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Expanding Acquisition and Clutter
Filter Dimensions for Improved

Perfusion Sensitivity
MinWoo Kim, Craig K. Abbey, Jamila Hedhli, Lawrence W. Dobrucki,

and Michael F. Insana, Fellow, IEEE

Abstract— A method is explored for increasing the sensitivity
of power-Doppler imaging without contrast enhancement.
We acquire 1–10 s of echo signals and arrange it into a
3-D spatiotemporal data array. An eigenfilter developed to
preserve all three dimensions of the array yields power estimates
for blood flow and perfusion that are well separated from tissue
clutter. This method is applied at high frequency (24-MHz pulses)
to a murine model of an ischemic hindlimb. We demonstrate
enhancements to tissue perfusion maps in normal and ischemic
tissues. The method can be applied to data from any ultrasonic
instrument that provides beamformed RF echo data.

Index Terms— Adaptive eigenfilters, blood flow, higher order
singular-value decomposition (HOSVD), ischemic hindlimb,
power Doppler (PD), ultrasound.

I. INTRODUCTION

THE goal of ultrasonic power Doppler (PD) imaging is to
display the magnitude of blood perfusion in tissue at each

point in a scan plane. PD methods are sensitive to red-blood-
cell (RBC) movements, making them useful for assessing
ischemia and flow in tortuous vessels. Nonetheless, quanti-
fying slow and weakly scattering intrinsic perfusion signals
remains a formidable challenge. The principal challenge is
to increase the signal-to-noise + clutter ratio (SNCR), which
is addressed by either suppressing noise and clutter compo-
nents [1]–[3] or augmenting the blood-flow component with
contrast agents [4]–[6]. This paper focuses on noncontrast-
enhanced approaches to improving PD imaging.

We provide an initial demonstration of a simple echo-
acquisition and data filtering strategy that appears to substan-
tially improve SNCR and Doppler-frequency resolution. With
some tuning of the filters, we clearly see regions of slower
perfusion that are not visible using established PD techniques.
The acquired data at each spatial location are arranged to have
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two temporal dimensions: slow-time sampled on the order
of kHz and frame time sampled on the order of Hz. Temporal
sampling is adjusted to increase the density of independent
samples in the low-frequency Doppler spectrum where the
weak perfusion signal is the strongest. We then increase the
dimension of the clutter filter to fully exploit the expanded
dimensionality of the data, and employ high-frequency pulses
to further increase SNCR.

The recorded data array initially has two spatial dimen-
sions (axial and lateral) and two temporal dimensions
(slow-time and frame-time). These data are reordered to com-
bine the two spatial axes into one, resulting in a 3-D data array
with one spatial and two temporal axes. We describe the infor-
mation contained within this 3-D data array and a 3-D clutter
filter that separates blood components from clutter and noise.

Traditional filters have been employed in the slow-time
domain to reduce power at low temporal frequencies where
clutter dominates [7]. The resulting perfusion estimates are
often averaged over a few spatial locations and/or multiple
frames to reduce variance in the estimates. However, under
conditions of slow flow, a significant portion of the perfusion
signal may fall into the attenuated frequency channels of
the clutter filter. This issue is also present for more general
eigenfilters that operate on slow-time echo signals [8], [9].

An alternative to 1-D slow-time filters has been to expand
the filter dimension to use information from both space and
time to isolate the blood signal [1]; 2-D filters are derived from
the echo data using singular-value decomposition (SVD). They
exploit the spatial coherence of clutter echoes as distinct from
the more incoherent flow patterns of perfusion when separating
clutter and blood signals. Today, the estimation of SVD-filtered
data often takes place along the spatial and slow-time axes.
If frame-time data are recorded, they are averaged to stabilize
the SVD filter. Higher sampling rates along the slow-time axis
can be achieved with plane-wave imaging techniques [3] that
facilitate noise averaging when forming SVD filters from the
data.

We propose here to extend SVD filters to 3-D data arrays
described previously using a higher order SVD (HOSVD)
technique [10], [11]. We will show data that suggest this
filter facilitates isolation of echo power from slowly moving
and spatially disorganized RBC movement. HOSVD filter
construction yields one set of basis vectors for each of the
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three data dimensions within a region of interest. Retaining
all three data dimensions enables the adaptive HOSVD filter
to effectively separate signal components. We hypothesize that
by analyzing data along the frame-time axis, we can enhance
the sensitivity of PD imaging to blood perfusion echo signals.
The challenge for users is to find a subspace in the HOSVD
core array that isolates perfusing blood signals. Projecting the
recorded echo data onto that subspace before computing the
signal power at each pixel dramatically increases PD sensitiv-
ity to perfusion. The process of filter formation includes signal
averaging that improves filter stability. However, we must take
care to select spatial regions that include only wide-sense
stationary echo data.

To test the feasibility of the approach, these measurement
methods are applied to muscle-perfusion imaging of healthy
and ischemic mouse hindlimbs. Perfusion in this model of
surgically induced ischemia generates spatial patterns of per-
fusion/ischemia [12] that we track to observe and compare
with alternative approaches.

II. METHODS

A. Notation

The structure of the data array is central to understanding
the method. Arrays are described using the following
notation. Scalars are written as lower case letters (a, b, . . .),
column vectors as bold lower case letters (a, b, . . .), matrices
as bold capital letters (A, B, . . .), and multidimensional
arrays or tensors1 as bold calligraphic capital letters
(A,B, . . .). Integers i, i1, i2, and i3 are indices, e.g., the
i th element of vector a is denoted as ai = a[i ], the (i1, i2)th
element of matrix A as ai1,i2 = A[i1, i2], and the (i1, i2, i3)th
element of the third-order tensor A as ai1,i2,i3 = A[i1, i2, i3].

B. Echo Data Arrays

Doppler-mode acquisition involves the recording of echoes
following a series of narrow-band pulse transmissions along
one or more scan lines. After each pulse transmission,
M echoes are recorded at fast-time sampling interval T
(see Fig. 1). Let x represent the complex envelope of the
recorded echo signal, i.e., the demodulated analytic signal [13].
Each element of M × 1 vector x is a complex number
with real and imaginary components given by in-phase and
quadrature values. The mth fast-time sample, for 1 ≤ m ≤ M ,
corresponds to axial depth z = z0 + (m − 1)cT/2, where z0 is
the distance between the transducer surface and the beginning
of the recorded signal, and c is the compressional wave speed.

For each line of site, echo vectors are recorded N times
following each of N pulse transmissions to form a packet
of echo data. Pulses are transmitted on the slow-time interval
T ′ > MT, where 1/T ′ is the pulse repetition frequency (PRF).
Conventional power and color Doppler acquisitions record
a packet of echo data for each of L adjacent lines of site
separated laterally by the spatial interval D. All packets for

1We use the term tensor to be consistent with the HOSVD literature.
However, in our usage, the term does not imply anything about the trans-
formation properties of the multidimensional data arrays.

Fig. 1. Data acquisition is illustrated. One IQ echo vector is recorded for
each pulse transmission. The fast-time sampling interval is T , generating an
M × 1 vector. N echo vectors are recorded with interval T ′ at each line
of site. Repeating the acquisition process over L lateral lines of site with
spatial interval D makes one Doppler frame array. Recording K frames at
time interval T ′′ results in the 4-D array of IQ echo data X̃ ∈ C

N×M×L×K .
The array is reformed as a third-order tensor X ∈ CN×S×K , where S = ML.

one spatial frame form an (N × M × L) array of echo data
that we call a Doppler frame. This conventional 3-D array
represents two spatial dimensions and a slow-time dimension.

K Doppler frames are recorded on the time interval
T ′′ � T ′ to generate the frame-time dimension of a
4-D data array. To measure perfusion, we set T = 0.042 μs
(24 Msamples/s fast-time sampling rate), T ′ = 1 ms (PRF =
1 kHz), and T ′′ = 0.11 s (frame-repetition frequency = 9 Hz).
This 4-D data array is represented by X̃ ∈ CN×M×L×K .

The second and the third dimension of X̃ are associated
with axial and lateral spatial domain, respectively, that are
not separately analyzed. Therefore, the array is reordered as
follows:

X ∈ C
N×S×K , such that xn,s,k = x̃n,m,l,k (1)

where s = m + (l − 1)M and S = ML.
The common assumption is that echo data arise from

three independent physical sources: tissue clutter C, blood
scattering B, and acquisition noise N . Thus, X has three
components

X = C + B + N (2)

where each has size N×S×K . White acquisition noise ensures
that X is full rank. Finally, B includes signals from fast arterial
flow and slow capillary perfusion.

C. Eigen-Based Filters

For echo data well represented by a zero-mean Gaussian
process, the correlation (and covariance) matrix contains all
the statistical information for that vector space. Eigenfilters
decompose the multidimensional data array using eigenvectors
of the correlation matrix. These eigenvectors are orthogonal
and uncorrelated, and, under the Gaussian assumption, their
eigencomponents are as statistically independent as possible.
An eigenvalue divided by the sum of all eigenvalues describes
the fraction of variance contributed by that eigenmode.
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Because tissue scattering is often more echogenic than blood
scattering, and both contribute more to the variance than noise,
the common assumption is that clutter dominates the first
few eigenvalues, blood the next few, and the rest are noise.
Eigen-based filters isolate the blood subspace by identifying
the clutter–blood and blood–noise interfaces and suppressing
eigenvalues outside the blood subspace [3], [9], [14]. The
method used to construct the filter depends on how many of
the data dimensions we choose to apply, as we now explain.

1) First-Order Eigen-Based Filter: Let X ∈ CN×S be a
matrix indicating the αth Doppler frame of echo data such that
X = Xi3=α , α ∈ {1, · · · , K }. An empirical correlation matrix
of the temporal signal can be computed and then decomposed
as follows:

RN = XX† = U�U† ∈ C
N×N (3)

where † denotes conjugate transpose. � is a diagonal matrix of
eigenvalues sorted in descending order. The columns of unitary
matrix U = [u1, . . . , uN ] are the corresponding eigenvectors
for RN . From (3), X is easily decomposed in terms of temporal
eigenvectors using

X = UU†X =
N∑

i=1

uiui
†X . (4)

Identifying the rank of the clutter and blood subspaces
by c and b, respectively, data are processed using the 1-D
eigen-based clutter filter

B̂ =
c+b∑

i=c+1

ui u
†
i X . (5)

That is, only those eigenvectors associated with the blood
subspace are used to resynthesize the decomposed echo
data, which is now represented by matrix B̂. Subsequently,
the power B̂ is mapped into the PD image.

Note that when the echo signals are wide-sense stationary
and the impulse response for the pulse-echo system is linear
time-invariant such that the system matrix is well approxi-
mated by a circulant matrix, then the eigenfilter components
are equal to Fourier components. The difference is that finite-
impulse response (FIR) clutter filters are generally fixed over
the imaged region while the eigenfilter described in (5) adapts
to the echo data.

Similarly, an empirical correlation matrix of the spatial
signal can be computed and then decomposed using

RS = X†X = V�′V† ∈ C
S×S (6)

where eigenvalue matrix �′ has a different size but contains
the same nontrivial eigenvalues as � in (3). The columns of
unitary matrix V = [v1, . . . , vS] are eigenvectors in the spatial
domain. Equation (6) is not typically used for power estimation
although it is an important component of the second-order
filters described in the following.

2) Second-Order Eigen-Based Filter: SVD is an analogous
tool for decomposing data spanning two vector spaces, in this
case, time and space. Matrix X ∈ C

N×S is decomposed using

X = U�V† =
r∑

i=1

σi ui v
†
i . (7)

Fig. 2. Figure illustrates 1-, 2-, and 3-mode unfolding operation of the
third-order tensor data X .

This form of X is known as the Casorati matrix [3],
whose rows comprise vectorized frames of the image
series.2 Assuming white acquisition noise, the rank of X
is r = min(N, S), which is also the rank of � ∈ RN×S ,
a diagonal matrix of singular values σi sorted in descending
order. Analogous to (5), the best estimation of the blood-signal
matrix, in a least-squared sense [3], is found by processing

B̂ =
c+b∑

i=c+1

σi uivi
† =

c+b∑

i=c+1

uiui
†Xvivi

† . (8)

Equations (5) and (8) both seek to identify the blood compo-
nent of echo-signal variance along the slow-time dimension.
N is typically small, which may not provide enough eigen-
modes to uniquely identify the blood-scattering subspace given
the similarity of perfusion and clutter velocities. Adding
frame-time samples increases the number of eigenmodes in
a way that also increases the SNCR.

Power contained in filtered data B̂ ∈ CN×S is computed
using

p[i2] = 1

N

N∑

i1=1

|B̂[i1, i2]|2 (9)

where p ∈ RS can be converted into an image P ∈ RM×L .
Power estimates are log compressed and scan converted when
displaying the image for the αth frame acquired.

3) Third-Order Eigen-Based Filter: SVD methods can be
extended to 3-D data by decomposing X ∈ CN×S×K into three
empirical correlation matrices. First, consider the following
related to tensor processing.

a) Unfolding: A 1-mode unfolding operator X(1) = [X ]1
arranges elements of tensor X ∈ CN×S×K into a
matrix X(1) ∈ CN×S K where columns of the matrix
are slow-time signals. Likewise, 2-mode unfolding and
3-mode unfolding generate the matrix X(2) ∈ CS×KN

and X(3) ∈ CK×NS where columns of the matrices are
space and frame-time signals, respectively. These are
shown in Fig. 2.

2Liang [15] showed that the spatiotemporal components of a Casorati matrix
are at least partially separable if X is low rank. With white acquisition noise,
X is always full rank, and yet for echo SNR � 20 dB, the rank of the clutter
and blood subspaces is much less than the rank of X.
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b) Empirical correlation matrices are found using the
unfoldings as follows:

RN = [X ]1[X ]†
1 = U�N U† ∈ C

N×N

RS = [X ]2[X ]†
2 = V�SV† ∈ C

S×S

RK = [X ]3[X ]†
3 = W�K W† ∈ C

K×K . (10)

Subscripts on the correlation matrices indicate the X
dimension preserved. �N , �S , and �K are diagonal
eigenvalue matrices for the three modes, and U, V,
and W are the corresponding eigenvector matrices.

c) n-mode rank of tensor X equals the rank of the matrix
generated by n-mode unfolding

rn (X ) = r([X ]n), n ∈ {1, 2, 3} . (11)

Thus, the 1-mode, 2-mode, and 3-mode ranks of X are
the same as the rank of RN , RS , and RK .

Analogous to (7), the HOSVD of X is

X = G ×1 U ×2 V ×3 W

=
r1∑

i1=1

r2∑

i2=1

r3∑

i3=1

gi1,i2,i3 ui1 × vi2 × wi3 (12)

where × denotes an outer-product operation. See the
Appendix for an element-based description of the outer
products.

G ∈ CN×S×K is a “core tensor” analogous to matrix �
in (7). The columns of U, V, and W are the eigenvectors
for the slow-time, spatial, and frame-time dimensions, respec-
tively. Also r1, r2, and r3 are the n-mode ranks of G. G is
computed using the unitary property of eigenvector matrices

G = X ×1 U† ×2 V† ×3 W† . (13)

Components of G are orthogonal in that the dot product
between planes in the array

< Gin=α,Gin=β >= 0, α �= β, ∀n, ∀α, ∀β (14)

and the squared norm of matrix ||Gin= j ||2 equals a j th largest
eigenvalue of Rn for n = 1, 2, 3.

HOSVD filtering is analogous to that described for SVD
filtering in (8). However, note that the 1-, 2-, and 3-mode ranks
of X are not necessarily the same, and its core tensor G is not
diagonal [10], [11]. Thus, an advantage of HOSVD filtering
is the added flexibility in defining the rank of the clutter and
blood subspaces.

The HOSVD filter applied to X (Fig. 3) yields the filtered
echo-signal tensor

B̂ =
c1+b1∑

i1=c1+1

c2+b2∑

i2=c2+1

c3+b3∑

i3=c3+1

gi1,i2,i3 ui1 × vi2 × wi3

=
c1+b1∑

i1=c1+1

c2+b2∑

i2=c2+1

c3+b3∑

i3=c3+1

X ×1 ui1 ui1
†

×2vi2 vi2
† ×3 wi3 wi3

† . (15)

Constants cn and bn are, respectively, the ranks of the
clutter and blood subspaces on the i th mode eigenspace.
Section IV describes an approach to find 3-D regions within

Fig. 3. Top: HOSVD applied to the third-order tensor data X .
Bottom: region in the core tensor being selected to isolate the blood-perfusion
signal.

TABLE I

ACQUISITION PARAMETERS

the G array that best represents the blood components of echo
power.

In contrast with (5) and (8), which were analyzed by
others [14], the rank reduction provided by HOSVD filtering
in (15) is not optimal in the least-squares sense [16]. That is,
the mean-square error between X and one or more signal
components may not be minimized by this filter. Nevertheless,
it is a good approximation and can be implemented more
simply and quickly than that of iterative methods that can
obtain the least-square solution [17].

D. Implementation

We assume that perfusion is constant over the 17 slow-time
samples (17 ms) recorded in this paper. However, the echo-
signal mean and covariance matrix in the unfolded X
[see (10)], do vary over the 6.4 mm × 14.4 mm →
200×240 = 48 000 spatial samples and over the 17 frame-time
samples (1.9 s) typically applied to each PD image. Although
we record 100 frames (11.1 s), blocks of 17 frames are applied
to any one estimate (see Table I for data acquisition details).
Since the number of spatial samples is much larger than
either of the time samples, the data are spatially windowed to
compute local filters. In this way, an HOSVD filters adapt to
the properties of recorded data along any of the array axes.

Beginning with the 4-D array X̃ ∈ C N×M×L×K , spatial
window � j of size N × Ṁ × L̇ × K̇ is applied J times to
X̃ to make one PD image. Data within the j th window are
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Fig. 4. Sequence of operations leading to the formation of a perfusion
image is illustrated. The acquisition data within each window are individually
processed. HOSVD filtering isolates the blood-scattering components of the
echo signal. Echo power is computed by averaging over slow-time and frame-
time axes. The log-compressed power value is assigned a spatial position in
the PD image.

rearranged into X j ∈ CN×Ṡ×K̇ = C17×224×17, where Ṡ = Ṁ L̇
for Ṁ = 14 and L̇ = 16 samples. Each overlaps adjacent
windows by 0.13 mm axially and 0.24 mm laterally. A total
of J = 1600 spatial windows and filters were applied per
6.4 mm × 14.4 mm PD image. We also window data along the
frame-time axis if we wish to implement a dynamic sequence
of images. Fig. 4 offers a graphical summary.

Similar to (9), the postfiltration signal power within
windowed data B̃ j ∈ CN×Ṡ×K̇ is computed using

p j [i2] = 1

N K̇

N∑

i1=1

K̇∑

i3=1

|B̃ j [i1, i2, i3]|2 (16)

where p j ∈ R
Ṡ . The elements of vector p j are log-compressed

and scan converted into a spatial segment of size Ṁ × L̇.
These segments are then assembled into a PD image. Final
images may sum sequential PD frames formed along the
frame-time axis or display them as a dynamic sequence with
adjustable persistence. The latter is preferred if perfusion
varies over the acquisition time.

In summary, three eigenanalyses are performed on X
via (10). From the three sets of eigenvectors generated,
the core tensor is formed via (13). We then select a region
within the core tensor that contains information about per-
fusion and zero the other elements via (15). This process
yields the perfusion subspace whose elements are squared and
summed in (16) to estimate the signal power mapped into PD
images. In vivo experiments in the following show that the
perfusion subspace is confined to a small region within G.
Therefore, we find it is fast and easy to exhaustively search
for values of cn and bn in (15) that yield the “best” perfusion
maps shown in the results in the following.

Fig. 5. (a) Anesthetized mouse placed on a heated surface in a supine position
is scanned with a linear array. (b) Longitudinal cross section of the hindlimb
is displayed as a B-mode image.

Echo data were recorded using a Vevo 2100 system and an
MS400 linear array (FUJIFILM VisualSonics Inc., Toronto,
ON, Canada). The transducer transmits two-cycle pulses with
a 24-MHz center frequency. All processing was implemented
in MATLAB 2013b on an Intel processor i5-4300U CPU,
2.50 GHz. The highest computational burden is filter construc-
tion, which was performed using a truncation technique [18]
to minimize running time. The average time to compute the
1600 windows for one PD image frame is 19.1 s.

E. In Vivo Perfusion Imaging

A murine model of partial hindlimb ischemia was used [19]
to study the feasibility of our methods for in vivo perfusion
imaging (Fig. 5). Each mouse was anesthetized with 1.5%
isofluorane vaporized in O2 at a rate of 1 L/min via nose
cone. Each animal underwent hindlimb occlusion of the right
femoral artery, following the procedure described previously
in [12] and [19] without disturbing nonfemoral peripheral
flow to the right leg or any blood flow to the left leg.
Briefly, the anesthetized mouse was placed on a 37 ◦C heating
pad, a small incision was made on the right leg to expose
the femoral vasculature, and dual ligation of the femoral
artery was performed distal to the profundus branch to induce
unilateral hindlimb ischemia. To confirm the occlusion and
the reduction of blood flow in ischemic hindlimb, animals
were imaged with a laser Doppler imager (moorLDI, Moor
Instruments, U.K.) before, and immediately after ligation. For
the U.S. scanning at 24 h postsurgery, the anesthetized animal
was placed in a supine position with hindlimbs extended,
and the transducer scanned the shaved inner hindlimb along
a longitudinal cross section that included muscle, bone, and
vasculature.

Fig. 5(b) displays a B-mode view of the anatomy. Although
measurements were made on three mice, we will show the
results of scanning contralateral limbs of two mice specifically
to compare methods. All experiments were performed with the
approval of the Institutional Animal Care and Use Committee
of the University of Illinois at Urbana–Champaign following
the principles outlined by the American Physiological Society
on research animal use.
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Fig. 6. PD images are shown without a B-mode component. These images are
formed using a first-order eigenfilter and slow-time eigenbases. Left and right
columns show the images of ischemic and normal hindlimbs, respectively.
Thin arrows indicate bone echoes and thick arrows indicate fast arterial flow.
The numbers at the top of each image indicate the range of indices passed
through the filter in the summation of (5). Since the possible range is 1–17,
lower rows are more heavily filtered images.

III. RESULTS

We recorded 100 sequential Doppler frames (11.1 s) from
the right (ischemic) and left (healthy control) hindlimbs one
day after right femoral-artery ligation. Only the first 17 frames
are included in each of the PD images shown in the fol-
lowing. Images in Figs. 6–10 are from one animal, while
in Fig. 11 (left) is from a second animal undergoing identical
procedures.

1) First-Order Filter: We begin by processing only the
first Doppler frame in the array; specifically, X = Xi3=1 ∈
C17×200·240×1. Applying the spatial window described in
Section II-D, the data matrix used to form the j th spatial
window for the first-order eigenfilters was X j ∈ C17×14·16.
Computing the temporal correlation matrix in (3) and filtering
the data using (5), we constructed the perfusion images found
in Fig. 6.

The first row of Fig. 6(A) and (B) displays images obtained
without filtering to show the full clutter component in
the PD signal. Arrows indicate echoes from bone surfaces.
The second row of Fig. 6(C) and (D) shows the filtered images
formed by discarding the first (most energetic) slow-time
eigencomponent and preserving eigencomponents 2–17. Third
row images, Fig. 6(E) and (F), discard the first three slow-time
eigencomponents, leaving 4–17. Discarding the three most
energetic eigenvalues removes many of the clutter echoes
from both images, although the bone reflections remain. More
importantly, there is no apparent discriminability between
the ischemic and control states except for the appearance of
a segment of arterial flow as indicated by the larger arrows
in Fig. 6(F) near the proximal skin surface of the control
hindlimb.

2) Second-Order Filter: The same data were processed
by the second-order SVD filter via (8). Fig. 7 shows the
resulting PD images using slow-time and spatial eigenbases.

Fig. 7. PD images using a second-order SVD filter based on slow-time
and spatial eigenbases to show primarily arterial flow. Left and right columns
show the images of ischemic and normal hindlimbs, respectively. Thick arrows
indicate a region with fast arterial flow. The numbers at the top of each image
indicate the range of indices passed through the filter in the summation of (8).
Possible range: 1–17.

Fig. 8. PD images using the full 3-D data array and HOSVD filter to show
perfusion. Left and right columns show the images of ischemic and normal
hindlimbs, respectively. Filter parameters shown at the bottom of an image
apply to the normal and ischemic images in that row. As filter parameters
change, vascular structures emerge [arrows in (E) point to one branch] while
clutter and noise components fade. The normal flow image (F) is uniformly
perfused, although the signal strength near the bottom surface of the leg is
low because of acoustic attenuation. In contrast, the ischemic hindlimb in (E)
with lost femoral-arterial flow shows perfusion-deficit patches and prominent
vessels that now contain low-speed blood flow from the remaining peripheral
vessels. Note that the same echo data are used to form images in Figs. 6–8.

As in Fig. 6, the three rows describe three levels of filtering
given by numbers in the upper right corner. Virtually, all
echoes are eliminated in the images of Fig. 7(E) and (F)
except for the arterial flow near the skin surface in the control
hindlimb. Comparing Figs. 6 and 7, we see the effectiveness
of including the spatial axis of the data array for clutter
suppression. However, the slow-time axis offers very little
sensitivity to perfusion signals; the remaining signal power
indicates a segment of arterial flow (arrows).
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Fig. 9. Comparisons of the visually clearest examples of the first-, second-,
and third-order filters applied to the slow-time data axis (A)–(F) to display
arterial flow and to the frame-time data axis (G)–(L) to display perfusion.
Each image is based on the same 17 frames of echo data.

3) Third-Order Filter: We again analyzed the same echo
data array but now employing all three dimension using the
HOSVD filters of (15). In Fig. 8 (bottom row), we see the
emergence of vascular structures that are not at all apparent
with 1-D and 2-D filters in Figs. 6 and 7. There are three
sets of filter indices, i1, i2, and i3, that specify the ranges in
G passed by the 3-D filter. These are given at the bottom of
the images, where values shown apply to both images in that
row. Here, we see perfusion and slow vascular flow but very
little fast flow or clutter. The advantages brought to bear in
these result are threefold. First, the use of frame-time data
enhances SNCR for perfusion. Second, employing all three
data-array axes increases the effectiveness of clutter filtering.
Third, we use more data than that applied to the results of
Figs. 6 and 7, which greatly suppresses acquisition noise.

In Fig. 9, we compare the results of the first-, second-,
and third-order clutter filters for displaying the slow-time
arterial flow (first three rows of images) and frame-time
perfusion (last three rows of images). All results are obtained
from the same echo-data array, viz., X ∈ C

17×200·240×17. For
the first- and second-order filters, 17 postfiltered images are
averaged over either the slow-time or the frame-time axes to
take full advantage of all echo data. The third-order filter first
decomposes the entire data array before projecting onto the

Fig. 10. PD images are compared using standard FIR clutter filtering
(first row: 25-Hz high-pass FIR filter and second row: 150-Hz high-pass
FIR filter) and adaptive HOSVD filtering (third row) applied to the same
data array. Notice that perfusion in the control limb is fairly uniform,
except in distal regions where the SNCR is low. Conversely, the ischemic
limb shows patchy perfusion throughout. Inset: enlargement of microvessels.
Given that the PD pixel dimensions are 32 μm axially and 60 μm later-
ally, we are resolving 160-μm-dia vessels axially and 300-μm-dia vessels
laterally. Axial resolution for 24-MHz pulses with 12-MHz bandwidth is
approximately 128 μm. The blue and red colorbars indicate, respectively,
color maps related to slow-time power (dB) and frame-time power (dB).

appropriate subspace. The entire echo-data array influences
each image displayed in Fig. 9. In each case, we selected filter
parameters that provided the clearest visualization of RBC
movement. From one set of recorded echo data, we can see
the effects of filter order and data-array axis (eigenbasis) on
the ability to visualize fast or slow-flow patterns in normal and
ischemic hindlimbs. In particular, compare the noise levels in
the third-order filter results with the first- and second-order
results. A noticeable contrast improvement is observed.

The full impact of using 3-D data may be appreciated
when we threshold and color code the power signals before
overlaying them on the B-mode image (Fig. 10) as is tradition-
ally displayed for clinical applications. We use a blue color
map to display the slow-time-axis power (arterial flows) seen
in Fig. 9(E) and (F) and a red color map to display the frame-
time-axis power (blood perfusion) from Fig. 9(K) and (L).
Colored PD images are displayed in the third row of Fig. 10.
The inset shows that 160-μm-dia vessels are clearly resolved.

The first and second rows of Fig. 10 display FIR-filtered
PD images, and the third row shows HOSVD-filtered images.
All are computed from the same echo-data array. We applied
a fixed 25-Hz high-pass FIR filter in Fig. 10(A) and (B)
and a 150-Hz high-pass FIR filter in Fig. 10(C) and (D).
While surface vessels and bone artifacts can be seen in the
25-Hz FIR-filtered and the HOSVD images of Fig. 10, only
HOSVD images show slow flow within the interior vessels
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Fig. 11. Two columns illustrate analyses of data within local regions of three
images. Top row shows the adaptive HOSVD images of normal and ischemic
hindlimbs. White arrows indicate arterial flows, and boxes indicate analysis
regions that include a vessel. The second row shows 9 of the first 18 spatial
eigenvectors, some showing linear shapes similar to vessels seen in top-row
images. Third and fourth rows show the power spectrum of slow-time and
frame-time eigenvectors, respectively. The vertical axis is temporal frequency
with the origin at the center, and the horizontal axis indicates eigenvectors
along the corresponding axes, of which there are 17. Each column of the four
spectral images is the absolute-square Fourier transform of the corresponding
eigenvector. Eigenvectors between the red arrows were passed by the HOSVD
filter for the images displayed in this report. Eigenvectors outside these ranges
were removed by the filter.

of the ischemic hindlimb and uniformly perfused muscle in
proximal regions of healthy controls. Sensitivity is reduced
in distal muscle regions of all images as sound attenuation
reduces SNCR.

IV. DISCUSSION

These preliminary data suggest that the proposed changes in
acquisition and filtering can greatly increase the sensitivity of
ultrasonic power-Doppler perfusion imaging without contrast
enhancement. The HOSVD filter allows us to separate fast
and slow flows that we indicate with blue and red color maps
in Fig. 10 (arrows in top row of Fig. 11 also indicate arterial
flows). We were fortunate to capture a portion of the femoral
artery in the ischemic image. This ligated vessel appears
prominently in the perfusion image, because it is weakly
fed from collateral vessels. Also, at 24 MHz, the ischemic
hindlimb perfusion image inset in Fig. 10(E) clearly displays
vessels with diameter smaller than 200 μm. These small
vessels are less visible in the control hindlimb [Fig. 10(F)]

where surrounding capillary perfusion reduces small-vessel
contrast (not shown).

Baseline perfusion, which is 17 mL/min/100 g in the normal
hindlimb [20], falls to 60%–70% of that value following
femoral ligation [19]. Consequently, a 5–10 g hindlimb muscle
has normal capillary flow in the range of 1–3 mL/min.
A key element of successful HOSVD filtering is selection of
the clutter and blood subspaces within core tensor, G. The
standard selection method is based on eigenvalue information
and echogenic properties of the sources as mentioned in
Section II-C. Since there are only a few prominent elements
in G, we now just try various filter ranges and inspect the
resulting PD images to determine the “best” filter parame-
ters. The following techniques using eigenvector information
could guide a more objective and automated partitioning
of G.

The top-left PD image in Fig. 11 represents a different
normal mouse hindlimb. Here, we see two segments of arterial
flow as indicated by arrows and the blue–green color. On the
right, we reproduce the ischemic hindlimb image from Fig. 10
that displays no fast blood flow patterns. In both images,
we box a region of interest that includes directed vascular
flows away from the transducer; on the left, flow velocity is
in the range 2–15 mm/s and on the right, the flow velocity is
in the range ±0.2 mm/s.

In the second row of Fig. 11, we display the first nine
odd spatial eigenvectors as gray scale images. These are
taken from data in the boxed regions in the above-mentioned
figures. The absolute values of elements in each spatial
eigenvector are reshaped back into the shapes of the 2-D
image patches. Looking closely, we see the linear shape of
the vessel within each eigenvector that is similar to that in
the above-mentioned boxed image region, except for the first
eigenvector. The uniformity of spatial eigenvector 1 suggests
that it is dominated by clutter, while the appearance of a
vessel-like structure in the other eigenvectors suggests that
they are influenced by directional blood flow in the vessel. For
this reason, we eliminate at least the first spatial eigenmode
through HOSVD filtering.

Images of the slow-time eigenvector spectra (third row
in Fig. 11) and frame-time eigenvector spectra (fourth row)
further reveal information about blood flow. In the first
eigenvector spectrum (leftmost column of the spectral
images), the only nonzero value is at zero frequency;
consequently, the first eigenvector offers no information about
movement and should be discarded. The linear spectral pattern
in the normal hindlimb slow-time spectral image between
eigenvectors 5 and 10 [third row in Fig. 11 (left)] suggests a
strong signal is present for fast directed blood flow. Because
this flow is away from the transducer, the linear pattern
appears along the negative-frequency axis, which shows that
there is directional flow information available. Notice that the
spectrum shows evidence of aliasing as the linear structure
wraps from negative to positive frequencies at eigenvector 13.
There is no linear spectral pattern for the normal hindlimb
image in the corresponding frame-time spectrum [fourth row
in Fig. 11 (left)] as expected for the slow, disorganized RBC
movement associated with capillary perfusion. The red arrows
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along the abscissa indicate the upper and lower bounds on
the eigenvector passband set for HOSVD filtering.

There is also an asymmetric linear spectral pattern in the
ischemic hindlimb image between eigenvectors 3 and 9 in
the frame-time spectrum [fourth row in Fig. 11 (right)]. This
corresponds to the relatively slow but downward-directed flow
within the large vessel in the ischemic tissue. We know
that it is slow flow, because it is found in the frame-time
spectrum and the linear pattern indicates that the flow is
directed. Conversely, the slow-time eigenvector spectrum for
the ischemic leg [third row in Fig. 11 (right)] is symmetric
and diffuse, indicating no directed fast flow in this region.

Future work includes imaging at lower transmission
frequencies and higher frame-time rates to assess clinical
utility in human subjects. The low frame rate used for the
murine model is unlikely to span the wider range of perfusion
velocities found in human tissue.

V. CONCLUSION

In this paper, we found that expanding the dimension of the
acquired echo-data array and then strategically reducing the
data dimension using adaptive HOSVD filters lead to images
that suggest improved perfusion sensitivity. At this point in
development, the method offers images of signal power that
describes relative flow and perfusion patterns.

HOSVD filtering appears to enhance the distinct informa-
tion provided by each axis of the 3-D data array, enabling
the visualization of blood components of the echo signal
while effectively suppressing clutter and noise components.
The addition of frame-time data as a separate array dimen-
sion appears to allow increased sensitivity to slower flows
through a longer acquisition period without discarding fast
blood flow echoes offered by the slow-time array axis.
One 3-D acquisition processed via HOSVD effectively
displays both blood components.

Although we apply power-Doppler processing here, we note
that the eigenvector spectra seen in Fig. 11 contain information
about the direction and spatial coherence of RBC move-
ment. In principle, color-flow imaging is possible. We applied
24-MHz ultrasonic pulses to couple the method to the small
mouse model which enabled submillimeter vessel diameter
flows to be imaged with 5-mm tissue penetration.

The price paid for adding the frame-time axis in the
echo-power estimator is that each PD frame requires more
than 1 s worth of data acquisition. Since perfusion is
normally steady or slowly varying, the long acquisition could
be inconsequential depending on the application. The added
sensitivity and lower noise justify the extra time and effort,
especially when imaging stationary echo data that describe
steady RBC movements, as for the application described in
this report. Little effort has been made thus far to minimize
the time required to compute one PD image frame, which
now stands at 19.1 s.

APPENDIX

This Appendix briefly explains the outer-product nota-
tion used in Section II-C.3. The n-mode outer product of

IN -dimensional tensor A ∈ CI1×I2×···×In−1×In×In+1×···×IN

and matrix Z ∈ CJn×In is

D = A ×n Z ∈ C
I1×···×In−1×Jn×In+1×···×IN

where an element of tensor D is

di1...in−1 jn in+1...iN =
In∑

in=1

ai1...iN z jnin .

The (�1, �2, �3)th element of X ∈ CN×S×K is

x�1,�2,�3 =
N∑

i1=1

S∑

i2=1

K∑

i3=1

gi1,i2,i3 u�1,i1 v�2,i2 w�3,i3

which corresponds to a second line of (12).
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