an iterative process to adaptively tune the echo statistics wherever there is diag-

nostic information. The iterative Wiener filter makes improvements on human observer

performance in all tasks at the cost of computation. Those filters are then implemented

on experimental data where the results include a realistic shift-variant for the pulse-echo

spatiotemporal impulse response.

Beamforming. The ideal observer framework is extended to each element of the trans-

ducer to find optimal beamforming strategies for specific tasks. The goal of beamforming

is to maximize the diagnostic information content of the acquired data, while the goal

of post-processing is to maximize the efficiency at which observers can access diagnostic

information. Through the analysis, we found that the MV beamformer can be decom-

posed into two processes, the matched filtering following by an inverse operator. While

the matched filtering compresses RF signals from individual channels into a single RF

signal without losing any diagnostic information, the inverse operator maximizes the di-
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agnostic information through demodulation. The inverse has emerged from a first-order

approximation of the ideal observer for pre-beamformed RF data. Efforts at improving

the approximation yield the WF beamformer. The comparison between beamformers is

made by using the basic metrics of lesion contrast and resolution, and also through the

panel of five sonographic tasks. Through the ideal observer analysis, we found the WF

outperforms the MV in the first four tasks. But like the Wiener filter for DS beamformed

RF data, the WF beamformer does not work effectively in Task 5 of anechoic/hypoehoic

discrimination, where the corresponding first-order approximation is violated by the task

condition. Implementation of the MV beamformer requires low-rank approximation that

handicaps performance for discriminating four of five lesion features, but performs well

for Task 5 because reducing rank filters data that is well matched to the feature spectrum.

First-order approximations may reduce the potential gains in task performance; therefore,

the final results should be evaluated by using human observer studies.

Measurements of the 3-D pulse-echo spatiotemporal impulse response sys-

tem. We follow a linear pulse-echo model describing the RF data to propose two meth-

ods to measure the function. The first method scans a gelatin gel volume which contains

0.04 mm glass spheres mimicking scatterers. The second method reconstructs the function

from 1-D transducer RF data of line scatter echoes. This method is similar to the recon-

struction problem in standard CT, but the data projections now are limited and sampled

unevenly when transformed into the spatial frequency domain. The reconstructed result

from the filtered backprojection method therefore has a large error caused by the missing

information in the data. The result can be amended by using the ART method as a

supplemental step. ART is shown to make many improvements in simulation, but does

not help much on experimental data. The reasons may be from errors in modeling the

interference between the ultrasound beam and the rotating line, misalignment between

the beam axis and the line, or from errors added during the long data acquisition process.

The reconstruction method requires significant automation for efficient implementation.

7.2 Future work

The applications in this research have been to optimizing breast cancer diagnosis, but

the concepts are generally applicable. While much is known on this topic in radiogra-

phy and other photon-based medical imaging methods, the subject is far from mature

in sonography. There are several reasons for this limitation. Besides those generated
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from the quadratic form of the ideal observer in the acquisition stage and resolved in this

dissertation, another reason is the use of nonlinear processing in the display stage, which

complicates system modeling and statistical analysis. In the following we give an overview

of the ongoing and future research directions.

Ideal observer of B-mode images. Currently, we have approximated the model

developed by Smith and Wagner as the ideal observer acting on the B-mode image to

disambiguate effects of computing an envelope from those of the human observer. This

is an exact ideal observer for low-contrast detection under assumptions of no acquisition

noise and speckle spots rather than pixels determining statistical properties of imaging

data. A more accurate model should be derived from the log-likelihood ratio between

pdf’s of multivariate Rayleigh distributions [94]. If the test statistic can be computed,

we are able to obtain the task information through (3.28). Note that we prove (3.28)

for any log-likelihood ratio. The exact ideal observer allows us to calculate an accurate

information loss through demodulation, as well as to get a better evaluation of the hu-

man observer’s ability to access the information. The ideal observer framework on the

envelope image also provides an opportunity to derive the AIS of the B-mode. That AIS

will describe the efficiency of transferring information from the object inside the patient’s

body to the final images of the sonographic system.

Recovering phase information from RF data. The information spectrum of RF

data has three lobes: one main lobe at the origin and two other side lobes at higher spa-

tial frequencies. We show in Chapter 4 through ideal observer analysis of the sine-wave

detection that the information at the side-lobes could not be displayed on the B-mode

image even with support from Wiener filtering of the RF domain. Information in the

side lobe of the AIS is conveyed by the phase component of RF data discarded through

a simple demodulation. How to recover the information for use in medical applications

remains to be investigated. One potential method is to color coded the information and

overlay it on top of the standard B-mode image (as in Doppler imaging).

Modeling human observer. The ideal observer has the ability to access diagnostic in-

formation in data after complex transformations that the human observer may not be able

to do. Therefore, it is crucial that the information content measured by the ideal observer

is visually accessible to the human observer. Accessibility can be quantified from observer

efficiency estimates obtained through psychophysical studies, which are usually costly,

time consuming, and unstable due to the internal noise in human eye-brain systems. To
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minimize time and expense associated with human studies, we should develop computa-

tional techniques that accurately predict the human response to ultrasound breast images.

That model, if successfully developed, would also reveal a compatible strategy of process-

ing data with the human eye-brain for diagnostic purposes. Human observer performance

is limited by sampling efficiency [95], internal noise [96], and nonlinear effects such as

spatial uncertainty [97, 98]. Research from other medical imaging modalities shows that

the Hotelling observer [99] – an optimal linear (in the data) observer – is a good predictor

of human responses in some cases [100], which can be applicable to sonograms.

Extending the beamforming framework to other modalities. A new contri-

bution of this dissertation to the ideal observer analysis is the derivations of beamformers

from first-order approximations of the ideal strategies. In ultrasonic systems, the ad-

vances in technology of going from single-element to array transducers is analogous to

those from X-ray projections to computed tomography (CT), from nuclear magnetic res-

onance (NMR) to magnetic resonance imaging (MRI), and from planar single-photon

emission imaging to single-photon emission computed tomography (SPECT). Using mul-

tiple imaging planes allows larger scanning coverage of the object. A question left is how

to combine those plane together to form a higher spatial resolution image for the medical

systems. Beamforming in sonography as well as the reconstruction in other modalities,

essentially arises from a solution of the linear inverse problems under specific physical

conditions. Therefore, the ideal observer analysis we developed for finding optimal beam-

formers can be applicable in other medical imaging modalities with some modifications in

observer modeling. The modifications are to amend the difference in physical properties

from the interactions between tissue and media. The modification step will be the most

challenging part of the work.

Currently, X-ray mammography is still a standard imaging method for breast cancer

screening. However, radiography employs ionizing radiation that demands very careful

use. In addition to diagnostic errors, use of X-ray and gamma-ray imaging carries sig-

nificant patient risks. The risks associated with sonography, fortunately, are much lower.

Designers of this low-cost modality have not had to face the same economic and safety

design pressures that spawned development of rigorous image quality analysis in radio-

graphy. Once such an analysis is also available in sonography, the industry will have

better tools to address the value and limitations imposed by the current output-power

limits. In addition, ever greater computational power means that systems can be quickly

reconfigured for different patient body types and exam requirements, which can improve
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diagnostic performance with little increased cost. Yet this can occur only when an ana-

lytical framework based on the ideal observer analysis is available in medical sonography.
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APPENDIX A

RELATION OF SNRI TO THE IDEAL OBSERVER
AUC

Appendix A proves the relation between SNRI and the IO performance in(2.23) under the

normal distribution for the test statistic. More details of the proof are provided in [8,15].

First, the step function in (2.19) can be written in the Fourier domain as

step(x ) =
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ
exp(2πiξx ), (A.1)

where P indicates that the integral is interpreted as a Cauchy principal value. The Cauchy

principal value integral is used to avoid the singularity on the path of the integration.

Then, the expression in the second line of (2.19) becomes

AUC =
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ

∫ ∞

−∞
dxq0(x )

∫ ∞

−∞
dtq1(t)exp [2πiξ(t − x )]

=
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ
ψλ0(ξ)ψ

∗
λ1
(ξ), (A.2)

where ψλj (ξ) is the characteristic function of λ under hypothesis Hj (j = 0,1),

ψλj (ξ) =

∫ ∞

−∞
dξqj (t)exp(−2πiξt). (A.3)

Under the normal distribution for the test statistic λ, the characteristic function is given

by

ψλj (ξ) = exp(−2πiλj ξ − 2π2σ2
j ξ

2), (A.4)
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in which λj and σ
2
j are mean and variance of λ under hypothesis Hj. The AUC in (A.2)

then becomes

AUC =
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ
exp

[
−2πi(λ0 − λ1)ξ − 2π2(σ2

0 + σ2
1)ξ

2
]

=
1

2
+

1

2π
P
∫ ∞

−∞

dξ

ξ
sin
[
2π(λ1 − λ0)ξ

]
exp

[
−2π2(σ2

0 + σ2
1)ξ

2
]

=
1

2
+ (λ1 − λ0)

∫ ∞

−∞
dξsinc

[
2π(λ1 − λ0)ξ

]
exp

[
−2π2(σ2

0 + σ2
1)ξ

2
]
. (A.5)

Applying Parseval’s theorem to the last expression, we obtain

AUC =
1

2
+

1

2
√

2π(σ2
0 + σ2

1)

∫ ∞

−∞
dx rect

[
x

2(λ1 − λ0)

]
exp

[
− x 2

2(σ2
0 + σ2

1)

]
=

1

2
+

1√
2π(σ2

0 + σ2
1)

∫ (λ1−λ0)

0

dx exp

[
− x 2

2(σ2
0 + σ2

1)

]
. (A.6)

With the error function given by

erf(x ) =
2√
π

∫ x

0

exp(−t2)dt , (A.7)

Equation (A.6) yields the relationship of (2.23) by a change of the variable inside the

integral.
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APPENDIX B

SUPPORTING MATERIAL FOR CHAPTER 3

B.1 Proof of (3.28)

In this section of Appendix B, we derive (3.28) that relates the J to the area between

the detection and false-alarm probability curves as functions of the decision threshold.

Integrating by parts the right-hand side (RHS) of (3.28) gives us∫ ∞

−∞
dt{PD(t)− PF (t)} = t{PD(t)− PF (t)}

∣∣∣∞
−∞

−
∫ ∞

−∞
td{PD(t)− PF (t)} . (B.1)

To evaluate the first term on the RHS of (B.1), we apply the Chernoff bound to have [46]

PD(t) = Pr (λ(g) > t |H1)

< e−βtM1(β) , for any β > 0 (B.2)

where Mi(β) is the moment-generating function underlying Hi , given by [15]

Mi(β) =

∫ ∞

−∞
dλqi(λ)exp(βλ) , i = 0, 1 . (B.3)

For t → +∞, te−βt → 0 since the decrease in e−βt is much faster than the increase in

t, M1(β) remains unchanged; therefore, tPD(t) → 0. Similarly, tPF (t) → 0; therefore

t{PD(t)− PF (t)} → 0 as t → +∞.

For t → −∞, by changing variable t to t′ = −t, the first term on the RHS of (B.1)

can be written as

t{PD(t)− PF (t)}

= t ′{Pr (−λ(g) > t ′|H1)− Pr (−λ(g) > t ′|H0)} . (B.4)
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By noting that −λ(g) = ln[p0(g)/p1(g)] is also a log-likelihood ratio and t ′ → +∞,

therefore, the Chernoff bound is still applicable to−λ(g) and t ′. Hence, we have t{PD(t)−
PF (t)} → 0 as t → −∞.

Thus, there is only the second term left in the RHS of (B.2). Combining with

d

dt
{PD(t)} = −q1(t) and

d

dt
{PF (t)} = −q0(t) , (B.5)

the RHS of (B.1) becomes

−
∫ ∞

−∞
td{PD(t)− PF (t)} =

∫ ∞

−∞
t [q1(t)− q0(t)] dt

=

∫
dg (p1(g)− p0(g)) ln

p1(g)

p0(g)
. (B.6)

Combining with the definition of J in (3.27), we have proved the equality of (3.28).

B.2 Proof of (3.30)

In this section, J is related to the moments of the log-likelihood ratio λ under a normal

distribution for q0(λ). We invoke the exponential family of distributions pτ (g) [52],

pτ (g) =
p0(g)e

τλ(g)

M0(τ)
, (B.7)

for 0 ≤ τ ≤ 1. M0(τ) is defined as the moment-generating function under hypothesis

H0 [15] but in (B.7) it serves as a normalization constant for pdf pτ (g).

Denoting qτ (λ) as another exponential family for variable λ corresponding to each

distribution of pτ (g), we show that if q0(λ) is normally distributed, then all distributions

of qτ (λ) must also be normally distributed with the same variance.

The moment-generating function Mτ (β) underlying pτ (g) can be written as

Mτ (β) =

∫ ∞

−∞
dg pτ (g)e

βλ(g)

=
M0(β + τ)

M0(τ)
, (B.8)

in which the second expression is obtained by combination with (B.7). The corresponding
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characteristic function for λ is given by

ψτ (ξ) =

∫ ∞

−∞
dg pτ (g)e

−2πiξλ(g) . (B.9)

Comparing (B.3) and (B.9) gives us

Mτ (β) = ψτ

(
iβ

2π

)
. (B.10)

Replace β = −2πiξ and combine with (B.10) to obtain

ψτ (ξ) =
1

M0(τ)
ψ0

(
ξ +

iτ

2π

)
. (B.11)

Taking the inverse Fourier transform of (B.11), we have

qτ (λ) =
eτλ

M0(τ)
q0(λ) , 0 ≤ τ ≤ 1 . (B.12)

Equation (B.12) shows a relation among distributions of family qτ (λ). If λ is normally

distributed under hypothesis H0, q0(λ) can be written as

q0(λ) =
1√
2πσ

e−
(λ−λ0)

2

2σ2 , (B.13)

where λ0 and σ2
0 are the mean and variance of the distribution. Substituting (B.13) into

(B.12), we have

qτ (λ) =
eτλ0+

τ2σ2
0

2

M0(τ)

1√
2πσ0

e
− (λ−λ0−τσ2

0)
2

2σ2
0 , (B.14)

where M0(τ) = eτλ0+
τ2σ2

0
2 is the moment generating function [8]. Thus, qτ (λ) is also

Gaussian with the same variance σ2
0.

This result is consistent with the finding of Barrett et al. [15]. They showed that

if the log-likelihood ratio is normally distributed under one hypothesis, it is necessarily

normally distributed under the other with the same variance. This result is more general

because the property is applied to any distribution in the family of {qτ (λ) : 0 ≤ τ ≤ 1}
including q1(λ).

To derive (3.30), we continue by introducing the cumulant-generating function L0(τ) =
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lnM0(τ) [8, 15], and taking its first derivative to obtain

L′
0(τ) =

M ′
0(τ)

M0(τ)

=
1

M0(τ)

∫ ∞

−∞
dgλ(g)p0(g)e

τλ(g) . (B.15)

Combining with (B.7), the second expression in (B.15) is recognized as λτ , the conditional

mean of λ underlying pτ (g). By denoting θ(τ) = L′
0(τ), we obtain

θ(τ) = λτ =
M ′

0(τ)

M0(τ)
. (B.16)

Taking the derivative of (B.16), we have

θ′(τ) =
M ′′

0 (τ)

M0(τ)
−
(
M ′

0(τ)

M0(τ)

)2

=
1

M0(τ)

∫ ∞

−∞
dg λ2(g)p0(g)e

τλ(g) − λ
2

τ . (B.17)

The integral in (B.17) is the second moment of λ(g) underlying pτ (g). Therefore,

θ′(τ) = varτ (λ) = σ2
0 . (B.18)

Equation (B.18) means that θ′(τ) > 0 for 0 ≤ τ ≤ 1 or θ(τ) is a continuous and strictly

monotonic function in that range of 0 to τ . We define the Kullback-Leibler divergence

J (0, τ) between pτ (g) and p0(g) as

J (0, τ) =

∫
(pτ (g)− p0(g)) ln

pτ (g)

p0(g)
dg

= (θ(τ)− θ(0)) τ . (B.19)

At τ = 1, J(0, 1) = J , the divergence defined in (3.27).

From (B.19), J (0, τ) is also considered as a function of θ. Denoting J (0, τ) = m(θ),

we apply a second-order Taylor series expansion of m(θ) at θ(0) to obtain

m(θ) = m(θ(0)) + (θ(τ)− θ(0))m ′(θ(0)) +
1

2
(θ(τ)− θ(0))2m ′′(θ(ξ)) , (B.20)

where ξ is some value between 0 and τ . The last term of (B.20) is obtained by combining

with the property of θ(τ) which is continuous and strictly monotonic in the range of [0, τ ].
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Derivatives of m(θ) are given by

m ′(θ) = τ(θ) + (θ(τ)− θ(0))τ ′(θ) ,

m ′′(θ) = 2τ ′(θ) + (θ(τ)− θ(0))τ ′′(θ) . (B.21)

With θ′(τ)τ ′(θ) = 1, we take the derivative of both sides to have θ′′(τ)τ ′(θ)+θ′(τ)τ ′′(θ) =

0. Since θ′(τ) = σ2
0 equals a constant, θ′′(τ) = 0 which leads to τ ′′(θ) = 0 and the second

equation of (B.21) becomes

m ′′(θ(τ)) = 2/θ′(τ) = 2/σ2
0 . (B.22)

Evaluating other derivatives of m(θ(τ)) at τ = 0, we have

m(θ(0)) = 0 ,

m ′(θ(0)) = τ(θ) = 0 . (B.23)

Thus m(θ) or J (0, τ) in (B.19) is simplified to

J (0, τ) = [θ(τ)− θ(0)]2 /σ2
0 . (B.24)

At τ = 1, we have

J (0, 1) = [θ(1)− θ(0)]2 /σ2
0 . (B.25)

With J = J (0, 1), σ2
0 = σ2

1, and θ(τ) = λτ , we have derived (3.30).
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APPENDIX C

WIENER FILTER FOR LINEAR SHIFT
VARIANCE PULSE-ECHO IMPULSE RESPONSE

This appendix provides an expansion of the shift-invariant methodology to include depth-

varying impulse responses for the Wiener filter. In our simulation, RF data is generated

by a linear convolution of the scattering object and the impulse response at the focal

region. This linear shift-invariant model is valid only for the isoplanatic region where the

system impulse response is unchanged. In the ultrasonic system, the impulse response is

changed very little along the lateral direction, but rapidly in the axial direction because

of diffraction and ultrasound attenuation. Thus, we need a more realistic model for the

RF data and a corresponding Wiener filter.

In [41], Zemp et al. found that the isoplanatic region can be made for a small patch

(in the axial direction), where the size of the patch is 2 mm for dynamic focused and

1 mm for fixed focused at the receiver. Therefore, we proposed a new model for the RF

data, in which it is still a linear transformation of the scattering object but the impulse

response is applied locally and updated for each isoplanatic patch. The equation for RF

data g is given as

g =
k∑

j=1

Hj fj + n = Hf + n, (C.1)

where k is the number of the divided patches and Hj is the block Toeplitz matrix con-

structed from the impulse response hj for the j th patch. fj = Ej f , where f is a column

vector of scattering objects, and Ej is a diagonal matrix with the elements of the diagonal

of 1’s in the region corresponding to patch j, and 0’s for elsewhere. Then we obtain the

equation for Ej , given as
k∑

j=1

Ej = I, (C.2)

where I is an identity matrix of dimension n, and H =
∑k

j=1HjEj . Note that Hj is a

block Toeplitz matrix for all j from 1 to k, but H is not.
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The covariance matrices for the RF data g now become

Σi = σ2
obj

k∑
j=1

HjEj (I+ Si)E
t
jH

t
j i = 0, 1 (C.3)

and the decision variable is still given by (2.6).

Separating the covariance matrices into stationary and nonstationary terms as in (3.3),

we obtain the equations for Σs and ∆Σi given as

Σs = σ2
obj

k∑
j=1

HjEjE
t
jH

t
j + σ2

nI

∆Σi = σ2
obj

k∑
j=1

HjEjSiE
t
jH

t
j . (C.4)

Using the power series expansion of covariance matrix and truncating at the first order,

we obtain the linear approximation of the decision variable

λ(g) ∼=
1

2
gtΣ−1

s (∆Σ1 −∆Σ0)Σ
−1
s g, (C.5)

where

∆Σ1 −∆Σ0 = σ2
obj

k∑
j=1

HjEj (S1 − S0)E
t
jH

t
j . (C.6)

Noting that for j ̸= l , Ej (S1 − S0)E
t
l = 0, ∆Σ1 −∆Σ0 can be written as

∆Σ1 −∆Σ0 = σ2
obj(

k∑
j=1

HjEj )(S1 − S0)(
k∑

j=1

Et
jH

t
j )

= σ2
objH(S1 − S0)H

t . (C.7)

By replacing (C.7) into (C.5), we obtain the first-order approximation of the test statistic

given as

λ(g) ≈ 1

2
gtΣ−1

s H∆SHtΣ−1
s g. (C.8)

Thus, the stationary Wiener filter has a form of HtΣ−1
s g, where

H =
k∑

j=1

HjEj (C.9)
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and

Σs = σ2
obj

k∑
j=1

HjEjE
t
jH

t
j + σ2

nI. (C.10)

We note that for j ̸= l , EjE
t
l = 0, combining with (C.9), Σs can be written as

Σs = σ2
objHHt + σ2

nI. (C.11)

Thus the Wiener filter still has the same form as the Wiener filter we derived in [26],

except that the system matrix H now is a partial sum of block-Toplitz matrices and Σs

is not a covariance of a stationary process. To calculate the Wiener filtered RF data, a

gradient conjugate method will be needed.
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APPENDIX D

SUPPORTING MATERIAL FOR CHAPTER 5

D.1 Ideal observer analysis for ill-conditioned Kn

We begin with (5.9) where the poor condition of Kn prevents the Woodbury matrix

inverse identity from being applied. To avoid the poor condition, we modify Kn to

Kn,ε , σ2
objH

t
TΣ

−1
n HT + εI, where ε > 0.

The test statistic in (5.9) is also modified to

λε(gT ) =
σ2
obj

2
gt
TΣ

−1
n HT

(
Ψ−1

1,ε −Ψ−1
0,ε

)
Ht

TΣ
−1
n gT , (D.1)

where Ψi ,ε = (I+ Si)
−1 +Kn,ε , i = 0,1, and λ(g) = lim

ε→0+
λε(g).

Because ε > 0, Kn,ε is guaranteed to be invertible, we can apply the Woodbury matrix

inverse identity to Ψ−1
i ,ε to obtain

Ψ−1
i ,ε = K−1

n,ε −K−1
n,ε(K

−1
n,ε + I+ Si)

−1K−1
n,ε . (D.2)

Replacing into (D.1), we obtain

λε(gT ) =
σ2
obj

2
gt
THTΣ

−1
n K−1

n,ε(Φ
−1
0,ε −Φ−1

1,ε)K
−1
n,εH

t
TΣ

−1
n gT , (D.3)

where Φi ,ε = K−1
n,ε + I+ Si , i = 0,1.

By adopting the first-order approximation of (I + A)−1 ≃ I − A to calculate Φ−1
i ,ε ,

λε(gT ) can be explored further. In the first approximation, we choose A , K−1
n,ε + Si

which leads to

Φ−1
i ,ε ≃ I− (K−1

n,ε + Si) , (D.4)
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and

λε(gT ) ≃
σ−2
obj

2
gt
THTΣ

−1
n K−1

n,ε(S1 − S0)K
−1
n,εH

t
TΣ

−1
n gT

=
σ−4
obj

2
gt
THTΣ

−1
n (σ2

objH
t
THT + εσ2

nI)∆S(σ2
objH

t
THT + εσ2

nI)
−1Ht

TΣ
−1
n gT

=
σ−4
obj

2
gt
TBMV ,ε∆SBt

MV ,εgT . (D.5)

in which Bt
MV ,ε = (σ2

objH
t
THT + εσ2

nI)
−1Ht

T .

Provided that the first-order approximation in (D.4) holds for all ε > 0, λε(gT ) is

factorized into Bt
MV ,εgT squared and the task information ∆S. Letting ε → 0+ we can

get back to λ(g) from λε(gT ) meanwhile lim
ε→0+

(σ2
objH

t
THT+εσ

2
nI)

−1Ht
T = σ−2

objH
+
T since it is

the limitation representation of the pseudoinverse (ref. [8], page 40). Thus, the first-order

approximation leads us to the pseudoinverse of the system matrix.

In the second exploration, we use a different separation to obtain a better first-order

approximation for ε > 0, given by Φi ,ε = (K−1
n,ε + I) + Si , to obtain

Φ−1
i ,ε ≈ (K−1

n,ε + I)−1 − (K−1
n,ε + I)−1Si(K

−1
n,ε + I)−1 , (D.6)

and

λε(gT ) ≈
σ2
obj

2
gtTHT (σ

2
nKn,ε + σ2

nI)
−1(S1 − S0)(σ

2
nKn,ε + σ2

nI)
−1Ht

TgT , (D.7)

which results in a WF beamformer given by Bt
WF ,ε = (σ2

objH
t
THT + σ2

nI+ εσ2
nI)

−1Ht
T .

For ε → 0+, we have lim
ε→0+

BWF ,ε = BWF or WF beamformer remains in the same

form. Thus, WF beamformer is robust and tolerant toward the ill-conditioned Kn, while

the MV beamformer is reduced to the pseudoinverse of the system matrix.

D.2 Minimum variance distortionless response (MVDR)

The MVDR problem in (5.18) can be solved by using the method of Lagrange multipliers.

We form a cost function involving undetermined Lagrange matrix Λ, given by

J (B) = Tr
[
BtΣnB+Λt(HtB− I)

]
. (D.8)
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Taking the gradient of (D.8) with respect to B

∂J (B)

∂B
= ΣnB+HΛ . (D.9)

Setting the sum of (D.9) equal to 0, we obtain Bopt = −Σ−1
n HΛ. Hence,

HtB = I = −HtΣ−1
n HΛ . (D.10)

Thus, we obtain

Λ = −
(
HtΣ−1

n H
)−1

, (D.11)

and

Bopt = Σ−1
n H

(
HtΣ−1

n H
)−1

. (D.12)

The beamformer has a form in (D.12) is known as minimum variance distortionless

response or linear constraint minimum variance (LCMV) in some literature about beam-

forming [68].

D.3 Proof of (5.23)

Starting from (5.8), we have

Σ−1
T ,iHT = Σ−1

n HT −Σ−1
n HT

(
(I+ Si)

−1 + σ2
objH

t
TΣ

−1
n HT

)−1
σ2
objH

t
TΣ

−1
n HT

= Σ−1
n HT

(
(I+ Si)

−1 + σ2
objH

t
TΣ

−1
n HT

)−1
(I+ Si)

−1 , (D.13)

and

Ht
TΣ

−1
T ,iHT = Ht

TΣ
−1
n HT

(
(I+ Si)

−1 + σ2
objH

t
TΣ

−1
n HT

)−1
(I+ Si)

−1 , (D.14)

for i = 0,1. Combining (D.13) and (D.14), we obtain

Σ−1
T ,iHT

(
Ht

TΣ
−1
T ,iHT

)−1
= Σ−1

n HT

(
Ht

TΣ
−1
n HT

)−1
, (D.15)

which proves (5.23)
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APPENDIX E

RECONSTRUCTION USING THE SVD METHOD

With R given in (6.6), applying the adjoint operator R† to backproject g onto the object

space, we obtain

[
R† g

]
(r) =

∫ π

0

dφ

∫ a

−a

dp g(p, φ) δ(p cosφ− r · n(φ)) . (E.1)

At each φ, R† backprojects the 1-D data function g(p, φ) back into 2-D object space by

substituting p cosφ→ r · n(φ). Combining with (6.6), we have

[
R†Rh

]
(r) =

∫ π

0

dφ

∫ a

−a

dp δ(p cosφ− r ·n(φ))
∫

dr′ h(r′) δ(p cosφ− r′ ·n(φ)) . (E.2)

By choosing the Fourier kernel uρ(r) = ej2πρ·r as the eigenfunction for the object space,

we obtain

[
R†Ruρ

]
(r) =

∫ π

0

dφ

∫ a

−a

dp δ(p cosφ− r · n(φ))
∫

dr′ u(r′) δ(p cosφ− r′ · n(φ))

=

∫ π

0

dφ

∫ a

−a

dp δ(p cosφ− r · n(φ))
∫

dr′ e j2πρ·r
′
δ(p cosφ− r′ · n(φ)) .

(E.3)

Using the definition of the delta function,∫
dr′ e j2πρ·r

′
δ(pcosφ− r′ · n(φ)) =

∫
dr′ e j2πρ·r

′
∫

dt e j2πt(pcosφ−r′·n(φ))

=

∫
dt e j2πtpcosφδ(ρ− tn(φ)) . (E.4)

The argument ρ − tn(φ) is two-dimensional. We project the delta function onto two

orthogonal axes (n(φ),n⊥(φ)) as in the expression δ(r) = δ(x) δ(y), and we find the
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product of two delta functions,

δ(ρ− tn(φ)) = δ[(ρ− tn(φ)) · n(φ)]δ[(ρ− tn(φ)) · n⊥(φ)]

= δ(ρ cos(ξ − φ)− t) δ(ρ sin(ξ − φ)) , (E.5)

where ρ = (ρ, ξ) is the polar coordinate in the Fourier domain. Substituting (E.5) into

(E.4), we find ∫
dr′ e j2πρ·rδ(pcosφ− r · n(φ)) = 1

|ρ|
e j2πρpcosφδ(ξ − φ) . (E.6)

The last equation comes from the relation [8]

δ(y(x)) =
N∑
n=1

δ(x− xn)

|y′(xn)|
, (E.7)

simply applied to δ(ρ sin(ξ − φ)).

Replacing (E.6) into (E.3), we obtain

[
R†Ruρ

]
(r) =

∫ π

0

dφ

∫ a

−a

dp δ(p cosφ− r · n(φ))
∫

dr′ u(r′) δ(p cosφ− r′ · n(φ))

=
1

|ρ|

∫ π

0

dφ

∫ a

−a

dp δ(p cosφ− r · n(φ))e j2πρpcosφδ(ξ − φ)

=
1

|ρ|

∫ a

−a

dp δ(p cos ξ − r · n(ξ))e j2πρpcosξ

=

{
ej2πρ·r

|ρcosξ| =
uρ(r)

|ρcosξ| if − a cosξ ≤ r · n(ξ) ≤ a cosξ

0 otherwise .
(E.8)

Thus the eigenvalue for R†R corresponding to uρ is given by

µρ =

{
1

|ρcosξ| if − a cosξ ≤ r · n(ξ) ≤ a cosξ

0 otherwise .
(E.9)

The corresponding eigenvalue κρ of the pseudoinverse (R†R)+ is given by

κρ =

{
|ρcosξ| if − a cosξ ≤ r · n(ξ) ≤ a cosξ

0 otherwise .
(E.10)

The eigenfunction of the image space is defined as vρ(s) =
√
κρRuρ(r), which is calcu-
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lated as follows.

vρ(s) =
√
κρ

∫
dr e j2πρ·rδ(pcosφ− r · n(φ))

=
√
κρ

∫
dr e j2πρ·r

∫
dt e j2πt(pcosφ−r·n(φ))

=
√
κρ

∫
dt e j2πtpcosφδ(ρ− tn(φ)) . (E.11)

Applying (E.5) to (E.11), we find

vρ(s) = vρ(p, φ) =

√
κρ

|ρ|
ej2πρp cosφ δ(ξ − φ) . (E.12)

Consequently, the pseudoinverse operator R+ is

[
R+
]
(r) =

∫
dρ

√
κρuρ(r)v

†
ρ(s) =

∫
dρ

κρ
|ρ|
ej2πρ·re−j2πρp cosφδ(ξ − φ), (E.13)

and therefore

ĥ(r) =
[
R+g

]
(r)

=

∫ π

0

dφ

∫ a

−a

dp

∫
dρ |cosξ| e j2πρ·re−j2πρpcosθδ(ξ − φ)g(p, φ)

=

∫ π

0

dφ

∫
dρ |ρ| e j2πρr·n(φ)|cosφ|

∫ a

−a

dp e−j2πρpcosφg(p, φ) , (E.14)

if −a cosφ ≤ r · n(φ) ≤ a cosφ. If this condition is not satisfied, κρ = 0 which leads to

ĥ(r) = 0.
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APPENDIX F

PEER-REVIEWED PUBLICATIONS AND
CONTRIBUTED TALKS

Appendix F include a book chapter, journal papers, conference proceedings papers, and

presentations on topics related to the dissertation work. These are listed below.

F.1 Book chapter

1. Nghia Q. Nguyen, Craig K. Abbey, and Michael F. Insana, “Task-based design

and evaluation of ultrasonic imaging systems” in Ultrasonic Imaging and Therapy,

A. Fenster, and J. Lacefield, Eds. American Association of Physicists in Medicine,

New York, NY: Routledge, 2012 (in press, invited).

F.2 Journal papers

1. Nghia Q. Nguyen, Craig K. Abbey, and Michael F. Insana, “Objective assessment

of sonographic quality. I. Task information,” submitted to IEEE Transactions on

Medical Imaging,, 2012 (under review)

2. Nghia Q. Nguyen, Craig K. Abbey, and Michael F. Insana, “Objective assessment

of sonographic quality. II. Acquisition information spectrum,” submitted to IEEE

Transactions on Medical Imaging, 2012 (under review)

3. Craig K. Abbey, Nghia Q. Nguyen, and Michael F. Insana, “Effects of frequency

and bandwidth on diagnostic information transfer in ultrasonic B-Mode imaging,”

accepted to IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Con-

trol, 2012.

4. Nghia Q. Nguyen, Craig K. Abbey, and Michael F. Insana, “An adaptive filter

to approximate the Bayesian strategy for sonographic beamforming,” IEEE Trans-

actions on Medical Imaging, vol. 30, no. 1, pp. 28-37, 2011.
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5. Craig K. Abbey, Nghia Q. Nguyen, and Michael F. Insana, “Optimal beam-

forming in ultrasound using the ideal observer,” IEEE Transactions on Ultrasonics,

Ferroelectrics, and Frequency Control, vol. 57, no. 8, pp. 1782-1796, 2010.

F.3 Conference proceedings

1. Nghia Q. Nguyen, Craig K. Abbey, and Michael F. Insana, “Acquisition infor-

mation spectrum for evaluating sonographic quality,” submitted to International

Conference of the IEEE Engineering in Medicine and Biology Society, San Diego,

CA, August 2012.

2. Craig K. Abbey, Nghia Q. Nguyen, William D. O’Brien Jr., and Michael F. In-

sana, “An ideal observer approach to mechanical limits in B-Mode ultrasound imag-

ing,” submitted to International Conference of the IEEE Engineering in Medicine

and Biology Society, San Diego, CA, August 2012.

3. Craig K. Abbey, Nghia Q. Nguyen, and Michael F. Insana, “Frequency, band-

width, and information transfer in B-Mode imaging,” in Proceedings SPIE Medical

Imaging: Ultrasonic Imaging, Tomography, and Therapy, pp 83200I.1-8, 2012.

4. Nghia Q. Nguyen, Craig K. Abbey, and Michael F. Insana, “Analysis of minimum-

variance and Wiener-filtered beamforming strategies,” Proceedings of the IEEE Ul-

trasonics Symposium, 2011 (in press).

5. Nghia Q. Nguyen, Craig K. Abbey, and Michael F. Insana, “Detectability index

describes the information conveyed by a sonographic image,” Proceedings of the

IEEE Ultrasonics Symposium, 2011 (in press).

6. Nghia Q. Nguyen, Craig K. Abbey, and Michael F. Insana, “Robustness of beam-

forming in the Bayesian observer approach,” Proceedings of the IEEE Ultrasonics

Symposium, pp. 995-998, 2010.

7. Craig K. Abbey, Nghia Q. Nguyen, and Michael F. Insana, “Cystic resolution

and task performance in beamforming,” Proceedings of the IEEE Ultrasonics Sym-

posium, pp. 1747-1750, 2010.

8. Nghia Q. Nguyen, Craig K. Abbey, Rebecca D. Yapp, and Michael F. Insana,

“Tomographic reconstruction of the pulse-echo spatial temporal impulse response,”
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in Proceedings SPIE Medical Imaging: Ultrasonic Imaging and Signal Processing,

pp 7629-14.1-11, 2010.

9. Nghia Q. Nguyen, Craig K. Abbey, and Michael F. Insana, “Ultrasonic array

beamforming with iterative spatial filters,” in Proceedings SPIE Medical Imaging:

Ultrasonic Imaging and Signal Processing, pp 7265-0A.1-12, 2009.

10. Craig K. Abbey, Nghia Q. Nguyen, and Michael F. Insana, “An ideal observer ap-

proach to beamforming,” in Proceedings SPIE Medical Imaging: Ultrasonic Imaging

and Signal Processing, pp 6920-06.1-8, 2008.

F.4 Presentations

1. Nghia Q. Nguyen, Craig K. Abbey, and Michael F. Insana, “Analysis of minimum-

variance and Wiener-filtered beamforming strategies,” presented at IEEE Interna-

tional Ultrasonics Symposium, Orlando, Florida, October, 2011.

2. Nghia Q. Nguyen, Craig K. Abbey, and Michael F. Insana, “Detectability index

describes the information conveyed by a sonographic image,” presented at IEEE

International Ultrasonics Symposium, Orlando, Florida, October, 2011.

3. Nghia Q. Nguyen, Craig K. Abbey, and Michael F. Insana, “Ultrasonic array

beamformers that maximize diagnostic information,” presented at Digital Signal

Processing Seminar, Department of Electrical and Computer Engineering, Univer-

sity of Illinois at Urbana-Champaign, December 1, 2010.

4. Nghia Q. Nguyen, Craig K. Abbey, and Michael F. Insana, “Ultrasonic array

beamforming with iterative spatial filters,” presented at SPIE Medical Imaging Con-

ference, Orlando, Florida, 2009.

5. Nghia Q. Nguyen and Michael F. Insana, “Information theoretic approaches to

ultrasonic system design,” presented at Bioacoustics Research Lab Seminar, De-

partment of Electrical and Computer Engineering, University of Illinois at Urbana-

Champaign, December 2, 2008.

6. Nghia Q. Nguyen, Craig K. Abbey, and Michael F. Insana, “Information theoretic

approaches to ultrasonic system design: Beamforming with iterative spatial filters,”

presented at 156th Meeting of the Acoustical Society of America, Miami, Florida,

October, 2008.
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