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1. INTRODUCTION

This project aims to improve the sensitivity of functional magnetic resonance imaging

(fMRI) of human visual cortex. This goal will be pursued in a specific context, that

of the retinotopic mapping of visual cortex using fMRI, but should also be of utility

in analysis of imaging data outside this application.

Retinotopic mapping is the identification of regions of visual cortex that contain

complete, spatially contiguous maps of the visual world, known as cortical visual areas.

Research in non-human primates that recorded single neuron activity and investigated

the cellular microanatomy of the visual cortex revealed that the visual cortex of the

primate has a successive series of these visual areas that can be recognized by their

complete retinotopic map of the visual world.1 These visual areas are organized in

a hierarchy, and in humans it is possible to employ fMRI to non-invasively obtain

retinotopic maps of visual cortex. Determining the borders of different visual areas

allows us to examine the response properties of those areas to a wide variety of

visual stimuli under different task circumstances. Such research is important for

understanding the functional organization of the human brain and is essential for

understanding how disease and damage affect the basic organization and function of

the brain.

Analyses of functional MRI data falls into two broad categories: those that as-

sume an explicit hemodynamic response function (fMRI response to instantaneous

neural impulse) and those that do not. As is the case with many fMRI studies and



2

almost always with retinotopy, periodic stimulation designs are used. These allow the

option of frequency domain analysis and thus avoid the use of explicit hemodynamic

models. In an effort to minimize assumptions, we pursue frequency domain analysis

of the BOLD time series within mrVista, an open-source tool designed for retinotopic

mapping.

While mrVista implements a signal detection statistic, it is a rather basic statisti-

cal test and a number of other statistical methods have been reported in the literature

that are purported to be more sensitive. We have studied and implemented a number

of these in mrVista. Three frequency domain statistics will be discussed: mrVista’s

Co (a correlation statistic - as defined by Engel et al., 1997),2 Fourier power quo-

tient (FPQ - as defined by Bullmore et al. 1996),3 and magnitude squared coherence

(MSC). The first two statistics have been defined and used in previous fMRI studies,

but to our knowledge this paper explores for the first time the application of MSC to

fMRI. These statistics allow us to search for responses to periodic stimuli that occur

at the frequency of stimulation (and/or its harmonics) in fMRI voxel time series. The

objectives of this research are to compare the performance of Co, FPQ, and MSC

using simulations and receiver operating characteristic (ROC) curve analysis, explore

their validity under various assumptions, and examine the results of their application

to real retinotopy data.

Implementing these various tests in mrVista accomplishes several things. First, it

has provided a venue in which to learn all the techniques of frequency-domain fMRI

analysis and retinotopic mapping in detail. Second, it allows us to examine for the
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first time whether these techniques improve retinotopic mapping. Third, it makes

these other statistical techniques readily available to researchers in this field.

This last point is significant, because while research in statistical analysis of fMRI

data moves forward rapidly, most researchers use one of a small number of packages

to perform their analyses and the introduction of these novel statistical techniques

into these packages is relateively slow. By implementing novel algorithms within the

framework of an existing software package, we extend the immediate capabilities of

research in the Center for Mind and Brain which advances ongoing NIH- and NSF-

funded research at UC Davis.
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2. FUNCTIONAL MRI OVERVIEW

While the localization of brain function has long been known from effects of trau-

matic brain injury and in the mid 20th century from cortical stimulation during

neurosurgery, the imaging of brain function has only existed since the middle to late

20th century with the advent of positron emission tomography (PET) and functional

magnetic resonance imaging (fMRI). Since the 1990s, fMRI has come to dominate

the brain mapping field due to its non-invasiveness, lack of radiation exposure, and

relatively wide availability.

A brief review of the underlying physics, experimental design, and data analysis of

the functional MRI is presented to provide the background for the research analysis

techniques compared in this thesis.

2.1. Basic concepts

2.1.1. MRI physics

MRI is based on the phenomenon of nuclear magnetic resonance (NMR). During

a scanning session, the subject being imaged is placed in a uniform magnetic field

of great strength (typically 1.5 or 3 Tesla) where the magnetic dipole moments of

atomic nuclei with non-zero spin numbers within the tissue align either parallel or

anti-parallel to the main field. In human brain imaging it is the hydrogen nuclei

that are of interest. Their great abundance in tissue allows the small percentage of

their magnetic dipoles which prefer one orientation to the other (lower energy state:
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parallel; 1/million at equilibrium) to produce a detectable change in the magnetic

field.

Before any manipulation however, the local net difference in magnetization, Mo,

is orders of magnitude less than Bo and thus not directly observable. In order to

generate a measurable signal, a radio frequency pulse is applied at the resonance

frequency of the nuclei of interest (governed by the Larmor equation: νo = γ ∗ Bo :

νo = frequency of precession; Bo = main magnetic field strength; γ = gyromagnetic

ratio) causing the dipoles to tip or nutate into a plane perpendicular to the axial

field. This process of nutation takes the nuclei from their aligned low-energy state

into a temporary non-aligned high-energy state and occurs with the operation of three

orthogonal gradients coils. Referred to as the slice selection, phase encoding, and

frequency encoding gradients, these gradients produced by the three coils allow for

spatially localized differences in magnetic field and thus spatially specific excitation.

The strength of these gradients can be defined in various combinations giving the

user the capacity to prescribe almost any image slice orientation desired.

Because of the intrinsic quantum mechanical spin properties of nuclei, when in the

aligned or non-aligned states, the dipoles of the hydrogen protons precess around the

axis of the main field (Bo) at their characteristic Larmor frequency. The precessing

dipoles of the non-aligned nuclei, made phase coherent by the radio frequency pulse,

will relax back to their low-energy state. As they relax, the coherent precession of

many spins produces a changing magnetic field that induces a measurable current in

a nearby coil. The detected signal is known as free induction decay.
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Images with contrast that emphasize specific tissue properties of interest can be

obtained by manipulating the MR signal’s level of sensitivity to different tissue prop-

erties through the pulse sequence parameters. The primary types of contrast available

are known as proton density, T1, and T2—each emphasizing a different property of

the three dimensional local magnetization vector, M , that is generating the signal

for each voxel of the image slice. Proton-density-weighted images are sensitive to

the equilibrium longitudinal magnetization, Mo. T1-weighted images are sensitive to

the relaxation time constant of the longitudinal component of M . And T2-weighted

images are sensitive to the relaxation time constant for the transverse component of

M . In fMRI, image contrast is based on a decay constant known as T2*. T2* is

an apparent T2 time constant in MR signals generated by pulse sequences sensitive

to magnetic field inhomogeneity. This is appropriate for acquisition of functional

information of the brain as described more below.

2.1.2. Functional MRI

Functional MRI in the broadest sense is the use of MRI technology for measuring local

physiology rather than its common use for structural anatomy. Most commonly, fMRI

is the modality for detecting hemodynamic changes resulting from neural activation

using the Blood Oxygenation Level Dependent (BOLD) contrast effect discovered in

1990 by Ogawa and colleagues.4–6

In the range of all functional brain mapping techniques, fMRI has a unique combi-

nation of features that make it particularly amenable to the study of sensory, motor,
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and cognitive activities in the human brain. Because of the need both to identify these

dynamic activities and to localize them, functional brain imaging methods are often

compared and contrasted in terms of their temporal and spatial resolution. Most ex-

hibit a distinct trade off. Electrophysiological (EEG) and magnetoencephalography

(MEG) measures, for example, map transient electrical and magnetic dipoles result-

ing from neuronal depolarization with great temporal resolution (10-100 msec); but as

the measurements are typically recorded at the scalp, EEG and MEG have relatively

poor spatial resolution (several mm to cm). Single-unit electrophysiology refines spa-

tial localization to the neuronal level (less than 1 mm), but requires placing electrodes

in the cortex and thus is neither safe nor practical. Functional MRI, as well as PET

and optical imaging methods (such as near infrared spectroscopy), measure neural

activity indirectly through the slower time-scale dynamics (on the order of seconds)

of hemodynamic changes resulting from metabolism and accompanying increases in

blood flow. With slightly higher temporal resolution than fMRI and PET, optical

imaging suffers in spatial resolution unless the cortical surface is exposed, which then

like single-unit recordings poses a significant safety issue for the subject and practical-

ity issue for the experimenter. And even then, optical imaging measures are restricted

to the cortical surface. Functional MRI and PET, on the other hand, achieve rela-

tively high spatial resolution (1-10 mm) within deep structures of the brain. While

PET is moderately invasive, requiring injection of a radioactive tracer, fMRI has the

unique distinction of achieving better spatial and temporal resolution than PET and

higher spatial resolution than EEG/MEG through an entirely non-invasive procedure
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that involves minimal risk for the subject. Though lacking the ability of EEG and

MEG to measure the temporal dynamics of neural activity, fMRI is a practical and

powerful tool for localization brain function with time scales that are still useful and

continually improving.

BOLD fMRI relies on the changes in the concentration of the endogenous para-

magnetic contrast agent hemoglobin. When neurons fire in a region of the brain, the

metabolic demand from neurotransmitter recycling reduces the blood oxygenation

in the region, which in turn alters the magnetic susceptibility of the blood. This

produces after a lag of a few seconds a slight but measurable increase in the T2*-

weighted MR signal that in turn also lasts a few seconds (peaks at about 6 sec).

Initially, the regional increase in oxidative metabolism results in a transient increase

in the concentration of paramagnetic deoxyhemoglobin in the blood, increasing the

local non-uniformity of the field near vessels, dephasing local spins, and decreasing the

MR signal but usually to undetectable levels. Shortly after (approximately 1 sec), an

over-compensatory increase in cerebral blood flow (CBF) to the region quickly sup-

plies excessive amounts of oxygen, decreasing the deoxyhemoglobin concentration,

reestablishing the field uniformity, and consequently increasing the T2-weighted MR

signal. These measurable blood oxygenation dependent changes are on the order

of 1 to 5 percent greater than baseline using fMRI and constitute what is referred

to as the BOLD effect. The BOLD fMRI temporal impulse response function to a

brief stimulus, known as the hemodynamic response function (HRF), is consequently

delayed and blurred in time.
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The most common pulse sequence employed to measure the BOLD effect (and the

one employed for the data collected in this research) is known as the gradient-recalled-

echo (GRE) echo-planar-imaging (EPI) sequence. Gradient-recalled-echo sequences

are particularly sensitive to the neurally-induced local inhomogeneities in the mag-

netic field that are responsible for the BOLD effect (as described in the previous

paragraph). When compared to other contrast sequences, GRE sequences produce

larger activation-induced signal changes by a factor of 2 to 4. The detected free in-

duction decay signal (FID) of this GRE sequences is characterized by the decay rate,

R2* = 1/T2*, or the characteristic decay time, T2*. During the time course of the

scan, the decay rate decreases slightly during periods of activation, increasing the

measured signal. The positive and negative variability across time in signal due to

these activity-induced changes in the decay rate of the FID defines the BOLD effect.

The fast MR imaging techniques in the EPI aspect of the pulse sequence allow

a series of images of the brain to be acquired in rapid succession. With EPI it is

possible to acquire BOLD image data from a single slice of the brain in under 0.1 sec

(the entire brain in about 2 sec) and with spatial resolution greater than 3x3x3mm.

Rather than acquiring a single image line (in k space) after the preparation phase of

the pulse sequence as often is otherwise the case with MRI, the entire 2D MR image

is acquired between the radio frequency pulses of the GRE-EPI sequence. Many

adjacent 2D image slices are acquired to span at minimum the regions of interest in

the brain. To distinguish activity from rest, a series of functional data volumes of

the brain are acquired in succession while the subject is stimulated or performs a
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task that probes the function(s) of interest at only certain points in time throughout

the scan. These successive acquisitions form a time series of measured data points

for each individual resolved element (voxel) in the volume that can subsequently be

processed off-line and tested for significance.

2.2. Experimental design

A wide variety of experimental designs exist for probing and measuring neural activity

during a fMRI scan. All these designs follow the general scheme of supplying the

brain with particular stimuli in the hope that regions involved in processing that

stimuli respond with an increase (or possibly a decrease) in metabolic activity that

is measurable with the BOLD signal. Due to the subtlety of the BOLD effect, the

statistical quality of a single image is not adequate to detect the signal of interest.

To alleviate this, usually several scans are collected under the same experimental

conditions and averaged together. Even throughout the duration of a single scan,

however, the main goal of all the various stimulation paradigms is to repeat the

experimental condition as many times as possible to maximize the signal to noise

ratio of each voxel time course (here the effective SNR being the ratio of stimulus-

related variability to non-stimulus-related variability across a time course). Some are

chosen for simplicity of design and analysis and others for maximal efficiency, where

efficiency is defined as the ability to accurately estimate stimulus-related signal in the

alloted scan time. The hypothesis being tested, the assumptions one is willing to make

about the nature of neural activity, as well as certain constraints (e.g. minimizing
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scan time) dictate the most appropriate choice for a given study. In general, they fall

into three broad categories: block, event-related, and periodic designs.

Figure 1. Typical fMRI experimental paradigms

The most basic of these is known as the block design in which trials for stimuli

of a particular condition (for example A or B in Fig. 1(a))are grouped together and

presented in blocks of time and ‘off’ for others. The premise for such a design is

that neural activity is additive such that subtraction of activity during the ‘off’ (or

baseline) period from activity during the ‘on’ period leaves only stimulus related

activity. Both stimulus ‘on’ and ‘off’ periods last about 16-40 seconds allowing time

for the generation of sustained hemodynamic response and its subsequent decay. The

resulting data can be analyzed for stimulus-related activity several ways including

t-tests on mean signal differences between conditions,7 cross-correlation with the

stimulus time-course vectors,8 multiple linear regression9 to name a few. If the block
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design is periodic, Fourier analysis is also an option with distinct advantages. Linear

systems theory—in which the fMRI signal is assumed to vary linearly with the local

average neuronal response averaged over time plus noise10,11—is the framework for

many of these methods.

The most common analysis technique used today is based on the general linear

model (GLM) and like some of the other above listed methods involves the use of an

assumed hemodynamic response function. The hemodynamic response function in the

cortex has tremendous variability both between and within subjects,12 nevertheless,

theoretical and estimated models for the response function are often used.

Another common design is the event-related design. Rather than grouping multi-

ple trials of a particular condition in blocks, in event-related designs different types

of stimuli (A, B, and C, in Fig. 1(b)) are presented in arbitrary sequences of single

trials.13–15 This design has the advantage of eliminating potential confounds such

as habituation, anticipation, or other strategy effects. While not as efficient as the

block design in accurately estimating the stimulus-related activity, variations in the

timing and sequence of trials have been shown to provide significant improvement in

efficiency.16 Analysis of event-related data can be done with selective averaging17 or

linear modeling16 both of which require an assumed or estimated HRF.

This thesis focuses on periodic designs. A periodic design is a special case of

blocked designs. In a periodic design, stimulus trials of the same condition (A in

Fig. 1(c)) are presented in blocks of equivalent duration that repeat periodically
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throughout the run. The advantage of periodic designs is that data can be analyzed

entirely in the frequency domain where the variance attributable to stimulus response

will be restricted to a few discrete frequencies, namely the fundamental and its har-

monics. Like previous techniques, analysis in the frequency domain also assumes

that the fMRI signal varies linearly with the local average neuronal response. Unlike

previous techniques, however, frequency domain analysis avoids explicit assumptions

about the hemodynamic model. This is an advantage because such models are not

generally available for each voxel in each subject’s dataset.

2.3. Estimating experimental effect

Identification of stimulus-related activity relies upon hypothesis testing in which the

null hypothesis, Ho, is the absence of any stimulus-related activity, and the alternate

hypothesis, H1, its presence. Classification of data as satisfying either Ho or H1

usually occurs at the individual voxel level and involves prerequisite processing steps.

After the functional MRI dataset has been acquired and preprocessed, the response

detection method of choice is applied to estimate the magnitude of stimulus-related

activity. These results are subsequently tested for statistical significance.

2.3.1. Preprocessing

Functional MRI datasets are subjected to a variety of preprocessing steps before

searching for response to the stimuli. These steps are both spatial and temporal. The

most essential ones are summarized below.
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Spatially one needs to correct for subject motion during the scan. Although

subjects are instructed to stay still and stabilized as much as possible in the scanner

with the help of cushioning, temple supports, and sometimes even bite bars, inevitably

there is some movement at the very minimum from normal physiological processes.

Because subsequent processing assumes that data from a particular voxel represents

a particular part of the brain, if the degree of movement exceeds the voxel size, failing

to correct for motion will result in displaced activations in the fMRI time-course and

contribute to the variance of the statistical test. Motion correction algorithms vary

but have been shown to be comparable in their performance.18 In mrVista and in

general, the 6 parameter (3 rotation, 3 translation) estimates of an affine rigid body

transformation are determined from and applied to the reconstructed image data.

Temporally, fMRI datasets are preprocessed to correct for slice timing differences.

Although subsequent analysis assumes so, slices in a functional volume are not ac-

quired at the same point in time. Often the 2D data in the 3D functional volume is

acquired in an interleaved manner first acquiring odd numbered slices and then even

(or the reverse) to minimize ’inflow’ effects between adjacent slices. This can cause

data from adjacent slices to be as far as TR/2 apart in time (where TR is the scan

repeat time). Slice timing algorithms correct for this by shifting the phase of the voxel

time series appropriately. Although this is a common preprocessing step in most fMRI

analysis software packages, mrVista did not employ it and we did not implement it

for our analysis. Because each statistic is computed on each voxel independently, the

relevant timing between slices is irrelevant to voxel selection. In drawing borders for
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retinotopic maps (see section 6.1), spatial phase coherency between adjacent voxels

becomes important. We recognize that this is an issue, but because this study focuses

on the signal detection aspect of retinotopy, we did not focus on it. However, any

subsequent analysis which requires or involves averaging over voxels will be sensitive.

2.3.2. Response detection methods

After the data has been run through the appropriate preprocessing routines, it is

then ready for analysis. Response detection techniques fall into two broad categories:

temporal correlation using the general linear model and Fourier analysis.

By far the most common method as mentioned earlier is the general linear model

(GLM), otherwise known as multiple regression.9,19 Based on the principles of linear

time invariant systems, for any of the stimulus designs described above, the GLM can

be used to model the signal time course in each voxel using linear combinations of

multiple basis functions called regressors. In matrix form, the GLM is as follows:

y = Xb + r (1)

where y is the N x 1 column vector representing a voxel time course (N being the

number of time points); X is the N x M matrix (known as the design matrix ) con-

taining the regressors of interest (M being the number of N x 1 regressors); b is the M

x 1 column vector of model parameters to be estimated; and r is the N x 1 matrix of

residual error terms assumed to be independent and normally distributed with mean

0 and variance σ2.
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The regressors in design matrix X include those that describe non-stimulus-related

trends and those that describe stimulus-related trends. Typical non-stimulus-related

regressors include baseline and linear drift. Stimulus-related regressors, g(t), are

defined by convolving the hemodynamic response function (HRF) with the time course

for each stimulation condition, i:

gi(t) =
∞
∑

u=−∞

h(u)si(t − u) (2)

where h(t) is the HRF (typically assumed, sometimes estimated) and s(t) the stimu-

lation time course.

The model is fit to each voxel’s time course giving minimum least squares estimates

of the parameters b. These estimated parameters reflect the degree of correlation of

each regressor. The resulting parameter for each gi(t) is then usually divided by its

standard deviation to form a t-statistic from which significance levels can be derived.

When the stimulus paradigm is periodic, Fourier analysis may be applied. Using

the discrete Fourier transform (DFT),

Y (f) =
1

N

N
∑

t=1

y(t)e−i2πtf (3)

we can compute the signal power at all frequencies 0 to Nyquist and look for signifi-

cant peaks at the fundamental (paradigm) frequency and its harmonics. Letting the

stimulus design consist of q cycles of the stimulation-rest period the DFT frequen-

cies of interest will then be those corresponding to the set [q, 2q, 3q, ..., N/2]. This

approach avoids the use of an assumed HRF (although still assuming the brain’s
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functional response can be approximated by an linear time invariant system) and is

the standard for retinotopy. To estimate the magnitude of stimulus-related activity

there are numerous ways to process the spectral information. The three signal detec-

tion statistics, Co, FPQ, and MSC, each do this differently and are the subject of

investigation in this thesis.

2.4. Inference

While response detection is a critical step in the analysis process, it is not complete

without the ability to make accurate inferences about the measured effect. Drawing

conclusions as to whether voxel time-series have passed (H1) or failed (Ho) the hy-

pothesis test requires estimates of the significance of the measured effect. Accurate

estimation of the significance in turn requires that the effect be detected without as-

sumptions that cause bias and that the distribution from which significance thresholds

are determined be legitimate representations of the chosen statistic’s distribution. If

the first condition is not met (i.e., assumptions of the signal detection statistic being

used are violated), the magnitude of the signal can be overestimated, biasing the de-

tection statistic in sensitivity. If the second condition is not met (i.e. unrepresentative

distribution), the false positive rate can be either under- or over-estimated, biasing

the signal detection statistic in specificity. These two conditions are related in ROC

curves. To avoid either inflated or overly conservative significance levels, both require

robust approximation.
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2.4.1. Temporal autocorrelation due to noise

A well-documented confound in estimating the significance of effect in fMRI time-

series is that of temporal autocorrelation due to noise. Zarahn et al., for example,

collected BOLD fMRI data on human subjects who did not perform any time-locked

experimental behavior. They found that when statistical analysis of these ‘real-noise’

datasets involved assumptions of independence, the null-hypothesis was rejected at a

significantly higher rate than the expected significance level, alpha.20 Purdon and

Weisskoff likewise reported disparity between actual false positive rates and assumed

significance levels in synthesized (using a autoregressive plus white noise model) null

datasets.21

In fact, numerous studies including the above two, have explored the nature of the

autocorrelation in fMRI noise time series and methods of accounting for it. Zarahn

et al. found that the noise power spectra was described well by a f−1 model ex-

hibiting disproportionate power at low frequencies. Investigating the sources of the

autocorrelative noise, they found that the f−1 was characteristic of both their human

noise datasets as well as water phantom datasets indicating that it was not strictly a

physiological phenomenon. They likewise found that the f−1 component could not be

completely explained by the first-order effects of motion, equipment present during

scanning, or the convolution of neural activity with hemodynamic response functions

as used commonly in GLM analysis techniques. In attempting to account for auto-

correlation they found that temporal smoothing with low pass filters in addition to
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Worsley and Friston’s modified GLM technique resulted in false positive rates close

to the theoretically expected significance level. The technique suggested by Friston

et al. is to coloring or shaping the intrinsic autocorrelation with a larger known

autocorrelation the majority of which can be removed with high-pass filtering.9,19

Others, including Bullmore et al., have suggested procedures for estimating the auto-

correlation in order to prewhiten the data in a GLM framework3,22–24 and resampling

techniques that allow for inference that is unbiased by temporal autocorrelation in the

noise.25 Although best methods for accounting for temporal correlation in the noise

continue to be explored, there is clearly wide agreement that it must be addressed to

achieve unbiased inference, particularly in the context of low-frequency paradigms in

which the consequences of autocorrelation are more pronounced.

2.4.2. Theoretical vs. empirical distributions

While assumptions of independence in the noise time series in the face of temporal

autocorrelation can bias actual false positive rates away from the assumed α, assumed

distributions from which significance thresholds are chosen can potentially have the

same effect. Often times, signal detection statistics are shown to vary like a well-

known statistic’s distribution such as a the F -, Student’s t-, or the complementary

error function, erfc. However, they actually do so only when they meet certain

assumptions—the most common being that they were computed on data whose noise

processes were independent and normally distributed. If the data does not meet the

necessary assumptions, the theoretical distributions of the statistics will not match
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the true distributions, and significance levels will be biased either above or below the

expected α. The only way to control for this is to empirically determine the statistical

distribution using a real noise dataset. This controls for bias in inference but does

not correct the effect of autocorrelation in the noise.
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3. SIGNAL DETECTION STATISTICS FOR PERIODIC

DESIGNS

In the analysis of functional MRI data (periodic or not), there are a large variety

of signal detection statistics that can and have been employed in the detection of

regional brain responses to various behavioral stimuli and tasks. The intention of

this investigation was not to do an exhaustive comparison of them all, but to begin

to with a common measure already used in retinotopy, consider the most appropriate

existing alternative, and explore the relative performance of a never before used but

directly relevant and potentially advantageous technique. In this light, the three

statistics of focus in this thesis: Co, FPQ, and MSC are introduced below.

3.1. Correlation statistic: Co

The first statistic we examine is known as Co and was defined by Engel et al. in their

1997 paper on retinotopic mapping.2 Having been introduced in one of the founding

papers of retinotopy and implemented in the mrVista toolset, Co has become the

default statistic for many researchers. As shown in the Engel et al. paper, Co was

derived from the standard definition for temporal correlation of two column vectors,

where the vectors represent a harmonic function at the stimulus frequency and the

data time series for a particular voxel. The derivation (explicitly shown in their paper)

results in the following definition:

Co(fs) =
|Y (fs)|

√

∑

f |Y (f)|2
(4)
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where Y (f) is the Fourier transform of y(t), the average (over repeated scans) mea-

sured BOLD time series in a single voxel; fs denotes the stimulation (paradigm) fre-

quency; and the sum in the denominator is over all frequencies from zero to Nyquist.

Co therefore ranges from zero to one, equaling zero when there is no power at the para-

digm frequency and equaling one when there is only power at the paradigm frequency.

Assuming a purely harmonic stimulus, which is always the case with retinotopy, Co

tells you how much signal amplitude you have at the stimulus frequency channel

compared to other places in the spectrum.

In light of periodic stimulus designs, the goal of Co is to classify fMRI voxels

as positive (satisfying H1) when the power at the stimulus frequency dominates the

voxel’s power spectrum. While there is logic to this approach, Co has the drawback of

potentially failing to recognize truly active voxels when there is a significant amount

of power at frequencies other than fs. Power that exists at other frequencies may

be signal or noise and will increase with increased signal bandwidth. Co cannot tell

the difference between the sources of this power. A significant proportion of power

contained in the first few harmonics of fs, for example, will be signal but inappropri-

ately contribute to reducing Co by being included in its denominator. Power from

scanner and physiological noise, likewise all frequencies irrelevant to the activity of

interest, will exist and contribute to reducing Co. While scanner noise is typically

white, often in fMRI studies, one will find additional power at low frequencies due

to temporal autocorrelation of the sort discussed above and cardiac and respiratory

frequencies, all of which contribute detrimentally to signal detection with Co. And
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when the data is acquired at higher sampling rates, the increased bandwidth of the

signal will lead to power at previously non-existent frequencies that again get added

to Co’s denominator and reduce Co’s value. The potential saving grace of Co is that

it is computed on the averaged time-series. Because artifactual noise with random

phase across scans will cancel upon averaging, the noise power in the denominator

will decrease leading to an increase in Co’s magnitude.

3.2. Fundamental Power Quotient: FPQ

The next statistic we study is called the fundamental power quotient (FPQ), defined

by Bullmore and colleagues.3 As indicated by its name, the FPQ statistic, like Co,

addresses the issue of power at the paradigm or fundamental frequency and thus

also is intended for periodic designs. Likewise, FPQ is computed on the averaged

data. Unlike Co however, the analysis that leads to FPQ is performed in the time

domain, rather than the frequency domain. The approach of Bullmore et al. is

to implement pseudogeneralized least square (PGLS, also known as the Cochrane-

Orcutt transformation), an iterative form of ordinary least squares (OLS) regression

modeling. The aim of PGLS is to correct for autocorrelation in the noise time series,

as manifested in the residuals of OLS, leaving the residuals of the second linear model

close to white. To provide background for the FPQ statistic, a summary of Bullmore’s

PGLS technique is given below, followed by the definition of FPQ.

First, the BOLD time series of each voxel is fit, using OLS, to the following
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regression model that accounts for linear and sinusoidal trends in the data:

y(t) = α + βt + γ sin(ωt) + δ cos(ωt) + γ′ sin(2ωt)

+ δ′ cos(2ωt) + γ′′ sin(3ωt) + δ′′ cos(3ωt) + ρ(t) (5)

where y(t) is the average (across scans) signal for a single voxel, t = 1,2,3,...,N; ω is the

fundamental frequency in radians per time point; α, β, γ’s, and δ’s are the model para-

meters to be estimated; and ρ is a residual term. Bullmore and colleagues suggested

the above model based on some exploratory analysis of experimental BOLD fMRI

data collected on a human subject undergoing periodic photic stimulation. Having

averaged the time series of 156 voxels representing the occipital cortex, they inspected

the plots of the averaged time series and corresponding periodogram and correlogram.

From these plots they observed evidence over the course of the experiment of a slight

negative linear trend, marked periodic or sinusoidal trend with the same fundamen-

tal frequency as the input function, and relatively modest peaks in the periodogram

corresponding to the first and second harmonics of the fundamental frequency—all

resulting in the suggested regressors in Eq. 5.

Equation 5 can also be represented in matrix notation as:

y = Xb + r (6)

where y is the N -dimensional column vector representing the T2*-weighted signal

intensity (averaged over scans) of a single voxel at timepoints t = 1 to N, X is the

N x 8 design matrix, b is the 8-dimensional column vector of model parameters,
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and r is the N -dimensional column vector of residuals. In the case that the error

terms are independent and normally distributed, OLS provides minimum variance

unbiased estimates (MVUEs) of the model parameters. Bullmore et al. examined

the residuals, using a partial autocorrelation function (PACF), and showed that they

were autocorrelated to the first degree. To address this, they modeled the residual

autocorrelation using a first-order autoregressive (AR) process:

ρ(t) = ζ ∗ ρ(t − 1) + ǫ (7)

The error terms of this AR model, ǫ, were shown to have no significant autocorrelation.

This allows the subsequent use of the OLS estimated AR coefficient, ζ , to transform

the original terms of the regression model as shown below (transformed terms are

asterisked, *) and consequently incorporate the autoregressive nature of the data into

the model:

y∗(t) = y(t) − ζy(t− 1) (8)

x∗(t) = x(t) − ζx(t − 1) (9)

Via corroboration with PACF plots of the PGLS residuals, the above modeling is

then assumed to produce independent and normally distributed error terms. Having

achieved MVUEs, the FPQ statistic is computed. The FPQ statistic is simply power

at the paradigm frequency divided by its standard error, SE. It makes use of the γ̃ and

δ̃ model parameter estimates to do so, giving (under the assumption of independent
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and normally distributed parameter estimates):

FPQ =
(γ̃)2 + (δ̃)2

√

2(SE(γ̃)4 + SE(δ̃)4)
(10)

While computed in the time domain, the linear regression that provides the model

parameters for FPQ accomplishes something similar to a Fourier decomposition. The

Fourier technique is a form of multiple linear regression. When computing the Fourier

transform of a time domain signal as done for Co, the time series is decomposed

into the sum of sine and cosine waves at all N/2 + 1 equally spaced frequencies.

The regression model described above differs from a Fourier transform in that the

time series is decomposed into only a restricted sum of sines and cosines, including

only the fundamental and first two harmonics, and includes a linear trend and error

term. Nevertheless, by using the coefficients of only the fundamental frequency, FPQ

attempts to avoid being influenced by information from frequencies other than the

fundamental. Assuming the 8 model parameters are adequate for modeling the signal,

compared to Co, this may be advantageous.

For the purposes of our investigation, FPQ was incorporated into mrVista toolset

so that it could be computed from the model parameters both before and after re-

moval of autocorrelation in the residuals. This allows comparison of the effect of

autocorrelation removal.

3.3. Magnitude Squared Coherence: MSC

Magnitude squared coherence is a frequency domain function used in numerous areas

including for example system identification, signal-to-noise ratio (SNR) measurement,
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and estimation of time delay. It can be applied to spatial or temporal data and is

essentially a measure of the registration of two datasets at a particular frequency. For

linear systems, coherence measures the proportion of response power attributable to a

given stimulus, and thus can be thought of as a ”signal to signal plus noise” ratio. In

its most general form it can be represented as the square of the cross power spectral

density of the two signals divided by their autospectral densities. Letting Y (f) and

S(f) be the temporal Fourier transforms of two time series signals y(t) and s(t), the

magnitude squared coherence, or MSC, is defined as:

MSC(f) =
|Gsy(f)|2

Gss(f)Gyy(f)
(11)

where Gsy(f) = S∗(f)Y (f) and Gyy(f) = Y ∗(f)Y (f). MSC is real-valued and like

Co ranges from zero to one. Since MSC computed from a single pair of signals is equal

to 1, MSC must be estimated from multiple samples. This estimation procedure

shows that for signal detection applications where one is searching for a biological

response to a perfectly periodic stimulus, s(t), such as the functional MRI paradigms

studied here, MSC depends only on the measured data. Derived from Eq. 11, this

result follows as:

MSC(f) = |Gsy(f)|2

Gss(f)Gyy(f)

= |S∗(f)|2|Y (f)|2

|S(f)|2Gyy(f)

= |Y (f)|2

Gyy(f)

=
| 1

M

∑M

i=1
Yi(f)|2

1

M

∑M

i=1
|Yi(f)|2

=
|
∑M

i=1
Yi(f)|2

M
∑M

i=1
|Yi(f)|2

(12)



28

where M is the total number of time series samples in the estimate.26,27 Coherence

is shown here to equal the power of the mean response divided by the mean power

of the subaverages. From this equation we see that, upon averaging, MSC reduces

to a ratio of signal to signal plus noise, as mentioned above. Letting the Fourier

transform of the measured time course for a single voxel Y (f) be represented as a

sum of response related signal and noise as Y (f) = A(f)+N(f) where A(f) is Fourier

transform of the response to the stimulus and N(f) is a combination of instrumental

and physiological noise taken to be additive and zero-mean,

MSC(f) =
A(f)2

A(f)2 + N(f)2
(13)

Magnitude squared coherence has been used as a method of objective response

detection of evoked potentials in electroencephalographic (EEG) data27,26 but to our

knowledge has never before been used in fMRI analysis of brain activity. Given the

definition above one can see the relevance of such a function to periodic fMRI analysis.

Not only is MSC qualitatively appropriate because of its focused use of frequency

information, but it has unique quantitative characteristics that save it from the diffi-

culties faced by other statistics such as Co which take the entire frequency spectrum

into account. MSC like FPQ uses information from only the stimulus frequency

(although FPQ begins by fitting the signal to the stimulus frequency and its harmon-

ics). In practice, however, the PGLS technique may not model the signal perfectly

as does the Fourier transform (by Parseval’s theorem) and thus the coefficients of the

fundamental frequency that go into FPQ may not be as representative of frequency
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information at the fundamental frequency as the Fourier terms used in MSC.

MSC was incorporated into the mrVista toolset using Eq.12 such that the Y ′
i s

represent voxel time-series segments derived from dividing the original time-series of

each scan. Because the number of scans that can be acquired is limited (by expense

and subject endurance) the process of dividing the time series for each scan into

multiple segments was introduced as a method of maximizing the total number of

time series samples, M in Eq.12. There exists a trade-off, however: because the length

of the segments determines the frequency resolution of the power spectrum; for very

short segments, the bin at the fundamental frequency encompasses more than just

the response frequency. To minimize spectral leakage, voxel time-series were divided

such that each resulting segment contained an integer number of stimulus cycles.

Since in our retinotopy studies there were either 10 or 20 cycles per scan, various

degrees of segmentation existed according to the above criterion. The implemented

code computes MSC for all integer divisors. All the following reported results for

MSC reflect computations based on the best performing divisor.
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4. RECEIVER OPERATING CHARACTERISTIC CURVE

ANALYSIS

To begin our comparison of these three statistics, we used the receiver operating

characteristic (ROC) curve technique. ROC curves are a convenient method for

comparing the performance of different detectors. In the 1950’s, ROC curves were

developed to distinguish radar signals from noise. Today, ROC curves are a popular

tool in medical and imaging research. ROC curves were first introduced to the analysis

of functional MRI data by Constable and colleagues in 1995 and have since been used

extensively as a tool for objective comparison of fMRI signal detection strategies.28–31

A summary of basic ROC methods for fMRI data and our results using the technique

follows below.

4.1. Method overview

Using ROC curves, we can visually compare and quantify a detector’s accuracy. An

ROC curve represents accuracy in terms of true positive rate (TPR = sensitivity) vs

false positive rate (FPR = 1 - specificity) at all possible threshold values of a detector.

In order to create an ROC curve one must know the distributions of true signal and

noise in the fMRI dataset. This is sometimes but not usually the case. When the

true distributions are unknown, simulated data must be used. For ROC analysis

from simulated data that is an accurate representation of its application to real data,

the MRI images should contain noise and artifacts that are representative of the

typical fMRI data under consideration. The best way to obtain this is using partially
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simulated dataset where artificial activations are added to a real null experimental

dataset, i.e. fMRI data collected on a human subject while no visual stimulation is

presented and all other conditions are otherwise held constant. Since the noise in

this type of data is measured and the true activation locations are known, the FPR

(proportion of voxels incorrectly detected as active to all truly non-active voxels)

and TPR (proportion of correctly detected active voxels to all voxels that contain

added activation) values can be computed accurately. Computing the FPR and TPR

at different thresholds for a particular detection statistic provides the points from

which the ROC curve is fit. Because the ROC curve represents a system’s complete

sensitivity and specificity range, overlaying the ROC curves for different statistics

visually displays their relative accuracy without the influence of a threshold value.

Generally speaking, the further a curve lies above the one-to-one FPR-TPR line

(chance detection line), the more it reflects a better detector.

Although signal detection statistics can be compared qualitatively by visually

comparing their ROC curves, various methods also exist for quantifying ROC curve

results in terms of a single metric. These methods differ in the proportion of the curve

that they take into consideration. Common metrics include the area under curve,

(Az), or best operating point (point furthest from the diagonal) where detectors with

greater Az or best operating points furthest from the curve win.30 Others advocate

the use of only a small portion of the curve in calculating a metric, arguing that only

lower FPR ranges are ever used in fMRI studies and thus the only relevant region

from which ROC curve metrics should be computed.29,30 These groups use either the
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area under the curve or the mean TPR within this restricted portion (often FPR 0 to

0.1). Because conclusions for fMRI data are only ever drawn from highly significant

results (typically p-values < 0.05), in our use of this tool to compare Co, FPQ, and

MSC statistics, we chose to use the later metric computing the mean of the ROC

curve in the range 0 to 0.1.

Our computation of ROC curves proceeded on two different dataset types: one

containing both artificial noise and artificial activations and the other containing

only artificial activations. The first was based on fully simulated data to facilitate

characterization of the performance of the three statistics under varying noise and

paradigm conditions. In all these simulations, signal was placed in roughly 10% of

the voxels (approximate percent of typically active voxels in an image; see Fig. 2(a)),

in each of four scans subsequently averaged together and was created by summing

sine waves at the typical retinotopy stimulus cycling frequency (0.0265Hz) and its

first two harmonics. The noise for each of these simulations, on the other hand,

was systematically modulated in its magnitude, phase coherence across trials (not

voxels), and frequency range to determine each statistic’s sensitivity not only to

overall differences in signal-to-noise ratio but to changes in noise structure as well.

Finally, since SNR will vary with imaging rate and the number of volumes (timepoints)

per scan, in another subset of these simulations, we also tried doubling our typical

retinotopy imaging rate (TR) and number of cycles per scan (initially set as TR=1.57

and number of timepoints = 240; see Chapter 6) to see what if anything the effect

would be.
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Figure 2. Regions of superimposed activation indicated in red in sample images of

(a) fully-simulated and (b) partially simulated datasets

The second dataset type was based on partially simulated data as described above

where real null data was collected under experimental conditions perfectly identical

to our typical retinotopy sessions less the visual stimulation, and periodic activation

was superimposed on brain voxels (seen overlaid on a high resolution anatomical T2-

weighted image acquired coplanar to our functional scans in Fig. 2(b)). Specifically,

four 7-minute EPI scans (see Table 6 for parameters) were collected with a human

volunteer who performed the typical retinotopy task of passive fixation where this

time, however, the screen remained isoluminant gray for the duration of each scan.

Since target activity is always in the brain and brain voxels differ from non-brain

voxels in that they contain not only scanner noise, but also physiological noise, our

superimposed activations were restricted to brain voxels. In doing so we ensured

that any detected activations were only classified as such after being subjected to
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the same noise challenges as real data. Likewise, the superimposed signal in this

case was made to closely resemble actual hemodynamic response through the use of

the Balloon Model proposed by Buxton32 with neurovascular coupling by Friston33

(Appendix A).

4.2. Results

4.2.1. Simulated Noise and Simulated Activation Datasets

We began our experimentation with fully simulated datasets by superimposing ten

cycles (fs = 0.0265Hz) of the sine wave signal on 10% of 4096 (64x64 image) ran-

domly generated (normally distributed, mean=0, variance=1) voxel timeseries (240

timepoints). The amplitude of the sine wave was varied as a function of the percent-

age of noise standard deviation (σ). As seen in the ROC curves of Fig. 3, both Co

and FPQ perform better than MSC at low signal-to-noise ratios: (a) signal ampli-

tude = 0.1σ [SNR=0.10] (b) signal amplitude = 0.05σ [SNR=0.05] where FPQ∗ is

FPQ computed before accounting for autocorrelation in the residuals of the regres-

sion model. Since noise was white by definition, there was no residual autocorrelation

in the data and FPQ∗ and FPQ lines predictably overlap. As signal-to-noise ratio

is decreased, comparing Fig. 3(a) to Fig. 3(b), the ROC curves for all 3 statistics

approach the chance detection line. At even minimal SNRs, MSC fails to perform

better than the other statistics. The results for our chosen ROC curve metric–mean

TPR in FPR range (0, 0.1)–shown in Table 1 prove only the same. Co and FPQ

beat MSC by a factor of nearly 2 for SNR=0.05 and a factor of more than 4 for
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SNR=0.10.
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Figure 3. ROC curves for white noise dataset: simulation #1

Table 1. ROC curve mean in range FPR 0-0.1: simulation #1

SNR Co FPQ∗ FPQ MSCdF3

Fig. 3(a) 0.10 0.4314 0.4579 0.4378 0.1063

Fig. 3(b) 0.05 0.1421 0.1486 0.1479 0.0869

Co and FPQ clearly have an advantage over MSC in situations of purely ran-

dom noise. This can be explained (at least partly) by the fact that Co and FPQ

are computed on voxel time-series that have already been averaged over scans. In

the case of random noise, averaging reduces the power at all frequencies other than

the paradigm frequency (and its harmonics) [since response to the stimulus will be

phase locked across scans] significantly boosting the relative power at the paradigm
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frequency and thus also both the sensitivity and specificity of Co and FPQ which

are both in essence measures of just that: relative power at a paradigm frequency.

MSC, on the other hand, while also a subject of averaging (albeit a different

method), only uses information from the paradigm frequency. This may provide an

advantage over Co and FPQ in situations where a significant amount of noise remains

at other frequencies after averaging over scans, but otherwise may require more scans

or lengthier time-series (increasing M in Eq. 12) for MSC to have sufficient power

distinguishing signal from signal+noise at the stimulus frequency to outperform FPQ

and Co. For noise to remain in the spectrum after averaging, the noise processes

would have to be coherent in their phase across scans. In reality it is unlikely that

the periodic noise processes of cardiac and respiratory artifact are time locked to the

stimulus cycling period and even less likely that their phases will be coherent across

scans. We were, nevertheless, interested in exploring such cases in order to empirically

gauge the range of MSC’s theoretical strengths.

To test the effect of noise coherency across scans on these statistics, we cre-

ated another simulated dataset in which the same sinusoidal signal as before was

superimposed on time-series that contained phase-coherent noise. These noisy time-

series were generated by superimposing on the randomly generated time-series (as

above) a series of sine waves at all frequencies from twice the paradigm frequency

(2fs = 0.0531Hz) up to Nyquist (0.3185Hz), all with phase equal to π. We ini-

tially began with this broad coverage of the spectrum and set the amplitude of the

phase coherent noise equal to that of the signal (0.1σ) to take maximum advantage
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of MSC’s insensitivity to power at non-paradigm frequencies as accorded by theory.

We likewise restricted the phase-coherent noise to the 10% of voxels that contained

signal, as phase-coherent noise if analogous to anything in real data is most likely

to be analogous to physiological noise and thus would be restricted to brain voxels.

Then, across a series of these datasets we incrementally reduced the spectral range

of phase-coherent noise by 2fs frequencies from the low end of the range. Figure 4

shows the progression of ROC curves as the frequency range of phase-coherent noise

is reduced and Table 2 shows the results of our ROC metric.
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Figure 4. ROC curves for phase-coherent noise dataset: simulation #2
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Table 2. ROC curve mean in range FPR 0-0.1: simulation #2

Freq Range Co FPQ∗ FPQ MSC

Fig. 4(a) 2fs+ 0.0466 0.0451 0.0878 0.1152

Fig. 4(b) 4fs+ 0.0509 0.0574 0.2022 0.1597

Fig. 4(c) 6fs+ 0.0699 0.0729 0.3638 0.1422

Fig. 4(d) 8fs+ 0.1655 0.1762 0.5133 0.1505

Fig. 4(e) 10fs+ 0.2645 0.2786 0.5391 0.1062

Fig. 4(f) none 0.4314 0.4579 0.4378 0.1063

variance 0.0233 0.0263 0.0321 5.597e−4

The ROC curves of Figure 4 demonstrate some important features of the 3 statis-

tics. Primarily, as the range of phase-coherent noise is reduced, MSC remains rather

stable while the other statistics shift significantly. The variances of our ROC metric

for these statistics (see Table 2) across the datasets also attests to this, being two

orders of magnitude smaller for MSC than the others. Resistance to non-paradigm

frequency noise is clearly the strength of MSC. Next, it is important to note that

while MSC is robust in this way, it performs better than FPQ and Co only when the

range of phase-coherent noise is substantial (Fig. 4(a-c)). Finally, we recognize that

FPQ∗ and FPQ are dissociated in the presence of coherent noise but FPQ∗ is con-

sistently virtually indistinguishable from Co. Because FPQ differs from FPQ∗, the

PGLS algorithm for residual autocorrelation removal is influential here. Its behavior

in this particular simulation, however, should not be interpreted in the context of
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real data as its noise structure (Fig. 5(a)) is different from the f−1 spectral behavior

characteristic of real data (Fig. 5(b)).
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Figure 5. Power spectra of representative voxel time series from: (a) Fig. 4c simu-

lated dataset, (b) Fig. 7 real dataset, (c) simulated f−1-structured noise spectra (see

Appendix B for method) dataset

Having evaluated the sensitivity of the statistics to noise magnitude and coherency,

our final datasets of the fully simulated type were constructed to test performance

variability in response to changing imaging rate and time-series length. Although our

typical retinotopy EPI scans make use of a TR of 1.57 seconds, typical TRs in fMRI

studies are often about twice as long. Time-series lengths can likewise vary. As a

comparison to our previous simulations where TR=1.57 and number of timepoints =
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240, ROC curves resulting for datasets in which TR and cycles/scan were doubled

(independently) are shown in Fig. 6 with corresponding metrics in Table 3.
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Figure 6. ROC curves for doubled TR and cycles/scan datasets: simulation #3

Considering the results, we see that doubling the TR has had no noticeably sig-

nificant effect. Doubling the number of cycles per scan has slightly improved the

performance of all the statistics, but the relational pattern of performance is the

same: Co and FPQs are collinear and superior to MSC.

Table 3. ROC curve mean in range FPR 0-0.1: simulation #3

TR cycles/scan Co FPQ∗ FPQ MSC

Fig. 6(a) 1.57 10 0.4314 0.4579 0.4378 0.1063

Fig. 6(b) 3.00 10 0.4023 0.4263 0.4221 0.1396

Fig. 6(c) 1.57 20 0.6852 0.7054 0.6976 0.2289
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4.2.2. Real Noise and Simulated Activation Dataset

Having explored the behavior of Co, FPQ, and MSC by synthesizing and manipu-

lating characteristics of the noise in fully artificial datasets, we proceeded to test the

ROC performance of datasets containing real noise. The results for ROC analysis of

this partially simulated real null dataset (methods described in chapter introduction)

are shown in Fig. 7 and Table 4.
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Figure 7. ROC curve for real null dataset: (a) full curve, (b) region of interest

Various features of the curve in Fig. 7 deserve attention. Initially, one will notice

that Co and FPQ∗ are collinear and perform better than MSC and FPQ in the

region of interest. The collinearity of Co and FPQ∗ matches findings from previous

simulations (simulations#1-3) as does the dissociation of FPQ∗ and FPQ (simula-

tion#2). From this dissociation we can conclude that the OLS residuals must not

Table 4. ROC curve mean in range FPR 0-0.1: real noise simulation

Co FPQ∗ FPQ MSC

Fig.7 0.3629 0.3649 0.1834 0.2103
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be independent and normally distributed otherwise FPQ would coincide with FPQ∗

as in simulation#1 (Fig. 3) where only normally distributed random noise was used.

Likewise, since Co and FPQ∗ are once again coincidental and separate from FPQ,

we may surmise that Co is not accounting for temporal autocorrelation due to noise

if that is indeed the only difference between FPQ and FPQ∗, i.e. all PGLS does for

FPQ is prewhiten the data.

Finally, it is interesting and important to note that FPQ’s reduced performance

compared to FPQ∗ is on the order of that of MSC’s, MSC slightly outperforming

FPQ according to our metric (Table 4). If, as their definitions suggest, Co and FPQ∗

are deficient in their capacity to correct for residual autocorrelation and FPQ appro-

priately addresses it, FPQ should be taken as the valid statistic and Co as invalid.

With this in mind, taking the fact that MSC was proven to be stable (i.e. show

less variability) to severe manipulations in noise structure (simulation#2: Fig. 4 and

Table 2) and the fact that MSC is commensurate with FPQ in this real null dataset,

there exists the possible conclusion that MSC is robust to autocorrelation by nature,

functioning without the need for explicitly accounting for temporal autocorrelation

in the noise.
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5. STATISTICAL VALIDATION

While ROC curves provide a comparison of signal detection performance, before

drawing any conclusions about the superiority of a statistic from them, one must

be confident of having met the assumptions of the response detection method as well

as any assumptions about the statistic’s distribution when thresholding. Both these

factors influence the validity of inferences drawn from the statistics (see section 2.4

for review). If either factor is not addressed appropriately, the obtained p-values and

consequently inferred significance levels will be biased.

A test may be considered valid if it is accurate in the statistical inferences it

makes. As previously discussed, the assumption of independent noise time series

(manifested in the successive terms in the error time series in linear modeling) can

bias results when temporal autocorrelation is not accounted for during response de-

tection and when theoretical distributions are used for thresholding. Whether it is left
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Figure 8. Two ways of interpreting bias using ROC curves

unaccounted for in the response detection method that produces a signal detection

statistic or if it is assumed in the use of a theoretical distribution for thresholding,
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the result of such an assumption would manifest itself as the falsely superior ROC

curve seen in both images of Fig. 8. The bias exemplified similarly in both Fig. 8(a)

and Fig. 8(b) can be understood in two ways. Looking at Fig. 8(a), we can see that

for a given TPR, a biased curve (A) will give reduced false positive rates (B). Then,

considering Fig. 8(b), we see that for a given FPR, a biased curve (C) will give greater

than actual true positive rates (D).

We explored the existence of the two causes of this bias in usage of Co, FPQ, and

MSC as described below.

5.1. Method overview

Because our real null dataset simulations resulted in ROC curves (Fig. 7) that re-

flected the condition displayed in Fig. 8, the goal of our first validation test was to

see how if at all the residual autocorrelation structure that was dissociating FPQ∗

from FPQ was biasing actual significance levels away from assumed ones. In other

words, we wanted to explore the effect of assuming independent noise on bias in sta-

tistical significance. Using null datasets (both simulated and real) we tabulated how

often the value of each statistic passed an assumed significance threshold of p = 0.05.

Because of the use of a null dataset, this qualification should in theory happen no

more than 5% of the time. If its rate of occurance were to exceed 5%, we would

have evidence of bias. To hold variability in thresholding technique constant and at

the same time use a technique that reveals sensitivity to noise-autocorrelation as a

function of frequency, each statisitic’s p = 0.05 threshold was determined from its
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distribution across frequencies. Specificially, for each of 1000 simulated-null voxels

and 1700 real-null voxels separately, Co, FPQ∗, FPQ, and MSC values were com-

puted for all available frequencies and ordered in a histogram to determine the cuttoff

value for the top 5%. For each voxel and at a particular frequency then, the statistic

was qualified as either having passed or not passed its cuttoff threshold, the number

of times it passed over the total number of tests (i.e. 1000 or 1700) constituting its

actual FPR.

Simulated null datasets were generated to have inherent autocorrelation. This was

achieved using an algorithm proposed by Rangarajan and Ding in which the spectral

density of a white noise process is made to scale with frequency, f , as the power law

f−1 (see Appendix B).34

To test the effect of chosen distribution on the validity of inference, we again used

a real null dataset but this time determined thresholds using theoretical distributions.

We compared how well resulting FPRs in the null dataset matched a range of assumed

α’s in the form of an ‘actual FPR vs. assumed alpha’ (or ”False-positive characteristic”

as termed by Purdon and Weisskoff) plot.21 The theoretical distributions were chosen

based on previous associations to the spectral statistics discussed here and included

the t-statistic and erfc (complementary error function) for Co,8,35 Chi-squared for

FPQ,3 and an F -statistic for MSC26 (exact relationships to of statistics to these

distributions made explicit in Appendix C). Actual FPRs were computed separately

for ten 64x64 image slices of the null dataset and averaged to produce the values

plotted in the figure.
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5.2. Results

Figure 9 shows the results of our test for bias resulting from the effect detection

assumption of independence in the noise time series. Because we set the threshold
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Figure 9. Actual false positive rates (FPR) for α = 0.05 as a function of frequency:

(a) simulated dataset, (b) real-null dataset

at p = 0.05, valid conservative statistics will have false positive detection rates (FPRs)

equal to or less than 0.05. As we see in both the simulated- and real-null datasets,

at low frequencies, actual FPRs for all four statistics do exceed 0.05. In the range of

0-0.05Hz, however, MSC and FPQ have values closer to the assumed α. Indeed, in

the simulated dataset (Fig. 9(a)), Co and FPQ∗ seem to scale like the f−1 power law

structure we had incorporated into the data, while MSC and FPQ are virtually flat

except at the front tail. While this is not as evident in the real-null dataset, the trend
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Table 5. Actual false positive rates

Co FPQ∗ FPQ MSC

Fig. 9(a)

f = 0.0265 0.234 0.239 0.054 0.057

f = 0.0530 0.106 0.110 0.023 0.058

Fig. 9(b)

f = 0.0265 0.134 0.134 0.005 0.047

f = 0.0530 0.029 0.034 0.005 0.030

is the same. It could be that the magnitude of noise autocorrelation was minimal

in this particular real dataset, nevertheless we recognize that at our low retinotopy

paradigm frequency of 0.0265Hz, Co and FPQ∗ significances are still inflated by a

factor of nearly 3 while that of MSC and FPQ are below the assumed (Table 5).

Based on the qualitative results of these graphs and quantitative values summarized in

Table 5, we would conclude that the greater the amount of temporal autocorrelation

in the noise and the lower the paradigm frequency, the more caution needs to be taken

in the choice of statistic. MSC and FPQ would not just be the more conservative

choices, but more likely the valid ones.

Figure 10 shows the results of our test for bias as a result of thresholding based on

theoretical distributions. Erfc and t-stat distributions commonly used with Co have

produced a positive bias, inflating the significance while Chi-squared and F -stat dis-

tributions used with FPQ and MSC have produced a negative bias, underestimating
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Figure 10. False-positive characteristic plot

the significance. This plot argues in favor of determining thresholds empirically. Be-

cause a real-null dataset is required, empirical thresholding is inefficient in both cost

and time; however, the benefit is virtually perfect knowledge of the null distribution.

In the case that empirical thresholds are unavailable, results of this plot advocate the

use of the Chi-squared distribution with FPQ, being slightly more conservative than

the assumed. And although FPQ∗ and FPQ are coincident, considering the results

of Fig. 9, FPQ should still be used over FPQ∗ to account for bias due to temporal

autocorrelation in the noise.

Our explorations of bias due to assumptions in effect detection and in threshold-

ing has shown that both do exist and are important concerns. In studies using low

paradigm frequencies, such as retinotopy, when independence of error terms is incor-
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rectly assumed in signal detection, significance levels for Co and FPQ∗ are inflated

above the assumed α. On the other hand FPQ, which accounts for temporal auto-

correlation, and MSC, which may be robust to it, remain more consistently below

the assumed α and thus are the more conservative and valid options. Likewise, when

the ideal empirical distributions are unavailable, thresholding based on theoretical

distributions can bias false positive rates either above or below the assumed α. If

theoretical distributions must be used, the statistics with the more conservative false

positive rates are preferred to ensure validity in this account.

Having investigated the general performance and validity of the Co, FPQ, and

MSC statistics, we proceeded to examine their results in the context of retinotopic

mapping.
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6. RETINOTOPIC MAPPING

Retinotopic maps that relay orderly representations of visual space from the retina to

the brain are a universal feature of the visual system of vertebrates. With the advent

of functional MRI and the aid of cortical reconstruction and flattening technology,

it has been possible to non-invasively determine the retinotopic organization of the

human visual cortex.36,37,2 Borders of visual areas can subsequently be derived

therefrom. Analysis of fMRI data for retinotopy differs from most fMRI studies in

that the paradigm is a phase-encoded periodic one, and the data must be visualized

on 2D representations of the cortex. The following gives a brief summary of the

processing steps involved and carried out in our analysis with the mrVista toolset

as well as comparison of signal detection results for Co, FPQ, and MSC on a real

dataset.

6.1. Method overview

Neurons of retinotopic visual cortex are responsive to only limited areas of the visual

field, known as their receptive fields. The stimuli used for retinotopic mapping exploits

this property to map the polar angle and eccentricity of points in the visual field to

the cortex. Black and white checkerboard stimuli spanning as much of the visual field

as possible (approximately 17 degrees of visual angle in our case) and reversing at

8Hz, the optimal frequency for visual neuron excitation,38 of both wedge (Fig. 11(a))

and ring (Fig. 11(b)) formations are rotated and expanded/contracted respectively

about the fixation point in the center of the visual field during separate EPI scans.
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While the subject passively fixates on the cross during these scans, the stimuli produce

Figure 11. Retinotopy visual stimuli: (a) polar angle wedge rotates either clockwise

or counter-clockwise, (b) eccentricity ring expands or contracts

waves of activation across the cortex as neighboring neurons with receptive fields in

the direction of the probed visual field coordinate (i.e., polar angle or eccentricity)

fire. The stimuli cycle across the visual field at a slow rate (0.0265Hz for wedges and

0.0531Hz for rings) activating the cortex at the same frequency. Since the cortex is

activated at the same frequency of the cycling stimulus, we expect stimulus-related

response in fMRI time series to occur predominantly at the frequency of stimulation.

The frequency of stimulation thus is a filtering criteria for response detection, and the

phase information from each voxel in the functional volume correlates the location

of the stimuli to particular regions of the cortex. In this sense, the stimuli and

brain activity are phase-encoded. Using the discrete Fourier transform this phase

information is easily extracted for each voxel. Only certain regions of the brain are

responsive to the stimuli, however, and that is where signal detection statistics come

into play. For each voxel in the volume a signal detection statistic is computed and
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thresholded.

To visualize retinotopic data in the most convenient manner, the functional phase

information is overlaid on flattened representations of the cortex generated from high-

resolution T1-weighted anatomical MRI data from the same subject. First the high-

Figure 12. Structural MRI image processing: (a) raw image, (b) segmented white

matter, (c) reconstructed cortical mesh

Figure 13. Polar angle phase data overlaid on: (a) coplanar anatomical scans, (b)

MPRAGE, (c) reconstructed cortical mesh (d) flattened mesh

resolution anatomical scan (MPRAGE, Fig. 12(a)) is segmented along the gray-white

matter border (Fig. 12(b)) and reconstructed into a 3D cortical mesh (Fig. 12(c)).
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This 3D mesh is flattened in the occipital pole region. Next high-resolution copla-

nar T2-weighted 2D anatomical scans acquired with the same orientation and slice

thickness as the functional volumes are aligned to the 3D MPRAGE coregistering

the datasets. Finally, using the registration parameters, the functional phase-maps

can be visualized directly on the coplanar anatomical scans (Fig. 13(a)), the high-

resolution 3D anatomical (Fig. 13(b)), the folded cortical mesh (Fig. 13(c)), or the

flat mesh (Fig. 13(d)). It is the flattened views that allow us to clearly see retinotopic

patterns on the cortical surface and determine areal borders (indicated by white lines

in Fig. 13(d)). MRI scanning parameters for the various pulse sequences used are

listed in Table 6.

Table 6. MRI pulse sequence parameters for scans used in retinotopy

Description Matrix FOV (mm) TR (ms) TE (ms) FA (degrees)

MPRAGE 256x256 256 2500 4.8 7

T2-TSE 256x256 220 4000 25 90

GRE-EPI 64x64 220 1570 25 90

Definitions of retinotopic visual areas are determined by identifying complete and

spatially contiguous regions of the phase map representations of the visual field across

the cortex. Borders between the areas are determined by identifying contiguous re-

gions of reversal in the polar angle phase gradients (Fig. 14). By examining each

hemisphere’s flattened functional phase maps, one will notice reversals in phase oc-

curring at the phase values representing stimulation of the vertical meridian and the
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Figure 14. Determining borders of visual areas: (a) unthresholded flattened polar

angle phase map of right hemisphere, (b) color legend relating phase to location of

stimulus in visual field

horizontal meridian of the contralateral (opposite to hemisphere begin studied) visual

field. These meridian lines constitute the borders of the early visual areas (V1, V2,

V3, V4). The clarity and confidence with which we can mark these borders depends

upon several factors including most significantly: the fidelity of the gray-white matter

segmentation that was the source of the flattened mesh, the accuracy of the alignment

parameters coregistering functional and anatomical datasets, and our ability to dis-

tinguish signal from noise. It is the final factor of signal detection on which we have

focused in the research presented here. Assuming mesh creation and coregistration

to functional data have been performed optimally, our ability to draw borders with

confidence depends on the contiguous spatial extent of significantly active regions.
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Given a dataset that we believe has been optimized for the first two conditions and

exhibits the retinotopic patterns described above, as a method for qualitative corrob-

oration in a real fMRI study of our previous findings on performance and validity, we

visually compare the spatial extent of active regions determined by empirical thresh-

olding of Co, FPQ, and MSC. Using a null dataset, empirical p = 0.05 thresholds

were determined by computing separately the Co, FPQ∗, FPQ, and MSC statistics

for each of 80,000 voxels in the dataset, ordering values for each statistic in sets of

1000, and taking the mean of the values demarcating the top 5%-cutoff across the 80

sets. We chose empirical thresholding to minimize to the best of our ability bias in

inference.

6.2. Results

Figure 15 shows, on flattened representations of a subject’s right hemisphere, the

results of thresholding the three signal detection statistics Co, FPQ (and its variant

FPQ∗), and MSC according to their empirically determined p = 0.05 thresholds.

Since visual areas are defined by identification of contiguous phase representations

of the contralateral visual field, using the unthresholded map, we drew a black line

around the extent of the region that would be used to label visual areas if statis-

tical significance were not taken into consideration (Fig. 15(a)). The superimposed

black border was projected onto the thresholded maps (Figures 15(b-e)) to serve as a

reference for the spatial extent of potentially usable retinotopically organized regions.

Although the exact distribution of true positive activation is unknown, we can
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see that most of the extent of the retinotopicly organized region remains for all the

statistics. The differences that do exist, suggests that some or all of them are biased

from an actual significance level of α = 0.05. Given findings using ROC curves, the

validation tests, and the fact that MSC has produced the most conservative yet not

overly-conservative activation map in Fig. 15, we conclude that MSC is the safest

choice for thresholding activation maps in periodic fMRI studies. While borders

can always be drawn without the use of a thresholded map, accurate reporting of

the confidence with which borders have been identified, will depend on the use of

unbiased thresholded statistics.
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Figure 15. Flattened polar angle phase maps of right hemisphere computed at fun-

damental frequency and thresholded for p = 0.05 using empirically determined dis-

tributions of each statistic
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7. DISCUSSION

While fMRI studies of periodic designs are often used for the distinct advantage of the

frequency domain signal detection statistics available to them, the various statistics

themselves have specific features that are responsible for variability in performance

and inferential validity. In an effort to improve the sensitivity of retinotopic mapping

in the human visual cortex, we compared both the performance and validity of the

three statistics: Co, FPQ, and MSC using simulated and real data.

Widely used in the mrVista toolset for retinotopic mapping, Co proved to have

greatest performance in ROC curve analysis using real and realistically simulated

datasets (Figures 3, 6, and 7). The coincidence of its curves with the independence-

assuming FPQ∗ statistic and separation from FPQ, which took autocorrelation of

residual terms into account, flagged a potential bias in performance estimation due

to an independence assumption. MSC, computed from only information at the par-

adigm frequency, showed minimal variability in response to phase-coherent noise at

non-paradigm frequencies (Fig. 4) of simulated data and exhibited coincidence with

FPQ in real data (Fig. 7), confirming the advantage of single frequency dependence

and proposing a possible robustness to assumptions of independent error terms re-

spectively.

We further explored the influence of assumptions of independent error terms and

theoretical distributions on the validity of inferences drawn from all three statis-

tics. The assumption of independent error terms in signal detection proved to be
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responsible for bias in Co and FPQ∗ for low frequency paradigms studies such as

those used in retinotopy (Fig. 9). Results of both the simulated and real data sug-

gested that residual autocorrelation should be accounted for by the AR(1) modeling

implemented for FPQ or with the use of MSC that showed to be robust to the in-

dependence assumption. The assumption of theoretical distributions for thresholding

proved to exhibit either positive or negative bias in inference for each of the related

distributions (Fig. 10) suggesting the use of empirical distributions when possible, or

otherwise the more conservative theoretical distributions: Chi-squared for FPQ and

F -stat for MSC.

Finally, we considered results of thresholding real human retinotopic datasets

based on empirical distributions of each statistic. Because it is impossible to know

the exact distribution of truly active voxels in a real dataset, defining a region that

exhibited retinotopic behavior, we visually compared the extent of remaining activa-

tion in that region for p = 0.05 thresholded values of Co, FPQ∗, FPQ, and MSC.

While Co and both FPQs demonstrated larger overall coverage, MSC displayed the

least activation outside of the region of interest and most of the activation inside the

region. The confidence with which retinotopic borders are drawn depends on accurate

statistical inference. Thus, based on simulations and preliminary results of real data,

we recommend that when inferential statistics are in order the more conservative yet

still useful statistic of MSC should be used.

Although retinotopy was the application of focus in this thesis, these results should

extend to other low-frequency periodic fMRI paradigm studies. In particular, for
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those applications (unlike retinotopy) in which large contiguous regions of activation

are not required, detection of sinusoidal activation may more confidently be reported

with MSC without loss in utility.

While we have met the objectives of our research as stated summarized above, the

evaluation of the relative performance and validity of Co, FPQ, and MSC did not

take into consideration the influence of EPI distortion and the multiple comparisons

problem. Because of the use of gradient echo pulse sequences, magnetic susceptibility

differences will cause distortions in the EPI images at tissue-bone or tissue-air inter-

faces. Although we believe the effect is minimal for our real retinotopy datasets, it

can be a potentially significant problem in the some brain regions and with some pulse

sequences and should, if possible, be addressed by applying distortion correction algo-

rithms during preprocessing. The results of our analysis can also be further refined by

considering the influence of the multiple comparisons problem. When large numbers

of statistical tests are performed (such as the many thousands of voxels tested in an

fMRI volume), there is potential of increased false-positive rates. Whether or not this

is case for the three statistics studied here, it would be useful to evaluate the effect

of various multiple comparisons correction methods on actual significance levels.



61

APPENDIX A. HEMODYNAMIC MODELING OF

SUPERIMPOSED SIGNAL

A.1. Balloon model

We used a somewhat sophisticated model of the hemodynamic response to simulate

the BOLD response time series to a stimulus. A complete model of the hemodynamic

response as measured with BOLD-fMRI would involve the physiology of arteries,

capillaries, and veins. BOLD modeling is simplified, however, by the observation

that BOLD-fMRI is weighted heavily toward veins.39 The model proposed by Buxton

and used here is known as the balloon model .40 It relates venous blood volume V ,

inward blood flow Fin, and percent deoxyhemoglobin Q through their normalized (to

resting-state values V0, F0, and Q0) dimensionless variables v, fin and q.

The following differential equations relating q and v to blood flow result from

the conservation of total blood and total deoxyhemoglobin in the venous (balloon)

compartment:

τ0v̇ = fin − fout (14)

τ0q̇ = fin
E

E0

− qv1/α−1 (15)

The time constant, τ0 ≡ V0/F0, is interpreted as the mean transit time across the

balloon compartment, and E is the fraction of oxygen extracted from the blood flowing

into the capillary bed.

Defined in terms of the relationship between inward flow fin and resting state oxy-

gen extraction fraction E0, E is the metabolic basis of the model and is approximated
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as:

E = 1 − (1 − E0)
1/fin (16)

E is a decreasing function of fin reflecting the finding that the cerebral blood flow

response to neural activity exceeds the metabolic demand for oxygen. By modeling E

in this way, however, it does not reflect a direct neural coupling that has been used by

some to explain a sometimes observed initial dip in the BOLD signal.41 Variability

in E is considered here to be due entirely to activity-induced changes in blood flow.

Determined physically by the relative pressures between the venous compartment

and the down-stream vein, a proper definition of outward flow fout introduces vari-

ables that are not directly accessible. The balloon model replaces this detail with a

phenomenological relationship between fout and v. We used the simplest model that

fits the data at steady-state42:

fout = v1/α (17)

A.2. Neurovascular coupling

Since inward cerebral blood flow is understood to be caused (at least predominantly)

by neural activity, fin is defined with a model of neurovascular coupling. While the

relationship between inward flow to the physiological variables v and q has been

investigated extensively in recent literature and is considered a quite reasonably rep-

resented by the low-order balloon model, research into neurovascular coupling, has

produced less reliable models. The model used here, which is the only one available
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in the literature, is the second order linear model proposed by Friston et al.33:

f̈in = ǫu(t) −
1

τs
ḟin −

1

τf
(fin − 1) (18)

The input u(t) is flow-inducing neuronal activity and as in most fMRI studies is

approximated by the stimulus waveform.

A.3. MRI physics

Finally, once the outputs of the balloon model (the time series for q and v) have been

computed, the BOLD response B(t) is predicted using a simple linear relationship:

B(t) = V0[k1(1 − q) + k2(1 − v)] (19)

Equation 19 is a corrected version43 of an earlier nonlinear form containing a q/v term.

The parameters k1 and k2 are derived by considerations in MR physics, including a

generalization of some quantities from 1.5T to 3T.43 While errors in estimating these

parameters result in a different relative weighting of q and v, they do not change their

time courses.

A.4. Model parameters

The balloon model parameters were taken from the literature and are E0 = 0.4,

τ0 = 3, and V0 = 0.03 from Buxton’s 1998 paper40 and α = 0.38 from Buxton’s

1997 paper.32 The neurvascular coupling model parameters were taken from Friston

et al., where they were fit to brief stimuli with variable inter-stimulus interval.33 It

is not obvious if these latter parameters are optimal or even valid for our periodic
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stimuli, but they are used here as a starting point. The exact values used are: ǫ = 0.5,

τs = 1.54, and τf = 2.46.

APPENDIX B. SIMULATING AUTOCORRELATIVE

NOISE PROCESS

To simulate autocorrelative noise processes we implemented a f−1 scaling of a white

noise power spectrum as proposed by Rangarajan and Ding.34 Their steps are sum-

marized here.

First, a discrete zero mean white Gaussian noise process {ξk}, k=0,1,2,...,N-1 is

Fourier transformed to obtain:

Γk =
N−1
∑

n=0

ξne
−i2πk/N (20)

Next, Γk is multiplied by f−1 = (k/N)−1/2 resulting in the scaled quantity Γ′
k. This

scaled quantity is then inverse Fourier transformed to obtain the desired discrete time

series, xn:

xn =
1

N

N−1
∑

k=0

Γ′
ke

2πk/N (21)

where n=0,1,2,...N-1.

APPENDIX C. RELATIONSHIP OF CO, FPQ, AND MSC

TO THEORETICAL DISTRIBUTIONS

Relationship of Co to erfc (mrVista code, Bandettini et al.8):

p − value ∼ (1 − erf(Co ∗
√

N/2)) (22)
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where N follows as above.

Relationship of Co to t-statistic (Silver et al.35):

t ∼ Co

√

N − 2

1 − Co2
(23)

Relationship of FPQ to χ2 statistic (Bullmore et al.3):

χ2 ∼ 2(FPQ) (24)

Relationship of MSC to F -statistic (Simpson et al.26):

F2,2M−2 ∼
MSC(M − 1)

1 − MSC
(25)

where M is the total number of time series samples in the estimate as defined pre-

viously. P-values for t, χ2, and F values can subsequently be assigned from their

respective distribution tables.
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