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1. INTRODUCTION

1.1. Cancer and Early Detection

1.1.1. Breast Cancer

Among women, breast cancer is one of the most commonly diagnosed types of cancer

and is the second leading cause of cancer deaths after lung cancer. A National Can-

cer Institute (NCI) report estimates that about 1 in 8 women in the United States

(approximately 13.3 percent) will develop breast cancer during her lifetime.1 Much

research has gone into understanding the basic disease mechanisms, as well as into

ways to detect cancers early and treat them effectively. Our contribution will be to

improve ultrasonic imaging technology so as to impact early detection.

Before going forward with the core material of our research it is appropriate to

know some basic background on breast cancer. This can help us design strategies

for imaging and early detection. The most common type of breast cancer is ductal

carcinoma, which originates in milk ducts. Another type is lobular carcinoma, which

originates in the lobules. We briefly discuss the current model for ductal carcinoma

pathogenesis. Focal abnormalities in epithelial cells undergo malignant transforma-

tion due to carcinogens or other genetic or hormonal signaling. The apoptotic (pro-

grammed cell death) signalling pathways of malignant cells are altered so that cells

grow in an uncontrolled way. The cellular microstructure is altered in a way that is

recognizable by pathologists. The changes in microstructure also change ultrasonic

echo signal properties - and may be a source of contrast. At first the malignant
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cell population is contained within the milk ducts. At this stage the neoplasm is

called a ductal carcinoma in situ. Signalling between the cancer cells and the sur-

rounding stromal tissue can induce a desmoplastic effect (formation of a collagenous

capsule thought to be responsible for tumor stiffness). Dangerously, Matrix Metalo-

proteinases (MMP’s) and other signalling molecules generated by the neoplastic tissue

can induce breakdown of the milk duct epithelium and lead to invasion of the sur-

rounding tissue. At this point the cancer is called an invasive ductal carcinoma. This

invasion is often accompanied by production of vascular endothelial growth factor

and signaling molecules such as V EGF and αvβ3 which initiate growth of new blood

vessels (angiogenesis) to keep up with increased metabolic demand of the rampant

cell growth. Also accompanying the disease progression is the decrease in the number

of desmosomes and other focal adhesion molecules responsible for cellular adhesion

and connectivity. The danger of invasion is thus that malignantly transformed cells

can break away from the tumor into the bloodstream and migrate to remote parts of

the body to seed new tumors.

1.1.2. Early Detection

Early detection of breast cancer can save lives. The American Cancer Society (ACS)

report on the 5-year survival rates (percentage of patients who live at least 5 years

after their cancer is diagnosed) for different cancer stage is summarized in Table 1.

Stage 0 is ductal carcinoma in situ, and stages I through IV (1-4) correspond to

increasing degrees of severity, including the tumor size and extent of metastasis.
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Table 1. Breast Cancer Survival by Stage

Stage 5-year Survival Rate

0 100%

I 98%

IIA 88%

IIB 76%

IIIA 56%

IIIB 49%

IV 16%

The ACS also predicts an increase in survival rate from 82% to 95% if widespread

screening is implemented as recommended. Detecting the breast cancer at an early

stage, before cells have begun to metastasize, is necessary to increase survival rate

and reduce cancer death.

Significant research has been performed to find methods which are effective at early

detection. Methods that are both sensitive (can detect a high percent of cancers) and

specific (have low false positive rates) are desired. The cost of low sensitivity could

be a woman’s life. The cost of low specificity are associated with the large-scale

costs of large numbers of biopsies including risk of infection, financial costs to society

and individuals, physical discomfort, and mental trauma of women who have a false

diagnosis of cancer. Currently, the most common types of non-invasive methods for

early detection include manual palpation and imaging.
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Palpation is an essential diagnostic method for detecting neoplastic growth. In

manual palpation, a hand presses onto the skin surface of a patient. Cancers are

typically more stiff than the surrounding tissues, hence one can sometimes feel a

’lump’ - which may (or may not) be a tumor. The problem is that some palpable

lesions are already too big (typically 1 cm or larger). Ideally one would like to

detect cancers when they are as small as possible to prevent growth and metastasis.

Strain imaging techniques are meant to image the stiffness properties of tissues non-

invasively in a way that is more sensitive than manual palpation, and these techniques

are currently under investigation by a number of groups.2–4

Currently X-ray mammography is the gold standard imaging technique used for

breast cancer screening. Mammograms are projection images through the breast

that reveal contrast on the basis of the attenuation of properties of tissues, which

are linked to density and atomic number. Suspicious masses and microcalcifications

can be signs of cancer. Advantages of mammography include high specificity and

sensitivity. Disadvantages of mammography include physical discomfort due to breast

compression and the risks associated with the use of ionizing radiation. The role of

other imaging techniques in the detection and management of malignant disease will

be discussed shortly.

An understanding of risk factors and epidemiological studies is important because

women who are at higher risk and their physicians may need hightened awareness

to detect cancer as early as possible when treatment is most effective. Radiologists

who know a women is at great risk for breast cancer may be more inclined to send
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the patient for biopsy when viewing a suspicious region in an image. Risk factors for

breast cancer include both genetic (e.g. BRCA1 or BRCA2 mutations, Li-Fraumeni

syndrome due to TP53 mutations, and Cowden syndrome due to PTEN mutations5)

and non-genetic factors including age, reproductive and menstrual history, hormone

therapy, radiation exposure, mammographic breast density, lifestyle factors, and his-

tory of breast disease.

1.1.3. Diagnostic B-Mode Ultrasound

A controversial Danish study used radiation dose calculations and mortality data from

the Hiroshima and Nagasaki tragedies to predict the risk versus benefit of mammog-

raphy as an early detection modality.6 They concluded that the radiation doses from

mammograms could be causing as many cancers as are being detected successfully

with early screening (within statistical errors).

It would be a significant contribution to the medical community to develop an

early detection system that could equal or exceed the detection performance of mam-

mography systems using non-ionizing radiation. Ultrasound systems, with some im-

provements, could satisfy this requirement.

Ultrasound systems use safer high frequency sound waves rather than ionizing

radiation. Additionally ultrasound systems are portable, relatively low cost, and

offer realtime imaging capabilities that are invaluable in the clinical environment.

Ultrasound systems are already playing a crucial role in the early detection, diag-

nosis, and management of malignant disease. Advancements in ultrasound technology
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have expanded the uses for ultrasonography in the evaluation of the breast. Breast

masses can be delineated by specific ultrasonographic characteristics that allow them

to be categorized according to their relative risk of being malignant. When combined

with physical examination and mammography, breast ultrasonography can decrease

additional radiation exposure associated with repeat mammograms. It also can lower

the cost of evaluation of the breast, and it often reduces the number of open biop-

sies.7 In addition, ultrasound can be used for definitive pathologic diagnosis by

guiding fine-needle aspiration and core biopsy, as well as facilitating preoperative

needle localization for excisional biopsy.

Sonographers search for signs of malignancy when a lesion is discovered. Fluid

filled cysts are benign and can often be distinguished from malignancies on the basis

of echogenicity (cysts have very few scatterers inside), acoustic enhancement at the

proximal surface of the cyst borders - (partially due to an acoustic lens effects caused

by the spherical shape of the cyst boundary). Fibroadenomas are benign growths with

complex shapes that sometimes resemble tumors in sonograms. Tumors are almost

always hypo-echoic, appearing as dark regions in a bright backgrounds. Addition-

ally, malignant tumors often have spiculated boundaries, and are oblong the growth

pattern following the natural tract of milk ducts. Malignant tumors have typically

ruptured their stromal capsule and the tumor cells have invaded surrounding tissues

- thus malignant tumors (e.g. IDC) often have a more diffuse boundary than ductal

carcinoma in situ.

In one study by Chen et. al.8 they evaluated the diagnostic ability of ultrasound
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and defined the sonographic features of symptomatic intraductal and invasive breast

carcinoma. They concluded that differentiation of ultrasonic features of intraductal

and invasive carcinoma can be based on the internal hypo-echogenicity, loss of bilateral

edge shadowing, posterior acoustic transmission, irregular shape and non-uniform

internal echo texture. The study, however was retrospective, and further investigation

is needed to examine the role of using these features for detection.

Irwig et. al.9 reviewed imaging technologies for screening applications and put

ultrasound performance in context with mammography (including Full-Field Digital

Mammography and Computer Aided Detection) and MRI. Kolb et. al.10 conclude

that ultrasound as an adjunct to mammography detects additional cancers, especially

in women with radiographically dense breast tissue. Irwig et. al. point out however

that sonography may introduce additional false positives. It is important to note,

however, that these results are a combination of detection (i.e. is there something ab-

normal there?) and classification tasks (i.e. is the abnormality a cyst, fibroadenoma,

ductal carcinoma in situ or an invasive ductal carcinoma?), and that their study is

very technology dependent. Our point is that improved ultrasonic technology could

result in improved diagnosis.

1.2. Image Quality

Good image quality is the design objective of every modality in medical imaging.

Image quality affects the ability of physicians to diagnose and manage disease and

determine a patient’s state of health. Modalities on the frontier of medical imaging are
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also helping us understand the mechanisms of disease progression - thus contributing

to basic science research.

Traditionally image quality metrics such as contrast, contrast to noise ratio, spa-

tial resolution, and echo signal-to-noise ratio have been used to characterize imaging

system performance. There are however, almost always tradeoffs between these pa-

rameters, and the optimum balance among parameters is application dependent.

1.2.1. Task Performance

We follow a school of thought pioneered by many before us11 that image quality

should be defined in terms of the task at hand, and that task performance should and

can be measured quantitatively.

For the medical diagnostic task of early detection of breast cancer, we may ac-

tually need to consider several sub-tasks: (1) Is there an abnormal growth present

or isn’t there? (2) If there is a growth present, is it a mass or a fluid filled cyst?

(3) If it is a mass, is it a fibroadenoma (benign) or a carcinoma (malignant)? (4)

If it is a carcinoma - what stage is it at - Ductal Carcinoma In Situ, or Invasive

Ductal Carcinoma? (5) If it is an Invasive Ductal Carcinoma, what is the extent of

metastasis?

Many of these sub-tasks are binary classification tasks - a clinician must decide

between two categories of disease states based on the image data. In this dissertation,

much of our focus will be on the most basic of binary classification tasks, detection

tasks, where one must decide if a lesion is present or absent. It will turn out that the
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formulation for analyzing many other binary classification tasks will be very similar

to the detection case. One reason that we focus on detection problems is that this is

the task most analyzed in other modalities. Thus there is a natural connection to a

broader framework for analyzing and designing imaging systems that we will explore

in the next chapters.

1.2.2. Observers and Decision Theory

In clinical situations, it is radiologists that make diagnoses on the basis of medical

images and patient history. Computer aided diagnosis in mammography is becoming

more common to assist in the detection process. We can further abstract the concept

of a decision maker to a mathematical framework or computational algorithm that

forms a scalar test statistic t(g) from the image vector g. This observer compares the

test statistic with a threshold value to to make a decision. For example, if t(g) ≥ t0 it

may be decided that there is a lesion present, and if t(g) < to the opposite is decided.

Over an ensemble of cases, a histogram of test statistic values for each hypothesis is

formed. These histograms are governed by probability distributions, which in some

cases can be modeled by analytical functions. When probability distributions for each

hypothesis overlap, decision errors occur. The performance of an observer is analyzed

by the probabilities of decision errors. A receiver operating characteristic (ROC)

curve12 is the gold standard for doing this. An ROC curve plots the true positive

fractional (TPF) probability for all possible false positive (FPF) values. Curves with

large area (close to 1) identify high performance diagnostic tests.
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The area under the ROC curve is a common summary measure of observer perfor-

mance. Another common measure is the observer signal to noise ratio, defined as the

mean separation in the test statistic likelihoods normalized by the common standard

deviation:

SNRt =
t1 − t0√

0.5(σ21 + σ20)
(1)

where t1, t0, σ
2
1, and σ

2
0 are the means and variances of the test statistic conditioned

on the signal present and signal absent hypotheses, respectively.

ROC curves for diagnostic detection tasks are observer and imaging system de-

pendent for a given population of patient data.

Relating to diagnostic image quality, there are several classes of mathematical

or computational observers. One class is meant to mimic human observer perfor-

mance. Human observer studies typically require radiologists or others to view large

ensembles of images and make decisions on each. Often these images are simulated

so that truth about a lesion present or absent is known - yet still these studies are

time-consuming and expensive. A computational observer that mimics the human

observer could greatly facilitate imaging research. For example, one may wish to test

whether a processing algorithm conveys more diagnostic information to the human

observer. Running a computational observer algorithm could be very valuable to as-

sess performance for a given diagnostic task. Modeling human observer performance

is a complex challenge - and one that we do not discuss very much in this dissertation

- although we are concerned with measuring human observer performance.
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Other classes of mathematical and computational observers are not meant to

model human observer performance, but are rather concerned with ideal decision

makers that are perhaps better than human observers. These observers are meant

to extract the maximum possible task-dependent information from the data, which

humans cannot.

1.3. The Bayesian Ideal Observer

The observer with performance given by the best of all possible ROC curves for a

given system design is called the Bayesian ideal observer.13 It has the highest TPF’s

for all given FPF’s compared to all other observers. The Bayesian ideal observer

is able to perform at the highest possible level because it has full knowledge of the

probability laws governing the data. It uses as its test statistic the log-likelihood

ratio, given as

λ(g) = ln

(
pdf(g|H1)

pdf(g|H0)

)
(2)

where H1 and H0 represent the hypothesis for the signal present and signal absent

cases, respectively, and the pdfs represent probability density or mass functions.

Monotonic transformations of the log-likelihood ratio can be shown to give identi-

cal performance to the log-likelihood.14

With prior probabilities and a model for decision error costs, a Bayesian decision

maker can additionally choose the test statistic threshold values that can optimize the

cost-versus-benefit tradeoffs for a given task. In this dissertation, we do not concern
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ourselves with the threshold values, as we are more interested in the ideal observer

for arbitrary threshold values.

The ideal observer is very important for optimizing medical imaging systems for

diagnostic tasks. One reason for this is because the performance of the ideal observer

reflects the upper bound on performance. Because the ideal observer is optimal, it uses

all possible information in the raw data to make its decision. Thus the ideal observer

processes the data in the optimal way to make its decision. Much can potentially be

learned by mimicking the ideal observer’s strategy. Another reason is that the ideal

observer is a measure of diagnostic information from the detection system. Knowing

that the ideal observer can process the data in the optimal way means that it can

only perform to the extent that information is in the data. By studying how to

optimize the performance of the ideal observer, we thus are studying how to improve

diagnostic information content in the raw data. Importantly, this directly impacts

system hardware design independent of the processing algorithms used to manipulate

and display the data. The role of processing algorithms for diagnostic imaging tasks

is to provide access to human observers to as much of the diagnostic information in

the data as possible. By measuring the human observer performance (dependent on

the system design, the processing algorithms, the display, and the observer) relative

to the ideal observer, one can then assess the performance of the the processing and

display methods. If the ideal observer has much better performance than human

observers - this suggests an improved role for image processing.
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1.4. Dissertation Objective

This dissertation is concerned with modeling the ideal observer for detection and

discrimination tasks in ultrasonic imaging. In effect, a thorough understanding of the

ideal observer could help us push the diagnostic limits of ultrasound to unprecedented

levels - thus significantly aiding in the detection, diagnosis, staging, and management

of malignant disease in the breast and in other pathologies.

Our approach is to model essential features of ultrasonic detection and discrimina-

tion tasks, including statistical object and noise models and realistic system models

integrating a full physics-based approach. Equipped with such a model, we are poised

to analytically and computationally study the form of the ideal observer test statistic

for ultrasonic detection tasks. We then use analytical and Monte Carlo simulation

approaches to assess the performance of system designs for detection tasks. The

ideal observer analysis suggests instrumentation design strategies and has also led to

some curious results concerning unfocused beams. From this analysis a new imaging

technique emerged and was implemented on a commercial ultrasonic scanner. Thus

we ultimately test some of our ideas experimentally. We show that these methods

can significantly improve diagnostic image quality over dynamic receive processing

methods currently used on most systems. Ultimately we hope that our efforts may

contribute to improved early detection of breast cancer and impact other areas of

clinical ultrasonography.
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2. BACKGROUND AND LITERATURE REVIEW

2.1. Ultrasound Fundamentals

Later in the dissertation we will refer to a number of common techniques used in

ultrasonic system designs. For this reason we give a brief outline of some fundamental

principles of operation and techniques currently used in modern ultrasonic scanners.

2.1.1. B-mode Imaging

Ultrasonic imaging systems operate by sending high frequency sound waves into the

body and receiving the scattered echo signals. Variations in density and compress-

ibility of tissue micro- and macro-structure are responsible for the scattering and thus

the variance of these quantities are responsible for the contrast observed in ultrasonic

images.

Modern ultrasonic scanners use array transducers having a large number of small

elements with widths typically on the order of the wavelength of the transmitted

acoustic energy. A subset of elements are excited with programmable delays to sim-

ulate a geometrically focused lens. The sub-aperture transmits a pulse and the re-

turning echoes are collected by the array elements and coherently summed focus the

beam on receive. The focusing properties of the beam determine the lateral resolution

of the imaging system. Axial resolution is determined by the pulse length - or more

accurately the reciprocal of the pulse bandwidth.?

An A-scan line is the beamformed echo received along a single line of sight. Sub-

apertures of elements can be electronically walked across the array to acquire multiple
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A-scan lines, which are spatially arranged in a given scan geometry to form a B-mode

image. B-mode images are typically envelope detected RF signals that are spatially

registered, sometimes with additional image processing such as log-compression or

histogram equalization15 to increase the visual dynamic range.

Array fabrication and system interfacing for high frequency systems has proven to

be more difficult, and sometimes single element transducers are mechanically scanned

in place of electronic beam steering.16

Ultrasound images have a speckle texture that is characteristic of the tissue,

the transmitted energy spectrum, and the acoustic focusing properties of the trans-

ducer.17

2.1.2. Dynamic Receive Focusing

For a single acoustic transmission, one chooses a single transmit focal location. How-

ever, on reception, one can adjust element delays dynamically to focus at each receive

depth. In this way modern ultrasound scanners can significantly improve the depth

of field, meaning that fine spatial resolution can be maintained throughout a large

axial depth centered at the transmit focal length. This technique is called Dynamic

Receive Focusing. The delay function is given in Eq. (8) of Ref..18 See also Ref.19

and it’s references.

2.1.3. Aperture Growth

Additionally, to make the spatial resolution more uniform throughout the region of

interest, systems often dynamically increase the size of the receive aperture with
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increasing depth (or decrease the aperture with decreasing depth) to maintain an ap-

proximately constant f-number (defined as the ratio of the focal depth to the aperture

size). This technique is called aperture growth. With aperture growth, the impulse

response of the dynamically focused receive beam is approximately shift-invariant.

Thus the net pulse-echo impulse response (IR) function is given by the 1-D spatial

convolution of the IR of the received beam wiith the shift-varying IR of the transmit

beam along the beam axis.

2.1.4. Apodization

Phase delays are applied to the echo signals on individual array elements to focus the

beam. However, amplitude weighting of elements is also possible on both transmission

and reception. Typical lateral amplitude profiles applied to apertures include Gaus-

sian and Hanning window functions. Apodization reduces sidelobes generated from

the discrete element approximation to a continuous transducer surface while widening

the mainlobe; thus it increases contrast resolution at the cost of lower lateral spatial

resolution.20

2.1.5. Synthetic Aperture Techniques

Ultrasonic imaging is in many ways similar to radar or sonar. A technique originat-

ing from radar called synthetic aperture imaging21 can also be applied to ultrasonic

imaging systems with similar advantages and disadvantages. Because lateral spatial

resolution is proportional to the f-number, high flying aircraft or satellites need a

very large aperture to attain good spatial resolution. Instead, they synthesize large
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apertures by tranmitting pulses and receiving echoes along their flight path and later

coherently combining echoes to reconstruct images of spatial resolution much greater

than that possible with the physical aperture. In modern ultrasound systems, syn-

thetic aperture techniques are not routinely used, in part because the computational

burden required to process the data has been prohibitive for realtime applications,

and in part because standard synthetic receive aperture techniques require transmis-

sion of small (point) sources - thus significantly reducing the energy per transmission

compared to using a much larger physical aperture. If transmission and reception

processes can take place on different spatially separated elements, and N transmit

firings each have N receive echo signals (called a complete set), additional focusing

can be done on transmission as well as upon reception.22

2.1.6. Coded Excitation

Traditionally pulses used for ultrasound imaging have been similar to Gaussian-

modulated sinusoids. More recently, some systems have borrowed a technique from

radar called coded excitation, which sends frequency coded waveforms such as chirp

signals, and digital phase codes such as Barker codes, Golay codes, and Optimal

codes.18 These waveforms are meant to be much longer than pulses only a few cycles

long but have comparable bandwidth, which means they have the potential to provide

comparable spatial resolution and larger echo SNR. To recover the spatial resolution,

the echoes must be decoded. Incompletely decoded echoes have large range lobes.

These reduce contrast resolution just as beam sidelobes do. Codes enhance the echo
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SNR in ultrasound images, and thus increase penetration depth in attenuating media,

particularly at high frequencies.

2.1.7. Aims in this Dissertation

In the end sections of this dissertation we introduce a technique that improves on

the spatial resolution and echo signal-to-noise of dynamic receive focusing, and is a

generalization of coded excitation and synthetic aperture techniques. Additionally,

the technique which we call unfocused imaging or spatial coding can be implemented

in realtime on commercial scanners, with greater echo SNR compared to traditional

synthetic receive aperture techniques. Unfocused imaging was a direct outcome of

our research on the ideal observer for ultrasonic imaging in that it implements the

strategies of the ideal observer for detection.

2.2. Image Quality Assessment in Other Modalities

Before embarking on the ideal observer for ultrasonic detection tasks, we note that

much has been done for other imaging modalities. It is important to bring the to

readers attention these contributions because in some cases it has significantly im-

pacted the way engineers and researchers design and evaluate medical imaging sys-

tems. For example, photon imaging modalities use a concept called noise equivalent

quanta (NEQ) that is directly related to the ideal observer for detection tasks in

those modalities. NEQ, a reflection of the fraction of photons that carry information

per unit spatial frequency, has become a widely used figure of merit for assessing the

performance of these modalities. Smith and Wagner showed that speckle spots are
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the ultrasonic equivalent of information carrying photons in x-ray or optical tech-

niques under very limited conditions, such that the NEQ concept can also be applied

to ultrasound. Our research has sought to generalize the NEQ concept to a broader

range of imaging conditions.

To begin, we first review the common language of image quality assessment among

many modalities, and introduce widely used figures of merit. We then proceed by

connecting these metrics to signal detection theory.

2.2.1. Linear Systems Models

A unifying approach to modeling many imaging modalities is to model the image

formation process as a linear system,

g = Hf + n (3)

where g is the vector of image data, f represents the object function defined over

space, and n is additive noise. H is a continuous-to-discrete operator describing how

the system maps object functions into data samples. Often it will be useful and

reasonable to assume that the object can be approximated as discrete (represented

by a vector f) and that H can be approximated as a matrix H. Regardless of the

dimensionality of the object or image data, the elements may be concatonated into a

column vector in a rastorized fashion.

In a subsequent chapter we rigorously elucidate the precise physical model under-

lying the ultrasonic version of this model.
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The model is important because it lends itself to a great deal of powerful analysis

tools, matrix algebra, and stochastic analysis that will be essential to understand and

push the performance limits of imaging systems.

2.2.2. Linear Shift Invariance

Over small regions, called isoplanatic patches, it may be assumed that the imaging

system is linear shift invariant so that a convolution model may be assumed. In this

case, the matrix H may be approximated as a block-circulant (rather than just a

block-Toeplitz) matrix. Alternatively, the linear system can be written in continuous

form as

g(x) = h(x) ∗ f(x) + n(x) (4)

where now the arguments of the relevant quantities are now spatial vectors (related

linearly to the time vectors).

2.2.3. Modulation Transfer Function

An important quantity used in the medical imaging literature is the Modulation

Transfer Function (MTF ), defined as23

MTF (u) =
|H(u)|
|H(0)| (5)

where H(u) is the spatial Fourier Transform of the linear shift-invariant impulse

response function h(x), and u is a spatial frequency vector. The maximum value of

H in phase insensitive photon imaging modalities is usually at DC. The DC value,

|H(0)|, is sometimes referred to as the large area contrast transfer (sometimes written
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as G), since for large targets, it reflects the ratio of the image contrast (Cout) to the

object contrast (Cin), i.e. |H(0)| = Cout/Cin. [Note that object contrast Cin and

image contrast Cout can have different units].

2.2.4. Noise Equivalent Quanta for Photon Imaging Modalities

A widely used figure of merit for designing photon imaging systems is Noise Equivalent

Quanta, or NEQ, originally proposed by Shaw24 which is a spatial frequency measure

of the fraction of photons that carry information. ”It gives the number of photons

that would produce the same SNR given by an ideal detector on an absolute scale”.

It can be written as

NEQ(u) =
|qH(u)|2
NPS(u)

(6)

where q is the photon fluence, defined as the average number of photons per unit

area incident on the detector surface, and NPS(u) = 〈|N(u)|2〉 is the noise power

spectrum of the additive noise process n, which we will sometimes write as Sn(u).

For a perfect system NEQ = q since the MTF is 1 over the entire spatial frequency

range, and the noise power spectrum has variance equal to the mean fluence (Poisson

Random Process). NEQ can be seen as a summary measure of potential system

performance (as opposed to task performance) when you consider it is comprised of

factors related to image contrast, q|H(0)|2, spatial resolution, |H(u)|2/|H(0)|2, and

noise power spectrum NPS(u).
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2.2.5. Detective Quantum Efficiency

Detective quantum efficiency (DQE) is essentially a normalized version of NEQ such

that a perfect system would give a DQE of one,

DQE(u) =
NEQ(u)

q
, (7)

where 0 ≤ DQE ≤ 1.

2.3. Signal Detection Models in Other Modalities

2.3.1. Signal Known Exactly and Signal Known Statistically Tasks

Task performance assessment includes system performance only in the context of a

task. Often we simplify the task in order to express the response of a model observer

in closed form. The most basic form of signal detection task is where the exact signal

to be detected is known a priori. For example, in medical diagnosis, we know the

lesion location, shape, and the precise signal; our job is only to determine if the signal

is present. By this we mean that we know the lesion location, shape, and the precise

signal from the lesion. We denote such situations with the label SKE (Signal Known

Exactly) as opposed to Signal Known Statistically (SKS).23 Ultrasound detection

tasks that we consider in this thesis have known location but may have other object

properties characterized statistically.
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2.3.2. Background Known Exactly and Background Known Statistically

Tasks

Object signals fs in detection theory are often assumed to be additive over some

background fb so that the total object is f = fs + fb. The background process may

be deterministic and known exactly, in which case it is referred to as a Background

Known Exactly (BKE) task or it may be characterized stochastically, and referred to

as Background Known Statistically (BKS) tasks.

2.3.3. The Rose Model

Consider a SKE, BKE detection task in a photon imaging modality. Assume that

there are ns photons per unit area incident on the detector during the exposure time,

and that the target is a disk of area A. The total mean number of photons in the

target area is Ns and the difference relative to the background is 〈∆Ns〉 = A〈∆ns〉.

Here 〈·〉 is the ensemble mean of the argument. Rose defined contrast C as early as

the 1940s as25

C =
〈∆Ns〉
〈Nb〉

=
〈∆ns〉
〈nb〉

(8)

and detection signal-to-noise as the mean signal over the mean noise:

SNRRose =
〈∆Ns〉√
〈Nb〉

=
A〈∆ns〉√
A〈nb〉

= C
√
A〈nb〉. (9)

Like NEQ, SNRRose is a system performance metric; it depends on image contrast

C, spatial resolution (in this case given by the target size
√
(A) since an ideal impulse

response is assumed), and a noise 〈nb〉 = (σ2n/〈n〉)
−1
. Although the Rose model
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excludes many important properties, it was the first attempt to quantify the concept

of image quality.

When the number of photons is large, the underlying Poisson process can be

thought of as Gaussian, and the signal-to-noise SNRRose can quantitatively param-

eterize the ROC detection curve12 for the test statistic t defined as the integrated

number of photons over the lesion area, and is equivalent to the so-called d′ value,

defined by26,14

d′ =
ts − tb√

0.5(σ2ts + σ2tb)
(10)

A low contrast assumption is needed to make the formal connection between SNRRose

and d′. The Rose model was important because it connected contrast, area, and

photon rates together for the task of detection of disk targets.

2.4. Ideal Observers Models In Other Modalities

2.4.1. Wagner-Brown Model

Wagner and Brown27 extended the Rose model to include the effects of the system

spatial resolution on the detection task. In particular their analysis stems from an

analysis of the SKE, BKE ideal observer for Gaussian signals. For the first time, they

connected a specific detection task with previous notions of MTF, NEQ, contrast,

etc. into a single expression for the ideal observer SNR. Their theoretic framework

has been applied to most major medical imaging modalities27 - with one noticeable

exception being ultrasound systems - which has been addressed partially in other

work,28,29 and is the topic of this dissertation.
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For SKE, BKE detection tasks given Gaussian distributed signals, the prewhiten-

ing matched filter

λ = ∆gtK−1n g (11)

is the test statistic of the ideal observer, where g is the data vector, and Kn = 〈nnt〉

is the covariance vector of the zero-mean noise process, which we typically assume is

Gaussian white (Kn = σ2nI) or colored noise. ∆g = H∆f represents the difference

signal between the target and the background, such that ∆f = fs − fb.

In this dissertation we give great emphasis to the strategy of the ideal observer

as revealed by the form of its test statistic. The strategy of the ideal observer for

this task is to first pre-whiten the data vector g by ”un-doing” the noise correlations

with the operation K−1n then to match filter by first multiplying with Ht, then by

integrating over the lesion template ∆f .

The signal-to-noise ratio (performance) of this test statistic is given as

SNR2Wagner−Brown = ∆gtK−1n ∆g (12)

If we assume linear shift-invariance, H can be thought of as block-circulant, and thus

can be diagonalized by a Discrete Fourier Transform, written in matrix form as F.

Consequently, it can be written in continuous form as

SNR2Wagner−Brown =
∫
du
|∆F (u)|2|H(u)|2

NPS(u)
(13)

where ∆F (u) is the Fourier Transform of ∆f(x).
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Importantly, this can also be written as

SNR2Wagner−Brown =
∫
du|∆F (u)|2NEQ(u) (14)

This equation decouples contributions from the system (NEQ) and the object

(sometimes called the task |∆F (u)|2). It connects formal task performance of the ideal

observer with the widely used Noise Equivalent Quanta for characterizing imaging

system performance for detection tasks - thus NEQ has a truly information-theoretic

interpretation. We construct a similar unifying equation for ultrasonic imaging in later

chapters. For an ideal system, the SNRWagner−Brown reduces to SNRRose. When the

system is not ideal, the framework adds additional information to the detection task

about the system spatial resolution.

2.4.2. Other Key Literature

Harrison Barrett and his group have published an extensive number of papers on

Objective Assessment of Image Quality and Ideal Observer Performance. Three key

papers,11 30 and13 in particular give a foundation for much of what we do in this dis-

sertation. These papers give a rigorous treatment of the Non-prewhitening, Hotelling,

and Ideal observers, and offer some convenient analytical methods for analyzing per-

formance assessment.
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2.5. Perspective on the Ideal Observer and System

Optimization

The ideal observer not only gives strategies to analyze data, but the ideal observer

SNR also gives a quantitative prediction of system performance for detection tasks.

This means that one may compare two system designs to select which is better for

detection tasks - or even plot SNRI as a function of some system parameter for

purposes of optimizing system design.

Although the ideal observer has considerable power to influence system design, a

few items of perspective should be added.

2.5.1. Human Observer Performance

Maximizing the ideal observer signal-to-noise ratio means packing as much task spe-

cific diagnostic information into the raw data as possible. Ideally this will also improve

human observer performance, however, it should be noted that human observer per-

formance is greatly influenced by the processing and display algorithms used. Thus

maximizing the ideal observer performance does not always mean maximizing human

observer performance. As noted earlier, however, differences between human and

ideal observer performance suggest an opportunity for additional image processing

research to close the performance gap.

2.5.2. Task Specificity

Ideal observer system optimization is very task specific. A system optimization curve

for detection of low contrast lesions may be completely different from a system op-
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timization curve for the task of discriminating between a fluid filled cyst and a high

contrast hypo-echoic solid mass. Cautionary notes should thus be made about system

optimization. One of the goals of our research is to influence clinicians and system

designers to think about medical ultrasound in a task specific way. We envision dif-

ferent programmable imaging modes on a scanner - each consisting of hardware and

software modifications that are optimal for each diagnostic sub-task.

2.5.3. Lumpy Backgrounds

Previous literature has demonstrated that object statistics can influence system op-

timization.31 There is a widely cited example of this in single photon emission

imaging.32 The BKE ideal observer SNR, when optimized for detector size, pre-

dicted erroneously that the detector should be as large as possible to collect as many

photons as possible, even at the cost of spatial resolution. The theoretical remedy

was to include stochastic ’lumps’ in the background. The structure of the background

was such that more false positives were introduced. A resulting optimization curve

then predicted that there was a tradeoff between spatial resolution and sensitivity

that was in part dependent on the object statistics. We only partially address this

issue for ultrasonic imaging. It is a topic that will require future work.

2.6. Detection Theory in Ultrasonic Imaging

2.6.1. Smith-Wagner Theory

Smith and Wagner,28 29pioneered some work in ultrasonic detection theory that we

build on in this dissertation. We give some background on their work so that later
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we may discuss connections with our new results.

Their statistical models of speckle were borrowed in part from Goodman,33 who

modeled scattering of coherent light from an ensemble of scatterers as a circular

Gaussian complex process. In a similar manner, narrowband ultrasound echo signals

at a given echo time can be modeled as obeying circular Gaussian statistics. The

amplitude of the complex echo signal, b, considered as the envelope detected B-mode

signal can subsequently be modeled as a Rayleigh distribution

pdf(b) =





b
ψ
exp

[
− b2

2ψ

]
if b ≥ 0

0 if b < 0

(15)

and the parameter ψ depends on the object’s mean-square scattering strength (backscat-

tered intensity). A vector of independent B-scan measurements thus has a distribution

characterized by a product of Raleigh distributions. The likelihoods functions for the

signal present (+) and signal absent (-) hypothesis are given as

pdf(b|ψ+) =
M∏

i=1

bi
ψ+

exp

(
− b2i
2ψ+

)
(16)

and

pdf(b|ψ−) =
M∏

i=1

bi
ψ−

exp

(
− b2i
2ψ−

)
(17)

The assumption of statistically independent measurements is not quite accurate

for ultrasonic RF echo signals due to speckle correlations. Smith and Wagner never-

theless proceed with the independence assumption, assuming that the data measure-

ments represent independent speckle spots rather than pixels. In this dissertation we
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consider pixel correlations in a broader analysis.

The log-likelihood ratio for the signals, assuming independent samples, is then

λLog−likelihood = log

(
M∏

i=1

ψ+
ψ−

exp

(
b2i
2

(
1

ψ+
− 1

ψ−

)))
(18)

With a monotonic transformation, and ignoring additive and multiplicative constants,

a sufficient test statistic is therefore

λ =
M∑

i=1

b2i (19)

The ideal decision function involves squaring and summing the readings over the cells

in the region of interest.

Noting that the test statistic is a sum of many independent stochastic processes,

we may conclude that it is Gaussian distributed. The moments are given as:

〈λ|ψ+〉 = 2Mψ+; 〈λ|ψ−〉 = 2Mψ−;

var[λ|ψ+] = 4Mψ2+; var[λ|ψ−] = 4Mψ2−;

(20)

thus, the difference between the means is

∆µ = 〈λ|ψ+〉 − 〈λ|ψ−〉 = 2M [ψ+ − ψ−] (21)

and the common standard deviation is

σ = 2M 1/2[ψ2+ + ψ2−]
1/2. (22)

Hence, the ideal observer signal-to-noise ratio for detection tasks, defined as the

difference between the means over the common standard deviation is given as:

SNRI =M1/2ψ+ − ψ−
ψ21 + ψ22

1/2

(23)
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This can be decomposed as follows:

SNR2I =
A

Sc
SNR2oC

2, (24)

where A is the area of the lesion, Sc is the speckle correlation size,29,28 SNRo is pixel

signal-to-noise ratio, equal to 1.91 for a Rayleigh process, and C is the image contrast,

defined as (ψ+ − ψ−)/ψ. This equation tells us that more independent speckle spots

per target area yields better lesion detectability, consequently high spatial resolution

improves our ability to detect even large low-contrast lesions. Detection is also easier

for larger object contrast.

Like the Rose and Wagner-Brown models, this expression is important in that it

connects the engineering features normally associated with image quality rigorously

with task performance. The framework, however, was based on a number of stringent

assumptions - some of which we hope to relax in this dissertation: (1) linear shift-

invariance (2) large area lesions (3) low contrast lesions (4) independent samples (5)

no electronic noise. Additionally, the authors analysis was based on Rayleigh densities

of independent envelope detected samples rather than correlated RF signals. On the

last point, note that envelope detection is a form of processing and that processing

can either preserve or lose but never add diagnostic information. B-mode processing

is in many cases not optimal, and that significant amounts of information in the

phase of the signal can be useful for image reconstruction - especially in the case of

phase-encoded waveforms.
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2.6.2. Insana-Hall

Besides contributing to the interpretation of the Smith-Wagner theory above, Insana

and Hall34 performed human observer experiments to measure how close humans

are at detection of low contrast lesions in B-mode images compared with the ideal

observer. To do so they simulated pairs of ultrasonic image realizations (one image

with a lesion and the other one without) using Monte Carlo simulations, and had

human observers choose which of the images in the pair contained the lesion. Over

a large ensemble of images, they found that human performance efficiency for the

parameters they considered was about 50-60 percent.

Work done by Abbey and ourselves,35 as discussed in future chapters, has shown

that by including phase information, ideal observer performance is significantly bet-

ter than Smith and Wagner predicted. Thus human observers are significantly less

efficient at detecting important diagnostic image features of breast cancers which

suggest a role for additional image processing techniques that make the information

more accessible.

2.6.3. Clarkson-Barrett

Clarkson and Barrett36 discuss the ideal observer for a number of different detection

tasks and probability models. One of the models they discuss is the ideal observer

for multivariate normal signals where the signal is in the variance. This is precisely

the problem we wish to consider for ultrasound detection tasks. Their analysis was

nevertheless complex and amenable to neither computation nor intuition, which we
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very much desire. Their work is nevertheless important, as it is a rigorous treatment

involving correlated data. We summarize the salient features of their contribution in

a later chapter in the dissertation as we will make significant connections with their

results.

2.7. Need for a New Model

Current models of detection performance in ultrasonic imaging have advanced the

field of research but not pushed the field to its fundamental limits. This is the

goal of our research. Our goal is to build on the contributions of Smith-Wagner,

Clarkson-Barrett, and others to develop an ideal observer model where the ideal

observer has access to the raw RF echo signals rather than the envelope-detected

(lossy-processed) image data. We aim to glean not only image processing strategies,

but also quantitative predictions and measurement techniques that can aid system

designers in building the best possible system for important clinical tasks.

We begin by re-evaluating the way we model ultrasound systems and echo signal

statistics. We then develop ideal observer models, and then illustrate a new imaging

technique motivated by the theory.
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3. LINEAR SYSTEM MODELS FOR ULTRASONIC

IMAGING: APPLICATION TO SIGNAL STATISTICS

3.1. Introduction

The objective assessment of image quality in medical imaging systems is a topic of

growing importance. Our ability to rigorously quantify the performance of clinically

relevant tasks, such as identification of low-contrast lesions, can help us improve di-

agnostic performance and may influence standards of practice. Information theoretic

approaches to performance assessment may help us understand fundamental limits

of ultrasound systems, quantify information content of signals, and reveal optimum

strategies for image processing. A key element of ultrasonic performance assessment

is the computation of echo-signal covariance matrices that define likelihood func-

tions. Current probabilistic models are valid only near the transducer focal region

and in dense random media of point scatterers.28,17 These models further assume

the impulse response function is shift-invariant. Motivation for our work stems from

the need to extend existing statistical models to more realistic shift-variant imaging

systems and nonstationary random scattering media.

Pulse-echo imaging may be described as a linear system that obeys the imaging

equation:

g(t) =
∫
dxh(x, t)γ(x) + n(t) = Hγ(x) + n(t), (25)

where g is the radio-frequency (RF) echo signal consisting of a set of A-scan lines.

The function h is the pulse-echo spatio-temporal impulse response, which is generally
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shift variant. H is the linear operator associated with h(x, t). γ is called the object

function (often stochastic), and n is signal-independent zero-mean additive Gaussian

noise. Vector t, represents, for example, the axial and lateral (temporal) dimensions

of the echo data, will span the data space and therefore can increase in dimension

depending on the study (see Appendix 3.A for details). Points in object space, in

contrast, are positioned according to the Cartesian spatial vector x = (x1, x2, x3).

The dimensionality of the domain of h is the dimensionality of the object space plus

that of the data space. Thus, for a single A-scan line, h is a four-dimensional (4-D)

function: one dimension of time and three of space. Eq. (25) describes how spatial

variations in physical properties of the object that interacts with the sound waves

are mapped into data. It will describe acoustic transmission and reception (including

the effects of diffraction, attenuation, and scattering), electromechanical coupling of

the transducer, and electronic processing. It is a linear system in the sense that

H{aγ1 + bγ2} = aH{γ1} + bH{γ2} for any object functions γ1 and γ2, and for any

constants a and b. Thus, (25) assumes linearity in the system electronics, in the

scattering response, and in acoustic propagation. Partial motivation for writing the

imaging equation in form (25) is the immediate connection to literature on objective

assessment of image quality.11,30,13

Investigators frequently use linear systems approaches in ultrasound research,

some of which will be reviewed here. The imaging equation (25) is a generalization

of many such approaches in the literature. Tupholme37 and Stepanishen38–41 were

among the first to model ultrasonic imaging systems using the impulse response ap-
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proach; the system impulse response was viewed as a series of convolutions of various

impulse response functions representing acoustic, electromechanical, and scattering

influences. This description led to a representation of a linear system, in which the

object function was studied one point scatterer at a time. Other researchers have

considered γ as a continuum variable that depends on perturbations in density and

compressibility.42,43

Jensen44 developed a linear model for the propagation and scattering of ultrasound

in tissue based on a time-dependent Green’s function solution to the wave equation

in heterogeneous media. This is similar to our time-independent Green’s function

approach. However, he expresses the imaging equation 25 in terms of a spatial con-

volution [,44 equation 45], and ignoring attenuation and noise. Our results reduce

to his if we also make the assumptions of shift-invariance, attenuation-free medium,

and no noise. Moreover, we take the extra step to apply the linear system theory to

signal statistics.

Walker and Trahey45 present a k-space linear systems model of ultrasound systems

that they use to calculate speckle variance and echo correlations. Their application

of the Fraunhofer approximation limits the results to the focal and farfield regions

of the transducer. Walker46 extends his results to shift-variant systems, but avoids

making the an important distinction between point-spread and spatial sensitivity

functions. Our results provide a rigorous underpinning to the computation of spa-

tially varying statistics. Walker and Trahey45 suggest that wavefront phase curvature

does not contribute to speckle correlations. This conclusion was conditioned upon
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some assumptions that will be elucidated later on. We demonstrate situations in

which wavefront curvature can indeed be quite important in the evaluation of speckle

texture.

Our aim is to demonstrate how the imaging equation (25) provides a comprehen-

sive representation of shift-variant systems applied to continuous scattering media.

Our motivation is to form a bridge between ultrasound physics and the statistical

image quality assessment literature. The approach uses a solution of the homogenous

wave equation propagating in inhomogeneous media. We relate our model to existing

theory and show that it is well suited for evaluation of the statistical properties of

ultrasound signals and images

3.2. Radiofrequency Signals

Here we begin from fundamental physics and proceed to model the RF echo signal

along a single A-scan line. Thus here the vector t may be considered one dimensional

t. Assume that the imaging medium is heterogeneous in density ρ and compressibil-

ity κ on a scale smaller than the wavelength, although the average density ρ, average

bulk compressibility κ, and speed of sound, c = 1/
√
ρoκo are approximately constant

macroscopically throughout the medium. With the small amplitude approximation,

acoustic propagation is well described by the homogeneous wave equation for inho-
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mogeneous media ∗,47–49

∇ · ( 1

ρ(x)
∇p(x, t))− κ(x)∂

2p(x, t)

∂t2
= 0 (26)

where p(x, t) is the acoustic pressure field. Here time is a scalar quantity repre-

senting pulse-echo time for a single A-scan line. Taken from the classic acoustics

literature,50 Insana and Brown49 provide a time-independent solution to (26) using a

weak scattering Green’s function approach. In particular, they give an expression for

the pressure scattered to observation points r from a distributed scattering media.

We will base our linear systems model on their approach, and connect it to linear

systems approaches presented by other investigators. Backscattered energy at fre-

quency ω propagates to the transducer aperture where it is coherently summed to

generate a net instantaneous force, fω(t). Using the plane impedance approximation

p = ρcu relating pressure p to particle velocity u normal to the detector surface S,

and integrating over S, we obtain51:

fω(t) =
1

2
iρockU(ω)exp(iωt)

∫
dx

{
k2
(
∆κ(x)

κo

)
A2(x, k) +

(
∆ρ(x)

ρ(x)
∇A(x, t) · ∇A(x, t)

)}

(27)

Eq. (27) is described in Appendix B of this chapter. Here ∆κ and ∆ρ are spatial

fluctuations in κ and ρ about their respective means, U(ω) is the transducer surface

∗The wave equation is homogeneous because we assume the medium contains no sources

or sinks. The medium is inhomogeneous on a micro-scale because we allow there to be

scattering sites.
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velocity amplitude on transmission,

A(x, k) ≡ 1

2π

∫

S
dSξ(r)

exp(−ik|r− x|)
|r− x| = 2

∫

S
dSξ(r)G(r|x) (28)

is the velocity potential due to a unit amplitude sinusoidal excitation,48 ξ(r) is the

transducer apodization function, which may be complex to allow for focusing, and

G(r|x) in (28) is the Greens function that describes the propagation of scattered waves

created at field point x to observation points r on the transducer surface, as labeled

in Fig. 1. Note that an assumption of separability between apodization (transducer

geometry) and the driving velocity is made. The magnitude of the wave-vector k can

be complex to allow for attenuation; for local plane waves k = ω/c− iα(ω), where α

is the frequency dependent attenuation coefficient. The middle expression in (28) is

the well-known Rayleigh integral,33 representing a linear superposition of excitations

from elements of the transducer surface.

Eq. (27) shows that scattering occurs at locations in the object of density and

compressibility variations. The pattern of scattered sound is different for these two

types of perturbations because density variations interact with the spatial gradient

of the acoustic field A while compressibility variations interact with the field itself.

Two copies of the field weightings A and ∇A are required to represent transmission

and reception.

A weighted superposition of forces at each frequency in the transmitted pulse gives

the measured echo-signal voltage (neglecting noise):

g(t) =
∫
dωY (ω)fω(t) (29)
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Figure 1. Illustration of the measurement geometry. Field and observation points

are labeled x and r, respectively. Here a hat ·̂ represents a unit vector.

Y (ω) is the complex electromechanical coupling coefficient of the transducer. Ne-

glecting noise, the combination of (27) and (29) may be considered one form of linear

system (25) operating on perturbations in density and compressibility. A more useful

form of (29) may be obtained if one considers field points that are a distance greater

than the aperture dimension52 or media where perturbations in density contribute

negligibly to the scattered field. In such cases, the pulse-echo spatiotemporal impulse

response in (25) may be defined from (29) as:

h(x, t) =
∫
dωY (ω)

[
1

2
iρockU(ω)

]
κ2A2(x, k)exp(iωt) (30)
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and the object function γ in Eq. (25) represented as

γ(x) ≡
(
∆κ(x)

κo
− ∆ρ(x)

ρ(x)

)
∼= −2∆z(x)

zo
(31)

For local plane waves, z(x) =
√
ρ(x)κ(x) is the acoustic impedance, zo is the mean

impedance, and ∆z(x) = z(x) − zo. The last expression in (31) holds only for small

perturbations in density and compressibility.

Eq. (30) is an impulse response in the sense that it describes the response of

the system to a point scatterer (a delta function in space). Pulsed excitation is

incorporated by the superposition of frequency components initiated at transmission

and filtered by the system. It is a straightforward exercise to show that (30) and

(31) can be used to represent (25) in the time domain in terms of convolutions. The

electromechanical impulse response is indicated by hy. In the absence of dispersive

attenuation, the transmit impulse response (which, by the principle of reciprocity is

the same as the receive impulse response) is the velocity potential due to a temporal

delta function excitation:

ha(x, t) =
1

2π

∫

S
dSξ(r)

δ(t− |r− x|/c)
|r− x| = F−1t {A(x, k)}. (32)

The last form reminds us that ha and A are temporal Fourier transform pairs. Con-

sequently, the echo signal may be expressed as:

g(t) =
∫

V
dx

[{
hy(t) ∗ u(t) ∗

(
∂

∂t
ha(x, t)

)}
∗ s(x, t)

]
+ n(t) (33)

Here the convolutions are over the time variable, u is the surface velocity, and s

is the scattering response such that s(t,x) = F−1t {γ(x)k2(ω)} , where F−1t is the
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inverse temporal Fourier transform operator. From the properties of convolutions,

the temporal derivative can be moved to act upon any of the other functions. If

the transmit and receive apertures are not the same, (33) should involve separate

transmit and receive impulse response functions. With s taken as a point scatterer,

and neglecting the k2 filtering action of scattering, a form of (33) was derived with a

different approach by Tupholme37 and Stepanishen41,38,39 and is the basis of a number

of simulation packages and papers on linear systems.53

The spatiotemporal impulse response (30) may be written in terms of temporal

convolutions:

h(x, t) = − 1

c2
∂2

∂t2

{
hy(t) ∗ hy(t) ∗ v(t) ∗

∂

∂t
ha(x, t) ∗ ha(x, t)

}
(34)

where the surface velocity has been written as a convolution u(t) = hy(t)∗v(t) between

the transducer electromechanical impulse response and the driving voltage. Note that

the driving voltage need not be an impulse to call h an impulse response function.

It is an impulse response in the sense that a spatial impulse γ(x) = δ(x − xo) gives

a noise-averaged linear response h(xo, t). Also note that, although references (27)

through (30) allow for dispersive attenuation by allowing a complex wave-vector, (??)

do not, although one could easily add a plane-wave type of attenuation by convolving

(34) in time with a position-dependent, pulse-echo attenuation filter. A practical

alternative to the time-domain impulse response technique for evaluating (27) (30)

computationally is the spatial-frequency domain angular spectrum method,33 54 that

includes direction-dependent attenuation.
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Like others42–44 our approach describes a spatially distributed scattering function

as a continuous distribution of point scatterers, and it attaches physical meaning to s

by connecting it to variations in density and compressibility. Contrary to (33), in (30)

and (34) we choose to couple the k2 filtering action of scattering (object properties)

with acoustic and electromechanical impulse response functions (system properties).

It should be clear that there is some flexibility in defining which factors are associated

with the object and which with the system. That decision depends on the application,

and this flexibility is considered a strength of the linear systems approach.

3.3. Point-Spread and Spatial Sensitivity Functions

As discussed in Appendix A, we may consider the data space variable t to be a vec-

tor representing, for example, the axial and lateral dimensions of a B-mode image.

With this interpretation, various samples in the data may be the result of different

spatiotemporal, impulse-response functions, i.e., shift variance. Imaging systems are

often studied using point-spread functions. An ultrasonic point-spread function (psf)

is obtained from the ensemble of echoes recorded from one stationary point scatterer.

The psf is a data-space slice though the higher dimensional impulse response h(x, t).

Point-spread functions characterize the spatial resolution of the imaging system. Con-

sider the psf representing noisy RF data from a point scatterer fixed at location xo:

psfxo(t) = 〈
∫
dxh(x, t)δ(x− xo)〉n =

∫
dxh(x, t)δ(x− xo) = h(t|xo) (35)

Here, the notation 〈·〉n represents an ensemble average over noise variations in the

stochastic quantity n. When the noise level is sufficiently low, averaging can be ne-
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glected. The spatiotemporal impulse response h at time t and position xo is equivalent

to the point-spread function at sample time t obtained when scanning a point source

at position xo.

Shown in Figs. 2(a)(c) are RF data matrices illustrating the psfs g(t1, t2) =

h(t2, t1|xo) generated using Field II [24] by scanning a point scatterer placed at three

different positions in the field of a linear array transducer: nearfield, focal zone, and

farfield. Fig. (2) was formed by pulsing and receiving along a number of parallel

lateral A-scan lines. With this scanning configuration, at any given depth, the point-

spread function is conveniently shift-invariant in the lateral (vertical) direction. At

first glance, the curvature of the psf wavefronts may seem counterintuitive. One

might expect, for example, a transmitted wavefront to be concave in the nearfield be-

cause concave focusing is being used. Convex nearfield curvature is observed because

the pulse-echo transit time is smaller when a (concave) transducers edge is nearer in

pulse-echo transit time to the point scatterer than when the scatterer is centered with

respect to the transducer. Also note that the phase oscillations in the psf maintain

a constant frequency along each A-scan line. This is why the width of the psf in the

direction normal to the wavefront seems to narrow at the edges. The low magnitude

X-shape components in the psf are focusing flaws and include edge waves.55

Of significance for modeling signal statistics is the spatial distribution of h for a

fixed time i.e., h(x|t), which we refer to as the spatial sensitivity function (ssf). This

is to be contrasted with the psf that describes temporal rather than spatial variation.

The ssf is an object space slice though h(x, t) that describes how the impulse response
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for a fixed-measurement time changes as the point scatterer is moved in space. An

alternative perspective is that, for each data sample, the ssf describes how sensitive

the imaging system is to point scatterer positions located throughout the object.

Figs. 2(d)-(f) display spatial sensitivity functions corresponding to nearfield, focal

region, and farfield pulse-echo times. They were obtained by generating a sequence

of psfs: h(t|x), h(t|x+∆x), ..., h(t|x+N∆x), where ∆x represents an increment

in the axial direction. Each psf was sampled along a particular pulse-echo axial

time point t, and the resulting lateral scan vectors corresponding to each incremental

position were assembled into a spatial sensitivity image. It should be emphasized

that, for a given time in data space, a ssf is a 3-D function of space, and we are

only displaying a 2-D slice through this distribution. The dimensionality of the psf

depends on the dimensionality of the data space: for 2-D imaging the psf will be 2-D

and for 3-D imaging the psf will be 3-D.

Spatial sensitivity functions are essential for studying first- and second-order mo-

ments of samples or pairs of samples in the data set. For example, to study the

covariance between samples recorded at t and t′, and modeling the object function

as a zero-mean, unit-variance, white Gaussian random variable, we need to compute:

〈g(t)g(t′)〉n,γ =
∫ ∫

dxdx′〈γ(x)γ(x′)〉γh(x|t)h(x′|t′) + 〈n(t)n(t′)〉n

=
∫
dxh(x|t)h(x|t′) + σ2nδ(t− t′) (36)

which requires spatial sensitivity functions. Techniques for calculating statistical

moments for shift-invariant and shift-variant systems were presented previously,46
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but these contributions presumed the point-spread function as the critical quantity.

Later on, we emphasize that a local shift-invariance approximation is needed to use

point-spread functions in place of sensitivity functions.

3.4. In-Phase and Quadrature Signals

Real RF echo signals are expressed as complex functions when the task is to estimate

the amplitude or phase of the signals separately; for example, to estimate blood

velocity.56 The in-phase (I) and quadrature (Q) decomposition is expressed by

g(t) = gI(t)cos(ωot)− gQ(t)sin(ωot) = Re {exp(iωot)[gI(t) + igQ(t)]} (37)

The quantity in curly brackets is the analytic signal g(t) + ig̃(t), where the tilde rep-

resents the Hilbert transform of g(t). Because in-phase and quadrature components

gI and gQ are baseband signals, they can typically be sampled at a much lower rate

than the RF echo signal. This representation saves data transfer and computational

times while preserving information content in the signal. Because of its common use,

it is desirable to model the [I,Q] decomposition with a linear systems approach. To

this end, the echo signal may be written as:

g(t) =
∫
dxγ(x)eiωotF−1 {H(ω − ωo|x)}+ n(t) = eiωot

∫
dxγ(x)ho(x, t) + n(t) (38)

where H is the frequency response of h and ho is the demodulated spatiotemporal

impulse response and in general is complex. The in-phase and quadrature components

of an echo signal thus may be modeled from (25) as:

gI(t) =
∫
dxγ(x)hI(x, t) + nI(t)
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gQ(t) =
∫
dxγ(x)hQ(x, t) + nQ(t) (39)

Here nI and nQ are assumed to be independent Gaussian noise processes. The func-

tions hI and hQ are the real and imaginary parts of ho, and will be referred to

as in-phase and quadrature spatiotemporal impulse response functions, respectively.

Shown in Fig. 3 are the images of hI and hQ, visualized in the spatial and temporal

domains; in other words, the in-phase and quadrature point-spread and spatial sen-

sitivity functions. Note that the I and Q psfs Figs. 3(a) and (b) contain no axial

phase oscillations, as these temporal variations have been demodulated. The lateral

banded pattern occurs because of the pulse-echo wavefront curvature. A changing

temporal axial phase thus shifts energy between the in-phase and quadrature chan-

nels. The I and Q ssfs of Figs. 3(c) and (d) are markedly different than the I and

Q psfs in that the former exhibit axial spatial phase (exp(ikx)) oscillations. The

in-phase and quadrature ssfs are 90o out of phase and, therefore, those echo signals

are uncorrelated, which we will find later is a very important feature for computing

the ideal observer test statistic.

By replacing h(x|t) with hI(x|t) in 36, the covariance of the in-phase signal at

times t and t′ may be computed. Current theory, valid only in the focal region,

suggests that the statistical properties of fully developed speckle depend only on the

overall shape of the pulse envelope,28 17 and is independent of phase information.

To extend this statistical analysis outside of the focal zone, 36 suggests that the

precise phase of h or [hI , hQ] is required to accurately model the statistical moments
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of the echo data g. Statistical descriptions of echoes throughout the field is the main

application of this linear systems analysis.

3.5. B-Mode Signals

B-mode imaging systems display the envelope of the RF echo signal obtained from

the magnitude of the [I,Q] data or equivalently the magnitude of the analytic signal:

ge(t) =
√
g2I (t) + g2Q(t) =

√
g2(t) + g̃2(t) (40)

Envelope detection is inherently nonlinear, thus linear systems analysis of ultrasound

systems must be applied to either the RF or [I,Q] data. The envelope of h, which we

denote he(x, t), is important for modeling focal-region statistics of the B-mode image

signals,28 ,17 and may be written as he = |ho| =
√
h2I + h2Q =

√
h2 + h̃2. Because B-

mode processing discards phase information, it is natural to wonder whether envelope

detection is the optimal strategy for data visualization and, if not, what is the optimal

strategy? Current research aims to address this question in the context of the image

quality assessment literature.13

3.6. The Local Shift-Invariance Approximation

As shown in Appendix 3.A, 2-D image reconstruction maps the temporal coordi-

nates of the echo data g(t1, t2) into spatial coordinates associated with image pix-

els, γ̂(x1,x2). Furthermore, the spatiotemporal coordinate transformation is linear,

t = Bx, and therefore interesting relationships exist between point-spread and spatial
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sensitivity functions when linear shift-invariance (LSIV) holds. If we find that

h(x, t) ∼= h(x+∆x, t+B∆x) (41)

over some range of ∆x, then we say that h is LSIV for values of x where (41) holds.

This region is often labeled isoplanatic. For such regions, h may be written as a

function of one vector variable:

h(x, t) = h(t−Bx) (42)

thus,

ssf(x) = h(to −Bx|to)|to=Bxo = h(−[B(x− xo)]|xo) = psf(−(t− to)) (43)

This means that the ssf , a function of x, is a copy of the psf time-reversed about the

time point to = Bxo. This is why there appears to be reflective symmetry between

the psfs and ssfs shown in Fig. 2. It is emphasized that the symmetry is only

approximate.

Eq. (43) is not valid and the system is not locally LSIV when amplitude profiles or

wavefront curvatures vary significantly with position, as is the situation for strongly

focused transducers. Fig. 4 shows farfield ssf and time-reversed psf A-scan lines

Fig. 4(a) on axis and Fig. 4(b) 7.6 mm off axis. The phase mismatch off axis may

be explained by the changing curvature of the wavefront over an assumed isoplanetic

patch. The approximation is much better on axis [Fig. 4(a)] or in the focal region,

where wavefront curvature is minimal.
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In an isoplanetic region, the shape of the point-spread or spatial sensitivity func-

tions do not change significantly. One way of assessing the approximate size of an

isoplanetic patch is to plot the normalized correlation coefficient between different

sensitivity or point-spread functions as a function of temporal or spatial separation.

Because it is often easier to compute the psf rather than the ssf , we choose to assess

how the psf changes as a function of distance. More precisely, let p1(t) = h(t1|x) and

p2(t) = h(t|x2 = x1+∆x) be point-spread functions for spatial (object space) points

x1 and x2. Then the normalized correlation coefficient for assessing shift invariance

is:

Cp1p2(∆x) =

∫
p1(t)p2(t−B∆x)dt∫
p1(t)dt

∫
p2(t)dt

(44)

Cp1p2(∆x) is a measure of the similarity between overlaid point-spread functions. By

plotting Cp1p2(∆x) as a function of lag ∆x, the degree of shift invariance can be

assessed. When Cp1p2(∆x) falls below a threshold value (e.g., 90%) we say that shift

invariance fails. The supra-threshold region defines the extent of the isoplanetic patch.

To relate the point-spread and spatial sensitivity functions as in (43), the temporal

shape of the point-spread functions should not change as the scatterer location is

moved spatially over the extent of the scattering volume associated with a given

instant of time. Alternatively, the size of the isoplanetic patch should be larger than

the temporal extent of the point-spread function itself, as seen in Fig. 5. The LSIV

approximation holds across lateral scan lines for linear arrays, except when the beam

is electronically steered or near the margins in which the aperture is reduced. The

isoplanetic regions will be small along the beam axis for fixed-focus sources in which
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the wavefront curvature varies. Outside the focal region, highly curved, extensive ssf

wavefronts may exhibit enough axial spatial extent to exceed the size of an isoplanetic

patch. In this case, (43) does not hold and the symmetry between ssf and psf is

lost. The 90% threshold isoplanetic patch for the farfield psf of Figs. 2(c) and

(f), extended from 88.8 to 91.3 mm. Significant energy exists beyond this region;

hence the lack of symmetry between the psf and ssf as seen in Fig. 4. Systems

with dynamic focusing and aperture growth which includes all commercial systems,

as well as systems that use synthetic aperture approaches may be expected to have

fairly large isoplanetic regions.

The local LSIV of isoplanetic regions fails for in-phase and quadrature signals. As

is evident in Fig. 3, the I and Q ssfs are not approximated by time reversed I and Q

psfs. However, the I and Q ssfs can be represented as a phase-shifted version of the

RF ssfor the time-reversed RF psf . Multiplying the phase factor exp(iωot) and the

analytic ssf signal (approximated by the time-reversed psf whose argument has been

converted to a spatial coordinate) h(x|t)+ih̃(x|t) and taking the real part of the result,

the in-phase ssf may be obtained. The quadrature ssf may be obtained by taking

the imaginary part of the product. Thus, with a local shift-invariance approximation,

the RF point-spread functions may be used to compute statistical moments of the

in-phase and quadrature signals without computing sensitivity functions. This may

be useful when it is more natural to calculate psfs than ssfs, as is the case with

many simulation packages.

When an isoplanetic region is larger than the sensitivity function, the LSIV ap-
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proximation holds and (25) reduces to a spatial convolution, e.g., g(x) = [h ∗ γ](x).

The LSIV assumption allows us to express g and g = 〈g〉n as functions of either x or t.

Specifically, g(t(x)) = g(Bx). Under the isoplanetic assumption, our results reduce

to those of Jensen [Ref.,44 equation 45]. Walker and Trahey45 chose to represent the

LSIV imaging equation in frequency or k-space. In the Fraunhofer regime, this has a

particularly elegant interpretation as the field profile is simply the Fourier transform

of the aperture.

Although the validity of the local LSIV assumption for the RF signal is largely

restricted to the focal region of array transducers, the assumption nevertheless is

useful for analysis and interpretation. Let us define h̆ as the pulse-echo impulse

response, neglecting the quadratic frequency dependence of scattering [i.e., h̆ is the

LSIV approximation to the quantity in curly brackets in (33)]. This approximation

allows the noise-averaged linear system to be written in the spatial frequency domain

as2:

G(k) = Fx
{
g(x)

}
= H(k)Γ(k) = k21H̆(k)Γ(k) = H̆(k)Φ(k) (45)

where k = (k1, k2, k3) is the spatial angular-frequency vector (conjugate to x), and

H, H̆, and Γ are the spatial Fourier transforms of h, h, and γ, respectively. The

scattering amplitude is defined as:

Φ(k) = − 1

4π
k21Γ(k) =

1

2πzo
Fx

{
∂2z(x)

∂x21

}
, (46)

where x1 is the component of x normal to the transducer surface as in Fig. 1. A local

plane wave approximation is required to write (45) and (46), and hence its validity is
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restricted, in practice, to the focal region of ultrasound B-scans. The noise-averaged

echo signal can now be written as,2 57:

g(x) = −2
[
h̆ ∗ ∂2

∂x21

(
z

zo

)]
(x) = −2

[
h ∗

(
z

zo

)]
(x) (47)

The first equality in (47) illustrates that sound is scattered whenever the second

derivative of the relative acoustic impedance (in the direction of transmission) is

nonzero. The second equality allows one to consider the acoustic impedance itself as

the object function. The spatiotemporal impulse response function, h, thus acts as a

spatial frequency filter on the object function z(x). The spatial frequency response of

this filter is described by H, which is the k-space picture of h.45 Insana and Cook58

give a useful LSIV approximation for a beam using a Gaussian signal model. They

show that h acts as a bandpass filter of z(x) in the axial direction, and as a lowpass

filter of z(x) in the lateral direction. The bandpass nature of h in the scanning

direction is due to modulation about a carrier frequency, and the low-pass character

in the lateral direction is due to the (unmodulated) taper of the beam profile.

3.7. Signal Statistics

The linear systems framework developed here and by others provides a starting point

for analysis of signal statistics. Eq. (36) illustrates one way to compute the covariance

of the RF signal. With a local isoplanatic assumption, the point-spread function can

be used instead of the spatial sensitivity, and our results match those of Walker and

Trahey,45 with one important exception. They predicted that wavefront curvature

plays no role in the RF signal covariance between two signals when the respective
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apertures are coplanar. Their conclusion was based on stringent assumptions, includ-

ing the Fraunhofer approximation and an assumption that phase curvature has no

lateral positional dependence over some region of interest that does not extend too

far off axis. Explicitly, for spatial positions x far from the aperture x1 À k|r|2max/2

and not too far off axis, so that cos(x1, r−x) = 1, the continuous wave (CW) Fresnel

approximation of (28) due to a sinusoidal excitation:

A(x, k) =
exp(ikx1)

iλx1
exp

[
i
k

2x1
(x22 + x23)

] ∫ ∞

−∞

{
ξ(r)exp

[
−i k

2x1
|r|2

]}
exp

[
−i 2π
λx1

(x · r)
]
dS

(48)

reduces to a Fraunhofer approximation:

A(x, k) ' exp(ikx1)

iλx1
exp

[
i
k

2x1
(x22 + x23)

] ∫ ∞

−∞
ξ(r)exp

[
−i 2π
λx1

(x · r)
]
dS (49)

This is because the quadratic phase term exp
[
−i k

2x1
|r|2

]
in the Fresnel expression

is approximately unity over unfocused aperture faces for points x1 far enough away.

When a focused aperture is used, the apodization ξ may be considered a complex

quantity. Its purpose is to negate the exp
[
−i k

2x1
|r|2

]
phase term in the Fresnel inte-

gral and, hence, simulate the Fraunhofer region at a much closer range. The quadratic

phase argument will be negligible at some depth of field about the focus of the trans-

ducer. In pre- or post-focal regions, where x1 is comparable to or less than k|r|2max/2,

however, the phase may be significant and the Fraunhofer approximation may fail. In

these situations, phase curvature is dependent on lateral position, and the approxima-

tions of Walker and Trahey46 do not hold. Their conclusion is, for example, applicable

to the focal region of focused transducers in which wavefront curvature is essentially
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flat and farfield regions of unfocused transducers (as long as energy is concentrated

in a region not too far off axis). We give an example of how wavefront curvature

can play a very important role in predicting speckle texture for focused transducers

in pre- and post-focal regions. Consider an electronically swept linear array system

with fixed focus and shift invariance in the lateral direction. We are interested in

the correlation lengths of speckle along lateral scan lines. In this case the covariance

(36) depends only on the difference (t − t′), and thus is simply a cross correlation.

Eq. (36) tells us that, to compute the speckle cross correlation, one should slide the

sensitivity map laterally, then multiply with a copy of itself, and integrate.

In the near- and farfield, wavefront curvature is significant, and this procedure of

shifting and multiplying will result in complex phase interference patterns that will

quickly integrate to zero. Fig. 6 shows the predicted correlation coefficients of in-

phase speckle texture in the lateral direction for curved and flat wavefront sensitivity

functions along with the corresponding erroneous predictions that use in-phase psfs

instead of ssfs, phase, and neglect phase or assume a flat wavefront field of equal

shape and scattering volume. Speckle patterns corresponding to the curved wavefront

field decorrelate more quickly than does the flat wavefront field. This is one reason

why speckle texture appears fine in the near and farfield regions of ultrasound B-

scans even though the pulse energy is spread out very broadly. A related connection

to the literature concerns phase aberration. Speckle has been observed to be broadest

whenever aberrations are least,59 .60 Phase aberrations cause irregularities in phase

fronts that induce rapid decorrelation even though the pulse volumes are very large.
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The isoplanetic approximation to the lateral correlation coefficient of Fig. 6 (not

shown) for lateral speckle correlation is very good (less than 1% maximum devia-

tion) because lateral shift invariance is assumed. Fig. 7 shows correlations in the

axial direction, and the corresponding isoplanetic approximation. In the axial case

the isoplanetic assumption deviates significantly (almost 20% at 1-mm lag) from the

full shift-variant computation. Better agreement may be expected for shorter pulses

because the axial correlation distance will be shorter relative to the size of the iso-

planetic patch. For simplicity, in all the examples shown, we imagine that we are

imaging a 2-D planar distribution of scatterers, so that we can assume the ssf is a

2-D instead of a 3-D function.

If the system is locally shift invariant, and the object can be modeled by a zero

mean, wide sense stationary (WSS) random process, then the covariance matrices are

completely characterized by autocorrelation functions. In the continuous sampling

limit, the eigenvalues of the covariance matrix are simply the power spectrum. Thus,

K(x1, x1 +∆x) = R(∆x)

= h(∆x) ∗Rγ(∆x) ∗ h(−∆x) +Rn(∆x)

↔ |H(k)|2Sγ(k) +NPS(k) (50)

where Rγ(∆x) and Sγ(k) are the autocorrelation and power-spectral representations

of the object function, respectively, and Rn(∆x) and NPS(k) are the autocorrelation

and power spectrum of the noise, respectively.

One curiosity is that the covariance itself depends on wavefront curvature, yet from
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(26), only the magnitude of H(k) has a role in speckle properties. The conclusion is

that curved wavefront ssfs have spatial phase curvature information in |H(k)|.

Intriguingly, the lateral spatial frequency bandwidth [Fig. 4(d)] of the large curved

wavefront sensitivity in Fig. 4(c) is broader than the bandwidth [Fig. 4(b)] of the

smaller focal region sensitivity of Fig. 4(a). Specifically, the effective lateral band-

width of Fig. 4(d) as defined by Bendat and Piersol,61 and evaluated at the ax-

ial frequency maximum was 74% broader than that of Fig. 4(b). Thus, from an

information-theoretic point of view, the curved wavefront ssf has potentially more

spatial resolution available, even though the pulse volume is considerably larger! This

can be better understood by realizing that a slice through the sensitivity function in

the lateral direction looks like a chirp function. A matched or mismatched compres-

sion filter could potentially be applied to regain spatial resolution while improving

signal to noise, similar to current coded excitation schemes.62 A fascinating possi-

bility for designing ultrasound systems could be the introduction of an engineered,

coded excitation in the lateral direction of the beam, similar to work that has been

done for 2-D velocity estimation using array transducers,63 .64

As a final illustration of the application of this work, we give an example of how

shift-variant systems may exhibit statistical coupling of in-phase and quadrature sig-

nals along axial scan lines. Most current literature assumes independence of I and Q

channels. It is well-known that the on-axis acoustic response consists of direct and

edge waves, and that these contributions will have a position dependent phase delay.

Keeping this in mind, now consider computing the covariance between in-phase and
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quadrature signals at various points of time. Eq. (36) tells us that we should multi-

ply sensitivity functions for the I and Q signals then integrate. This integration will

not tend to zero if portions of the in-phase signal are not exactly 90o. out of phase

with the quadrature, as demonstrated in Fig. 9. Statistical independence between I

and Q signals can be expected in the focal zone of unapodized transducers as direct

and edge waves are approximately superimposed with a constant phase relationship.

Understanding these edge-wave effects may be important for understanding or elim-

inating unwanted image correlations, both from a system design point of view and

an image processing perspective. The degree of statistical dependence between I and

Q channels will be diminished greatly with decreasing edge-wave amplitudes. Conse-

quently, apodization may significantly reduce edge wave amplitudes and abate I −Q

correlation.

3.8. Conclusions

A linear systems framework based on a solution to the wave equation for inhomoge-

neous media has been presented that is similar to others.42–44 With certain approx-

imations, our results reduce to a continuum extension of the Tupholme-Stepanishen

theory.37–41 Although their focus has been on point-spread functions, ours is on

spatial sensitivity functions because of their value for predicting task performance.

For each echo sample, the spatial sensitivity function reveals the sensitivity of the

ultrasound system to each location in the object. These functions, along with their

in-phase and quadrature counterparts are important in the computation of statistical
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moments. When local shift-invariance holds (as is the case near the focal region of an

array transducer), the spatial sensitivity functions are shown to be similar to point-

spread functions, which are time reversed about the axial position of the scatterer

location. This time-reversal property does not apply to the in-phase and quadrature

distributions. The LSIV approximation together with a plane wave approximation

has further been used to understand the system response as a spatial frequency band-

pass filter of acoustic impedance z(x) in the axial direction, and as a lowpass filter

of z(x) in the lateral direction. An equivalent interpretation suggests that ultra-

sound systems are sensitive only to the second derivative of z(x) with respect to

the scanning direction. In situations in which local shift invariance does not apply,

the full shift-variant theory must be used. Shift-variant, in-phase and quadrature

spatial sensitivity functions may be particularly important for the evaluation of sta-

tistical properties of demodulated or envelope-detected images of realistic ultrasound

imaging systems. Such statistical characterization may be useful for quantifying im-

age quality and for design of image processing algorithms. Our theory predicts that

wavefront curvature and phase information contained within sensitivity functions is

essential for explaining the complex speckle structure apparent in ultrasound images.

Coupling between direct and edge waves introduces statistical correlations between

I and Q channels. Also revealed is an opportunity to enhance near- and farfield

spatial resolution by matched filtering unfocused beams. Ultimately this work will

aid our understanding of fundamental performance limits, optimum image processing

strategies, and quantitative image quality metrics for ultrasonography.
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3.9. Appendix A

This appendix provides examples of object, data, and image function representations

that may be useful in several ultrasonic applications of the linear imaging equation

(25).

One common data structure for B-mode acquisition is shown in Fig. 10. A linear

array generates beamformed echo sequences oriented in columns with elements g(t) =

g(t1, t2) = g(`T,mLT ). The L range samples are placed in columns corresponding

to each A-line and assigned a discrete time stamp t1 = `T , where 0 ≤ ` ≤ L − 1

are integers and T is the temporal sampling interval. Columns are filled left to right

with sequenced A-line recordings, where t2 = mLT, 0 = m =M − 1. The acquisition

time is given by t′ = t1 + t2 = (` + mL)T , and the integer ` is indexed completely

between 0 and L− 1 before m is incremented. In this example, sequentially acquired

data are represented by a 2-D matrix of echo samples g[`,m]. It is often convenient to

organize all the data from a scan-plane into a single LM -dimensional column vector

g with elements g[` +mL]. Then from (25) we can write the imaging equation as a

continuous-to-discrete transformation:

g =
∫
dxh(x, t′[`,m])γ(x) + n = H{γ(x)}+ n (51)

where H in the last form is a linear operator on γ that generates g.

To facilitate diagnostic interpretation, human observers require that echo locations

be one-to-one with the corresponding object locations. Consequently, we apply a

discrete-to-discrete reconstruction operator O, viz., γ̂ = Og, that converts echo data
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into an image of the object, γ̂. Like g, γ̂ is a vector of length LM . If O is linear,

then11:

γ̂ = OHγ(x) +On = Sγ(x) + (OH− S)γ(x) +On (52)

where S is the sampling operator. The first term on the right side is the sampled

object, the second term is the bias between the reconstructed image and sampled

object, and the third term is the image noise. If the task is to obtain an image of the

object nearest its true form, a superior linear imaging system minimizes the second

and third terms. B-mode image reconstruction is nonlinear, so (52) does not apply.

Nevertheless B-mode image reconstruction is straightforward. Essentially we take

the envelope of the echo data, [see (40)] and convert temporal coordinates to spatial

coordinates: t1 = `T → `cT/2 = `∆X1, and t2 = mLT → m∆X2, where c is the

speed of sound and ∆X1 and ∆X2 are the vertical and horizontal pixel dimensions

corresponding to the axial and lateral (pitch) spatial sampling intervals. As part of

the reconstruction process, we normally convert the temporal axes of the data into

spatial axes via the inverse of the coordinate transformation t = Bx, where, in the

case of swept-scan 3-D B-mode imaging, B is a diagonal matrix. Specifically, the

mapping is: 


t1

t2

t3




=




2/c 0

T/∆X2

0 T/∆X3







x1

x2

x3




(53)

To consider other ultrasonic techniques requires that we expand the dimension of

the time vector t. Doppler estimates use several A-line acquisitions at each lateral
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transducer position. Fast-time (range) samples, identified above by the index `, are

repeatedly acquired Q times before indexing m to form a slow-time data set at times

to = qLT .56 The integer index is 0 ≤ q ≤ Q − 1, and we assume the temporal

pulse-repetition interval is Tp = LT . Further, to add data for either 3-D, B-mode

imaging or strain imaging, sequential scan planes are acquired at times t3 = rMQLT ,

where 0 ≤ r ≤ R − 1 and the temporal frame-acquisition interval Ts = QMLT . For

3-D imaging, r corresponds to a spatial index ∆X3, but for strain imaging a fixed-

object region is scanned (∆X3 = 0). The indices are nested as follows: g(t) =

g(t1, t0, t2, t3) = g(`T, qLT,mQLT, rMQLT ), and the acquisition time is t′ = t1 +

t0 + t2 + t3 = (` + (q + (m + rM)Q)L)T . Of course, the reconstruction operator

O and coordinate transformation matrix B will change depending on the technique,

but O is nonlinear for all the techniques described above. With the above data

structure, it is easy to allow the object function to change with time. This situation

occurs with blood flow and tissue deformation. The object function assumes the form

γ(x, t′[`, q,m, r]), therefore,

g[`, q,m, r] =
∫
dxh(x, t′)γ(x, t′) + n[`, q,m, r] (54)

Re-mapping the four-dimensional matrix into a vector gives the compact form similar

to (51):

g = H{γ(x, t′)}+ n (55)

Although objects and images are naturally functions of space and time, we believe it

is easier to consider echo data acquired serially strictly as a function of time. Yet,
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by creating a time vector, data can be conveniently partitioned into segments that

intuitively correspond to spatial and temporal coordinates of the reconstructed image.

3.10. Appendix B

Here we summarize the derivation of (27). From (26), the homogeneous wave equation

in inhomogeneous media, multiply by −1 and add:

1

ρo(x)
∇2p− κo

∂2p

∂t2
(56)

then multiply by ρo to find that

∇2p(x, t)− 1

c2
∂2p(x, t)

∂t2
=
γκ(x)

c2
∂2p(x, t)

∂t2
+∇ · (γp(x)∇p(x, t)) (57)

where γκ(x) = (κ(x) − κo)/κo, γp(x) = (ρ(x) − ρo)/ρ(x) and c2 = 1/ρoκo. Using

p(x, t) = pω(x)exp(iωt), the following time-independent solution to (56) is found:

∇2pω(x)− k2pω(x) = −qω(x) (58)

where

qω(x) = k2γκ(x)pω(x)−∇ · (γρ(x)∇pω(x)) (59)

Eq. (57) is still a homogeneous wave equation as it has no sources or sinks. The

terms on the right describe scattering sources that redirect energy but do not add or

subtract from the total. A solution to (57) can be found using the Greens function

approach.49 The total field is the sum of the incident and scattered fields:

pω(x) = pωi(x) + pωs(x) (60)
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where

pωi(x) =
∫

V
dxqω(x)G(r|x) (61)

is the scattered field. The Green’s function is defined as

G(r|x) = 1

4π

exp(−ik|r− x|)
|r− x| (62)

From (58) and (60) we find the scattered field as:

pωs(r) =
∫

V
dx
{
k2γκ(x)pω(x)Gω(r|x)−Gω(r|x)∇ · (γρ(x)∇pω(x))

}

=
∫

V
dx
{
k2γκ(x)pω(x)Gω(r|x) + γρ(x) [∇pω(x) · ∇Gω(r|x)]

}
(63)

The last expression was obtained by using the product rule for differentiation followed

by Gausss theorem. This is the scattered pressure field at points on the receiving

transducer surface. It is a function of the total field pω(x), which is well approximated

by the incident field pωi(x) under a weak-scattering hypothesis as is reasonable in

biological tissue. From48 the incident field from a quasi-planar surface is given as:

pi(x, t) = iωockU(ω)exp(iωt)A(x, t) (64)

where A is the velocity potential described in (28). Integrating the scattered pressure

(62) over the transducer surface S, and applying the weak scattering approximation

and (63), the expression (27) for the force exerted on the transducer is obtained.
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Figure 2. Point-spread (a)(c) and spatial sensitivity (d)(e) functions for a 3 MHz

array transducer. Images of psfs represent spread from one scatterer positioned at

30 (near field), 60 (focal region), and 90 mm (farfield), respectively. Similarly, spatial

sensitivity functions are shown for pulse-echo temporal intervals corresponding to

times labeled by half the pulse-echo path distance: 30, 60, and 90 mm, respectively.

The psf and ssf functions were normalized by the maximal focal region magnitude.

Also, the axes for the psf images were plotted in millimeters for convenience in

comparing with the ssfs. The array consisted of 64 active elements of width one

wavelength, height 5 mm, and inter-element gap separation of 0.1 mm. The electronic

focus of the array was 60 mm. The excitation was taken as a four cycle pulse filtered by

the aperture electromechanical response simulated as a four-cycle Hanning-windowed

pulse. The psf images were generated with Field II, then filtered to include the effects

of attenuation and scattering. The medium was taken to have sound speed of 1540

m/s, and attenuation coefficient of 0.3dB/cm/MHz1.1. The ssfs were generated from

an ensemble of psfs as described above.
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Figure 3. Normalized in-phase (a) and quadrature (b) point-spread functions, and

in-phase (c) and quadrature (d) spatial sensitivity (c)(d) functions for the array trans-

ducer described in Fig. 2. Images of I and Q psfs represent spread from a scatterer

at a distance of 90 mm (farfield). Similarly, I and Q spatial sensitivity functions are

shown for pulse-echo temporal intervals corresponding to 90 mm, which is half the

pulse-echo path distance.
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Figure 4. Comparisons between the normalized farfield ssf and time-reversed psf A-

scan lines (a) on axis and (b) 7.6 mm off axis show that the quality of approximation

of (41) depends on experimental parameters including position. The parameters were

the same as in Fig. 3.
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Figure 5. A method for determining the size of an isoplanetic patch. The vertical

blank lines in (a) represent the point at which the correlation coefficient as defined by

(20) reach 90% threshold. In this example, because most of the energy is contained

within this region, the local LSIV approximation may be expected to be a good one.

Point target was at 50 mm, and focal region was 60 mm. A two-cycle excitation

was used, and the apertures electromechanical impulse response was simulated as a

two-cycle Hanning-windowed pulse. Otherwise, simulation parameters were the same

as in Fig. 2.
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Figure 6. Predicted correct and erroneous correlation coefficients of in-phase image

data from lateral scan lines at 30 mm axial depth for a transducer with focus at 60

mm. Simulation parameters were otherwise the same as in Fig. 2. Solid line: the

predicted true correlation coefficient using the spatial sensitivity functions. Dashed

line: an erroneous predicted lateral correlation coefficient arrived at by ignoring phase

oscillations. Dotted line: the erroneous lateral correlation coefficient arrived at by

using the in-phase point-spread functions rather than in-phase sensitivity functions.

The true nearfield speckle is predicted to be very narrow in the lateral direction due

to wavefront curvature. Not shown is the in-phase correlation coefficient predicted by

a phase-shifted, time-reversed RF psf . It differed from the correct lateral correlation

coefficient by less than 1%.
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Figure 7. Normalized covariancesKII(t, t+∆t), solid and dashed lines, andKIQ(t, t+

∆t), dotted line, of in-phase and quadrature signals along axial scan lines as a function

of lag distance ∆x = c∆t/2. Calculations were based on 2-D field distributions from

a focused array transducer with focus at 6 cm, and ct/2 = 90 mm. Otherwise,

parameters were the same as in Fig. 2. The dashed line represents the computation

using the isoplanetic approximation (modeling I and Q ssfs by time-reversed, phase-

shifted psfs). The solid line is the computation with the full shift-variant theory.

Note from the dotted line that in-phase and quadrature correlations exist. This may

be explained as coupling between direct and edge waves, as shown in Fig. 33.
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Figure 8. (a) Focal and (c) nearfield RF psfs due to a 3 MHz fixed focus linear

array of height 0.5 cm, with 64 active elements of width λ separated by distances

of 0.1 mm. Azimuthal focus was 6 cm. The beam was electronically swept laterally

across the point target located at (a) 6 cm and (c) 3 cm. (b) and (d) are the k-

space representations of (a) and (c), respectively. A two-cycle excitation was used,

and the apertures electromechanical impulse response was simulated as a two-cycle

Hanning-windowed pulse.
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Figure 9. (a) Axial slices through in-phase ssfs. This is to illustrate that in-phase

ssfs are always in phase with each other, even though the envelope may shift. (b)

In-phase (solid line) and quadrature (dotted line) ssfs are not 90o out of phase. At

about the 90-mm point, the direct wave of the quadrature ssf is almost 180o out of

phase with the edge wave of the in-phase ssf .
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Figure 10. Illustration of geometries for the object and data vectors using a linear

array transducer.
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4. CHALLENGES IN ULTRASONIC DETECTION

THEORY

So far we have spent considerable time setting up the linear systems framework that

we will need for an analytical treatment of ultrasound detection theory. We now

begin work on the ideal observer for ultrasonic detection tasks, and describe some of

the challenges in the analysis.

4.1. Task Definition

It is the statistical properties of the echo signal that give us information about the

object imaged. The probability density functions for signal present and signal absent

RF echo signals can be modeled as zero-mean multivariate normal densities

pdf(g|+) =
exp(−1

2
gtK−1+ g)

(2π)N/2
√
detK+

(65)

and

pdf(g|−) = exp(−1
2
gtK−1− g)

(2π)N/2
√
detK−

(66)

Here the covariance matrices K+ = 〈ggt|+〉 and K− = 〈ggt|−〉 describe the image

textures for the signal present and signal absent hypotheses respectively. A lesion

present, thus, for example, may have a region of increased variance relative to the

surrounding tissue. The echo data vector g is assumed to be a NM×1 column vector,

that is formed by rastorizing M A-scan echos of length N .

For the detection task that we are interested in, the signal is known statistically

- as characterized by the covariance ∆K = K+ − K−. The location of the lesion



75

is assumed to be known exactly, as is its shape and contrast. The background is

characterized statistically as described by the covariance K−.

4.2. Ideal Observers of RF Echo Signals

The ideal observer makes its decisions based on thresholding the optimal decision

statistic, the log-likelihood ratio is given as

λLog−likelihood(g) = log

(
pdf(g|+)

pdf(g|−)

)

=
1

2
gt
(
K−1+ −K−1−

)
g +

1

2
log

[
det

(
K+K

−1
−

)]

We can ignore the second term as it is a data-independent constant. The ideal

observer test statistic gives the strategy for optimal detection. The strategy is to

compute the difference between the squared magnitudes of the pre-whitened data.

Later on we comment on the importance of the ideal observer strategy for improving

human observer performance by image processing. Eq. 67 represents a signal known

statistically (SKS) quadratic task. By quadratic task we mean the test statistic is a

quadratic form of the data vector g. At this point we can compute the SNR of the

test statistic using 1. To do so we need the moments of the test statistic.

SNR2λ =

{
tr
[
(K−1+ −K−1− )(K+ −K−)

]}2

2
(
tr
{[

(K−1+ −K−1− )K+

]2}
+ tr

{[
(K−1+ −K−1− )K−

]2}) (67)

where tr[·] is the trace of the matrix. The expression in the denominator made

use of Isserlis’s formula for fourth order moments of Gaussian distributed signals.65

Eq. 10 describes how echo signal textures due to the system and object inter-relate

to affect task performance. It is important because it extends the Smith-Wagner
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theory29 to include pixel correlations, and in fact the SNR reduces to the Smith-

Wagner model when covariances are diagonal and stationary, and pixels are sampled

on the same scale as correlation lengths. It is not a very intuitive model, however,

and could be computationally expensive to evaluate due to the inverse covariances

needed. Our ultimate goal is to gain more intuition of ideal observer performance

and so we consider how other approaches could complement this analysis.

4.3. Clarkson-Barret Approach

Here we summarize an approach to SNR analysis taken by Clarkson and Barrett.36

One contribution of our work is to point out the applicability of the Clarkson-Barrett

theory to ultrasound performance assessment. We shall also use this theory later on

to understand a more intuitive picture of image quality.

The ideal observer is dependent on the probability distributions of the test statistic

- conditioned on the hypothesis that the signal is present or absent. Alternatively,

instead of pdfs, moment-generating functions13 for the log-likelihood may be used.

They are essentially the Laplace transform of the pdfs,

M+(β) = 〈exp(βλ)〉+

M−(β) = 〈exp(βλ)〉+

and hence are also related to the characteristic functions (Fourier transform) of

the pdfs (likelihoods). Because probability must be conserved (probability of lesion

present + probability of lesion absent = 1), all the information about the area under
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the ROC curve is contained in one of the moment-generating functions. The moment-

generating functions can consequently be written in terms of a single function, called

the likelihood generating function G(β):

M+(β) = exp [β(β − 1)G(β − 1/2)]

M−(β) = exp [β(β + 1)G(β + 1/2)]

Both moment-generating functions and likelihood generating functions are useful for

quantifying detectability of the signal with stochastic calculations. Different kinds

of metrics can be used to quantify detectability. We have already discussed SNRλ.

The area under the ROC curve (AUC) is also a useful measure of detectability.

Clarkson and Barrett show that SNRλ has the unusual behavior that it does not

increase without bound as signal strength increases. This SNR is also not invariant

to monotonic transformation of the decision variable, whereas the AUC is. Another

SNR is given by

SNRG(0) ≡
√
2G(0) (68)

where

G(0) = −4logM(1/2) (69)

This SNR is invariant under monotonic transformations of the decision variable, and

is related to the Bhattacharyya distance, a metric quantifying the ”distance” between

two general probability density functions p1(x) and p2(x):

dB(p1, p2) = −log
{∫

dx[p1(x)p2(x)]
1/2
}

(70)
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When the two distributions have no overlap, there is very good separability. In this

case, the integral tends to zero, and the Bhattacharyya distance becomes infinite.

When there is complete overlap, the distributions are identical and normalization

constrains the integral to 1. Consequently the Bhattacharyya distance tends to zero.

For our task, the essential moment generating function is

M−(β) =

√
detK−

β−1√
detK+

−β

√
det

[
(1− β)K−1− + βK−1+

] (71)

and the corresponding signal-to-noise ratio is

SNR2G(0) = 2log

{
[det(K+ +K−)]

2

22NdetK+detK−

}
(72)

Intriguingly and conveniently this SNR does not require inversion of any covariance

matrices. It’s computational evaluation may nevertheless be prohibitive for non-

stationary covariance matrices due to expensive determinant operations.

4.4. The Need for an Analytically or Computationally

Tractable Performance Theory

Neither the test statistic 67 nor the expressions for ideal observer SNR (Eqs. 67

and 72) are easily computable due to the enormous sizes of the covariance matrices.

For echo data of dimension 128 × 128, the data vector is a column vector of size

16384 × 1, and the covariance is thus 16384 × 16384! In expressions for the test

statistic 67 and ideal observer SNR 67, inversion of the signal present and signal

absent covariance matrices is required. Inversion of K− is not a problem when the
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the system is linear shift-invariant since the we assume the background is a stationary

random process. This means that K− has a block-Toeplitz structure - that is well

approximated by a block-circulant structure, and hence diagonalizable by a discrete

Fourier transform.23 It should be noted that when diagonalizing, we do not actually

need to use 16384×16384 matrices. Rather, we know that the eigenvalues are simply

the power spectrum of the echo signal.

Inversion of K+ is much more complicated, since the statistical properties of the

signal present image are position-dependent - and thus not stationary. This means

that conventional DFT operations cannot directly be used to diagonalize K+. Try-

ing to invert K+ with standard matrix inversion techniques are impractical due to

computational complexity and instability. Regarding computational complexity, for

example, to solve a linear systemAx = b whereA is N×N using LU factorization re-

quires O(N 3) operations - thus the total cost for matrix inversion is of order O(N 4).66

Alternatively, eignevalue decomposition methods such as Hessenberg QR Iteration has

complexity on the order of O(N 3)66.67 Stability is better for large condition num-

bers. The condition number of a matrix A can be defined as κ(A) = ‖A‖‖A−1‖

where ‖ ·‖ represents the L2 norm. An alternative definition is the ratio of the largest

and smallest eigenvalues. There are a number of algorithms available for estimating

condition number. A is ill-conditioned if κ(A) ≥ 1 and well-conditioned otherwise.

The Clarkson-Barrett expression for SNRG(0) 72 does not require inversion of sig-

nal present covariance matrices, but does require computation of determinants. With

eigenvalue techniques such as Hessenberg QR Iteration, the computational complex-
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ity is of order O(N 3) - again a challenging task when matrices are 16384 × 16384.

Stability is also equally challenging.

Approaches to addressing these challenges will be discussed in the following chap-

ters in this dissertation.
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5. GENERALIZED NEQ FOR ASSESSMENT OF

ULTRASOUND IMAGE QUALITY

5.1. Introduction

5.2. Additive Hotelling Ideal Observer

One unsatisfying aspect of the derived figures of merit for the quadratic task of de-

tection is that the imaging system parameters are buried inside covariance matrices.

Hence interpretation and intuition for system optimization is not obvious. More-

over, for the problems we are interested in, the object statistics are non-stationary

(statistical properties of the image are location-dependent), hence the echo signals

themselves are non-stationary. The advantage of stationarity is that diagonalization

is natural and algorithmically efficient with a discrete Karhunen-Loeve expansion.23

Lacking such stationarity, computational evaluation of image quality metrics can be

prohibitive.

Another approach to modeling the signal detection problem is as follows. Con-

sider an object function for the signal absent that is a zero-mean stationary stochastic

process γb(x) with covariance Kb. For the signal present case consider that the object

function can be modeled as the random background γb(x) plus an additive signal

∆γb(x) that is one deterministic realization of a random process (the statistical prop-

erties of this random process may vary from point to point in space). In essence, we

are using the concept that a multiplicative signal in the variance can be represented
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as an additive signal. The advantage of this is that we are now back to a problem

that is well known in the image quality literature: an additive signal s = H∆γb(x)

and stationary covariance K = HtKbH+Kn, where Kn is the noise covariance. The

problem is descriptive of hyper-echoic lesions (lesions where the backscattered inten-

sity is greater than the surrounding tissue background). The optimum linear observer

is the Hotelling observer11 which has test statistic

λHot = s
tK−1g (73)

with SNR given by

SNR2Hot = tr
[
K−1sst

]
(74)

It has been shown that this SNR is identical to the ideal observer SNR for non-

random signals in normally distributed random backgrounds. The strategy for the

Hotelling observer is to perform matched filtering with a pre- whitening step. As-

suming local shift-invariance, K is stationary, and a frequency space description of

the SNR is possible via a Fourier transform. Additionally, we average over signal

realizations to obtain:

SNR2Hot =
∫
du
〈|∆Γ(u)|2〉γ|H(u)|2
|H(u)|2Sγb(u) + Sn(u)

(75)

Similar averaging of SNR2 has been done before30 except over location uncertainty.

Here ∆Γ(u) is the Fourier description of the object function signal ∆γ(x), Sγb(u)

is the power spectrum of the background object function process, and Sn(u) is the

noise power spectrum. H(u) is the system response function. The integration is
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done out to the extent of the sampling frequency. This is an ensemble average over a

generalized Wagner-Brown model of detectability6830.27

Before examining the interesting properties of this SNR, we first examine the

expectation value of the magnitude of the Fourier domain target signal in the nu-

merator of the integral. Consider that the spatial domain target signal is given by

∆γ(x) = w(x)ξ(x), where w is a deterministic window function and ξ is stochastic

process. The purpose of writing ∆γ in this form is to characterize the location de-

pendence of target signal statistical properties. For example, w could be a disk signal

that is unity inside the lesion and zero outside the lesion. In general, the Fourier

domain stochastic average over target signal variations can be written as

S∆Γ(u) =
1

X
〈|∆Γ(u)|2〉 = 1

X
〈|W (u) ∗ Ξ(u)|2〉

=
1

X

∫ ∫
dpdqW (p)W ∗(q)〈Ξ(u− p)Ξ(u− q)〉〉 (76)

where W and Ξ are the Fourier transforms of w and ξ respectively, and Ξ is the

spatial region of support over the image (the image area or volume).

At this point, we look at some simplifying assumptions to compare our results with

those of the Smith-Wagner theory. If in particular ξ is a white Gaussian noise (WGN)

process with variance σ2ξ , then Ξ is also WGN. The WGN assumption is a good one

when spatial variations of density and compressibility are on a much smaller scale

than the resolution of the imaging system and smaller than the sampling intervals

used. With this assumption,

S∆Γ(u) = σ2ξ

∫
dx|w(x)|2 (77)
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by Parseval’s theorem. If, for example, we model disk signals as Smith and Wagner

did, such that w(x) is unity where the lesion is present and zero where it is absent,

we have S∆Γ(u) = σ2ξA, where A is the area of the lesion (or volume of the lesion if

considering 3-dimensions). Thus, when the object statistics can be treated as WGN,

is a constant, that is proportional to the object variance and the area of the lesion.

Hence,

SNR2GNEQ ≡ 〈SNRI〉γ = σ2ξAX
∫
du

|H(u)|2
|H(u)|2Sb(u) + Sn(u)

= σ2ξAX
∫
duGNEQ(u)

(78)

We have written this quantity as an integration over what has been termed the

Generalized Noise-Equivalent Quanta68 or GNEQ, defined as the integrand of the

third term. Noise-Equivalent Quanta (NEQ) has historical origins with Shaw24 and

others, as well as the Wagner-Brown theory of detectability.27 For photon imaging

systems NEQ represents the frequency-specific density of quanta at the input of

an ideal detection system that would yield the same output noise as the real system

under evaluation. GeneralizedNEQ as described by Barrett and colleagues68 provides

provision for a stochastic background texture of the object. For ultrasound systems

the GNEQ quantity is a measure of the spatial frequency sensitivity of detecting a

signal in a background texture and in the presence of electronic noise. For photon

imaging modalities, the ideal observer detectability is given by an integral over the

frequency-domain of NEQ (or GNEQ) times the squared magnitude of the Fourier

transform of the signal. For ultrasound systems, the GNEQ is not weighted by the

magnitude of the Fourier transform of the signal shape, but rather by the spectral
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variance of the target signal. This is to be expected since ultrasound systems are

not sensitive to the magnitude of density or compressibility but rather depend on the

variance (spatial fluctuations) of these quantities. The entire GNEQ spectrum can

be used to characterize ultrasound systems for a particular tissue type in a target-

independent manner. Defining as the integrated background power spectral density,

we can also re-write the SNR as:

SNR2GNEQ = CobjA
∫
du

MTF 2(u)

MTF 2(u)
Sγb (u)

Xσ2
b

+ 1
S/N(u)

(79)

where Cobj is the object function contrast, defined as Cobj = σ2ξ/σ
2
b and MTF is the

modulation transfer function defined as

MTF (u) = |H(u)|/|H|max (80)

where |H|max is the maximum value of |H(u)|. The background signal-to-noise ratio

is defined as:

S/N(u) = |H|2maxXσ2b/Sn(u) (81)

and is a measure of the backscattered signal strength of the object medium relative to

the noise level. Note the connections between our expression for SNR and the Smith-

Wagner theory: both SNR2 measures are proportional to lesion area. Curiously,

[SNRGNEQ]
2 is proportional to contrast, yet in the Smith-Wagner theory, the SNR2λ

is proportional to the square of object contrast. Both metrics, however, reveal that

task performance is improved with improved contrast.

One elegant feature of this formalism is the direct dependence of system and

noise properties on the detectability. Also, the description is in the Fourier domain,
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a natural choice for analyzing ultrasound imaging systems because focused fields in

the Fresnel region and unfocused apertures in the far-field (Fraunhoffer) region have

k-space descriptions equivalent to the Fourier transform of the aperture. Also, the

quantities involved in the GNEQ(u) are all measurable quantities, so this could

provide a convenient way to characterize a system design experimentally! To do so

we would need to measure the MTF (u) and the normalized background plus noise

power spectrum (NBNPS), which we define as:

NBNPS(u) = [|H(u)|2Sb(u) + Sn(u]/|H|2max (82)

then take the ratio of the two:

GNEQ(u) =MTF 2(u)/NBNPS(u) (83)

Wire or bead phantoms can be used to estimate the point-spread functions - and

consequently the MTF . It may be necessary to acquire a small number of images

to average over noise properties. Assuming local ergodicity, a patch of one or a few

(RF) images may be used to estimate the background+noise power spectrum for a

particular field region. Once we know these properties, the integrated GNEQ or

IGNEQ as we shall call it may be computed:

IGNEQ =
∫
duGNEQ(u) (84)

This metric may apply to media where object statistics can be treated as nearly white,

such as standard phantoms and many types of tissues. Conveniently, this metric is

independent of the signal size and contrast, and characterizes the performance of
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the imaging system with a single number. It may be normalized by to obtain a

number useful for simulation studies, which we shall call the normalized IGNEQ.

Tissues that have complex striations or variable patches of brightness may make

target discrimination more difficult. Object texture can be accounted for in the

theory and measured experimentally.

5.3. Monotonicity with the Full Quadratic Task

Recall that when we modeled both the lesion and its surroundings as Gaussian

stochastic processes the resulting ideal observer test statistic was a quadratic form

in the data. In contrast, when we modeled the lesion as an additive determinis-

tic signal, the test statistic was linear in the data. We may very well expect that

performance metrics for these two detection tasks may not exhibit identical proper-

ties. Consequently, we now examine whether the figures of merit derived for both

tasks give similar information about diagnostic performance. To do so we choose to

examine the trends of both the Clarkson-Barrett SNR and the GNEQ theory with

varying system and object parameters. Consider the case where both K+ and K− are

simultaneously diagonalizable with a Karhunen-Loeve transformation. In assuming

this we consider the case where the size of the lesion is the same size as the window

[w(x) = 1 everywhere], and also that the system is locally shift-invariant. The result

is a spectral description:

SNR2G(0) = 2log

{ ∏M
m=1 [|H(um)|2(S+(um) + S−(um)) + 2Sn(um)]

2

22M
∏M
m=1 [|H(um)|2S+(um) + Sn(um)]

∏M
m=1 [|H(um)|2S−(um) + Sn(um)]

}

(85)
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where S+(u) and S−(u) are the eigenvalues (spectrum) of K+ and K− respectively,

and u is a (spatial) frequency vector of length M . Note that S−(u) = Sb(u) and

S−(u) = Sb(u) + S∆γ(u), where Sb(u) is the spectrum of the background object func-

tion, and S∆γ(u) is the spectrum of the target. Also, Sn(u) is the noise-power spectrum

(NPS). The spectral description now gives a means for comparing with SNRGNEQ.

In particular, we shall examine trends of both SNRG(0) and SNRGNEQ for parameters

of bandwidth, noise power, and target signal power.

To investigate the behavior of the SNR with system bandwidth (BW ), consider

for simplicity an ideal low-pass system response:

H(u) =





1 u ∈ Ω

0 otherwise

(86)

where Ω is the set of values of spatial frequency that determines the bandwidth.

Suppose there are MΩ spatial frequency elements in Ω. Suppose also that object and

noise statistics are white: S+(u) = S+ , S−(u) = S− , and Sn(u) = Sn for all u. Then

SNR2G(0) = 2MΩlog

{
[S+ + S− + 2Sn]

2

22M/MΩ [S+ + Sn] [S− + Sn]

}
(87)

Consequently, the SNR2 is proportional to MΩ, which is simply proportional to |Ω|,

the system bandwidth.

To show that SNRG(0) decreases with increasing noise, we took the derivative

with respect to the noise power and showed that the result was a strictly negative

quantity, indicating that the slope of the graph of SNRG(0) with respect to noise was

negative (calculation not shown). As the noise grows larger without bound, both
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SNRG(0) and SNRGNEQ both tend to zero. As noise power tends to zero, SNRG(0)

and SNRGNEQ increase to a limit that is only bound by the density of sampling, and

the Nyquist limit of H. If H is non-zero for frequency channels u ∈ Ω , then as noise

tends to zero:

SNR2GNEQ −→noise→0∝
∫
du

1

Sb(u)
(88)

As the sampling frequency grows, so does the SNR as long as H has even a small

amount of signal. The same behavior is seen with SNRG(0):

SNR2G(0) −→noise→0

∑

m3um∈Ω

2log

{
[S+ + S−]

2

22M/MΩ [S+S−]

}
(89)

As the number of frequency channels in W increases, this quantity will in general

increase until both target and background object power spectra tend to the same

number, for example, as they die off to zero. In the Smith-Wagner theory, noise-power

could be totally neglected, and the detectability was bounded not by the sampling

density, but by the number of independent speckle spots. By using the RF signal

instead of the envelope signal, the ideal observer has the potential to compensate for

the blurring kernel of the imaging system. Noise prevents the ideal observer from

doing this completely. One interpretation of the ideal observer strategy is that it

deconvolves the effects of the imaging system before performing template matching.

Deconvolution cannot necessarily recover precise information lost in the null-space but

it can restore image statistics useful for the detection task. An interesting observation

related to deconvolution is that the argument of the SNRGNEQ integral looks very

much like a Weiner filter. In practice, there will always be noise, and the ideal
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observer detectability will be bounded. The imaging system should be designed so

as to sample at minimum at the Nyquist rate, determined by the system’s MTF .

Sampling more densely than the Nyquist rate will add noise power to the images

(which may degrade task performance for human observers). For ideal observers,

sampling at greater than the Nyquist limit will not degrade performance, but will not

provide any benefit either. This is because the ideal observer will know to truncate

spectral noise where there is no signal.

Lastly, we note the increasing trends of both SNRG(0) and SNRGNEQ with in-

creasing signal strength. SNRGNEQ is proportional to target signal variance. For

SNRG(0) the relationship with target strength is more subtle, however, by differenti-

ating with respect to signal strength, one can show that the relevant slope is positive

(calculation not shown).

The conclusion of the previous analysis is that SNRGNEQ, a figure of merit for

a slightly different task than the full quadratic task modeled in sections II, IV, and

V gives similar information as do metrics for the quadratic task. The benefits are

that small targets (lesions) can be considered, noise and system parameters can be

included directly and intuitively into the analysis, and the SNR can be both easily

measured and predicted with a target-independent metric.

5.4. Shift-Variant Information Maps of Ultrasonic Fields

Realistic ultrasound systems are not shift-invariant. But we can assume that they

are shift-invariant over some local region. By doing so, we can compute the potential
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information content of imaging a lesion at each field location. We considered a 128-

element linear array transducer with 64 active elements and fixed focus at 60 mm. No

aperture growth, dynamic receive focusing, elevation focusing, or apodization were

employed. Attenuation was neglected, and we only consider 2 dimensions of a truly 3-

D ultrasound beam sensitivity. All such effects could easily be integrated into future

simulations. Point spread functions (psfs) simulated using FIELD II,53 a public

domain ultrasound simulator, are shown below in Fig. 11(a). This is a B-mode image

of point scatterers located at successive axial depths separated by 5 mm intervals.

At each point the MTF was computed, corresponding to the normalized 2-D FFT of

the RF point-spread functions. Assuming white background and noise processes, and

S/N = 1/30 at the focus, a normalized IGNEQ value was computed at each axial

point, and the results plotted in Fig. 11(b).

The results are somewhat counter-intuitive. We would have expected the focal re-

gion to be optimally informative since it has the most focused resolution size. Instead

we find that the nearfield has remarkably more information potentially available. To

understand this unexpected result, we compared the nearfield and focal region psfs

and MTF s, as shown in Fig. 12. Intuition tells us that 2(a) has better resolution,

but upon examining the spatial frequency domain, we need to give the question some

more thought. The effective lateral spatial bandwidth in (d) is 74 percent greater

than in (b). Thus - the lateral spatial resolution of the large curved wavefront (c)

is potentially greater than the lateral resolution of the smaller focal region field (a)!

To understand this better, notice that a lateral slice through the psfs looks very



92

much like a chirp function. The resolution must be recovered by processing similar to

current coded excitation schemes . Similar to Jensen69 we propose a matched filter

technique, whereby a time-reversed copy of an RF psf (c) is used as a filter. When

convolved with an RF image of a point target 12(c), a much narrower lateral distri-

bution 13(b) is the result. The signal amplitude in 13(b) is also more than 20 times

greater than that in 13(a), and 2.2 times greater than the focal gain. A marked im-

provement in visibility is seen when matched filtering is applied to simulated images

of a cyst phantom, shown in Figs. 13(c) and (d). The matched filtering procedure

is consistent with the strategy for the ideal or Hotelling observer, which is to whiten

and match filter. In the nearfield, matched filtering without whitening performs well

because the resulting image statistics are nearly white. It remains to be seen how

robust the technique is to phase aberrations and other artifacts.

Regardless of whether spatial matched filtering is a practical technique, it shows

an important point - that image processing can make information in the raw RF

data more accessible to human observers, as seen in Fig. 13(d). Processing does

not, however, increase the information content. The raw RF signal contains all the

task-relevant data. Processing can at best maintain information content, and often,

information will be lost. We should comment that beamforming schemes (at least

for reception) can be viewed as either part of the system design or as part of the

processing algorithms. Both views may have merit, and further research in this area

could be pursued.

Before concluding, we comment on the general downward trend of detectability
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with increasing axial distance as shown in Fig. 11(b). Diffractive losses mean that

the farfield has less signal available than does the nearfield, and consequently the

S/Nb decreases, dropping the overall detectability.

5.5. Discussion and Conclusions

Quanta (NEQ), a measure widely used by other imaging modalities. The detection

signal to noise ratio is shown to be an integration of the generalized NEQ weighted

by the spectral variance of the target signal (rather than the squared magnitude of

the Fourier transform of the signal, as is the case with other modalities). This reflects

that ultrasound systems are sensitive not to the magnitude of the medium param-

eters but rather depend on the variance (spatial fluctuations) of these quantities.

Moreover, when object statistics are white over the sampling domain, the frequency-

dependent weighting ofGNEQ becomes constant, and a target-independent picture of

detectability can be summarized in a single number. The resulting framework behaves

similarly to the quadratic task, is intuitive, and is amenable to measurement and pre-

diction of system performance. The theory has been used to predict the information

content of the ultrasonic beam at various field points. Similar analysis of location-

dependent IGNEQ may prove useful for evaluating the effectiveness of beamforming

strategies. Currently lesion detectability is assessed with time-consuming Monte-

Carlo simulations, or by using phantoms with real systems. Backscattered power

inside and outside the lesion are measured in ratio to give a detectability metric. The

figures of merit presented here are instead based on statistical models and have a dif-
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ferent intention: they give an upper bound on the information content available with

a particular system design. The theory does not attempt to predict human observer

performance. However, new strategies mimicking the ideal observer are revealed for

processing RF data that could improve detection of lesions for human observers.

Experimental characterization of ultrasound systems is planned in the near future.
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Figure 11. (a) Point spread functions due to 64 active elements of a 128-element

linear array transducer of height 5 mm, element width l, and gap spacing of 0.1

mm, with fixed focus at 60 mm, and no elevation lens. An attenuationless medium

was considered for simplicity. 2 cycles of a 3 MHz sinusoid weighted by a Hanning

window were used to simulate the excitation pulse. The same function was used to

simulate the electromechanical coupling impulse response of the transducer. (b) The

normalized IGNEQ values corresponding to field points along the beam axis. The

larger the normalized IGNEQ value the more informative the system is for the given

field point.
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Figure 12. (a) Focal and (c) nearfield RF psfs due to a 3 MHz fixed focus linear

array of height 0.5 cm, with 64 active elements of width l separated by distances of

0.1 mm. Azimuthal focus was 6 cm. The beam was electronically swept laterally

across the point target located at (a) 6 cm and (b) 3 cm. (b) and (d) are the k-space

(MTF ) representations of (a) and (c) respectively.
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Figure 13. (a) The envelope-detected psf in 2(c). (b) The resulting image obtained

after matched filtering 2(c) with a time-reversed replica filter. (c) Pre-filtered image

of a lesion due to psf 2(c). (d) The corresponding post-filtered image.
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6. IDEAL OBSERVER MODEL FOR ULTRASONIC

DETECTION TASKS

6.1. Theory

6.1.1. Linear Systems Model and Assumptions

Medical ultrasound systems operate by transmitting pulsed beams of acoustic energy

into the body and collecting the backscattered signal. Spatial variations in density

and compressibility within the microstructure of the body act as scatterers. The RF

or IQ echo signal g can be modeled as a linear system of the object function. IQ data is

formed by mixing RF echo data with cosine and sine functions at the carrier frequency

then low-pass filtering. B-mode signals discard phase information and merely detect

the signal envelope, formed as b =
√
g2I + g

2
Q, where the squares and the square root

act on the individual elements of the respective vectors. Alternatively, the B-mode

data may be formed as either rectifying the RF data (i.e. |g|) then low-pass filtering.

Previous models of image quality for ultrasound systems have considered only the

B-mode signal, which is a nonlinear function of the object and system. Consequently

analysis was restricted to stringent assumptions. We are able to relax some of these

assumptions by considering the pre-envelope (RF or IQ) signal. We are also interested

in the pre-envelope signal to avoid losing information during B-mode processing. A

solution to the small-signal acoustic wave equation in scattering media has lead to a

linear systems model of ultrasonic imaging,70 represented as g = Hf +n, where g is

a vector of digitized echo signals, is a continuous to discrete integral operator, f(x)
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is the object function, defined over spatial locations x, and n is electronic noise. For

a N ×M digital image, g is a NM × 1 RF column vector formed by concatenating

the RF image columns. In this paper for simplicity we consider a 2-D system model,

although a 3-D field model could be considered. Over small regions, often called

isoplanatic patches, the system may be considered shift-invariant. We choose to

analyze detectability over isoplanatic patches - an assumption that is not essential for

the analysis, but greatly simplifies computation. Another reasonable approximation

is that the object function can be considered discrete, so that the linear system can

be written in matrix form

g = Hf + n (90)

When correlations are much smaller than the image size, H may be approximated

as a NM × NM block circulant convolution matrix.23,71 This matrix notation will

allow us accessibility to a wide range of statistical tools, matrix identities, and fast

Fourier computational techniques. To model the elevation properties of the beam

we would need to write the linear system as a linear superposition (in elevation) of

planar convolutions, however, a 2-D model is presently justifiable - especially when

considering targets with elevational depths greater than the elevational beamwidth.

This simple approach helps us focus on optimization of the axial and lateral properties

of the beam. Similar to Abbey,35 we estimated system and noise parameters from a

7.5 MHz transducer using a Siemens Elegra Ultrasound scanner by imaging a graphite-

agar phantom. The 2-D power spectrum was estimated from 10 independent images,

and the pulse parameters were fit to a 2-D Gaussian function. The measured echo
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SNR of these images was 47.0 dB (defined as the peak value of the signal power

spectrum divided by the noise power level), and the estimated x- and y- pulse standard

deviations were 0.08 and 0.15 mm respectively. The axial and lateral dimensions of a

pixel are 0.054 mm by 0.12 mm respectively. Fig. 14 shows a representative schematic

of the linear system model of image formation. Fig. 15 compares simulated and real

data from a homogeneous phantom.

Figure 14. Model of the object function of a hypo-echoic lesion, the pulse, RF and

IQ data and the B-mode image.

6.1.2. Signal Known Statistically

By modeling essential features of the system and the tissue, a statistical detection

performance theory can be formulated. Although shape, echogenicity, heterogeneity,

margin characteristics, and posterior acoustic shadowing are important diagnostic

features in applications such as breast cancer sonography72 we focus on echogenicity

as shown in Fig. 14. Furthermore, although the role of breast sonography so far has

been as an adjunct to mammography and as a means of discriminating lesions as
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Figure 15. (a) B-mode data from a Siemens Elegra system scanning a homogeneous

tissue-mimicking phantom (b) Simulated B-mode image.

benign or malignant, we choose to focus on ultrasound as a detection modality. This

paper may furthermore be a stepping stone to evaluate performance for discrimination

tasks (which are also binary classification tasks, like detection) since the theoretical

descriptions may be very similar. We presently consider a signal known statistically

(SKS) detection task. Aspects of the SKS task that are known are the noise power,

lesion size, object contrast (echogenicity), shape, and location, as well as the system
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spatial sensitivity function h. Unknown are the precise random realizations of the

object function and noise processes. We assume that the object function can be

modeled as a zero-mean Gaussian random process so that the echo signal is also a

zero-mean Gaussian random process with distributions for signal present and signal

absent hypotheses given as:

pr(g|H1) = MVN(0,K1)

pr(g|H0) = MVN(0,K0) (91)

In a manner similar to previous work35,73,74,36 the signal present and signal absent

covariance matrices have the form Kdata = HKobjH
t+ σ2nI where Kobj represents the

covariance of the object and represents the additive noise. We represent a lesion as an

object region with a differing variance than the surrounding region (see Fig. 14). In

general the signal present covariance matrix K1 = 〈ggt|H1〉 can be thought of as the

sum of the background covariance and a differential signal covariance: K1 = K0+∆K

where ∆K = K1 − K0. For hypo-echoic lesions, ∆K is negative. Throughout the

paper we assume that the background process is wide-sense stationary.

6.1.3. Ideal Observer Test Statistic: The Log-Likelihood Ratio

The log-likelihood ratio is the decision function of the ideal observer. From 91, ig-

noring constants and data-independent terms, it may be written in terms of the RF

data as74,36,35:

λ(g) = gt(K−11 −K−10 )g (92)
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Note that the test statistic is quadratic in the data. When a SKE detection task was

considered, the test statistic was linear in the data. One interpretation of the ideal

observer strategy is to decorrelate the data with respective signal present and signal

absent inverse covariance operations K
−1/2
1 and K

−1/2
0 , then take integrate the inten-

sity of the resulting images, and subtract. Note that the ideal observer test statistic

cannot generally be obtained from the envelope signal, since the decorrelations cannot

be performed after the phase information contained within g is discarded.

6.1.4. Monte Carlo Methods and Power Series

Abbey35 introduced a 2AFC Monte Carlo method for assessing the performance of

the ideal observer. A key contribution was a way of computing the inverse covariance

matrices. The signal absent covariance is stationary, and may be approximated as a

convolution operator - thus may be inverted quickly using Fourier techniques. The

signal present covariance is however non-stationary, greatly complicating the inver-

sion. Standard matrix inversion techniques are impractical given the size of the data

covariance matrices considered (16,384 x 16,384 for the 128 x 128 images considered

below). To accomplish the inversion, a power series was used. For a matrix A,

(I−A)−1 =
∞∑

n=0

An (93)

The series is convergent when the eigenvalues of A are between -1 and 1. The inverse

signal present covariance may be written as

K−11 = K
−1/2
0

(
I+ σ2objK

−1/2
0 ∆KK

−1/2
0

)−1
K
−1/2
0 (94)
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The inverse operation may be implemented using 93 with A = −σ2objK
−1/2
0 ∆KK

−1/2
0 .

One never actually deals with these very large covariance matrices to implement the

calculation of the test statistic. Instead K
−1/2
0 and H can be implemented through

Fourier techniques to be discussed shortly. The power series generally converges

quickly for low and moderate contrasts.

The disadvantage of Monte Carlo methods is that one must generate a large

number of simulated images which may be computationally burdensome. If one is

doing this already for a parallel observer study, then this technique is a natural

method. If this is not the case, quicker analytical predictors of performance may be

used, as will be described below.

6.1.5. Pre-Envelope Deconvolution

The ideal observer processes raw data in an optimal way to make a decision - its

performance is only limited by the diagnostic information content in the echo signal.

Although a human observer model is needed to optimize display level processing, al-

gorithms that mimic the ideal observer may prove useful. Truncating the power series

expansion, a first-order approximation to the ideal observer test statistic (Eq. 2.9 of

Ref.35) reveals that the ideal observer strategy is to deconvolve the data, with the

convolution operation W = HtK−10 . Deconvolution followed by envelope detection

transforms the raw data into a form that may be easily interpreted by a human ob-

server, and has shown to improve human observer performance over standard B-mode

detection.35 Recent coded excitation systems have successfully used deconvolution
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processing to gain significant advantages in the penetration of ultrasound systems.62,18

Our detection level framework adds the potential to optimize penetration-resolution

tradeoffs.

6.1.6. Statistical Distributions of the Log-Likelihood

We are interested in calculating the SNR of the ideal observer analytically, rather

than by using Monte Carlo techniques. To do so, we need to know the moments

of the log-likelihood ratio. These can be obtained from the characteristic function75

of the test statistic, viewed as the Fourier transform of the probabilities pr(λ|H1)

or pr(λ|H0). Consider the characteristic function for the hypothesis Hj (see Eqs.

17.22-17.24a of Ref.65):

ψj(ξ) =
∫
expiξ(g

tJg) e−
1
2
gtKjg

(2π)NM/2
√
detKj

=
1√

det(I− 2iξKjJ)
(95)

where J = K−11 − K−10 . The characteristic function can be used to calculate the

moments of the log-likelihood ratio. We may also use the identity in Eq. 17.13 of65

to write the denominator of 95 as:

det(I− 2iξKjJ) = exp

[
∞∑

m=1

(−1)m+1
m

(2iξ)mtr
[(
−∆KK−10

)m]
]

(96)

The advantage of this form is that the series should converge quickly for small con-

trasts ∆K. The traces are computationally straightforward to compute by means of

the 2DFFT, and represent the moments of the log-likelihood ratio. From a second

order truncation of 96, the characteristic function is normal and the signal present

distribution density is approximated by a normal distribution (Eqs. 17.26 and 17.27
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of Ref.65)

pr(λ|Hj) =MVN
(
tr[KjJ], 2tr[(KjJ)

2]
)

(97)

The normal approximation may alternatively be derived from the central limit the-

orem without the low contrast approximation for target areas that contain a large

number of post-whitened speckle spots. From this point of view, the ideal observer

test statistic is a sum of whitened pixel intensities - and each pixel may be regarded as

a random process. The test statistic represents a sum of many independent random

processes when the target region contains a substantial (e.g. ¿30) number of whitened

speckle spots. The main point now is that the moments from 97 may be used now to

calculate ideal observer detection performance.

6.1.7. Detection SNR for SKS Tasks

From the above analysis, the test SNR of the test statistic may be calculated from

97 as:

SNR2Ideal =
{tr[JK1] + tr[JK0]}2
tr [(JK1)2] + tr [(JK0)2]

(98)

When pixels are separated by a correlation distance, covariance matrices are approx-

imately diagonal, and Eq. (98) reduces to Eq. (33) of the Ref..29 Our approach

allows for a more general correlation structure. The power series 93 and 94 can be

used to evaluate the traces. A second-order (low contrast) approximation to the ideal

observer signal-to-noise ratio is

SNR2Ideal,LowContrast ≈ tr
(
K−10 ∆KK−10 ∆K

)
(99)
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For higher contrasts, more terms may be retained in the series expansion. Clark-

son and Barrett introduced another SNR (Eq. 5.61 of Ref.36) related to the Bhat-

tacharyya distance, a metric quantifying the ”distance” between two general proba-

bility density functions. Reassuringly, a second order approximation to the Clarkson-

Barrett SNR discussed in Ref.36 converges to 99. In the next sections we focus

on ways of analytically and numerically evaluating this important expression, and

explaining how it can be used for system optimization.

6.1.8. WGN Object Model

If a white Gaussian Noise (WGN) object model is assumed for the signal and the

background, the signal present object covariance may be written as Kobj = σ2obj(I +

S), where S is a diagonal matrix with elements rastorized from the signal variance

template

s(x) =





∆σ2/σ2obj x inside lesion

0 x outside lesion

(100)

The non-zero elements Si of S thus represent a patch of differing variance in the object

(see Fig. 14), and are negative for hypo-echoic lesions. They are related to the object

contrast factor (OCF ) for ultrasound defined by Insana and Hall34 as the relative

change of standard deviation: OCF =
√
Si + 1 − 1 . The signal covariance matrix

may be written as ∆K = HSHt and the covariance of the signal present matrix can

thus be written as:

K1 = σ2objH(I+ S)Ht + σ2nI (101)
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6.1.9. Fourier Techniques

The test statistic 92 and analytic expressions for the ideal observer SNR may be

evaluated with Fourier techniques. We represent the 2-D Fourier transform in matrix

form as F, and write K−10 = F−1DK−10
F and ∆K = F−1Φ∆KF. Because is the

covariance matrix of a stationary random process it is block-Toeplitz and can be

approximated as block circulant.23 The discrete Karhunen-Loeve transformation

is simply the 2-D discrete Fourier transform F, hence the matrix DK−10
is diagonal

with elements equal to the power spectrum of the background and noise processes

|H(u)|Sb(u)+Sn(u) rastorized into a vector where Sb(u) is the power spectral density

of the background object texture, and Sn(u) is the noise power spectrum. We can also

write Φ∆K = DHΦSD
∗
H, where is block-circulant and Hermitian, and is the diagonal

matrix of the eigenvalues of H. The eigenvalues are rastorized elements of H(u), the

2-D Fourier transform of the system psf h(x).

As an example of the Fourier technique, consider calculating a scalar term gtK−10 HSH
tK−10 g

in the expansion of the test statistic (5) for a Monte-Carlo study. We would first

write the term as (Fg)tDK−10
DHFSFD

∗
HDK−10

Fg. To implement this, we would

take the 2D RF image g(x), take a 2D-FFT, multiply by the transfer function

H∗(u)/(|H(u)|2Sb(u)+Sn), take an inverse Fourier Transform, multiply the variance

template s(x) element-by-element, take another 2D-FFT, multiply by the transfer

function H∗(u)/(|H(u)|2Sb(u) + Sn), then multiply against the Fourier transform of

the image g(x) and sum the elements of the resulting matrix. A recursive algorithm
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can be used to implement the full expansion of the test statistic. Fourier techniques

will be used to obtain closed-form expressions for ideal observer detection perfor-

mance.

6.1.10. Ideal Observer SNR for Low Contrast Lesions

Using Fourier techniques, and assuming a WGN object model, the ideal observer

SNR in the low contrast limit, Eq. (13) then becomes

SNR2Ideal,LowContrast ≈ tr [DGNEQΦSDGNEQΦS] (102)

where DGNEQ. The elements of this diagonal matrix are the elements of the 2D

GNEQ, or Generalized Noise Equivalent Quanta [18]

GNEQ(u) =
|H(u)|2

|H(u)|2Sb(u) + Sn(u)
(103)

rastorized into a vector. The Noise Equivalent Quanta used in photon modalities is

given asNEQ(u) = G2MTF (u)/NPS(u), whereG is the large area contrast transfer,

MTF is the modulation transfer function and NPS is the noise power spectrum.

NEQ used for photon imaging modalities has historical origins with Shaw24 and

others. NEQ represents the spatial frequency-specific density of quanta at the input

of an ideal detection system that would yield the same output noise as the real system

under evaluation. GeneralizedNEQ as described by Barrett and colleagues68 provides

provision for a stochastic background texture of the object. For ultrasound systems

the GNEQ quantity is a measure of the spatial frequency sensitivity of detecting a

signal in a background texture and in the presence of electronic noise. In other words,
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it is the fraction of speckle energy (rather than photon energy) that contributes to

detection.

Because ΦS is Hermitian, the trace may be written as
∑NM
α,β=1(DGNEQ)αα|(ΦS)α,β|2(DGNEQ)ββ.

Noting that ΦS is a block-circulant convolution operator, we write this as a continuous

integral over spatial frequencies:

SNR2Ideal,LowContrast ≈
∫
duGNEQ(u) [T (u) ∗GNEQ(u)] (104)

where * represents 2-D convolution over spatial frequencies u. The integral is eval-

uated over the interval of sampling frequencies. It represents the ideal observer de-

tectability in closed form in terms of the GNEQ and the ’task’. The task is defined

by the Fourier transform of the object signal variance template:

T (u) = |F2D{s(x)}|2 (105)

where, s(x) is given by Eq. 101. For large lesions, the task T (u) approaches a delta

function with amplitude proportional to the lesion area A, and the convolution with

GNEQ in 104 results in only a slight blurring of the GNEQ shape which we ignore.

For lesions larger than several correlation lengths, the low contrast ideal observer

SNR becomes

SNR2I = AC2
∫ [

MTF 2(u)

MTF 2(u) + Sn(u)/|H|oSb(u)

]2
du (106)

where MTF is the modulation transfer function, defined as

MTF (u) = |H(u)|/|H|o (107)
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with |H|o defined as the maximum of |H(u)|. C is the lesion contrast given by C =

∆σ2/σ2obj = (1 + OCF )2 − 1. The range of validity for the large area approximation

will be tested in the numerical results section. The integral in ?? is evaluated over

the spatial frequency domain out to the sampling frequency limits. Importantly, the

integral in 106 is a target-independent figure of merit for characterizing detection

performance of ultrasound systems. Eq. 106 has a form similar to the Smith-Wagner

ideal observer SNR which can be written as,2934

SNR2Smith−Wagner =
A

Sc
SNR2oC

2 (108)

where Sc is the correlation area, SNRo = 1.91 for Rayleigh statistics of the envelope

signal,28 and C is the small signal contrast. This convenient equation tells us that

the greater the number of speckle-spots per lesion area, the better the detection

performance. For the SKS ideal observer acting on the RF signal, the integral in

Eq. 106 essentially replaces SNR2o/Sc in the Smith-Wagner theory. The new factor

includes electronic noise, and the integrand represents the power spectral density of a

pre-whitened (noiseless) echo signal. The integral in 106 is very much like an inverse

correlation length of the pre-whitened data - or in other words the speckle spot density

after pre-whitening - thus it reflects the pre-whitening potential.

An important difference between the SKS and SKE theories in previous literature73

is that there is a quadratic dependence of the GNEQ rather than a linear one. Thus,

unlike the SKE theory for ultrasound,73 the SKS theory predicts that the detection

SNR2 is proportional to the square of the contrast.
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So far in this paper we have given 3 main approaches for computing the SKS

ideal observer performance: (i) the Monte Carlo approach using the iterative power

series as discussed in35 (ii) The low contrast approximation, Eq. 104, and (iii) The

large area, low contrast approximation, Eq. 106. All three have so far assumed fully

developed speckle, local shift-invariance, and used the WGN object function model,

however, more general object models could be considered. The Monte Carlo technique

is the most accurate for large contrasts because the power series is not prematurely

truncated, however, it requires extensive computation time compared to Eqs. 104

and 106. In the Numerical Results section, we wish to show that even for fairly small

lesion sizes, and moderate lesion contrasts, Eq. 106 is a good approximation to the

ideal observer. Eqs. 104 and 106 are the primary theoretical results of this paper.

6.2. Numerical Results

6.2.1. Accuracy of the Low Contrast and Large Area Approximations

We investigated the accuracy of the low contrast approximations discussed above.

To do so, we compare the predicted detectability of Eqs. 104 and 106 with the

performance of the Monte-Carlo approach using the power series 93 and 94. The

Monte Carlo approach is the standard against which our approximations should be

measured because it does not prematurely truncate the power series. For Monte Carlo

simulations, 2000 pairs of signal present and signal absent IQ data were simulated

using model parameters derived from measured ultrasound data in a manner similar

to Abbey.35 For each image pair in the 2AFC experiment, the ideal observer test
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statistic was computed using the power series 96. The power series used up to 16

terms. The series was terminated when the contribution of a term fell below 0.001%

of the test statistic. The image with the greater test statistic was scored as the lesion

present image. The percent of correct choices was plotted over a range of contrasts

and for three different lesion sizes. The 2AFC percent correct (PC) was then related

to the Yes-No ideal observer SNR by34

SNRY N =
√
2Φ−1(PC2AFC) (109)

The results are shown in Figs. 16 (hyper-echoic lesions) and 17 (hypo-echoic le-

sions). Note that for hypo-echoic lesions, the large area approximation, Eq. 106

over-approximates Eq. 104 advantageously for large lesions. Fig. 18 illustrates the

representative lesion sizes. Error bars in the ideal observer SNR correspond to de-

tectabilities evaluated at PC + δPC and PC − δPC, where δPC is the standard

binomial sample error , where N is the number of Monte Carlo trials.34 As expected,

for low contrasts, agreement is very good. Divergence is larger at higher contrasts,

but for large lesions the SNR is so good that the probability of correct identification

is essentially 100% - thus the disagreement may not be terribly important. The re-

sults show the predicted linearity with contrast. We investigated the linearity of the

ideal observer SNR2 with lesion area as predicted by Eq. 106. Illustrating this, Fig.

19 shows the remarkable linearity of SNR with lesion diameter even for lesion sizes

equivalent to only a few correlation lengths (a 0.5 mm diameter lesion contains 3.3

lateral pulse standard deviations and 6.25 axial pulse standard deviations). Fig. 20
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shows the predicted SNR of the ideal observer with decreasing electronic noise.

Figure 16. A test of the accuracy of the low-contrast approximation over a range of

contrasts and for different lesion sizes for hyper-echoic lesions. Dotted line: Monte

Carlo approach with iterative power series (gold standard), dashed line: Eq. 104,

solid line: Eq. 106. Parameters were otherwise the same as outlined in section 6.1.1.

6.2.2. System Optimization

In high-noise environments, longer pulse lengths are sometimes desirable to improve

signal energy and hence penetration. Longer pulses, however, degrade spatial reso-

lution. We predicted ideal observer performance for a range of pulse lengths (with

constant amplitude) for a 4.92 mm diameter lesion with contrast of -9.75%. In Figs.

21 and 22, we plot detectability curves for a range of echo SNRs. In Fig. 21, we

used Eq. 106. Fig. 22 compares the Monte Carlo response and Eqs. 104 and 106.
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Figure 17. A test of the accuracy of the low-contrast approximation over a range

of contrasts and for different lesion sizes for hypo-echoic lesions. Dotted line: Monte

Carlo approach with iterative power series (gold standard), dashed line: Eq. 104,

solid line: Eq. 106. Parameters were otherwise the same as outlined in section 6.1.1.

The approximations under-estimate the Monte Carlo results (due to truncation of

the power series). Higher noise levels could correspond to deeper penetration depths,

higher frequency excitations, or electronic shielding considerations. In high echo SNR

situations, short pulses are seen to be superior, however, in high noise environments,

longer pulses are seen advantageous. The optimum pulse lengths for varying echo

signal to noise levels of 13, 9.5 and 7 dB are predicted to be 0.065, 0.1 and 0.13 mm

respectively. For higher echo-SNR levels, shorter pulses are optimal, however, the

length of the pulse will be wavelength limited.
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Figure 18. Representative lesions sizes used in Figs. 16 and 17: 1.97mm, 4.92 mm,

and 6.64 mm diameters respectively. Contrast levels were purposely exagerated for

visualization.

6.3. Discussion

The results of Figs. 16-20 suggests that the low contrast and large area SNR ap-

proximations of the ideal observer are reasonable to use - even for small lesions and

moderate contrasts. For small lesions or large contrasts, the approximations are not

necessarily within the error bars (confidence bounds) of the Monte Carlo results but

are still remarkable close. For hypo-echoic lesions, the large area approximation 106
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Figure 19. A test of the linearity of the ideal observer SNR with lesion diameter for

a with -19% contrast (hypo-echoic) lesion. Dotted line: Monte Carlo (gold standard),

dashed line: Eq. (18), Solid line: Eq. (20).

over-approximates Eq. 104 advantageously. The SNR expressions can be computed

very quickly thus avoiding time consuming Monte Carlo methods. Eqs. 104 and 106

could be used as a quick first step in an optimization procedure. The Monte Carlo

approach could then be used to fine-tune the optimization. The ability to quickly

compute the ideal observer performance represents an important step in understand-

ing how to optimize ultrasound systems for detection tasks.

Fig. 20 illustrates the impact of noise on the ideal observer. Electronic noise

hinders the ability of the ideal observer to pre-whiten the data. In an ideal, noiseless

system the ideal observer performance is only limited by finite sampling. Although
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Figure 20. Ideal observer SNRs (dotted line: Monte Carlo, dashed line: Eq. 104

and solid line: Eq. 106 as a function of varying amounts of electronic noise for a

4.92 mm diameter lesion of contrast -9.75%. Parameters were otherwise the same as

outline in section 6.1.1.

human observer performance (not investigated here) is likely to saturate and plateau

with decreasing electronic noise (since human observers cannot pre-whiten well), the

ideal observer’s performance continues to improve. Any differences between the ideal

observer and human observer suggest a role for image processing techniques such as

pre-envelope deconvolution. This also means that anything one can do to reduce

electronic noise or enhance signal energy may significantly enhance detection perfor-

mance.

In the Smith-Wagner theory shorter pulses (larger bandwidths) are always better,
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Figure 21. An example optimization study: ideal observer SNR as a function of

pulse length for a range of echo signal-to-noise levels for a 4.92 mm lesion of contrast

of -9.75%.

since in their derivations, electronic noise was regarded as being less important than

speckle and thus ignored. Figs. 21 and 22 illustrate that the optimization point for

pulse length is noise dependent. Fig. 22 shows that the Monte Carlo response and

Eqs. 104 and 106 follow the same trend, even though the approximations under-

estimate the Monte Carlo results (due to truncation of the power series). The simple

expression Eq. 106 can be used in a quick optimization procedure. If more accurate

optimization is desired, the Monte Carlo technique with more terms of the power

series can be used to fine-tune the maximum point.

In high noise conditions (e.g. high center frequency or deep tissues), there is a
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Figure 22. Pulse length optimization curve for 9.5 dB echo SNR, 4.92 mm lesion of

contrast of -9.75%. Dotted line: Monte Carlo, dashed line: Eq. 104, solid line: Eq.

106.

tradeoff between penetration and spatial resolution. Longer pulses are more energy

rich and thus penetrate more, but at the cost of resolution. Fig. 21 shows the op-

timal tradeoff for detection tasks. From Fig. 21, we see that the system performs

moderately well even in high noise conditions. Depending on the situation, one may

sometimes wish to sacrifice large ideal observer SNRs to optimize a parameter such

as spatial resolution that is important for other tasks such as discrimination, and

still perform very well on a wide range of detection tasks. The gains in detection

performance from boosting SNR may depend on where a radiologist chooses to op-

erate on the ROC curve. They will also be dependent on lesion size and contrast.
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One way of improving spatial resolution could be to use higher transmit frequencies.

Large time-bandwidth codes,7618 could be used to boost echo SNR to compensate

for increased attenuation - thus decreased penetration. This theory tells us how far

we can push these limits without significantly sacrificing detection performance. It

could also lead to the detection of much smaller lesions, thus reducing the number of

false negatives.

6.3.1. Limitations and Extensions

It is important to discuss the limitations of our model. We have neglected aberration

effects in our model, which may degrade detection and pre-whitening performance.

A criterion for a good system design could be the relative robustness to aberration

artifacts. Alternatively, de-aberration strategies may be useful. Our linear systems

model is so far only 2-D. Although it is possible to extend the model to include

the elevation properties of the beam, the analysis is not included here for sake of

simplicity. 3D beam properties are a limiting factor when partial volume effects due

to elevational clutter are important. 2-D analysis may be adequate when the elevation

properties are of little importance.

The model has yet to include non-Gaussian statistics. Some investigators studying

statistical models of ultrasound images often focus on the pixel statistics of B-mode

images, and use Rayleigh, Rician, K-mean, Nakagami, and other distributions,28.23

Many of these can be generated from the envelope of a Gaussian RF model with

spatially varying scattering amplitudes (variances) or means.
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Our model has ignored background texture. Inhomogeneous background variabil-

ity degrades detection and, for photon modalities, has been shown to influence system

optimization.32,77,31 Often more complicated object pdfs are unknown or difficult to

obtain. Alternative observers could be studied that integrate measured power spec-

tra, similar to techniques discussed by Burgess77 for mammography. If background

texture can be adequately modeled, Markov Chain Monte Carlo techniques78 may be

used to computationally evaluate the ideal observer performance. This approach can

also model signal shape and location uncertainty.

The detection theory developed here may stand without the need for including

background inhomogeneity. If there are regions of normal tissue texture that look

like possible lesions, we would somehow desire to design the system hardware to

suppress visibility of this texture while enhancing visibility of the true lesions - but

for ultrasound systems how to do this is unclear. Human observers can sometimes

distinguish between lesions and normal anatomy - based on features such as shape

and contrast. The strategy then could be to reduce the number of missed true tumors

by improving low contrast visibility - then rely on feature-based discrimination tasks

to reduce the number of false positives. With this point of view, one design strategy

could be to optimize the system low contrast detectability for the worst-expected

(uniform) background echo SNR.

This paper says nothing about modeling human observer performance - a subject

of future work. Models of human performance may greatly accelerate processing-level

development.
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An important application of this work is imaging breast cancer. Currently, ultra-

sound is typically performed after screening mammography - thus its role is not so

much for detection but rather in discriminating between fluid filled cysts and solid

masses, and discriminating between benign and malignant masses. Although this

role could change to include detection should technology improve, the theoretical

framework developed here may also provide a way for studying discrimination tasks.

6.3.2. Application to System Design

Instead of guessing how to trade-off system parameters optimally for detection tasks,

we now have a rigorous and simple theory to guide the design. System design speci-

fications could potentially be task-based. For example, one could specify a minimum

lesion size and contrast for which some percent of successful detection is desired.

The theory in this paper could be used to explore several open avenues leading to

improved system design. (1) O’Donnell62 argued that ultrasound systems use only a

fraction of the time-averaged energy that is possible from a regulatory point of view,

and that coded excitation techniques could improve penetration while maintaining

spatial resolution and while staying below peak transmit pressure limits. With the

recent lift of these regulatory standards79 the combination of codes and higher trans-

mit amplitudes may offer significant gains. One may be able to use higher transmit

frequencies or harmonic imaging,80 81 to improve spatial resolution, while maintain-

ing signal-to noise with codes. The theory here gives us a framework for how to

push the limits of spatial resolution with the aid of codes. (2) Recent 1.75 or 2-D
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array technology may greatly enhance the diagnostic performance of ultrasound sys-

tems.22 (3) Novel transmit and receive beamforming schemes, and lateral codes73

may also be an open area for additional improvement. (4) Spatial compounding with

pre-envelope deconvolved B-mode images could be another way for reducing speckle

variance while maintaining very fine spatial resolution. This will have the effect

of reducing speckle, and averaging other artefacts. Realtime spatial compounding

(without pre-whitening) has already shown promise in breast cancer applications.82

A combination of coded pulses, higher transmit frequencies, pre-envelope deconvolu-

tion, and spatial compounding may offer significant image quality improvements and

may be possible in realtime.

6.4. Conclusions

The equations and techniques in this paper offer a way of numerically evaluating the

effectiveness of a system design. This paper makes connections to NEQ, used in

photon imaging modalities, as well as other classic models of image quality in the

literature. The generalized NEQ for ultrasound can be thought of as the fraction

of speckle energy that contributes to the detection task. The task is seen to be the

variance profile of the lesion, or its associated Fourier magnitude. Optimization of

engineering tradeoffs such as resolution-penetration may be predicted using the the-

ory. It is seen that detection tasks are robust to a significant amount of noise. It

may thus be possible to use higher transmit frequencies to improve spatial resolu-

tion while maintaining contrast resolution. This may further be facilitated by codes
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and higher transmit amplitudes. In this way smaller lesions may be identified, ear-

lier, reducing the number of missed diagnoses. The relative merits of coded excitation

techniques, and novel beamforming strategies may be evaluated and optimized for de-

tection tasks. The framework should be able to accommodate nonlinear propagation,

frequency dependent attenuation, and possibly background texture. Future work

aims to experimentally test system optimization predictions. Finally, this analysis

motivates RF deconvolution as a processing strategy that mimics the ideal observer,

and hence may make information in the data more accessible to human observers.
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7. EXPERIMENTAL VALIDATION OF STATISTICAL

MODELS

Work in previous chapters has focused on deriving models for the ideal observer

test statistic, and its associated performance metrics. Here we provide experimental

evidence of the Gaussian nature of the statistics, validation of the linear systems

model and its applicability, especially in regions away from the focal region (this is

something which has not been done previously).

We also outline some techniques for estimating the ideal observer performance

from experimental data, including appropriate error analysis.

7.1. Validation of Model Assumptions

7.1.1. Univariate Statistics

In our modeling we assumed that RF echo signals obey multivariate normal distri-

butions with zero mean and covariance K. Our first test of this assumption is to

test the univariate statistics of RF echo signals from a homogeneous phantom, which

should be Gaussian. We use a χ2 test to assess how close the measured distribution

is to a normal one.

We histogrammed RF pixel data from 128x128 patches in 32 independent scans

of a homogeneous graphite-agar ultrasound phantom. Data was acquired using the

Siemens Antares ultrasound scanner with a special Ultrasound Research Interface
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(URI) that allows acquisition of the beamformed RF data before any nonlinear pro-

cessing is performed. The echo signals were stored in a data file for transfer to a

computer for offline analysis. The resulting histogram with 100 bins is shown in Fig.

23. A total of 507904 data points were included.
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Figure 23. Histogram and fitted Gaussian curve of RF pixel values as taken from a

homogeneous scattering phantom

Individual channel data are digitized 8-bit values ranging from 20 to 28. The

beamformed RF data has a dynamic range greater than 8-bits because channels are

summed together in a complex way. The RF data values are nonetheless integer

values corresponding to digital values.

The Gaussian curve was estimated by estimating the mean and the variance from

the data. The mean and variance were estimated as 1 and 1321 with 5% confidence



128

intervals of [−2, 5] and [1319, 1324] respectively.

To rigorously test the hypothesis that the observed data originates from an un-

derlying Gaussian random process, we use the test statistic

χ2 =
K∑

k=1

(Ok − Ek)2
Ek

(110)

where Ok and Ek are the observed and expected number of occurances in bin k

respectively, and K is the total number of bins. This test statistic value has a χ2

probability distribution.

For computed test statistic values smaller than some threshold, we decide the

”null” hypothesis - i.e. the hypothesis that the observed data is normally distributed.

For test statistic values greater than the threshold we reject the null hypothesis.

To reject the null hypothesis we choose the threshold value for which the false

negative rate is less than 5%. The value of this threshold is given as the critical value

χ20.05,ν , where ν is the number of degrees of freedom. In our situation, since we used 100

bins, we had 100 observations. We used 3 constraints: the total number of samples,

and the estimated mean and variance, hence we are left with 100 − 3 = 97 degrees

of freedom. The relevant critical value can be obtained by evaluating the inverse

χ2 cumulative distribution function with 97 degrees of freedom at a 0.95 probability

level.

Using 100 bins over the interval [-3601,3569] the test statistic was computed to

be 608.37. The critical value was computed to be equal to 120.99. Because the
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computed test statistic is greater than the 5% threshold value we must conclude

that it is improbable that the observed data is Gaussian. Although the shape looks

quite Gaussian there are bins around zero that have slightly greater frequency than

expected, as well as excess bins on either side of the Gaussian tail.

Does this mean that our ideal observer model assumptions (which assumed multi-

variate normal distributions) are incorrect? Not necessarily. It should be noted that

a number of factors may have contributed to the deviation from the normal curve.

The most likely factor is that the phantom was not completely homogeneous as we

assumed. We needed the assumption of homogeneity to make use of ergodicity - thus

data in different spatial locations in an image are used rather than requiring an en-

semble of independent images. Inhomogeneity due to graphite clumping, air bubbles,

or other factors can change the spatial variance profile of the phantom. As a result,

when plotting a histogram of all such values, the distribution may not look normal -

even though the underlying stochastic object and noise may be MVN with spatially

varying variance profiles. Additional factors contributing to this may be tissue at-

tenuation and shift variance. Echo signals attenuate with depth - thus introducing

a spatially changing variance to the data. Additionally, shift-variance of the system

point-spread function may have the same effect.

Unfortunately, we are left without any rigorous sense of whether the echo signals

are MVN distributed or not.
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7.1.2. Multivariate Statistics

Even assuming that we could construct perfectly homogeneous scattering phantoms,

true validation of the multivariate normal assumption of RF data is difficult due to

high dimensionality: the higher the dimensionality the more data that is required to

get enough statistical data to form adequate histograms. Instead we study the joint

distribution of 2-pixels at a time. In Fig. 24 we show the 2-D histogram of adjacent

lateral pixels as an example.
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Figure 24. Observed 2-D Histogram of adjacent lateral RF pixel pairs as taken from

a homogeneous scattering phantom. The colorscale represents the number of pixels

that have RF value in the range of bin boundaries.

The RF data was the the same data used in the univariate analysis. The resulting

2-D histograms are elliptical in shape, centered about the origin, and the major
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and minor axes are characteristic of the self- and cross-variance terms in the 2 × 2

covariance matrix. We test the MVN assumption- once again by a χ2 test. To do

so, we used a 50 × 50 binning scheme, and computed the χ2 test statistic as above.

The 2-D histogram of expected occurances is shown in Fig. 25, and was constructed

as a multivariate normal distribution with mean and covariance estimated from the

experimental data. The estimated mean and covariance of the data were p̂ = [1, 2]t

and

K̂p,p =



1.746× 106 0.845× 106

0.845× 106 1.745× 106
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respectively.
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Figure 25. Expected 2-D Histogram of adjacent lateral RF pixel pairs as estimated

from the mean and covariance of the experimental data.

To ensure an adequate number of samples per bin, we chose to perform the χ2 test
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in an elliptical window interior to the 5% isocontour line of the expected probability

distribution. In this region, there were a total of 1393 bins. The χ2 test statistic

was computed as 2535. With 1 constraint on the total number of samples, 2 for the

mean, and 3 for the covariance estimates (since K̂ is Hermitian symmetric), we have

1393− 6 = 1380 degrees of freedom. Comparing the computed test statistic with the

5% critical value of χ20.05,1380 = 1475, we see that we again must formally reject the

null hypothesis that the test statistic is multivariate normal.

But, like the univariate test, we must account for phantom inhomogeneity, atten-

uation, and shift-variance as influences that may skew the normality of the observed

data. These influences, however, do not rule out Gaussian object function and noise

models. It is just that we are left without a formal way of validating the multivariate

normal assumptions.

For fully developed speckle, where there are a large number of randomly positioned

scatterers in a sample volume, by the central limit theorem, we maintain that a

multivariate normal distribution for echo signals is a good model. Future efforts

could be devoted to devising better experiments to validate these assumptions. There

may be ways to minimize phantom inhomogeneity, attenuation, and shift-variance ...

enough to demonstrate the MVN hypothesis in a rigorous way. For now the hypothesis

will stand.
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7.1.3. Covariance and Spatial Autocorrelation

We assumed that a 2-D ssf and object function were sufficient to generate the covari-

ance matrix K characterizing the RF data. For a homogeneous scattering phantom,

we hypothesized that the object function can be modeled by a 2-D white Gaussian

noise process. We also assumed that over isoplanatic regions the system can be mod-

eled as linear shift-invariant, and 2-D. In this case the covariance matrix K that

characterizes the statistics of the RF data is stationary and described by the spatial

autocorrelation function Rgg(∆x). Here we test the assumption that the normalized

autocorrelation function ρgg(∆x) = Rgg(∆x)/Rgg(0) of the RF data can be ade-

quately represented by h(∆x) ∗ h(−∆x) normalized by its maximum value. Here we

approximate h as the 2-D measured psf . Recall that it is actually more accurate to

use the ssfs rather than psfs but measuring the ssf is difficult because it requires an

ensemble of psfs and incremental depths. We hypothesize that using psfs in place

of ssfs will be adequate over isoplanatic patches. Using the measured psf shown in

Fig. 26 we thus compare h(∆x) ∗ h(−∆x) shown in Fig. 27 with ρ̂gg(∆x) shown in

Fig. 28. To form the estimate ρ̂gg(∆x), we used the 2-D unbiased estimator for the

autocorrelation applied to RF data acquired from the Siemens Antares ultrasound

system scanning a homogeneous graphite-agar phantom.

The RF autocorrelation is only roughly approximated using predictions from our

2-D linear systems model. To more accurately assess this, we need ssfs which are most

easily obtained by having a good quantitative simulation model that can generate
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Figure 26. Measured nearfield psf

an ensemble of psfs at different depths. Currently our FIELD II simulations can

only roughly approximate the observed system psfs. Additionally, shift-variance

may contribute to loss of coherence - thus narrowing the estimated autocorrelation

functions. We did not account for additive electronic noise, which we assumed was

small - but this could nevertheless be another contributing factor to the narrower

mainlobe observed in the estimate ρ̂gg(∆x). Finally, the elevation dimension of the

beam may contribute to some discrepancies between ρ̂gg(∆x) and the normalized psf

autocorrelation. All these contributions could be more carefully modeled in future

work. For now, we prefer the simplicity of the 2-D model, and the local isoplanatic

assumption.



135

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lateral distance (mm)

ax
ia

l d
is

ta
nc

e 
(m

m
)

−3 −2 −1 0 1 2 3

19.8

20

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

Figure 27. The autocorrelation magnitude of the measured nearfield RF point spread

function.

7.2. Ideal Observer Test Statistic Normality

In the previous chapter, we assumed that the ideal observer test statistic could be

assumed to be normally distributed by virtue of the cental limit theorem when many

speckle spots were present in the lesion, or by virtue of a low contrast approximation

when the contrast was sufficiently low. Here we test this approximation using sim-

ulated data. Echo data was simulated in the same way as described in the previous

chapter, for lesions of radius 6 mm and 20% contrasts. 500 lesion-present / lesion-

absent image pairs were generated. The test statistic for each lesion was computed

and the test statistic values were histogrammed in 30 bins. χ2 statistical hypothesis

tests were performed on the observed data to test the hypothesis that λ was normally
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Figure 28. Estimated spatial autocorrelation magnitude from 7 independent patches

of RF echo signals due to a homogeneous scattering phantom.

distributed. The resulting histograms for the signal present and signal absent cases

along with their best Gaussian fits are shown in Figs. 29 and 30 respectively. For the

signal absent case the χ2 test statistic was computed as 32.6. Comparing this with

the critical value 40.1, we need not reject the Gaussian hypothesis. Likewise for the

signal present case, the computed χ2 test statistic is computed as 32.4, which is less

than the critical value 40.1, again confirming the Gaussian hypothesis.

The test statistic is more likely to be normally distributed when large lesions are

considered so as to include many independent speckle spots. We consider a case where

the lesion radius is only 1.85 mm and the contrast is again 20%. The test statistic for

the signal present case no longer looks Gaussian and does not pass the χ2 test (the
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Figure 29. Histogram of signal absent test statistic values and best Gaussian fit.

calculated signal present χ2 value of 70.1 is greater than the critical value of 40.1).

We should note that in situations where the test statistic is not normally dis-

tributed (for example, in small lesions), this does not mean that our analysis is

invalidated. Rather it means that that SNRI no longer rigorously parameterized the

ROC curve. SNRI may still be a valuable performance metric, and still maintains

the Bhattacharya distance interpretation.
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Figure 30. Histogram of signal absent test statistic values and best Gaussian fit.
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8. UNFOCUSED IMAGING WITH SPATIAL CODES

8.1. Introduction

Geometric focusing, delay and sum array beamforming, and synthetic aperture re-

construction are examples of techniques used in medical ultrasound imaging systems

to focus energy and attain high spatial resolution in sonograms. Synthetic aperture

techniques accomplish focusing with multiple transmit-receive sequences with small

apertures to simulate over time acquisition of a large spatial aperture that cannot be

generated instantaneously as may be the case for array systems with limited channels,

or for single element systems.

In this paper we discuss an alternative imaging technique that can be viewed as

a generalization of synthetic aperture imaging. We propose a simple form of spatial

coding of transmitted beams, and processing algorithms to accomplish decoding to

recover spatial resolution. Similar to coded excitation techniques, where a digital code

or chirp is transmitted in the axial direction,62,18,83,76 we propose lateral or spatial

encoding. Other groups have proposed similar ideas previously. Fink ?? proposed the

idea of filtering echo signals with a time reversed echo from a bright scatterer. Ad-

ditionally, Jensen and Gori69 proposed that focusing can be accomplished by spatial

matched filtering. Jensen64 and Anderson63 independently proposed the concept of

adding lateral modulation to beams for the purpose of lateral flow estimation. We ex-

tend this idea to lateral coding with a baseband chirp. Our analysis adds theoretical

background and explanation to previous work, and makes quantitative the potential
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benefits. We call our technique ’unfocused imaging’ or ’spatial coding’ because there

is a natural spatial encoding that occurs in the near and farfield (unfocused regions)

of focused transducers - an observation that will be discussed shortly.

8.2. Theory: Ideal Observer

8.2.1. Task Performance

The technique of spatial coding is one example of a novel imaging technique that

has stemmed from a much broader fundamental analysis of image quality assessment.

The analysis gives specific predictions about the diagnostic information in the near

and farfield of ultrasound beams. For this reason we discuss the salient features of

the theory of task performance here.

Performance of medical ultrasound imaging systems is typically summarized by

parameters such as spatial resolution, echo SNR and contrast resolution. There are

tradeoffs among these parameters which are inherently application dependent. A

more rigorous approach is to measure image quality by the quantitative performance

of specific diagnostic tasks. In this paper we consider two types of tasks:

(1) detection of low contrast lesions and

(2) discrimination between anechoic cysts and high contrast hypo-echoic solid

masses.

More emphasis will be given to detection tasks since more has been done on the

topic in previous work.
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In an information-theoretic paradigm, a system should be designed to maximize

information content for the task at hand. Processing and display algorithms should

then be devised to optimally convey the diagnostic information to the decision maker.

Processing algorithms cannot add information to the RF echo signals - processing will

always be either lossless or lossy - thus the maximum amount of information resides

in the unprocessed RF echo data. We concentrate on optimizing information content

of the raw signal - based on maximizing the performance of a Bayesian ideal observer

(in the case of binary classification tasks). The ideal observer is characterized by the

optimal scalar decision statistic - the log-likelihood ratio.23

λ = ln

(
pdf(g|H1)

pdf(g|H0)

)
(112)

where pdf(g|H1) and pdf(g|H0) are the likelihoods of the RF echo data g conditioned

on the signal present (H1) and signal absent (H0) hypotheses. It is optimal in the

sense that the decision thresholding process gives the highest true-positive probability

for a fixed false-positive level. Thus - if there is any processing to be done to the RF

signal the ideal observer knows how best to do it. Our design philosophy is to optimize

the performance of the ideal observer for diagnostic tasks and then attempt to design

processing algorithms that attempt to mimic the ideal observer processing strategies.

8.2.2. Stochastic Data Models and Linear Systems

Stochastic models of echo signals are needed since the ideal observer has full knowledge

of the data likelihoods. A linear systems approach to ultrasonic image formation has
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been taken, such that the RF echo signal g(t) can be written as a vector

g = Hf + n, (113)

where H is the system matrix that maps objects into data space, f is the object

function, and n is additive noise (all approximated as discrete in this case). g and n

are NM × 1 column vectors for a N ×M pixel image. f and n may be taken as zero

mean Gaussian stochastic processes. Consequently g is multivariate normal.

In much of this paper we assume that the image formation model can be ade-

quately represented by a 2-D convolution model (in this case H is block circulant) as

represented in Fig. (31). A model incorporating the 3rd dimension of the beam and

object is possible but not necessary for our purposes. A lesion is represented as an

area of differing object variance.

Figure 31. Linear system model of image formation

8.2.3. Ideal Observer Model for Ultrasonic Detection Tasks

Based on this linear systems model, we have developed an ideal observer model for

ultrasonic low contrast detection tasks. The model is an extension of the theory
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developed by Smith and Wagner in the early 80’s.29,28 The extension allows the

inclusion of phase information by assessing the information content in the raw RF

echo signals rather than the B-mode signal or focal I-Q signals. The Smith-Wagner

approach in essence assumed that the speckle size was related to the size of the point-

spread function - an assumption that is only true in the focal region. Our approach

extends previous work to include regions away from the focal region.

The ideal observer theory may expand our understanding of what makes a good

ultrasound system. It is based on rigorous mathematical groundwork, that we now

probe using simulations and experiments in this paper. It has been shown using a

power series technique and with a low-contrast approximation that the ideal observer

decision function, the log-likelihood test statistic, takes the form35,84

λ = (K−10 H
tg)tS(K−10 H

tg) (114)

where K0 = 〈ggt|H0〉 is the covariance of the signal absent echo data, and S is a

diagonal matrix characterizing the lesion whose elements are zero when matrix locii

correspond to points outside the lesion, and take values proportional to object contrast

inside. The test statistic is quadratic in the data. The ideal observer decision strategy

is thus to prewhiten the RF data by Wiener deconvolution, K−10 H
tg, (more on this

shortly), then integrate the intensity of the resulting signal in the region of interest.

The performance of the ideal observer for detection and discrimination tasks can

be expressed in terms of SNRI , the ideal observer signal-to-noise ratio. This quan-

tity is not the same as the echo SNR. Instead it reflects the relative separation of
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lesion present and lesion absent test statistic distributions cumulated from many in-

dependent echo signal acquisitions. For the task of detecting low-contrast lesions, a

convenient expression for the ideal observer SNR has been derived as84:

SNR2I = AC2
∫
du(

MTF (u)2

MTF (u)2 + 1/SNRe

)2 (115)

where A is the lesion area, C is the lesion contrast, MTF (u) is the Modulation

Transfer Function,23 u is a spatial frequency vector and SNRe is the echo SNR.

This expression links the features of the object and the system (including noise) to

indicate how well the best possible observer performs. Performance is better when

SNRI is larger. This occurs when noise is low, system bandwidth is high. Large

areas of high contrast are also easier to detect.

8.2.4. Depth Varying Detection Performance of a Focused Transducer

We thought it would be interesting to study the ideal observer performance over

isoplanatic patches of a fixed f-number ultrasonic beam. To do so, we simulated psf ’s

over increasing depths using FIELD II,53 then calculated the SNRIs. The probe we

simulated was a VF10-5 linear array transducer from a Siemens Antares system. We

specified the transmit and receive focus at 4cm. In what follows we use this probe

unless specified otherwise. Nearfield images are taken to be around 2cm in depth.

The psfs and corresponding ideal observer performance is shown in Fig. 31.

Because the psf is the smallest at the focus we expected the maximum perfor-

mance to be there. Unexpectedly, it is not - the nearfield is actually best. We must

conclude that there is substantial information in the nearfield that may be extracted
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Figure 32. (a) B-mode psfs of scatterers (b) Corresponding SNRI normalized by

√
AC2 as a function of axial depth. Focal depth = 40 mm, F-number = 2.1, echo

SNR = 6 dB.

by RF processing. In the following sections we explain the result and how to process

the RF data.

8.2.5. Explanation of Unfocused Performance: Wavefront Curvature

To better understand the concept of unfocused imaging, consider both a nearfield and

a focal region psf as shown in Fig. 33. Although the nearfield psf is more spatially

distributed, the K-space 2-D Power Spectral Density |H(u)|2 exhibits substantial

lateral bandwidth - comparable to or even more than the focal region. This can

be understood by considering that a horizontal slice through the nearfield psf is a

chirp-like function with DC near the center. Thus the near (or farfield) delay and
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sum beamforming or geometric focusing has provided a natural lateral chirp-encoding

through wavefront curvature, similar to coded excitation techniques that are applied

in the axial direction. It is BW which truly defines the spatial resolution potentially

available for imaging.
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Figure 33. (a) Nearfield psf (b) K-space of nearfield psf (c) focal region psf (d)

K-space of focal region psf . Parameters to be added.

8.2.6. Processing Algorithms to Recover Spatial Resolution

The ideal observer test statistic suggests that one should first filter the RF echo signals

g with a filter K−1− H
t then form an intensity image of the resulting signal. The test

statistic is then simply computed by integrating this pre-whitened image over the

lesion area. The filter K−1− H
t can be viewed as a spatial Wiener filter. To see this,

consider that bothK−1− and H t are block-circulant convolution operations for systems
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that are linear shift-invariant in a local isoplanatic region, and thus are diagonalizable

by a discrete Fourier transform. We note that that the eigenvalues of K− are simply

the power spectrum |H(u)|Sf (u)+Sn(u) of the lesion-absent echo signal, where Sf (u)

is the power spectrum of the object function, and Sn is the noise-power spectrum.

The continuous-time Fourier representation of K−1− H
t is thus proportional to

W (u) =
H∗(u)

|H(u)|2 + α 1
eSNR(u)

(116)

. with α = 1 which a spatial Wiener filter.

A spatial matched filter is a special case of a Wiener filter in a noisy environment

or when the regularizing parameter α is chosen to be very large. A time domain

representation of the spatial matched filtering operation is

w(t) = h(−t) ∗ g(t) (117)

where g(t) is the RF echo signal, h(−t) is the time-reversed point-spread function,

and w(t) is the filtered echo signal. Since the echo signals are truly data signals

acquired over time, we consider g, h, and w as a function of vector-valued time,

where the vector t has spatial correspondence defined by the imaging pulse sequence

- more on this in section III.A.

8.3. Theory: Acoustics

At this point we turn to physics to quantitatively explain diagnostic information con-

tent in unfocused beams. We study two types of acoustic sources: focused transducers

and point sources - both give analytic insights into the image formation procedure
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Figure 34. (a) Nearfield psf (b) matched filter (c) filtered image (envelope detected)

(d) Log-scale spatial autocorrelation. Parameters to be added.

and the limits of spatial resolution. We assume that the sources are scanned laterally,

and not in a sector format - although the theory could be expanded to analyze this.

8.3.1. Unfocused BW in Focused Transducers

We first concentrate on writing the equations of curved wavefronts from focused

transducers. Our goal is to derive the lateral bandwidth of a transducer at axial

depths at and away from the focus.

Linear Systems Model : To analyze the lateral bandwidth of a beam, we need

a rigorous theoretical framework to accurately represent the diffractive propagation

of ultrasound from a transducer. Here we cast the linear systems model of image
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formation, Eq. 31 in continuous form, and add the physics necessary to understand

spatial coding. The equation of ultrasonic image formation has been shown to be

g(t) =
∫
h(x, t)f(x)dx+ n(t) (118)

where g is the RF echo data, h is the spatio-temporal impulse response function, and

f is the object function summarized by the spatially varying variance in the scattering

function. The echo signal g(t) is strictly speaking a function of time (time here can

be considered a vector with structure characteristic of the pulse sequence used) rather

than space, but there is typically a time-to-space mapping x = Bt for us to associate

the echo signal in a spatial context. (see? for details). The spatio-temporal impulse

response can be written as a series of temporal convolutions,

h(x, t) = hy(t) ∗ hy(t) ∗ v(t) ∗
∂ha(x, t)

∂t
∗ ha(x, t) (119)

where hy is the electro-mechanical impulse response of the transducer, v(t) is the

voltage excitation, and ha is the acoustic impulse response of the transducer given by

the Rayleigh integral

ha(x, t) =
1

2π

∫

S
dSξ(r)

δ(t− |r− x|/c)
|r− x| . (120)

Here ξ is the transducer apodization function, and the vector r defines points on the

surface of the transducer S. Note that for a single A-scan line, time is one dimensional

- hence the use of scalar rather than vector time in the above two equations.

Spatial Sensitivity Functions and Spatial Resolution The spatial sensi-
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tivity function (ssf) is defined as

ssfto(x) = h(x|to); (121)

and represents the phase-sensitive spatial weighting of the acoustic field to second-

order variations in density and compressibility of the object at a snapshot of time.

ssfs are important for computing statistical moments (such as covariance matrices)

of speckle important for formal analysis of ultrasonic image quality. In Ref.70 it was

shown that the ssf rather than the psf is the desired quantity that defines the speckle

covariance matrices K+ and K−. Ultimately it is these covariance matrices that the

ideal observer uses to pre-whiten.

It will often be more convenient, however, to compute point-spread functions

(psf), defined as the echo signals received from the transmitted pulse sequence prob-

ing a point scatterer at location x = xo:

psfxo(t) = h(t|xo) (122)

, Spatial sensitivity functions and point spread funcitons have an important symmetry

over isoplanetic patches, where local shift invariance may be assumed:

ssfto=B−1xo(x) = psfxo(−(t−B−1xo)) (123)

where t = B−1x. This symmetry relation assumes that a 2D model of image forma-

tion is sufficient. (In 2D imaging, the ssf is a 3D function over space for a fixed point

in time, and the point-spread function is a 2-D function over time for a fixed point in

space). This symmetry breaks down for systems that are highly shift variant or when
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a 2D object model is insufficient. A metric for assessing the size of an isoplanatic

patch for shift-variant systems is discussed in.?

We are interested in computing the 2-D Fourier magnitude of the ssf in any given

x1 − x2 plane for a given x3, which we approximate using psfs:

|H(u2, u1)| = |F{ssfto=B−1xo(x2, x1|x3)}|

∼= |F{psfxo(t2, t1)}|t2=2x2/c,t1=x1/b

It is thus sufficient to calculate h(x2, t = t1|x1, x3) and subsequently compute the

Fourier transform along the x2 and t dimensions to obtain from 119:

H(u2, f |x1, x3) = i2πfH2
y (f)V (f) (124)

× [Ha(u2, f |x1, x3) ∗Ha(u2, f |x1, x3)] (125)

where f is the temporal frequency, Ha(u2, f |x1, x3) = F{ha(x, ω)} and all other

quantities are temporal Fourier transforms of the quantities in (119). The convolution

is strictly over spatial frequencies u2.

Fresnel Approximation

We begin our computation of Ha(u2, ω|x1, x3) by using the Fresnel approxima-

tion33 to compute

ha(x, f) ∼=
eikx1

iλx1
e
i k
2x1

(x22+x
2
3)
∫
dSξ(r)e

i k
2x1

|r|2
e
−i k

x1
x·r

(126)
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The Fresnel approximation is applicable for apertures that are weakly focused and

paraxial points.

Lateral BW of Gaussian Apodized Transducer

In this section we aim to compute an analytic expression for the lateral band-

width of spatial sensitivity functions of a Gaussian- apodized transducer. Without

the assumption of Gaussian apodization, one obtains error functions with complex

arguments and the analysis is less transparent. Let us consider a separable com-

plex apodization function ξ(r2, r3) = ξ2(r2)ξ3(r3) for quasi-planar transducers, where

the azimuthal apodization functions can be considered a product of a real Gaussian

apodization and a complex phase term representing focusing:

ξ2(r2) = e
−

r22
2σ2
2 e−jk[F−

√
F 2+r22 ] (127)

where F is the focal length. For analytical convenience we do not impose any finite

aperture - we simply assume that the Gaussian apodization is not severely truncated,

i.e. that the aperture width L is significantly greater than σ2. Additionally we find

it advantageous to assume parabolic focusing by expanding the complex argument of

(127) in a second-order Taylor series expansion in r2 about 0 so that F −
√
F 2 + r22 ∼=

r22/(2F ). With these approximations, Eq. (126) can be integrated by completing the

square to become (see (153) and (154) of Appendix A):

h(x2, ω|x1, x3) ∝ e−Ψx
2
2 (128)

with Ψ being a complex quantity Ψ = Ψr + iΨi. The real part is given as
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Ψr =

(
k

2x1

)2
1/2σ22

( 1
2σ22

)2 + (k
2
)2( 1

F
− 1

x1
)2

∼= 1

2σ22

F 2

(F − x1)2
(129)

The approximation is true for points x1 away from the focus when x1, F2, σ2 À λ.

Similarly,

Ψi =

(
k

2x1

)2 (k
2
)( 1
F
− 1

x1
)

( 1
2σ22

)2 + (k
2
)2( 1

F
− 1

x1
)2

+
k

2x1

∼=
(
k

2

)(
1

x1 − F

)
(130)

The real part defines a lateral Gaussian envelope e−Ψrx
2
2 for ha, and the imaginary

part defines a linear spatial frequency phase modulation e−i(Ψix2)x2 , i.e. a baseband

chirp. We need to transform our result to the spatial frequency domain to compute

the lateral bandwidth:

Ha(u2, ω) ∝ F{e−Ψx
2
2} ∝ e−Σu

2
2 (131)

where

Re{Σ} = π2
Ψr

Ψ2
r +Ψ2

i

∼= π2
2F 2

σ22k
2

(132)

Eq. 131 can be substituted into the expression for |H|, Eq. 124 to get that

|H(u2, ω|x1, x3)| ∝ e−Re(Σ)u
2
2 (133)
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which means that the lateral -6 dB BW for all axial locations x1 (that satisfy the

approximations of the model) can be written as

BWlat = 2.35
2√

Re(Σ)
= 2.35

σ2k

F
(134)

which is a constant for all axial depths, and equal to the reciprocal of the expected

focal resolution! This is a rather remarkable result which we validate using FIELDII

simulations in the next section.

It is illuminating to remind ourselves that the temporal bandwidth of a pulse

propagating in a medium remains relatively unchanged over time. Interestingly the

same principle holds for the lateral bandwidth.

8.3.2. FIELD II Validation of Constant BW Prediction

We simulated Gaussian apodized transducers using FIELD II, and computed the 2-D

Fourier magnitude. The lateral spatial frequency profile at the center frequency was

normalized by its total area so as to mimic a Gaussian probability distribution. This

was then integrated against the second moment of spatial frequency u22 to estimate

the Gaussian sigma parameter, which is our measure of lateral BW . The results of

the simulation validate the constant BW prediction of the previous section.

This result means that we may obtain spatial resolution comparable to the focal

region but throughout the entire field of view. Dynamic focusing and aperture growth

techniques can also perform similar functions, but do not recover all available energy,

as will be discussed shortly.
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Figure 35. Lateral BW of Gaussian Apodized Transducer as a function of axial

depth. Parameters to be added.

8.3.3. Extension of the concept of time-BW product

The product of the time-duration of a coded waveform with its bandwidth is termed

the time-bandwidth product (TBP ). The TBP is a unitless quantity representative

of potential information that is one for simple pulses and greater than one for coded

waveforms. It is appropriate to extend the TBP concept to spatial coding. Here we

define a quantity which we shall call the Lateral Space-BW product (SBPLat) which

is given as the product of the lateral spatial extent of the psf times the lateral BW

of the psf . For the Gaussian apodized transducer that we have been analyzing,

SBPLat = BWLatσLat ∼= 1 + (
kσ22|F − x1|

F 2
)2 (135)
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where σLat is the -6 dB width of the spatial lateral extent of the Gaussian aperture

apodization. As might be expected, the SBPLat is one at the focus (no wavefront

curvature thus no lateral coding). It is greater than 1 away from the focus and is

greater for distances far from the focus as long as the Fresnel approximation is obeyed.

8.3.4. Energy Content

Often the TBP for axial codes is associated with recoverable acoustic energy. Two

codes can be compared for energy content, however, only when waveform amplitudes

are identical. For spatial codes, although wavefront curvature is the principle de-

terminant of the SBPLat, it should be noted that there are losses in energy with

increasing depth - both diffractive losses and losses due to attenuation. Diffractive

losses are due to energy that radiates away from the main beam and are not recover-

able. The amount of recoverable energy is determined by the solid angle subtended

between the field point and the detector edges. Spherically scattered waves from the

field point will only be recorded if they are backscattered to points on the detector

surface. Diffractive losses explain why the ideal observer SNRI in Fig. 32 falls off

with increasing depth. The combination of good spatial resolution and good echo

SNR explain why the nearfield is predicted to be more informative than the focal

region or the farfield. Attenuation is another very important source of loss but it was

not accounted for in Fig. 32. Attenuation can easily be included into the analysis in

future work.
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8.3.5. Spatial Filtering for Swept Point Source Transducers

It will be instructive to now consider a point source scanned laterally (transmission

and reception at each lateral location). Small array elements behave effectively as

point sources in the farfield of the element. Consideration of the point-source problem

will help us understand how our technique compares with Synthetic Receive Aperture

(SRA) and Dynamic Receive Focusing (DRF) methods. Additionally offer a new and

important interpretation to spatial matched filtering methods as a delay-and-sum

image reconstruction technique. Eventually we will return to the problem of imaging

in the nearfield of a focused transducer with large aperture (in contrast to a point

source as we now investigate).

In addition to the assumption of a point source, let us consider a delta-function

transmission, and an ideal electro-mechanical coupling. Then, neglecting a cosine

directionality term (for simplicity)

h(x2, t|x1) =
1

4π2
δ(t− 2

√
x21 + x22/c)

x21 + x22
(136)

The ideal observer test statistic tells us that the reconstruction strategy of choice is

spatial matched filtering. The corresponding spatial matched filter is thus given as

fr(x2, t) ≡ h(−x2,−t|x1). RF data g can be reconstructed to form the reconstructed

signal y, given as y(x2, t) = h(−x2,−t|x1)∗g(x2, t). Note that our choice of a matched

filter here lacks a time convolution with the excitation pulse. This is intentional.

Including the added pulse convolution in the matched filter will have the effect of

broadening axial speckle. With Wiener filtering, some of this broadening can be



158

recovered. Instead, however, we currently desire to present a technique of spatial

matched filtering that does not broaden axial speckle.

Denoting 1
4π2

1
x21+x

2
2
as w(x), we can write y as

y(x2, t|x1) =
∫ ∫

fr(x2 − x′2, t− t′)g(x′2, t′)dx′2dt′

=
∫ ∫

h(x′2 − x2, t′ − t)g(x′2, t′)dx′2dt′

=
∫ ∫

w(x′2 − x2|x1)δ(t′ − t− 2
√
x22 + (x′2 − x2)2/c)g(x′2, t′)dx′2dt′

=
∫
w(x′2 − x2|x1)g(x′2, t+ 2

√
x21 + (x′2 − x2)2/c)dx′2 (137)

The limits of integration of x′2 are over some receive aperture width (there could also

be an additional receive apodization ξ(x′2) applied to the weighting function w). The

last form means that the spatial matched filtering reconstruction operation can be

viewed as a delay and sum procedure as shown in Fig. 36 with delay

τSF (x1, x2) = −2
√
x21 + x22/c (138)

evaluated at lateral location x′2 − x2.

This important observation will eventually be extended to spatial coding with

curved wavefronts in the nearfield of larger focused apertures. Before doing so we

wish to compare and contrast our method with that of synthetic receive aperture

(SRA) focusing methods. SRA is the natural technique to compare with because like

the swept point-source situation we have been modeling, SRA imaging also uses small

aperture transducers scanned to transmit and receive at different locations over time

to synthesize an effectively larger aperture (See Fig. 37).
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Figure 36. Spatial matched filtering can be viewed as a delay and sum operation.

Figure 37. The SRA pulse sequence is identical to the one we consider for spatial

focusing in this section. Here the curved line represent transmission wavefronts.

8.3.6. Comparison with Synthetic Receive Aperture Methods

SRA and spatial filtering methods are similar in that they delay and sum adjacent

A-scan lines with weighting functions to reconstruct an image. There are important
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differences, however, as will shortly be seen.

SRA methods have been used recently for multi-row arrays to transmit and receive

one row at a time - thus using the same channel count as standard linear array

systems.22 In this situation an elevational column of elements is used to synthetically

focus at each receive depth similar to dynamic receive focusing.

Here we consider reconstruction in the lateral direction. For simplicity, consider

the reconstructed A-scan line at lateral position x2 = 0, we would thus delay and sum

RF element acquitions g(x2[n], t) for element positions n = 1, ..., N as follows:

ySRA(x2 = 0, t) =
N∑

n=1

w(x1, x2[n])g(x2[n], t− τSRA(x1, x2[n])) (139)

where w is a synthetic receive apodization function, and the delay is given by geo-

metrical arguments as

τSRA(x1, x2[n]) = x1/c−
√
x21 + x22/c. (140)

This delay is meant to simulate receive focusing at each depth. No focusing is done

on transmission. The effective pulse-echo psf is thus a convolution between an unfo-

cused transmit field and a focused receive field. Consequently, only a fraction of the

transmitted energy is recovered. In fact, SRA focusing can be viewed as discarding

energy away from the receive focus, as illustrated in Fig. 38.

Our approach is different. Notably, τSF differs from τSRA by a multiplicative factor

of 2 and an additive factor of x1/c. The additive factor of x1/c is of little significance

as it simply shifts the reconstructed signal in time. The factor of 2 is significant.
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Figure 38. Here the curve represents the pulse-echo psf. SRA Focusing recovers only

a fraction of the energy in the psf.

Rather than focusing at each receive position, our method aims to restore co-

herence, recover spatial resolution, and recover energy. Eq. 147 can be visualized

graphically as in Fig. 39. The curved wavefronts represent a pulse-echo point-spread

function g due to a 3-cycle transmission excitation. To form a single A-scan of the

reconstructed image, each point of the wavefront (each A-scan) is shifted with a posi-

tion dependent time-delay. A lateral sum is then performed. At the appropriate axial

and lateral position, the wavefront is flattened, and the lateral sum tends to compress

all the energy along the wavefront into a small volume. Away from the reconstruction

maximum, the delay operation re-shapes but does not flatten the wavefronts - and the

lateral summation coherently integrates to a small (and hopefully negligible) value.

Besides recovering much of the transmitted energy and restoring coherence by

flattening the wavefronts, spatial filtering aims to recover spatial resolution intrinsi-
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Figure 39. Graphical representation of Eq. 147

cally phase-coded in the wavefront curvature. In fact, we argue that SRA methods

do not fully recover spatial resolution encoded in the wavefronts. Evidence of this is

that coherence is not fully restored: SRA often demonstrate spatially compact psfs

that exhibit curved wavefronts. The leftover wavefront curvature represents lateral

spatial resolution that is not fully recovered. Instead of showing data to this end now,

we choose to include experimental data for the similar and more common method of

dynamic receive processing. This will be done in the experimental results section.

Thus far we have largely discussed spatial matched filtering. The ideal observer

strategy also tells us that Wiener regularization may be advantageous as it can whiten

remaining RF correlations. Spatial matched filtering works well alone without Wiener

whitening when matched filtered data samples are nearly independent. The degree to

which additional whitening is successful is limited by the amount of electronic noise,

and our ability to accurately model the whitening filter.



163

8.3.7. Spatial Resolution Limitations for Swept Point Source Imaging

Soon we will extend the delay and sum interpretation of spatial matched filtering to

the nearfield of focused transducers. Before doing so, it is important to consider the

fundamental limits of spatial resolution for the case of laterally scanned point source

excitations. Specifically, we consider the resolution limits of spatial matched filtered

psfs without Wiener regularization, or, equivalently, in noisy environments when

Wiener filtering and matched filtering give the same results. Additionally, we consider

impulse temporal excitations and ideal electro-mechanical transducer responses.

Reconstruction of noiseless RF data from an impulse-excited psf due to object

function f(x) = δ(x − xo) at depth x1 by spatial matched filtering is thus given as

h(x2, t) ∗ h(−x2,−t) which we write as:

Rhh(x2, t|x1) =
(

1

4π2

)2 ∫ ∫ δ(t′ − 2
√
x21 + x′2

2/c)

x21 + x′2
2

×
δ((t− t′)− 2

√
x21 + (x′2 − x2)2/c)

x21 + (x′2 − x2)2
dx′2dt

=
(

1

4π2

)2 ∫ δ(t−∆τ)

(x21 + x′2
2)(x21 + (x′2 − x2)2)

dx′2dt (141)

where

∆τ = 2
√
x21 + (x′2 − x2)2/c− 2

√
x21 + x′2

2/c. (142)

In this derivation we have used the identity δ(x) = δ(−x).

Rhh, is an important quantity that determines the spatial resolution of the system

as is its Fourier transform |H(u2, f)|2. This is in turn fundamental to the ideal

observer performance, Eq. 115. With receive apodization ξ(x′2) we in fact are doing
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mismatched filtering rather than matched filtering - thus the autocorrelation reduces

to the cross correlation

Rhh′(x2, t|x1) =
∫
ξ(x′2)

δ(q(x′2))

(x21 + x′2
2)(x21 + (x′2 − x2)2)

dx′2 (143)

where q(x) = 2
√
x21 + x2/c − t − 2

√
x21 + (x− x2)2/c. Unfortunately the Fresnel ap-

proximation is not entirely appropriate for point sources since the resulting diverging

spherical waves are not paraxial beams. The equation can nevertheless be solved

analytically using the relationship δ(q(x)) =
∑
i

1
|q′(xi)|

δ(x− xi) where xi are roots of

q(x) and the derivatives are such that q′(xi) 6= 0.23 q(x) = 0 reduces to a quadratic

equation αx2 + βx+ γ = 0 with

α = −4x22 − (tc/2)2

β = 4x2[−4x21 − x22 + (tc/2)2]

γ = −4x21(tc/2)2 − 2(tc/2)2x22 + x42 + (tc/2)4

The roots, given by the quadratic formula, are functions of t and x2 for a given axial

depth x1. The resulting Rhh′ can be written as:

Rhh′(x2, t|x1) =
∑

i

1

|q′(xi)|
ξ(xi)

(x21 + x2i )(x
2
1 + (xi − x2)2)

(144)

where the derivative is given as

q′(x) =
2

c


 x√

x21 + x2
− x− x2√

x21 + (x− x2)2


 . (145)

The important point here is that the ideal autocorrelation of the psf , Rhh, is not

a simple delta function - even for delta function excitations. (Note however that
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144 singularities). Rhh describes the fundamental resolution limit of the technique.

Transmit waveform shape and finite transmit aperture width will add additional

blurring to Rhh′ . Notice that during the entire discussion, we have assumed continuous

sampling. Meaningful analysis and discussion of sampling effects may arise from a

discrete analysis which we forego for sake of conciseness.

So far we have only discussed synthetic receive processing. There are also synthetic

transmit- and synthetic transmit-receive approaches which require a ’complete set’

of data. By this we mean that one transmits at one lateral location and receives at

another, for an entire range of N transmit and N receive locations (N 2 echo signals).

This allows the capability to focus synthetically on transmit as well as receive. We

expect similar spatial filter analysis for this higher-dimensional problem.

8.3.8. A depth-varying delay and sum beamforming approach to

synthetic aperture reconstruction of a large aperture focused transducer

Synthetic receive techniques that use small elements to approximate point sources can

recover less energy per scan line than a larger aperture scanning the identical lateral

distance. Here we present a method for synthetic aperture reconstruction for a larger

aperture with fixed transmit-receive focal length. The hope is to be able to improve

the SNR over small aperture synthetic imaging approaches. A competing approach is

to use virtual sources as described in Ref.85 - an approach which also uses unfocused

beams and performs reconstructions - and thus may be analyzed using our frame-

work. Our approach unlike others may be very suitable for building a single element
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(mechanically scanned) system with depth of field and spatial resolution comparable

with a much more expensive array system. This approach is particularly attractive

for very high frequency imaging where array technology is still under development.

Similarly, it could be a means of reducing the channel count (but not necessarily the

number of elements) and hence the cost of current array systems. These ideas will be

explored more fully in subsequent sections.

Our strategy for this is to use the computations done previously for a Gaussian-

apodized transducer, deduce the matched filter, and estimate the depth-dependent

delays needed to compress the energy in a large curved wavefront into a compact

volume. It will be seen that edge waves due to aperture truncation will be a con-

founding factor for reconstruction. Apodization is a means of abating the effects of

these artifacts.

Taking the inverse Fourier transform of Eq. (128) we have that (Eq. 167 of

Appendix A)

himpulse(x, t) = p(x, t) ∗ δ(t− τF (x)) (146)

where ∗ represents a temporal convolution and p(x, t) is given by 168 of Appendix

A. For pulse-echo imaging, the appropriate delay for synthetic receive processing is

thus τF as given in Appendix A. This delay is important because it can allow us to

re-write the spatial matched filter for large aperture focused transducers as a delay

and sum procedure. Similar to Eq. (147) the reconstructed RF signal can be written
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as

y(x2, t|x1) =
∫
g(x2 − x′2, t− τF (x1, x2 − x′2)|x1)dx′2 (147)

The procedure can be visualized by considering the RF image of a single point scat-

terer - a curved wavefront. Synthetic aperture processing for a given A-scan line

applies delays to all A-scan lines such that the wavefront is flattened (almost - but

not perfectly, due to a quadratic rather than linear arguments of the delta functions

in 141). Then the result is integrated laterally to give the desired post-processed A-

scan line. In contrast to dynamic receive processing the proposed method attempts

to concentrate all the energy along the wavefront into a point rather than focus on a

segment of the wavefront (this eliminates energy away from the receive focal region).

From this perspective it is easy to see that any energy off of the curved wavefront

(for example - the X-like pattern due to edge waves in Fig. 33(a) will integrate to

give undesirable artifacts as was the case with matched filtering.

Two approaches exist for implementation. (1) Construct matched filters and im-

plement the delay and sum operations by fast 2-D FFT convolution operations. A

collection of depth dependent filter banks could be used to accomplish this over isopla-

natic patches. (2) The depth-dependent delay and sum procedure can be implemented

with interpolation routines to avoid unnecessary time quantization errors. It should

be emphasized that the synthetic aperture delay and sum operation is applied to the

beamformed RF image data g, and not the pre-beamformed echo signals. Envelope

detection can subsequently be performed on y.
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8.3.9. Potential advantages of spatial coding over dynamic receive and

synthetic receive processing

As seen in Fig. 40, dynamic receive processing recovers only a fraction of energy

in transmitted wavefronts. Although not illustrated in the figure it is important to

note that there is a potential advantage in spatial resolution over dynamic receive

techniques - something that will be demonstrated experimentally in a later section.

Figure 40. Comparison of different imaging techniques.

8.4. Experiment. Performance of Unfocused Imaging on the

Siemens Antares Ultrasound System

We used a programable Siemens ANTARES ultrasound scanner to test some of our

ideas. This scanner possessed an ultrasound research interface (URI) that allowed us

to control acquisition parameters not accessible in clinical mode, and to save RF to

files for offline analysis. A library of MATLAB functions (offline processing tool or
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OPT) for reading and processing the data was available to us to assist in our analysis.

Also available was a MATLAB package to simulate point-spread functions and images

with Antares parameters read from probe and system header files.

8.4.1. Nearfield psfs

To measure the nearfield psf of a fixed-focus beam on the ANTARES, we used the

URI to turn off dynamic receive, aperture growth and receive apodization functions.

We set the receive f-number to 2.1, the transmit focus at 4cm and the receive focus

at 3.9cm (the URI allows only several values for these parameters). To image psfs

we simply aquired RF data from sparse microparticulate matter in water at low

transmit amplitudes. The measured and corresponding simulated psf is shown in

Fig. 41. The curved wavefront of the simulated psf is similar to the measurement,

however, there is significantly more edge wave energy experimentally. Proprietary

beamforming techniques used on the system were the suspected cause. This will turn

out to be a confounding source of contrast reduction in implementing our unfocused

imaging techniques.

8.4.2. Low Contrast Lesion Phantoms: Experiment and Simulations

To experimentally test the methods of unfocused imaging, we used the Siemens

Antares system with a VF10-5 linear array transducer to scan graphite-agar phantoms

with cylindrical channels. Size-matched hyper-echoic rods of graphite-agar material

could be inserted into the channels and rotated or translated to give independent

speckle realizations inside the inclusion. We used channels with radii of 1.5 and 3
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Figure 41. (a) measured nearfield psf (b) simulated psf . Parameters to be added.

mm respectively. We used a transmission frequency of 6.67 MHz for all experiments.

For both nearfield and focal imaging, we chose an f-number of 2.1, and chose the

transmit and receive focal distances as 4 and 3.9 cm, respectively. For nearfield imag-

ing, the inclusion centers were positioned at approximately 2 cm in depth. For focal

region imaging, the inclusion centers were at 4 cm.

In this section we report image quality measurements from low contrast hyper-

echoic inclusions. The purpose of this section is to compare C, CNR, and Sc in

(1) nearfield B-mode processed images (2) nearfield matched filtered images (3) focal

region B-mode images. Sample images are shown in Fig. 42. Image quality met-

rics, reported in Table 2, reflect 10 independent scans. We chose to use matched

filtering rather than Wiener filtering because the measured psf was too noisy to use
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successfully in a Wiener filter, and we could not have full knowledge of the system

operations to simulate the psfs exactly. Future improvements in modeling or mea-

surement techniques should allow Wiener filtering to be implemented with better

results.
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Figure 42. (a) Nearfield, unfiltered (b) Nearfield, filtered, (c) focal B-mode. Focal

distance was 4 cm, F-number was 2.1. VF10-5 transducer parameters. The grayscales

in all images were normalized to the same standard deviation.

Note that the filtered speckle length is broadened! This is consistent with the

restoration of phase coherence (in our situation this means the re-flattening of wave-

fronts). A related topic concerns speckle texture in the presence of phase aberration:86

found that speckle was broadest when aberrations were least - again a manifestation

of coherence.
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Table 2. Low Contrast Hyperechoic

Big Lesion

Region Method C CNR

near BM 0.10± 0.02 0.17± 0.03

near MF 0.32± 0.02 0.46± 0.03

focal BM 1.17± 0.05 1.37± 0.05

Small Lesion

Region Method C CNR

near BM 0.15± 0.05 0.26± 0.09

near MF 0.58± 0.07 0.77± 0.08

focal BM 1.77± 0.09 1.9± 0.1

Lateral Speckle Lengths

Region Method Sc

Near BM 1.5± 0.1

near MF 2.2± 0.2

focal BM 2.2± 0.3
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8.4.3. Anechoic Lesion Phantoms: Experiment

Using identical scanning parameters to the previous section we next report image

quality measurements from anechoic channels. Again, we compare C, CNR, and Sc

in (1) nearfield B-mode processed images (2) nearfield matched filtered images (3)

focal region B-mode images. The results, shown in Table 3, reflect measurements

of the image shown in Fig. 43. It can be seen that the images of the inclusions in

the nearfield are much improved with filtering, but inferior to the focal region. In

investigating high contrast anechoic channels, we are in fact no longer considering low

contrast detection tasks, but rather the task of discriminating between an anechoic

cyst and a solid mass, therefore the ideal observer strategy in Eq. (3) may not apply.

The nearfield is clearly inferior to the focal zone for this task, due to spatial sidelobe

artifacts in the channel interior. To be effective for mass-cyst discrimination tasks,

spatial sidelobe levels need to be reduced considerably.

8.4.4. Testing the 2-D Linear Systems Model of Image Formation:

Theory v.s. Experiment

As a test that the linear systems theory could accurately model nearfield speckle

texture and mimic expected image quality, we compared experimental and simulated

phantom images, and their corresponding image quality metrics. Images of pre- and

post- filtered images are shown in Fig. 44 and quality metrics for the small lesion

are given in Table 4. Very reasonable agreement was obtained, suggesting that the

2-D speckle model of image formation (on which the detection theory is based) could
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Figure 43. (a) Nearfield, unfiltered (b) Nearfield, filtered, (c) focal B-mode. Param-

eters to be added.

actually reproduce experimental images.

8.4.5. Explaining Performance

Just because the experimental unfocused results are not as high quality as focused

images does not mean that our theoretical framework is not valid. We give two

significant reasons for this.

No Whitening

First, we have been using matched filtering rather than Wiener filtering tech-

niques. Matched filtering approaches do not attempt to whiten the resulting speckle

correlations in the filtered image as the Wiener filter can. We have not implemented
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Table 3. Anechoic

Big Lesion

Region Method C CNR

near BM −0.22 0.42

near MF −0.63 1.25

focal BM −0.89 2.0

Small Lesion

Region Method C CNR

near BM −0.05 0.10

near MF −0.56 1.10

focal BM ∗ ∗

Table 4. Image Quality of Simulations vs Experiments

Small Lesion

Data Method C CNR Sc

Sim BM 0.04 0.08 1.7± 0.1

Expt BM 0.05 0.10 1.5± 0.1

Sim MF 0.52 1.2 2.1± 0.1

Expt MF 0.56 1.1 2.2± 0.2
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Figure 44. (a) Simulation: Nearfield, unfiltered (b) Simulation: Nearfield, filtered,

(c) Experiment: Nearfield, unfiltered (d) Experiment: Nearfield filtered. Parameters

to be added.

Wiener filtering because we do not have full knowledge of the ANTARES beamform-

ing operations to simulate the psfs well enough to implement an effective Wiener

filter. This brings us to the next point.

Edge Wave Energy

The ANTARES psfs had more edge wave energy than the simulations in due to

default proprietary beamforming techniques. Edge waves are a source of contrast

degradation for our technique because they represent energy away from the main

wavefront and cannot be adequately suppressed by matched filtering (Wiener filter-

ing may do better at this since edge waves are a source of correlation which the

Wiener filter may be able to partially whiten). Should it be possible to implement

beamforming techniques that give measured psfs similar to the simulations in the
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Theory section (minimizing edge wave energy), much improved experimental perfor-

mance may be expected.

8.4.6. Reduction in Edge Wave Energy

To test this hypothesis, we disabled the default beamforming sequence responsible

for the excessive edge wave energy. The resulting psf is shown in Fig. 45(a) below.

A reduction of edge wave energy compared to Fig. (41) is evident.
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Figure 45. Proprietary beamforming option disabled: Note the reduction of edge

wave energy compared to Fig. (41). (a) measured nearfield psf (b) simulated psf .

Parameters to be added.

Image reconstruction performance is much better when edge wave energy is re-

duced, as can be seen by comparing Fig. 46(a) with Fig/ 43(b). Additional image
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quality comparisons with unfocused unfiltered images and focal region images can be

made by comparing with Tables 3 and 2.

Additional reduction in edge wave energy may be imposed by aperture apodiza-

tion, however, at the cost of spatial resolution. More research is needed to understand

the best apodization schemes for unfocused imaging.

8.4.7. Comparison with Dynamic Receive Focusing

Spatial coding with curved wavefronts and matched filtering reconstruction is seen

to have better echo SNR, better contrast and CNR compared with dynamic receive

focusing, as can be seen in Fig. 46 and Table 5 . Both lesions were imaged at a depth

of 2 cm, and in both cases the transmit focus was set at 4 cm. The F-number in (a)

was 2.1. It should be qualified that images were acquired at low power (10% of the

default power level) to demonstrate the SNR advantage. The experimental results

are consistent with predictions in Section 3.H. As illustrated in Fig. 40 dynamic

receive focusing methods discard energy in curved wavefronts, whereas the our method

attempts to recover all the energy in the wavefront, as illustrated in Fig. 39. Note

the improvement in the spatial resolution between Figs. 46(a) and (b). It should

be qualified that proprietary aperture growth techniques were enabled along with

dynamic receive focusing, and thus we are not sure what the instantaneous F-number

was for Fig. (b). It may be that (a) used a wider receive aperture. Although this

could be one factor contributing to the inferior spatial resolution in (b) compared to

(a), it should be emphasized that the dynamic receive focusing technique does not



179

restore coherence (here coherence is directly related to the flatness of the wavefronts)

as does spatial matched filtering. This is apparent by observing that speckle in (b) is

much finer than in (a). Again we emphasize that speckle is broadest when coherence

is greatest. Coherence ensures that energy is concentrated locally rather than spread

out in complex constructive and destructive interference patterns.
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Figure 46. Anechoic Lesion Phantom: (a) Nearfield filtered image (default propri-

etary beamforming option disabled). F-number=2.1. (b) Dynamic receive focusing

image. In both images the transmit focus is at 4 cm.

8.5. Discussion

A fundamental figure of merit for detection tasks, the ideal observer SNR, was com-

puted over the depth of a focused beam to obtain Fig. 115. SNRI is a measure of
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Table 5. Anechoic Lesions: Comparison of Nearfield Imaging (Default Beamforma-

tion Disabled) with Dynamic Receive Focusing

Big Lesion

Region Method C CNR

near MF 0.75 1.5

near DRF 0.61 1.0

Small Lesion

Region Method C CNR

near MF 0.71 1.4

near DRF 0.45 0.8

the statistical separation of signal present and signal absent test statistic distribu-

tions and parameterizes the receiver operating characteristic curve. It is a measure of

the diagnostic information available in the unprocessed RF data with a given system

design. It is useful because it may help us understand how to maximize diagnostic

information content. We have developed a set of analytical insights that can help

us interpret Fig. 115. Similar to the constant nature of axial bandwidth over prop-

agation, it was seen that the lateral bandwidth of a pulse remains approximately

unchanged as it propagates. The curved wavefronts at points away from the focus,

however, are spatially distributed, giving a greater Space-Bandwidth product away

from the focal region. The amount of energy in a curved wavefront, however decreases

away from the transducer due to diffractive and other losses. Detection performance

relies on both energy and spatial resolution. Performance is expected to be best in the
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nearfield, where there is comparable resolution to the focal zone but more energy. Per-

formance decreases with energy losses away from the transducer. The ideal observer

prediction motivated closer investigation into nearfield imaging techniques. The form

of the ideal observer test statistic also motivated spatial matched and Wiener filtering

techniques. For a given system design, the ideal observer attempts to match filter

then pre-whiten remaining correlations. The ideal observer SNR then allows us to

investigate what designs are the most informative. This paper focuses on one possi-

ble design technique. The ideal observer approach could be used to investigate many

other designs.

When we tested the unfocused imaging technique with the ANTARES system

(with the proprietary beamformation functions as default) - we found that the image

quality metrics were superior for unfocused filtered images compared with unfocused

unfiltered images but inferior to focused images. Note however that the ANTARES

system psfs were different that the hypothetical designs that we simulated. In par-

ticular, the ANTARES psfs had more edge wave energy than the simulations. When

we turned off these functions, edge wave energy was reduced significantly, and recon-

structed image quality improved considerably.

Future work could aim to simulate system psfs well enough to effectively im-

plement Wiener filtering and thus reduce undesirable correlations (through speckle

whitening) even further.

It is significant that we have demonstrated an improvement over dynamic receive
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processing since this is the technique most widely used on current array-based ul-

trasound imaging systems. The important point is that spatial matched or Wiener

filtering can restore coherence by flattening and concentrating energy in the curved

wavefronts similar to synthetic receive aperture techniques, thus improving spatial

resolution and echo SNR, and thus also contrast and CNR.

We might ask what would happen if we were to set the transmit focus in the

region of interest rather than beyond it - and use dynamic receive focusing. From Eq.

134, we note that this would mean a smaller F-number for a fixed aperture size - thus

the spatial resolution would be better than our unfocused imaging technique. Some

systems allow multiple transmit focal zones but at the cost of reduced frame rate. The

technique of unfocused imaging allows one to reconstruct high quality images with

improved echo SNR and spatial resolution compared to dynamic receive focusing in

regions away from a fixed transmit focal zone - without a reduction in acquisition

frame rate. We furthermore hypothesize that the technique could be implemented in

realtime.

Although we did not implement shift-varying filtering techniques as suggested

in the discussion on synthetic aperture interpretation, we anticipate that the shift-

variant and 3-D nature of the beam could contribute to undesirable artifacts. The

psf shape changes with depth, and also laterally near the edge of the transducer.

To perform beamforming near the transducer edge, sub-aperture truncation must be

performed. The resulting loss of aperture contributes to a laterally shift-variant psf

- where longer and more energy rich tails are expected in the psfs. This is a phe-
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nomenon that we have not accounted for - we have simply assumed approximate linear

shift invariance. The shift-variance could be one reason why the unfocused filtered

image quality is slightly worse than focal region images. Even without accounting for

such details the matched filtering approach with one shift-variant filter has produced

reasonable results. The success may be similar to filtering RF echo signals due to

chirp excitations with mismatched filters87 rather than matched filters. Future re-

search should nevertheless aim to implement shift-varying filtering approaches that

produce filtered image segments over smaller isoplanatic patches.

It is a challenge to the experimental design community to implement techniques of

unfocused imaging that can indeed give comparable or superior images compared to

other focusing-based techniques. The main requirements for accomplishing this goal

are to find practical methods of implementing beamforming and apodization both

on transmission and reception that minimize edge wave energy. Then, to find a fast

method to implement the reconstruction processing in a shift-variant way.

8.5.1. Potential artifacts

Motion within the scan duration could produce significant artifacts using unfocused

imaging techniques. Other groups, however, have successfully implemented related

synthetic aperture techniques in vivo at very high frame rates. If scan times are fast

enough, motion artifacts may be minimal.

Aberrations could be another source of artifacts. Aberrations due to differences

in the speed of sound in tissue or due to refractive tissue interfaces could shift energy
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away from the expected wavefronts. This, however, is also a problem for conven-

tional focused imaging and perhaps more so for synthetic aperture techniques. We

hypothesize that there is a tradeoff between curved wavefront length (SBP ) and ab-

beration strength. Understanding this better and applying it to in vivo imaging could

be a topic of future work. Some novel combination of dynamic receive focusing and

curved wavefront reconstruction methods may prove useful to this end and should be

investigated further.

8.6. Conclusions

We have presented an imaging technique wherein wavefront curvature acts as a spatial

code that can be decoded using matched filter or Wiener filtering techniques. The

technique was motivated by fundamental theoretical work on the ideal observer for

ultrasonic detection tasks. This theory provides a broader context for analyzing the

effectiveness of systems designs for diagnostic tasks. In our investigation we found

that the unfocused regions of focused beams contain equal or better lateral spatial

bandwidth compared to the focal region. The reconstruction technique of spatial

matched filtering is closely connected with synthetic aperture delay and sum tech-

niques. Our approach is aimed at reconstructing RF data from focused transducers

rather than point-sources. More transmit energy can thus be recovered with larger

apertures. Edge waves in point-spread functions were seen to be a source of contrast

degradation in both simulations and experiments. Apodization can potentially re-

duce the spatial sidelobe artifacts to acceptable levels. Importantly, image quality of
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nearfield-reconstructed phantoms were better in terms of echo SNR and spatial res-

olution than dynamic receive focusing. The technique may be possible to implement

in realtime with a linear array ultrasound system. It may also be possible to develop

mechanically scanned single transducer or low channel count systems using this tech-

nique to offer much improved image quality in the unfocused regions of the images.

In particular, our technique may have particular application to high-frequency ultra-

sonic imaging, where single element transducers are common and where arrays are

expensive and hard to fabricate.

8.7. Appendix A

The spatio-temporal impulse response can be written as a series of temporal con-

volutions, (119). We begin our computation by using the Fresnel approximation to

compute ha using 126. As discussed, we assume that the Gaussian apodization is not

severely truncated, and that F −
√
F 2 + r22 ∼= r22/(2F ). With these approximations,

the integral in Eq. (126) can be written as

∫
dSξ(r)e

i k
2x1

|r|2
e
−i k

x1
x·r

=
∫
e−[a2r

2
2+b2r2]dr2

∫
e−[a3r

2
3 ]dr3 (148)

Where

a2 =
1

2σ22
+ j

k

2

(
1

x1
− 1

F

)

b2 = −j k
x1
x2 (149)
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and

a3 =
1

2σ23
+ j

k

2

(
1

x1
− 1

Fe

)
(150)

Here we assume that x3 ≈ 0 so that the scatterers are approximately in the imaging

plane. Additionally we can simplify the expression by assuming that the elevation

focus F3 is matched approximately to the imaging depth x1 for simplicity. With this

approximation, a3 =
1
2σ23

.

The integrals can be computed by completing the square. Note that

ax2 + bx+ c = a

(
x+

b

2a

)2
+

(
c− b2

4a

)
(151)

hence the integrals we must solve have the form:

∫
e−(ax

2+bx+c)dx = e
−

(
c− b2

4a

) ∫
e−a(x+

b
2a)

2

dx

= e
−

(
c− b2

4a

) ∫
e−ay

2

dy

= e
−

(
c− b2

4a

)√
π

a
(152)

The Fresnel expansion of ha thus becomes:

ha(x, f) ∼=
k

j2πx1
ejkx1

√
π

a3

√
π

a2
e
i k
2x1

x22−
b22
4a2 (153)

The right-most exponential term can be written as

e
i k
2x1

x22−
b22
4a2 = e−Ψx

2
2 (154)

with Ψ being a complex quantity Ψ = Ψr + iΨi, where the real and imaginary parts

are given by (129) and (130). As discussed, the real part defines a lateral Gaussian
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envelope e−Ψrx
2
2 for ha, and the imaginary part defines a linear spatial frequency phase

modulation e−i(Ψix2)x2 , i.e. a baseband chirp.

We are interested in

himpulse(x, t) =
∂ha(x, t)

∂t
∗ ha(x, t). (155)

To compute this, consider the frequency domain expression

himpulse(x, f) = jkc× h2a(x, f) (156)

We then have

himpulse(x, f) ∼= −jkc×
(

k

2πx1

)2
ej2kx1

π

a3

π

a2
e−2Ψx

2
2 (157)

Before taking the inverse temporal Fourier transform of this, note that

1

a3
= 2σ23 (158)

and

1

a2
=

1
2σ22
− j k

2

(
1
x1
− 1

F

)

(
1
2σ22

)2 −
(
k
2

)2 (
1
x1
− 1

F

)2 (159)

The real part of this is a Laplacian in k, thus has an inverse temporal Fourier transform

of the form e−α|τ |. The imaginary part also looks like a Laplacian but has an additional

factor of jk in the numerator corresponding to a time-derivative in the temporal

domain.

When the rightmost term in the denominator of 159 dominates, the approximation

of neglecting
(
1
2σ22

)2
is useful because the k2 in the denominator cancels with a k2 in
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the numerator of 156 - simplifying the analysis.

himpulse(x, f) ∼= −jkc×
(
1

x1

)2
ej2kx1σ23 × (160)

e−2Ψx
2
2

[
1

σ22
− jk

(
1

x1
− 1

F

)]
× 1
(
1
x1
− 1

F

)2 (161)

This can be written as:

himpulse(x, ω) ∼= −σ23
(
1

x1

)2 1
(
1
x1
− 1

F

)2 e
− 1

σ2
2

F2

(F−x2
1
)2
x22

× jωejωτF
[
1

σ22
− j ω

c

(
1

x1
− 1

F

)]
(162)

where

τF =
2x1
c
− 1

x1 − F
x22
c
. (163)

Now proceeding with the inverse temporal Fourier transform, we have

himpulse(t) ∼= −σ23
(
1

x1

)2 1
(
1
x1
− 1

F

)2 e
− 1

σ2
2

F2

(F−x2
1
)2
x22

×
[
1

σ22
− 1

c

(
1

x1
− 1

F

)
d

dt

]
d

dt
δ(t− τF ) (164)

Although we could evaluate this using delta-function identities such as:

xnδ(n)(x) = (−1)nn!δ(x) (165)

we prefer to apply the temporal derivatives to the excitation of electro-mechanical

coupling responses hpulse(t) ≡ hy(t) ∗ hy(t) ∗ v(t). In this way, the time-delay for the

system impulse response is given completely and simply as τF :

h(x, t) ∼= −σ23
(
1

x1

)2 1
(
1
x1
− 1

F

)2 e
− 1

σ2
2

F2

(F−x2
1
)2
x22
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×
[
1

σ22
− 1

c

(
1

x1
− 1

F

)
d

dt

]
d

dt
hpulse(t)

∗ δ(t− τF ) (166)

Thus h can also be written as:

h(x, t) = p(x, t) ∗ δ(t− τF (x)) (167)

where ∗ is a temporal convolution and

p(x, t) = −σ23
(
1

x1

)2 1
(
1
x1
− 1

F

)2 e
− 1

σ2
2

F2

(F−x2
1
)2
x22

×
[
1

σ22
− 1

c

(
1

x1
− 1

F

)
d

dt

]
d

dt
hpulse(t). (168)

This time-delay factor can help us reduce spatial matched filtering operation for image

reconstruction to a delay and sum procedure. Note that the second term of τF looks

like a 2nd order Taylor expansion of 2[(x1 − F ) −
√
(x1 − F )2 + x22]/c in x2 about 0

(i.e. the Taylor series expansion that we used before with F replaced by (x1 − F )).
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9. EXPERIMENTAL TECHNIQUES FOR MEASURING

IDEAL OBSERVER PERFORMANCE

In this chapter, we focus on measuring ideal observer performance. This is important

for a number of reasons:

First, we need quantitative experimental performance validation of our ideal ob-

server theoretical framework. It is possible to measure the 2-D psf of the system at

different field locations, and to measure the Background and Noise Power spectrum to

estimate the GNEQ and thus the system performance. However, this assumes that

the model we developed is accurate. We would like an experimental method that is

blind to as many of the model assumptions as possible.

Second, we would like to be able validate specific design predictions, for example,

to compare two system designs experimentally, with statistical significance. For ex-

ample, we have predicted that the nearfield of a model system design is better than

the focal region. We would like to be able to compare the detection performance in

both of these regions. To do so with statistical significance is not trivial. A com-

plicated problem - is how to put error bars on the measurements, and understand

the uncertainties well enough to impact an experimental design for comparing per-

formances. We would like to be able to know how to design phantoms (e.g. lesion

size, contrast etc.) and to know how many images are needed to get error bars below

a certain level to attain statistical significance in measured performance.

One of the challenges is that to make the error bars on detection performance very
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small, one needs a large dataset of independent images where the lesion is at exactly

the same location in all images. This is very difficult to realize experimentally with

phantoms.

9.1. Techniques for Assessing Ideal Observer Performance

Here we review existing methods for measuring the ideal observer performance. We

discuss their limitations for experimental techniques using phantom measurements.

9.1.1. Yes-No Experiments

One way of assessing the ideal observer performance is to have a large ensemble of

signal present and signal absent images which are statistically independent speckle

realizations. It is important that one have precise knowledge of the location of the

lesion. For each image one would compute a test statistic value by (1) Wiener filtering

(2) Integrating the resulting image-squared value over the lesion’s spatial template.

One may then histogram the resulting test statistic values for the signal present and

signal absent cases. Given enough data, ROC analysis can be performed. Alterna-

tively, the SNR of the test statistic may be estimated.

9.1.2. Two Alternative Forced Choice Experiments

Another technique for estimating the ideal observer performance is to use 2-Alternative

Forced Choice experiments. In these experiments one needs a large ensemble of image

pairs - one with a lesion present and one with a lesion absent. For each image pair

the observer (in this case a computation) is forced to choose which image has the
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lesion. In the case of the ideal observer, the test statistic is computed for each image

in the pair, and the image with the greater test statistic value is scored as the image

with the lesion present. The percent of correct decisions over a large number of image

pairs is then a measure of performance that can be rigorously linked to the ideal ob-

server SNR and the area under the ROC curve. One advantage of this technique is

that the ideal observer test statistic does not need to be normally distributed for the

SNR2AFC to rigorously parameterize the ROC curve, and the ROC curve is always

guaranteed to by symmetric about its diagonal midpoint.

2AFC techniques have been performed for ultrasonic detection tasks by Insana,34

Abbey,35 and Zemp.84

9.1.3. Experimental Challenges

Yes-No and 2AFC experiments are most appropriate when it is easy to simulate a

large number of images with independent speckle realizations. We are interested in

seing whether the estimated ideal observer performance from experimental data is

as predicted from the 2-D speckle model. Experimental echo signals are due to a

3-D beam rather than a 2-D one. Also, the psfs in a real beam vary their shape

with depth and even lateral position - factors which we have not accounted for in the

model. Additionally, the underlying pdf of the object function may in fact be more

complicated than a normal random process. If we had a way of measuring the ideal

observer performance for real data (e.g. from a phantom) we could compare with

the predicted values. Our objective is to validate the theoretical development before
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using it for design purposes.

One challenge in using experimental data is obtaining a large number of statisti-

cally independent images that have the lesion location precisely known. Low contrast

phantoms have been used to generate up to 100 independent images [ref], however,

these experiments are not without challenges. Even so, 100 images is often not enough

for demonstrating statistically significance for small performance differences. Often

obtaining a large number of such images requires movement of the transducer or the

inclusions, giving rise to location uncertainty, which has shown to produce quadratic

rather than linear shapes of SNR vs contrast curves at low contrast levels [ref].

In this chapter we propose a method for estimating the ideal observer performance

using much fewer images and where the lesion location is in an exactly know location

- thus the technique is much more amenable to experimental measurement than past

methods.

9.2. Error Analysis for Ideal Observer SNR Estimates using

Y/N Experiments

In any technique that we use to estimate ideal observer performance, it will be im-

portant to understand the uncertainties, and to be able to predict the error bounds

on estimates as this may impact experimental design. Here we consider the error

bounds on estimates of means and variances of the log-likelihood test statistics. This

will allow us to compute the relative uncertainty in SNRI .
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9.2.1. Uncertainties in the means and variances of the test statistic

We note that the uncertainty in the estimate of the mean of the test statistic is

σ2
λ
= σ̂2λ/N (169)

where N is the number of independent images, and σ̂2λ is the sample variance.

Before computing the error bounds on the variance, note that if λ1, λ2, ..., λN are

random test statistic values sampled from a normal distribution with parameters µ

and σ2 then the random variable

̂var(λ|±)/σ2λ =

∑
(λi − λ)2±
σ2λ

(170)

has χ2 probability distribution with ν = N − 1 degrees of freedom, given as:

χ2ν(x) ≡





1
2ν/2Γ(ν/2)

xν/2−1e−x/2 if x ≥ 0

0 if x < 0

(171)

Let χ2α,ν , called a chi-squared critical value, denote the number on the measure-

ment axis such that α of the area under the chi-squared curve lies to the right of χ2α,ν .

(These values can be computed using the inverse of the cumulative χ2 distribution).

Then a 100 × (1 − α) percent confidence interval for the variance σ2 of a normal

population has lower limit (N−1)σ̂2λ/χ
2
α/2,N−1 and upper limit (N−1)σ̂2λ/χ

2
1−α/2,N−1.

The error bounds on the means and variances of the test statistic will next be

used to evaluate the relative uncertainty in SNRI .
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9.2.2. Uncertainty in SNRI

In a previous chapter we saw that for low contrasts, σ2λ ≡ var(λ|+) ≈ var(λ|−).

Thus, the common variance in the denominator of SNRI is given as

√
0.5(var(λ|+) + var(λ|−)) ≈ σλ (172)

and is estimated as the sample standard deviation σ̂.

Assuming that any correlation between sample means and variances is weak, (this

will definitely be true if we use different sets of image realizations when we estimate

the means than when we estimate the variances) we may write the uncertainty in

SNRI as

δ(SNRI)

SNRI

≈ δ(λ+ − λ−)
λ+ − λ−

+
δ(σ̂λ)

σ̂λ
(173)

(Note also that a tighter bound could be formed by addition of variances in quadra-

ture. We can denote this by replacing the + by a ⊕). Thus:

δ(SNRI)

SNRI

≈ 2σ̂λ/
√
N

λ+ − λ−
+ εα,N (174)

where

εα,N = max



√√√√ N − 1

χ21−α/2,N−1
− 1, 1−

√√√√ N − 1

χ2α/2,N−1




=
√
(N − 1)/χ21−α/2,N−1 − 1

which is less for smaller sample variances but bounded by the rightmost term of

174. Curiously this can also be written as

δ(SNRI)

SNRI

≈ 2
̂SNRI

√
N

+ εα,N (175)
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The relative uncertainty in SNRI is thus smaller for larger values of ̂SNRI and for

larger numbers of independent images N . Thus, in particular, large lesions will have

smaller relative uncertainty than small lesions for a given number of images N .

Note that the experimental strategy for Y/N experiments could thus be quite dif-

ferent than those for 2AFC experiments, where error bounds are smallest for SNR ≈ 3

or the percent correct PC ≈ 80%.

Interstingly, εα,N does not depend on the speckle properties of the ultrasound scan,

but rather tells only about the number of independent images. The properties of the

speckle are inherent in the first term.

Of great practical interest is that the relative uncertainty in variance is indepen-

dent of the size of lesion and independent of the speckle properties. This means that

to estimate the relative uncertainty in variance, we may use many small patches to

do so.

A plot of 90 percent confidence curves for the relative uncertainty in variance (i.e.

εα,N for α = 0.1 and 0.25 and for values of N = 1...300 are shown in Fig. 47. Note

that for SNRI > 3, the εα,N term dominates Eq. 174 for all values of N .

9.2.3. Target-Independent Performance

A valuable insight obtained from the analytic expression Eq. 115 is that the ideal

observer SNRI is separable into a product of target-dependent and system dependent

quantities. A target independent figure of merit for low contrast detection tasks is

thus given as:
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Figure 47. Relative Uncertainty of the Variance Estimate of the Test Statistic

Υ ≡ SNR2I
AC2

=
∫
du(

MTF (u)2

MTF (u)2 + 1/SNRe

)2 (176)

This suggests that we can choose any size of lesion (larger than a few speckle spots

in radius) to measure performance, since the lesion size (and contrast - as long as it is

low) do not affect the system performance metric Υ. Linearity of SNR2I with lesion

area has been tested using Monte Carlo simulation techniques.

The relative uncertainty in Υ is identical to the uncertainty in SNRI :

δ(Υ)

Υ
≈ 2

̂SNRI

√
N

+ εα,N (177)

This means that we may as well use experimental situations where SNRI is large

to estimate Υ. We propose using large lesion areas (but not necessarily large con-

trasts) to accomplish this. Again the experimental strategy is different than for 2AFC

approaches.
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9.2.4. Phantoms to Estimate the Mean Values of the Test Statistics

The differences in mean test statistic λ+ − λ− between a lesion and its background

can be estimated from a small number (e.g. 30) independent images - with minimum

relative uncertainty for large lesions. (This can be accomplished without moving the

transducer by making a phantom with a channel and have a insertable rod of slightly

differing contrast than the background. The rod can then be rotated and translated

to give many independent images). Such a phantom has been constructed and used

for a number of different purposes.

9.2.5. Estimation of Variance using Homogenous Phantom Backgrounds

Approximating the variance inside and outside the lesion as nearly equal for low

contrasts:

σ̂2λ+ ≈ σ̂2λ− (178)

we may realize that we do not need to worry about obtaining many many low con-

trast lesion images in exactly the same location (this is part of the challenge of past

experiments) to estimate the variance of the test statistic. Instead we can use ho-

mogeneous phantoms or phantom slurry composed of a finely blended suspension of

phantom material. By stirring the phantom it is possible to obtain many independent

image realizations. Additionally, it may be possible to use more than one data patch

per image. By averaging this over M spatial patches per image (the patches do not

need to be inside the lesion since low contrast variance in and outside the lesion are

approximately equal), we can effectively increase the number of degrees of freedom to
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MN−1 and hence significantly reduce the relative uncertainty in Υ. The uncertainty

is thus given as:

δ(Υ)

Υ
≈ 2

̂SNRI

√
N

+ εα,NM (179)

9.3. Estimators for SNRI

Here we describe some analytic insights regarding how to estimate SNRI by making

use of ergodicity. With an ergodic assumption, many patches can be used per image,

effectively increasing the number of degrees of freedom, and consequently reducing

the relative error.

Our strategy is to obtain expressions for SNRI and the relative uncertainty in

SNRI by developing estimators for the means and variances of the test statistic and

characterizing their variance and bias. To do so it will be usefull to write the test

statistic as:

λ = C
∫

X
w2(x)dx (180)

where X is the region of the lesion, C is the object contrast, and w is the continuous

form of the Wiener filtered signal w = K−1o H
tg.

9.3.1. Mean

Here we show how to construct an estimator for the mean of the test statistic

λ± = 〈C
∫

X
w2(x)dx|±〉 = C

∫

X
〈w2(x)|±〉dx (181)
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thus

λ̂± =
1

N

N∑

i=1

∫

X
w2(x)dx. (182)

This expression states that the mean test statistic value can be estimated by averaging

the test statistic value over N independent images. Its variance and bias decrease

with increasing N .

9.4. Variance

At this point we derive estimators for the variance of the test statistic. Additional

insights about ideal observer performance are also elucidated.

Note that

var(λ|±) = 〈λ2|±〉 − λ2± (183)

and

〈λ2|±〉 = 〈C2
∫

X
w2(x)dx

∫

X
w2(x′)dx′|±〉

=
∫

X

∫

X
〈w2(x)w2(x′)|±〉dxdx′

=
∫

X

∫

X

[
〈w2(x)〉〈w2(x′)〉+ 2〈w(x)w(x′)〉2

]
dxdx′

where the last line was obtained using a 4th order moment formula for Gaussian

random variables. Thus,

var(λ|±) = 2
∫

X

∫

X
〈w(x)w(x′)〉2dxdx′ (184)

If we now assume that the signal corresponding to the lesion interior is approxi-
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mately wide-sense stationary (should be true for low contrasts)

̂var(λ|±) = 2
∫

X

∫

X
R̂2ww(x− x′)dxdx′ (185)

where R̂ww(x) is the autocorrelation of the random process w. This is fortunate

because we can easily estimate the autocorrelation from data without any assumptions

about the data model. We can write the above equation as

̂var(λ|±) = 2
∫ +∞

−∞

∫ +∞

−∞
ξ(x)ξ(x′)R̂2ww(x− x′)dxdx′ (186)

where ξ(x) is an window function that is one inside the lesion and zero outside. If we

now make the substitutions τ = x− x′ and ζ = x+ x′ then we have that

̂var(λ|±) = 2
∫ +∞

−∞
R̂2ww(τ)f(τ)dτ (187)

where

f(τ) =
∫ +∞

−∞
ξ(
ζ + τ

2
)ξ(

ζ − τ
2

) (188)

which is purely a lesion geometry factor and has nothing to do with the system

properties.

Eq. 187 is the estimator that we propose for estimating var(λ|±). Later we show

that its variance and bias decrease as the variance and bias of R̂ww decrease.

If Rww(τ) tapers off to zero quickly so that most of the energy is contained in in

the interval |τ | < τc for some value τc and is slowly varying so that f(τ) ≈ constant

over this interval then

̂var(λ|±) ≈ 2A
∫ +∞

−∞
R̂2ww(τ)dτ (189)
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where A is the area of the lesion, corresponding to f(0). If Rww(τ) has long tails with

significant energy, the above approximation is not necessarily good.

9.4.1. Rectangular Lesion

To see this, consider a rectangular lesion, with lesion area bounded by a window

function given as

ξ(x) = rect(x/X)rect(y/Y ) (190)

where X and Y are the width of the rect functions. Then,

f(τ) = Ix(τx)Iy(τy) (191)

where

Ix(τx) =
∫ +∞

−∞
rect(

ζx+τx
2

X
)rect(

ζx−τx
2

X
)dζx (192)

and Iy is given by a similar formula. The bounding equations for the rect functions:

−X/2 < ζx+τx
2

< X/2 and −X/2 < ζx−τx
2

< X/2 imply that the intersecting area is

over the interval −X + |τx| < ζx < X − |τx|. Thus,

Ix = 2(X − |τx|). (193)

for |τx| < X/2 and zero otherwise. This is approximately constant over small |τx|

when X is very large. When X is small, f(τ) may emphasize long tails of R̂ww in 187,

which increase the variance of the test statistic and degrades lesion visibility.
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9.4.2. Circular Lesion

Here we assume that the lesions are circular in shape and that their area is bounded

by a circular mask given by

ξ(r) = circ(r/R) (194)

where r = |r| and where R is the radius of the circle. Then

f(τ) =
∫
circ(

|ζ + τ |
2R

)circ(
|ζ − τ |
2R

)dζ (195)

We have the bounding equations: (ζx− τx)2+ (ζy − τy)2 ≤ (2R)2 and (ζx+ τx)
2+

(ζy + τy)
2 ≤ (2R)2. The integral f(τ) represents the intersection area of two circles

of radius 2R separated by distance 2|τ |. This area is:

f(τ) = 2
∫ y=2R

y=|τ |

∫ x=+
√
(2R)2−y2

x=−
√
(2R)2−y2

dxdy

= 2
∫ y=2R

y=|τ |
2
√
(2R)2 − y2dy

when |τ | < 2R and zero otherwise. From integral tables,

ga(y) ≡
∫ √

a2 − y2dy =
y
√
a2 − y2
2

+
a2

2
sin−1(y/a) (196)

thus, when |τ | < 2R, we have that

f(τ) = 4g2R(y)|2R|τ | . (197)

Finally,

f(τ) = (2R)2
[
π − 2sin−1

(
|τ |
2R

)]
− 2τ

√
(2R)2 − |τ |2 (198)

if |τ | < 2R and zero otherwise. As expected, when |τ | = 0, the area is π(2R)2, and

when |τ | = 2R, the area is zero. Sample curves are shown in Fig. 48.
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Figure 48. The function f in Eq. (198) shown for different values of lesion radius R.

Note that for small values of |τ |, we have that

f(τ) ≈ A− 4√
π

√
A|τ | (199)

where we have used a first order Taylor series approximation. Thus the variance is:

var(λ|±) = A
∫
R2ww(τ)dτ −

4√
π

√
A
∫
R2ww(τ)τdτ (200)

The second term is negligible when R2ww falls to zero quickly, since it is greatest

at zero, but then weighted by zero or small amounts. This reaffirms that for lesions

containing many speckle spots, the variance of the test statistic is well approximated

by the first term above. All of these hypotheses have yet to be validated and will

need to be left for future work.

Because var(λ|+) ≈ var(λ|−) we can use homogeneous phantoms without inclu-

sions to estimate the variance of the test statistic. The potential advantage of these

estimators is that only small image patches can be used (big enough to sample most
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of the energy in the autocorrelation R̂ww) thus many more patches per image can be

used - much larger than the lesion size.

We still need to derive expressions for the bias and variance of the estimators. We

intend to show that the bias and variance of ̂SNRI decreases with increasing numbers

of data patches used to estimate R̂ww.

9.4.3. Uncertainty of the variance estimate

We want to know the the relative uncertainty of the variance estimator σ̂2λ± in Eq.

(187), which we write as

σ̂2λ± = 2
A

(σ2w)
2

∫
ρ̂2(∆x)fo(∆x) (201)

where ρ̂ is the autocorrelation estimate normalized by its maximum value (i.e. R̂wwσ
2
w),

and fo = f/A where A is the maximum value of f .

We assume that can use Np image patches to estimate this quantity. For each

image patch n we construct an estimate [σ̂2λ±]n, then average over all Np patches to

get the mean value of the estimate σ̂2λ±. The standard deviation of this mean value

is given as:

std
(
σ̂2λ±

)
=
std(σ̂2λ±)√

Np

(202)

Importantly, the relative uncertainty in the mean estimate of test statistic variance

std
(
σ̂2λ±

)

σ̂2λ±
=
std(σ̂2λ±)√
Npσ̂2λ±

(203)

is independent of the data variance σ2w, and can be viewed as being nearly independent

of the lesion area. (Note the shape of fo will still be dependent on the lesion area -



206

but the significance of the shape will be less for lesions several autocorrelation lengths

in diameter). The relative uncertainty will depend in this situation on the ultrasonic

speckle properties in a complex way.

The important point to be made is that one may use many data patches per image,

thus Np can be very large over a small number of independent images. Analytical

expressions for the uncertainty in variance are difficult but discussed briefly below.

For practical problems we recommend the more pragmatic approach of computing

the standard deviation of Np estimates of σ̂2λ±.

9.4.4. Analytical Expressions for the Uncertainty in Variance

In some cases it may be advantageous to predict the expected uncertainty in the

variance of the test statistic if one knows analytically or computationally the expected

autocorrelation profile of the RF data. For this reason we include a brief look into

this complicated problem. Using 4th order Gaussian moment theorems, it can be

shown that

var(σ̂2λ±) = 8

(
A

(σ2w)
2

)∫
〈ρ̂(∆x1)ρ̂(∆x2)〉2fo(∆x1)fo(∆x2)d∆x1d∆x2 (204)

Jenkins ?? gives a discussion regarding how to compute the covariance of the auto-

correlation coefficients 〈ρ̂[q, p]ρ̂[k, l]〉. He shows that in one dimension

Cov[ρ̂(u1), ρ̂(u2)] =
1

(T − |u1|)(T − |u2|)

×
∫ T−u2

−(T−u1)
φ(r)[ρ(r)ρ(r + u2 − u1)ρ(r + u2)ρ(r − u1)]dr
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where

φ(r) =





T − u2 − r r ≥ 0

T − u2 −(u2 − u1) ≤ r ≤ 0

T − u1 + r −(T − u1) ≤ r ≤ −(u2 − u1)

(205)

and T is the correlation window length.

Future work should demonstrate how uncertainty in variance estimate can be

reduced by using autocorrelation estimates that are averaged over many independent

regions.

9.5. Bias of Estimator for Test Statistic Variance

The estimator of the test statistic variance is unfortunately biased. We would hope

that the expectation of σ̂2λ± would be equal to σ2λ±. There is however a bias that is

hard to compute. In 1-D:

bias = 〈σ̂2λ± − σ2λ±〉 = 2
∫
〈R̂2ww(τ)−R2ww(τ)〉f(τ)dτ (206)

The bias of the variance of the autocorrelation sequence, thus depends on the ex-

pectation in the integral, which, when written as 〈R̂2ww(τ)〉−R2ww(τ) can be identified

as the variance of the autocorrelation estimates which can be written as:

var[R̂ww(τ)] =
1

(T − |τ |)2
∫ (T−|τ |)

−(T−|τ |)
(T − τ − |r|)

×
[
ρ2(r) + ρ(r + τ)ρ(r − τ)

]
dr
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We should note however, that if we first use many independent images to get a

good estimate on the autocorrelation, then the variances (covariances) of the auto-

correlation estimates become less and less, and consequently, the bias of the estimate

of the variance of the test statistic is reduced. Specifically, averaging over Mp inde-

pendent patches, the variance var[R̂ww(τ)] is reduced by a factor of (1/Mp) (or the

standard deviation reduced by a factor 1/
√
Mp). Consequently, the bias of the esti-

mator for the test statistic variance can be reduced as low as desired with increasing

numbers of independent data patches Mp.
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10. SUMMARY, CONCLUSIONS, AND

RECOMMENDATIONS

Here we outline the key contributions of this dissertation in the context of the existing

literature. We also discuss limitations and offer suggestions for future work.

10.1. Rigorous Development of Linear Systems Model

Previous linear systems models of ultrasonic imaging have existed previously, but our

work adds a rigorous connection to scattering theory, and emphasizes that the linear

system should be written as

g(t) =
∫
h(x, t)f(x)dx+ n(t) (207)

rather than simply a temporal convolution as was previously assumed. One outcome

of the analysis that was not well understood previous to our work is the difference

between psfs and ssfs.

10.1.1. Difference Between psf and ssf

While for a 2-D imaging system, a psf is a 2-D image or 2-D RF echo signal from a

point scatterer in a point in space, a ssf is the 3-D spatial field weighting that the

system applies to the object function for a specific point in time. In much of our

work we have assumed that a 2-D object and ssf is sufficient - an approximation

that is reasonable as long as elevation beam effects are not significant. When a 2-D

ssf is sufficient, there is a time-reversal symmetry that approximately relates the psf
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and ssf over isoplanatic patches. An isoplanatic patch is a region on which linear

shift invariance may be assumed locally. When the psf is larger than the size of the

isoplanatic patch, the symmetry breaks down. ssfs, rather than psfs are required

for evaluation of speckle statistics (e.g. spatial RF covariance matrices) which are in

turn essential for image quality analysis and detection theory.

Through much of our thesis we have assumed the local linear shift-invariance

and 2-D ssf approximation is sufficient. In particular, the local shift-invariance ap-

proximation enables Fourier decomposition techniques to be applied to the otherwise

computationally foreboding problems of computing ideal observer test statistics and

SNRs. An extension to the 3-D ssf has been shown to be computationally feasible,

but local shift-invariance of each elevation slice of the psf must be assumed. It re-

mains to be seen whether incorporating the 3rd dimension significantly impacts the

prediction values of the ideal observer SNR. Such a study is recommended for future

work.

10.1.2. Speckle Modeling in Pre- and Post- Focal Regions

A significant contribution of our linear system approach is the ability to model speckle

statistics throughout the field - and not just at the focus as was done in previous work

(e.g. Wagner). Existing notions that speckle spot size is indicative of spatial reso-

lution exist in the ultrasonic community. While this is approximately true in the

focal region, it is not true away from the focus. Our analysis shows that wavefront

curvature can contribute to speckle narrowing. When wavefronts are flat as in the
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focal region, coherence is maximized and speckle is broadest. A similar explanation

was made previously by Trahey et. al. in analyzing speckle in the presence of aber-

rations. Speckle properties were found to be broadest when aberrations were least -

and wavefront coherence was greatest.

The importance of modeling speckle away from the focal region was shown to be

very important as it lead to some surprising discoveries about imaging in the pre- and

post- focal regions, and the development of an imaging technique that can be viewed

as spatial coding, and an extension of synthetic aperture techniques.

We have done some simple experimental validation of predicted speckle textures.

In particular, we have approximated ssfs by time-reversed psfs, and done some token

comparison experiments comparing speckle spot lengths, lesion contrast, and CNR’s

in simulated and real images, with modest results.

Future work could entail more precise experimental validation of the predictions

of near- and farfield speckle autocorrelation functions. To do this we really need to

use time-varying ssfs rather than linear shift-invariant psfs. Our theoretical work

on speckle modelling showed the importance of ssfs for computing RF covariance

matrices - and that using the time-reversed psf approximation can lead to small

errors in computed autocorrelation curves and speckle correlation lengths. ssfs are

hard to measure, since they require measuring a whole continuum of psfs. Thus the

best option would be to have a realistic simulation of the system’s ssfs. Current

FIELD II simulations do not do beamforming like the real system: (1) Aperture
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Modulation (2) Dynamic focusing using steered receive beams focused along A-scan

lines. Complex and proprietary look-up tables currently implemented on the system

would be needed in simulations to make exact the simulations fully realistic.

10.2. Development of Ideal Observer Model for Ultrasonic

Detection Tasks

The main contribution of this dissertation is the derivation of an ideal observer model

for ultrasonic detection tasks. Previous attempts at this (e.g. the Smith-Wagner

model) did not fully account for RF correlations, shift variance, or electronic noise

or were too cryptic for intuition and too difficult for computation (e.g. Clarkson and

Barrett). Our approach fully incorporates the incomplete elements of previous models

into our theoretical framework, while at the same time providing a simple analytical

framework, that is also computationally trivial.

10.2.1. SKE Ideal Observer Test Statistics

An early contribution in our work was the derivation of ideal observer performance

when the exact signal realization was known. The ideal observer SNR2 for SKE

tasks was then averaged over signal realizations. The result was an expression for

task performance that decoupled the object properties such as contrast and lesion

size and the system properties such as MTF and NPS. In particular, a generalization

of noise-equivalent quanta was shown to be important for characterizing ultrasound

system performance. The connection with NEQ and DQE is important in the context
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of their widespread use in photon imaging modalities. Speckle spots replaced the role

of photons as fundamental units of information.

10.2.2. SKS Ideal Observer Test Statistics

The log-likelihood ratio for SKS ultrasound detection tasks was derived as λ =

(K−1o H
tg)

t
S (K−1o H

tg). under a low contrast approximation. This suggests that

the optimal RF processing strategy for low contrast detection is spatial matched fil-

tering (Ht) followed by pre-whitening K−1o . The combined operation is equivalent to

a spatial Wiener filter.

Note that spatial Wiener filtering is the optimal processing strategy for the ideal

observer (whether this is the case for human observer is yet to be established) -

independent of the system design. The system performance for detection tasks can

be measured using SNRI , or other figures of merit.

One of Abbey’s main contributions to our effort was the power series method for

signal present covariance inversion, which enables computation of the test statistic -

a sufficient condition for Monte Carlo methods.

One of our key contributions is that we extended this idea to analytically compute

the ideal observer SNR, and showed close agreement with the Monte Carlo meth-

ods. The analytical treatment allowed important intuitive insights, including con-

nections with the Smith-Wagner theory. Additionally, important connections with

Noise Equivalent Quanta and Detective Quantum Efficiency were again established,

similar to the SKE theory. In the SKS theory, the GNEQ2, rather than GNEQ
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was integrated over the spatial frequency domain to give the relevant performance

metric. Additionally, the SKS theory saw the proportionality of SNR2I with AC2,

similar to the Smith-Wagner theory (whereas the SKE theory showed only linearity

with contrast).

These developments are important for ultrasound system design. The analysis

provides a toolbox that will allow us to push fundamental limits of ultrasound diag-

nostic performance.

Extension to a 3-D beam makes the GNEQ analysis more complex, however, this

may be unnecessary for problems where elevational properties of the beam are not

expected to affect performance significantly. For example - in detecting lesions that

are long in the elevation direction as is sometimes the case with cancers that grow

along milk ducts.

10.3. Processing-Level Design and Detector Level Design

The reason we studies the ideal observer is to understand how to measure diagnostic

information from the RF data. We call this level of design detector level design.

Metrics such as the SNR of the ideal observer analysis gage system performance

for tasks but the analysis does not however tell us how to design systems. We can

however, from the analytical developments see intuitively what system features make

a better design - and we can measure or predict the ideal observer performance for a

given system design. This may allow us to compare several system designs and rank

their performance for the diagnostic task needed.
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The ideal observer test statistic suggested how to process the data in an optimal

way for the ideal observer to maximize performance. This brings up the topic of image

processing. Processing-level design generally refers to software development that acts

to analyze the raw RF data for display to human observers. Processing algorithms

cannot add diagnostic information to the data - but can make it more apparent to the

human visual system. Performance of human observers viewing images created by a

given set of algorithms can be measured using observer studies. Differences between

human observer performance and the ideal observer suggest a role for improved image

processing approaches.

Abbey showed that human observers are approximately 15% efficient relative to

the ideal observer at performing low contrast detection tasks - when viewing unpro-

cessed B-mode images. Previously human observers were thought to have efficiencies

of closer to 50%. These estimates, however, were based on estimates of the Smith-

Wagner theory, which ignored the feasibility of pre-whitening. The new estimate of

efficiency is based on comparison with our newly proposed ideal observer model. The

low efficiency suggested considerable room for improvement. Fortuitously, it was also

shown that pre-envelope deconvolution greatly improved human observer performance

- although there may be considerable room for additional improvement. Although the

ideal observer test statistic suggested ways to process the raw data in a way optimal

for the ideal observer, these algorithms may not be optimal for the human observer.

This is why more research is needed to understand how to optimize image processing

to the human visual system.



216

Sometimes the line between processing-level and detector-level design can be am-

biguous and subjective. For example, for the technique of imaging with curved pre- or

post- focal region wavefronts, we showed that the nearfield was even more informative

than the focal region. In doing so we assumed that receive beamforming by delay and

sum as well as apodization was applied to the signals from the individual channels.

Beamforming can be viewed as a processing step rather than detector level design.

Future work should consider the raw data as signals from the individual channels.

It is hypothesized that the ideal observer test statistic will suggest optimal processing

strategies that can be applied to the channel data. Detector level design would

thus come down to transmission beamforming design, and transmission and receive

transducer design - and our framework is well poised to attack this problem in the

near future.

10.3.1. Human Observers

Earlier we mentioned that differences between human observer performance and the

ideal observer suggest a role for improved image processing approaches. Human ob-

server studies can be expensive and time-consuming. For this reason, model observers

that computationally simulate human observer performance could be invaluable. Ad-

ditionally, a way of simulating random realizations of ultrasound images in a way that

mimics real tissue and the real system are needed - indeed another challenge. So far

our simulations have been shift-invariant and 2-D. In truth a shift-variant and 3-D

model may be needed in some situations.
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10.3.2. Task Specificity

Research in performance assessment is notorious for being very sensitive to changes in

the task. This is true on many different levels. Even for the seemingly succinct task

of lesion detection - there are many small variations in task definition - for example:

the position and shape of the lesion may or may not be known - and if unknown - the

position and shape may be characterized statistically. Ideal observers are sensitive to

each of these cases and performance will differ. Although they are all detection tasks

- the task detailed definitions can matter. We refer to this as task detail specificity.

Another concept to consider is that completely different tasks may have different

system optimization curves. An example of completely different tasks could be low

contrast lesion detection versus discrimination between an anechoic cyst and a high

contrast hypo-echoic lesion. A system optimized for one task may not be - and

probably will not be optimized for the other. Note that these differing tasks are still

sometimes lumped together in the literature under the name detection. In clinical

literature the word detection means: (1) saying whether or not there is an abnormality

present (2) if the abnormality is a cyst or mass (3) if it is a mass one must decide

whether it is benign (e.g. fibroadenoma) or malignant. Patients flagged as possessing

lesions suspected of being maliganant are sent for biopsy. Mistakes in any one of the

mentioned sub-tasks could be the cause of false positives of false negatives, and reduce

the ’detection’ performance. We envision a firm understanding of how to optimize

each of these tasks - and have a programmable system that can optimize each stage
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of the detection chain.

Back to the topic of task detail specificity - in our work we have assumed that the

signal location was known exactly. Ideal observer detection performance is expected

to drop considerably when location uncertainty is included in the framework - espe-

cially for low contrast detection tasks, since this is consistent with findings in other

modalities. Similarly other sources of object and system uncertainty may addition-

ally degrade ideal observer performance, since less and less information is known with

more and more sources of uncertainty. A significant question is whether this matters

for what one wants to do.

In particular, if one is interested in system design, a critical question is whether

system rankings are preserved. For example, if one uses our framework to predict that

one system design (System A) will be better than another (System B), then we factor

in location and background uncertainty to formulate a new ideal observer prediction

on system rankings ... is A still better than B? More research is needed to answer these

questions for ultrasound as a modality. Factoring in additional sources of uncertainty

into the ideal observer model is not necessarily trivial. Ideal analytically tractable

likelihoods can be derived. In practice, however, marginalizing operations required

to derive these probability densities are not analytically tractable. Computationally

- the challenge is equally foreboding since integration over high dimensional spaces

is often required. New computational tools are recently becoming available to tackle

these problems by using Markov-Chain Monte Carlo methods. These methods avoid

high-dimensional integrations by instead approximating marginalization integrations
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by means of functions of Monte-Carlo generated data realizations. A pre-requisite of

these techniques is to have a realistic probability model of object and system variabil-

ity, as well as a way to computationally simulate realistic random realizations of image

data in a fast way. In other modalities it was seen that inhomogeneous background

variability degrades detection and influence system optimization [ , ]. Markov-Chain

Monte Carlo techniques could be used to understand how inhomogeneous random

background texture can influence system optimization. Our framework, nevertheless,

is an important first step towards these more lofty goals.

10.4. Spatial Codes with Curved Wavefronts

Besides fundamental contributions, this dissertation includes an applied technique

which we call spatial coding that offers potential improvements over both dynamic

receive processing (the current method of choice on most systems) and traditional

synthetic receive aperture techniques. Promisingly, the technique is likely computa-

tionally simple enough to implement in realtime.

10.5. Additional Suggestions for Future Work

More work needs to be done on the topic of experimental measurement techniques

of the ideal observer performance of a system along with associated uncertainties.

This is important for a number of reasons. First, we need quantitative experimental

performance validation of our broad theoretical framework. Second, we would like

to be able validate specific design predictions, for example, to compare two system
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designs experimentally, with statistical significance. For example, we have predicted

that the nearfield of a model system design is better than the focal region. We would

like to be able to compare the detection performance in both of these regions. To do

so with statistical significance is not trivial.

One problem is how to measure detection performance experimentally. Another -

perhaps more complicated problem - is how to put error bars on the measurements,

and understand the uncertainties well enough to impact an experimental design for

comparing performances. We would like to be able to know how to design phantoms

(e.g. lesion size, contrast etc.) and to know how many images are needed to get error

bars below a certain level to attain statistical significance in measured performance.

One of the challenges is that to make the error bars on detection performance very

small, one needs a large dataset of independent images where the lesion is at exactly

the same location in all images. This is very difficult to realize experimentally with

phantoms. For this reason we have proposed a technique that makes use of ergodicity

- so that one or a few images can reliably model an entire ensemble of images. In these

techniques, the measured autocorrelation is fundamental to estimating the variance

of the test statistic of the log-likelihood. We have showed that the bias and variance

of the estimate of test statistic variance decrease with increasing number of indepen-

dent data patches used to estimate the spatial autocorrelation profile. We have also

proposed that since the variance for the signal present and signal absent hypotheses

should be approximately equal, it is sufficient to study homogeneous phantoms for

the variance estimates. With an ergodicity assumption, it is thus possible to use one
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or a few images to dramatically increase the number of degrees of freedom and hence

shrink error bars. Yet another conclusion regarding minimizing the variance of the

test statistic mean is that larger value of SNRI are better. Consequently, it may be

advantageous to use large lesions. Low contrasts are needed for the theory to still be

valid. The measured SNRI can be normalized by AC2 to get the target-independent

system performance.

It is possible to make a phantom with a channel for an insertable rod of differing

contrast to be inserted, and translated or rotated to get 50 independent images

of the lesion, where the lesion location is exactly known. The transducer does not

need to be moved - hence the locational precision. Locational uncertainty in observer

performance studies is known to give rise to erroneous effects [*]. The disadvantage

of this method is that the background speckle realizations are unchanged from image

to image. This may not matter, however, if the lesion is sufficiently large so that edge

effects are negligible. Additionally, if the lesion is large enough, the uncertainty in

the mean will be small - even for a small number of images - hence the severity of not

having many background speckle realizations is reduced.

It may be anticipated that experimentally measured ideal observer performance

may be less than theoretically predicted due to cumulative lack of model realism.

The Wiener filter, for example, will be very sensitive to mistakes in the psf with the

consequence of noise amplification and spatial sidelobe artifacts. Hence, again, there

is even more reason to work towards more realistic simulations of system models.
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10.6. Frontiers of Ultrasound System Design

Earlier it was noted that the ideal observer SNR only acts as a gage of design effec-

tiveness - and does not necessarily tell one one how to design a system. Nevertheless,

system designs can be evaluated for task performance - something that could not be

done heretofore. An important conclusion to our work is to offer suggestions about

how our developments can be applied to design better systems.

Future directions in ultrasonic imaging could include massively parallel receive

acquisitions with wide transmit beams. Extensions of our curved wavefront imaging

technique could be applied to this end. With faster and faster computing power

evolving, one may be able to attain extremely high frame rates - and this could

be applied to average significantly. This strategy intends to leverage on Moore’s

law which states that computing power will double approximately every 18 months.

In using extensive averaging and in conjunction with axial and spatial codes one

might be able to greatly improve the echo SNR - and hence go to higher and higher

frequencies (thus improved spatial resolution) while preserving penetration. In the

past, the amount of energy that could be used for diagnostic imaging was limited

by standards. While standards still exist, these standards have recently changed

to allow higher transmit energies - in part motivated by tissue harmonic imaging.

Current guidelines require that acoustic output measurements merely be displayed

on the system - and the discretion to go to higher acoustic intensities would be in

the hands of the sonographer who is expected to manage risks responsibly. For high

risk situations, increased acoustic output may be warranted. From this perspective,
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this newfound latitude in standards could be used advantageously for certain classes

of high risk disease.

One challenge in using ultrasound for a screening modality is that sonography

is highly operator-dependent. Research could be done in scanning procedures and

3-D imaging technology to making the imaging less subjective. Another area of

importance in mammography that could be extended to ultrasound is the area of

computer aided diagnosis.

It may be that diagnostic B-mode imagine does not provide sufficient contrast

compared with other competing modalities to distinguish between benign and malig-

nant disease. Medical imaging frontiers lie in remote imaging of cellular pathology and

biochemistry (sometimes referred to as molecular imaging), and other features that

may distinguish malignant tissue from benign. Ultrasonic technique with promise

include thermo- and photo-acoustic tomography which offer electromagnetic radio-

frequency and optical contrast with the potential of ultrasonic spatial resolution.

Additionally, ultrasonic strain imaging techniques aim to remotely map the mechan-

ical properties of tissues. This offers considerable diagnostic potential since cancers

are typically stiffer than the surrounding tissue. Much greater contrasts are expected

compared with mammography. It is expected that improved algorithms and improved

clinical instrumentation will move these research directions into clinically important

techniques.
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