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Efficiency of US Tissue Perfusion Estimators
MinWoo Kim, Craig K. Abbey, and Michael F. Insana, Fellow, IEEE

Abstract—We measure the detection and discrimination effi-
ciencies of conventional power-Doppler estimation of perfusion
without contrast enhancement. The measurements are made in
a phantom with known blood-mimicking fluid flow rates in
the presence of clutter and noise. Efficiency is measured by
comparing functions of the areas under the ROC curve for
Doppler estimators with that of the ideal discriminator, for which
we estimate the temporal covariance matrix from echo data.
Principal components analysis is examined as a technique for
increasing the accuracy of covariance matrices estimated from
echo data. We find that Doppler estimators are less than 50%
efficient at directed perfusion detection between 0.1 and 2.0
ml/min per 2 cm2 flow area. The efficiency was 20-40% for the
task of discriminating between two perfusion rates in the same
range. We conclude that there are reasons to search for more
efficient perfusion estimators, one that incorporates covariance
matrix information, that could significantly enhance the utility
of Doppler ultrasound without contrast enhancement.

Index Terms—Ideal discriminator, pulsed Doppler ultrasound,
ROC analysis, tumor perfusion

I. INTRODUCTION

One of the many capabilities of ultrasonic imaging is the

ability to assess blood flow in tissues using pulsed-Doppler

techniques. Unlike color-Doppler imaging that derives its sig-

nal from coherent directional motion, power-Doppler methods

[1] measure decorrelation of the backscatter signal over time

at fixed points. Power Doppler methods are applied medically

to evaluate vascular flow and detect blood perfusion through

capillary networks [2]–[4].

When assessing slow flow in the microvasculature, the blood

and clutter components of the Doppler frequency spectrum

overlap significantly. Coupling that overlap with the weak

backscattering properties of red blood cells (RBCs), it can be

challenging to use power Doppler methods to detect neovascu-

lature without contrast enhancement [5]. Blood-born gaseous

agents have been successful at boosting the blood component

of the echo signal, which leads to improved separability of

RBC motion from tissue clutter and acquisition noise [6].

However, contrast agents increase exam cost and complexity

[7]. Non-contrast power Doppler methods would be ideal for

noninvasive perfusion imaging provided the blood echoes can

be reliably detected and separated from clutter and noise

components of the echo signal.

In this report, we examine the ideal (ID) discriminator

of ultrasonically-detected blood-perfusion states. This statisti-

cal discriminant function leverages properties of the tempo-
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ral covariance matrix of RF echo signals to describe echo

decorrelation within a scattering region caused by scatterer

motion and noise. The ideal discriminator fully incorporates

statistical information about the random object scatterers into

a scalar test statistic that maximizes the area under the

receiver operating characteristic (ROC) curve [8], or AUC,

thus maximizing classification performance [9] [10]. Provided

scattering is an incoherent Gaussian process, all anatomical

and flow information is found within the covariance matrix of

the object scatterers. The object function covariance matrix is

simply related to that for the pulse-echo measurements using

linear systems [11].

Heimdal and Torp [12] used a statistical discriminant func-

tion as a new color-Doppler estimator in a manner similar

to the analysis described below. Later Hovda et al. [13]

also applied statistical estimators in a technique they called

knowledge-based imaging. They both found the statistical

approach to flow estimation can be very sensitive to flow, but it

requires knowledge of the covariance matrices for all possible

flow conditions. Our goal in this report is to use statistical

estimators to assess the efficiency of standard power Doppler

methods.

The temporal covariance matrix for an imaging experiment

is a combination of pulse properties, scatterer echogenicity,

and scatterer movement. When these properties are known,

as they can be in phantom measurements, the covariance

matrix for specific flow conditions can be estimated from echo

samples. Then the ideal discriminator described in this paper

can be computed and its performance compared with standard

methods to estimate flow discrimination efficiency. Efficiency

quantifies the fraction of available task information being

used by the estimator. Traditional power-Doppler methods are

suboptimal discriminators because they fail to incorporate all

of the specific information about the interaction between pulse

and scatterer motion interactions. This information is specific

to each perfusion event but unknown during clinical studies.

The first step in our approach is to estimate the temporal

covariance matrix of RF echo-data measurements obtained

from a perfusion phantom. We explore how the amount of RF

echo data used for ensemble averaging influences covariance

estimates. For this aspect of the study, we apply principal-

components analysis (PCA) [14] to the echo covariance matrix

to separate blood echoes from tissue clutter and acquisition

noise [15] in an attempt to reduce the amount of echo data

required to accurately estimate the covariance matrix.

We then show that power Doppler estimates that employ

FIR clutter filters can be expressed in a manner analogous to

the ID test statistic. ROC curves are generated for comparisons

of both methods. From perfusion phantom data, we estimate

ROC curves for discriminating between pairs of flow states

using conventional power Doppler methods. These results
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Fig. 1. A dialyzer cartridge was used to mimic blood perfusion in a clutter and
noise environment. An ultrasonic linear array scans the cartridge to acquire
echo data in spectral Doppler mode. Perfusion rates are controlled by a syringe
pump infusing either water or blood-mimicking fluid through the fibers while a
peristaltic pump circulates the water surrounding the fibers to simulate clutter.
As shown, blood-mimicking fluid flow was limited to a cross-section of fibers
about 25% (∼2 cm2) of the total area.

are compared to the ID results to estimate the efficiency

of conventional methods. Finally, we show how the binary

discrimination task may be extended to more general flow

conditions in a way that illustrates how inefficiency reduces

the visibility of flow in power Doppler images of the phantom.

By estimating efficiency, we hope to motivate the need for

new perfusion estimation methods by quantifying the potential

improvements that could result. The analysis presented applies

to any experimental approach to perfusion imaging using

pulse-echo ultrasound.

II. METHODS

A. Flow Phantom

Ultrasonic measurements were made using the perfusion

phantom illustrated in Fig. 1. The critical unit was a dia-

lyzer cartridge consisting of a bundle of hundreds of 0.2-

mm inner-diameter polysulfone fibers (B. Braun Medical Inc.,

Allentown, PA USA). Using a programmable syringe pump

connected to the cartridge, we steadily infused in a closed

loop through the fibers either pure water for the control state or

blood-mimicking fluid (CIRS, Norfork, USA) for the test state.

In this way we simulated spatially-directed blood perfusion

in the range of 0.0 - 2.0 ml/min over a cross-sectional area

approximately 2 cm2 [16]. In addition to intra-fiber infusion,

a second set of cartridge connections allowed water to be

pulsed into the cartridge outside the fibers. Connecting a 1 Hz

peristaltic pump in this way, we simulated clutter from cardiac

motion. A portion of the protective plastic case was removed

to provide an acoustic window, and then the entire cartridge

was submerged in degassed water at room temperature.

We limited flow to just the most proximal 2 cm2 of the cross

sectional fiber area so that net flows ≤2 ml/min provided rep-

resentative scatterer velocities within the fibers. We note that

the density (1.24 g/cm3) and longitudinal sound speed (2260

m/s) of the polysulfone fibers present a strong impedance

mismatch with the surrounding fluids, which reduces sound

penetration and echo SNR. However the ideal detector is

limited by echo SNR in the same way as other estimation

methods, so that discrimination efficiencies will be relatively

unaffected, even if this represents a somewhat more difficult

environment for perfusion estimation.

B. Signal Model

All modeling and analysis were conducted in MATLAB . In

a spectral-Doppler acquisition, a single line of sight (Fig. 1)

is repeatedly probed with N ′ narrow-band pulses as M ′ range

echoes are recorded after each pulse transmission. The result

is M ′×N ′ matrix X′ with elements X ′[m,n]. Two examples

are shown as gray-scale images at the top of Fig. 2.

Column vectors of X′ describe temporal sampling along a

fixed transducer line of site; each vector is the RF echo signal

from the nth pulse along the “fast-time” axis, xn with elements

xn[m] and 0 ≤ m ≤ M ′−1. Row vectors xm are echoes along

the “slow-time” axis where echo signal samples are xm[n] for

0 ≤ n ≤ N ′−1. Integer index m also indicates the distance z
from the transducer surface (depth) via z[m] = z0 + cmT ′/2,

where z0 is the distance at which recording begins, c is the

compressional wave speed, and T ′ is the fast-time sampling

interval. The time interval between pulse transmissions (and

slow-time samples) is T , 1/T is the pulse repetition frequency,

and T ≥ M ′T ′. Since the fast-time axis also corresponds to

depth, we may consider X′ as composed of echoes recorded

at M ′ depths each from N ′ pulses along the slow time axis.

The temporal covariance matrix for zero-mean echo signals

recorded at depth z[m] is the expected value of the outer

product of the mth row vector in X′, i.e., Σx = E(xmxTm),
where superscript T indicates vector transpose. We assume the

standard physical model of blood flow in Doppler ultrasound,

where there are three stochastic sources contributing to Σx

[9], [15], [17]–[19], and each source is assumed to be an

independent zero-mean multivariate normal random process.

The three covariance sources are tissue scattering represented

by matrix C (for clutter), blood scattering by matrix B, and

acquisition noise by matrix E = σ2
eI. The quantity σ2

e is the

noise variance and I is an identity matrix. Unlike E, matrices

C and B are not diagonal, representing the fact that clutter

and blood signals persist to some extent through time. They

contribute to Σx through the filter of instrumentation,

Σx = Σc +Σb +E = HCHT +HBHT + σ2
eI , (1)

where H is the measurement-system matrix. In this model, all

tissue and blood information is contained in Σx.

In practice, we select an M ×N subset of X′ to form the

smaller echo matrix X, where M ≤ M ′ and N ≤ N ′. We then

assume there may be a non-zero mean and that the signal are

ergodic, where spatial averaging is used in place of ensemble

averaging to estimate Σx. For M × N echo matrix X, the

approximation is the N ×N covariance

Σx � 1

M − 1
(X− x)T(X− x) , (2)

with mean x =
1

MN

M−1∑
m=0

N−1∑
n=0

X[m,n] .

Ergodicity is possible when the impulse-response function is

shift invariant and the contributing sources are stationary for

all M rows of X.
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If more data are desired for averaging to improve the

estimate of Eq. (2), the N ′ samples in X′ may be partitioned

to augment the number of rows. For example, if we recorded

N ′ = 1000 pulses at M ′ = 100 depths (total of 1.54 s at 650

Hz PRF), each row could be partitioned and rearranged into

five 200-pulse packets to form a 500×200 matrix X, yielding

covariance matrices of size 200× 200.

C. Ideal Discriminator Approach to Perfusion Estimation

Assuming the covariance matrices can be accurately mea-

sured, consider a measurement vector x (subscript m is

understood). Its specific properties are unknown except that

it was recorded from one of two possible perfusion states that

we label 0 or 1. Echo signals from the two states are both

multivariate-normal zero-mean processes,

x ∼
{

MVN(0,Σx|0) for perfusion state 0

MVN(0,Σx|1) for perfusion state 1
, (3)

where Σx|0 = Σc+Σb0+E and Σx|1 = Σc+Σb1+E. That is,

Σx|i are Σx measured for the ith state, where i = 0 or 1. The

only difference between these two echo-signal distributions is

the perfusion rate via Σbi .

The classification task is to decide to which state x belongs.

That task is optimally achieved by the likelihood ratio test

[20] given by the ratio of echo probability density functions

conditioned on the two states,

�(x) = ln
p(x|1)
p(x|0) ∼ 1

2
xT(Σ−1

x|0 −Σ−1
x|1)x = xTQx . (4)

The symbol ∼ is used to indicate terms independent of

x are discarded since they do not influence classification

performance [11]. Scalar �(x) is the test statistic for the ideal

discriminator, a quadratic function of testing-data vector x.

For convenience, we define the difference between inverse

covariances for the two states by the matrix

Q = Σ−1
x|0 −Σ−1

x|1 . (5)

In the following, we refer to echo data recorded for estimat-

ing Σx as training data. Alternatively the echo data indicated

by x in Eq. (4) are referred to as testing data. We train and test

on different sets. Σx are estimated using Eq. (2) and training

data. These matrices are nonsingular because of the presence

of acquisition noise; their inverses exist as long as there are

more samples than degrees of freedom. Σx and Q estimations

are described in Section II-D and illustrated in Fig. 2.

Decisions based on test vector x for which �(x) has been

estimated are expressed as

D(x) = step(�(x)− τ) , (6)

indicating the decision is state 0 when � < τ and state

1 when � ≥ τ for threshold τ . For example, �(x|1) is

correctly classified when D(x) = 1 and incorrectly classified

when D(x) = 0. To measure discrimination performance, we

consider all possible threshold values as shown in Section II-G.

Fig. 2. Illustration of the procedure for generating data matrices X and
covariance matrices Σx|i. From covariance matrix inverses, Q are formed

(Eq. (5)) and Q̄ (Eq. (14) in II-H). Echo vectors randomly selected from
within X′ (i.e., the small white rectangles in grayscale images at top) are
used to form X.

D. Estimating Σx|i and Q

The top of Fig. 2 illustrates the process of randomly

selecting data vectors for X to estimate Σx. In this example,

we recorded 3250 (650/s × 5 s) RF echo signal segments for a

fixed-position 2-mm range gate (2 mm× 20 samples/μs)/(0.77

mm/μs)=52 samples) near the transmit focus of the transducer.

Throughout each 52×3250 matrix X′, (grayscale images at

top of Fig. 2), we assume the system response is linear time-

invariant and the random processes associated with the three

sources are wide-sense stationary. We then randomly select

packets to form data sub-matrix X. The length and number of

packets selected depend on the experiment.

E. Standard Approaches to Perfusion Estimation

We can express standard power Doppler estimation using

an expression similar to Eq. (4) as follows for a single test

vector x. Techniques that apply a Fourier-domain wall filter

to minimize clutter can be written as

�̄ = (Fx)T(Fx) = xTQPDx . (7)

F is a circulant N×N matrix that defines a high-pass filter. We

define QPD � FTF, which is different from Q that involves

covariance matrices in Eq. 4. For example, a DC-cancellation

filter is

QPD = I− 1

N
1 , (8)

for N ×N matrix 1 in which every element is set to one.
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Fig. 3. The top row shows 100×100 QPD matrices for, respectively,
a DC cancellation filter, 12.25 Hz FIR high-pass filter, and 60 Hz FIR
high-pass filter. Each matrix in the top row implements the operation of
high-pass filtering and summing in the time domain via Eq (7) to yield
signal power measurements for conventional PD estimates. The 100×100
matrices (D), (E) and (F) are Q matrices for the ID estimator (unfiltered
echo data) at three perfusion rates, 0.4, 1.0 and 2.0 ml/min, respectively.
Each experimentally-measured matrix is the difference between two inverse
covariance matrices via Eq (4), and has patterns characteristic of the pair of
flow states being compared. The covariance matrices forming Q in the bottom
row are stationary and thus Toeplitz; each was formed using an ensemble of
50,000 packets to obtain low-noise estimates.

F. QPD and Q Matrices
Fig. 3 displays QPD (top row) and Q (bottom row) matrices

as images. QPD matrices are for the DC cancellation filter (A),

a 12.25-Hz high-pass FIR filter (B), and 60-Hz high-pass FIR

filter (C). QPD are formed independent of echo data because

they are simply implementations of high-pass filters.
In contrast Q are formed from echo signals recorded at

specific perfusion states. Parts (D), (E) and (F) show Q
matrices for steady blood-mimicking perfusion at three rates

compared with their controls. Because each is the difference

between two inverse covariance matrices, it is hard to intuit the

patterns in each case. The bottom row shows that Q matrices

describe experimental information specific to the combination

of pulse properties, echogenicity and perfusion properties that

do not appear in the generic QPD of the top row.

G. Discrimination Performance
Performance quantifies the ability to achieve a task. Flow-

discrimination performance is measured by comparing AUC

values resulting when perfusion estimates are used to differ-

entiate distinct perfusion states.
Fig. 4 illustrates the formation of ROC curves from his-

tograms of �(x|1) for test state 1 (0.4 ml/min blood-mimicking

fluid flow) and �(x|0) for control state 0 (0.4 ml/min water

flow). The histograms provide estimates of the probability of

detection, PD = P (�(x|1) > τ), versus the probability of false

alarm, PF = P (�(x|0) > τ) [21]. That is, PD(τ) and PF (τ)
are found by summing the histograms from τ ≤ �(x) < ∞
over all possible τ to generate the ROC curve shown on the

right. Perfect detection yields AUC = 1, which occurs when

the two distributions do not overlap. A worthless detector

generates an AUC = 0.5 that results from the two probability

distributions being identical.

Fig. 4. (A) Histogram of likelihood ratios � found from phantom measure-
ments for two perfusion states. The distributions of clutter and noise are the
same for the two states, but the blood flow states are different. Red and
blue histograms represent �(x|1) and �(x|0), respectively. The probability of
correctly detecting blood-mimicking fluid perfusion is PD and the false alarm
probability is PF . These are found by integrating histograms for �(x|1) and
�(x|0) above threshold τ . (B) The ROC curve is a plot of PD versus PF as
discrimination threshold τ is varied. AUC in this case is 0.83.

The efficiency η by which standard power-Doppler tech-

niques distinguish two perfusion states compared to that of

the ideal discriminator for the same task is computed using

[11]

η =
Φ−1(AUCPD)

Φ−1(AUCID)
. (9)

Function Φ−1(·) is the inverse of the cumulative normal

function, and AUCPD and AUCID are areas under the ROC

curves for the standard power-Doppler and ideal-discriminator

approaches, respectively.

H. PCA Filtering

When we know the echo covariance matrix, e.g., if we

can precisely measure it for known perfusion conditions,

there is no need to separate the different contributions since

each known source of covariance becomes part of the ID

calculation. Clutter and noise filtering are required clinically

because these covariances are unknown. We were concerned

that errors made while estimating the covariance matrix might

degrade classification performance below the ideal (maximum)

value. To address this concern, we studied how the size of the

echo-data training set influenced performance and report the

results below. During that study, we also asked if filtering

the training data used to estimate Σx to suppress clutter and

noise might allow ideal performance to be achieved with less

training data.

This section describes our implementation of principal-

components analysis specifically for reducing errors in covari-

ance matrix estimates. Filtering out sources that contribute to

Σx is a reduction in dimensionality [14], [15], [17]–[19] that

we seek to achieved by identifying matrix W that returns

clutter- and noise-suppressed vector y from training echoes

x. That is,

y = Wx , (10)

where x ∈ �N×1, y ∈ �J×1, and W ∈ �J×N for J ≤
N . W is chosen to maximize the separability of likelihood
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Fig. 5. A simplified eigen-spectrum of Doppler echo-signal vector xm where
eigenvalues λk are sorted in decreasing order. Values are grouped into sets,
C, B and E, that approximate the three sources contributing to Σx.

functions p(y|0) = p(Wx|0) and p(y|1) = p(Wx|1) for the

two perfusion states; i.e., there is a function f such that

W = argmax
W ′

f(p(W′x|0), p(W′x|1)) . (11)

W is found from an eigen-decomposition of the covariance

matrix

Σx|i =
N∑

k=1

λkuku
T
k (12)

=
∑
k∈C

λkuku
T
k +

∑
k∈B

λkuku
T
k +

∑
k∈E

λkuku
T
k ,

where eigenvalues λk and eigenvectors uk are listed in de-

scending order left to right and grouped into three subspaces

C, B and E as shown in Fig. 5.

Moving-tissue echoes (clutter) typically contribute the

largest eigenvalues to Σx|i, as tissue scattering is more

echogenic than blood scattering. Also, the spatially coherent

and temporally periodic patterns of clutter motion concentrates

its eigenmodes into a low-dimensional subspace with eigen-

vectors {uk|k ∈ C}. In contrast, the weaker scattering of

red-blood cells generates blood-echo components in lower-

amplitude eigenvalues. As perfusion often generates a more

diverse pattern of scatterer motion than clutter, it forms

a somewhat larger-dimensional subspace with eigenvectors

{uk|k ∈ B}. Acquisition noise is typically the smallest-energy

component of the echo-signal covariance and it usually spans

the entire basis.

Given that blood components in B correspond to eigenval-

ues at {k, · · · , k+J−1} (k = 3, 4, 5 in the simplified example

of Fig. 5), then y is found from the projection of signal vector

x onto that feature space. In terms of Eq. (10) we have,

W =
[
uk,uk+1, · · · ,uk+J−1

]T
. (13)

Consequently, J is the cardinality of set B since we as-

sume the other subspaces have no information useful for

discriminating perfusion states. In this study, we selected k
and J for PCA filtering by discovering which subgroup of

eigenvalues maximized flow discrimination performance via

AUC measurements.

The eigenbasis cannot completely separate blood and clutter

components but, among all orthonormal bases of that dimen-

sion, it spans the maximum clutter-signal energy such that

the mean-square error between it and the true clutter signal is

minimized [22].

Applying PCA filtering to covariance matrix estimates, we

have

Σy|i = WiΣx|iWT
i , i = 0, 1 ,

�̃(x) = xT(WT
0Σ

−1
y|0W0 −WT

1Σ
−1
y|1W1)x

= xTQ̃x . (14)

Q̃ ∈ �N×N has rank J < N , and so Q̃ is a reduced-rank

version of Q. Q̃ estimation is illustrated in Fig. 2.

III. RESULTS

A. Data Acquisition

Echo data were recorded using a Sonix RP ultrasonic

imaging system (Ultrasonix Medical Corp., Richmond, BC,

Canada) and a linear-array transducer. The transducer, located

above the dialyzer cartridge, probes the fibers with narrow-

band pulses at a Doppler angle of 50 degrees. Tests with

blood-mimicking fluid provide perfused-state data including

clutter, blood, and noise signals. Control data were recorded

by replacing the blood-mimicking fluid with degassed water,

thus maintaining the same clutter and noise signal. Table I

summarizes the experimental parameters.

TABLE I
ACQUISITION PARAMETERS

Parameter Value
Probe type Ultrasonix L14-5
Pulse center frequency 5.0 MHz
Doppler pulse length 4 cycles
In-plane transmit focal length 15.75 mm
In-plane transmit f-number 2.02
Testing ensemble size 40-100 pulses
Fractional bandwidth 20%
Axial range of sample volume 2 mm
Pulse repetition frequency 220-650 Hz
Fast-time sampling rate 20 MHz
PD line density (Fig. 10) 2.5/mm

B. Experimental Overview

We compared blood-mimicking fluid perfusion state 1 to

its water-only control state 0 to study perfusion detection
in Experiment I. We then compared two different blood-

mimicking perfusion states between 0-2 ml/min to study

perfusion discrimination in Experiment II. From histograms of

test statistic responses, e.g., Fig. 4, AUC values were computed

for conventional power Doppler and ID estimators and applied

to Eq. (9) to determine estimator efficiency.

Test statistics reported as conventional power-Doppler esti-

mates were computed using Eq. (7). Estimates involved echo

data for which either a DC cancellation filter, Eq. (8), or a

high-pass FIR filter was applied. Ideal discriminator (ID) test

statistics were computed using echo data that was unfiltered

via Eq. (4) or PCA-filtered via Eq. (14). We will show in
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Fig. 6. (A) Areas under ROC curves (AUCs) for perfusion detection using
different perfusion rates and estimators. The state 0 condition uses water in
place of the blood-mimicking fluid. The white bar indicates ideal-discriminator
(ID) performance, and the gray bars are the performances of the conventional
power-Doppler (PD) estimator for the DC cancellation and FIR clutter filters.
(B) Detection efficiency of Doppler methods relative to the ID method. Error
bars denote ±2 standard errors for 300 trials.

Experiment IV that the only effect PCA filtering has on

ID estimator performance is to improve estimation accuracy

with a smaller training set. Experiment V illustrates how the

ID formalism can be adapted for imaging under the special

situation where the covariances are known.

C. Experiment I: Detection

Experiment I provided data to compare perfusion-

detection performances of standard power-Doppler and ideal-

discriminator approaches. In each case blood-mimicking fluid

perfusion measurements were compared to water-perfused

control measurements. Σx was estimated using a training set

of 3000 vectors each of packet size 100 recorded at PRF =

650 Hz.

Detection performance is summarized in Fig. 6, where

testing sets are composed of 300 echo-signal vectors. Doppler

estimator results involved an FIR filter having a high-pass

corner frequency that was selected to maximize AUC. Fig. 6

(A) shows AUC values for the range of perfusion rates

tested relative to the corresponding control state. As expected,

performance for each estimator improves as flow rates increase

because of better separation between the clutter and blood

components. Detection performance estimated from power-

Doppler versus ideal-discriminator test statistics is summarized

by the efficiency measurements shown in Fig. 6 (B). At flows

below 1 ml/min, PD estimators are less than 50% efficient.

Fig. 7. (A) Areas under ROC curves (AUCs) for perfusion discrimination
using different perfusion rates and estimators. In (A) and (B), state 0 applies
blood-mimicking fluid perfusion at a rate of 0.1 ml/min while (C) and (D)
use state 0 blood-mimicking fluid perfusion at a rate of 0.4 ml/mi. The
white bar indicates performance of the ideal-discriminator (ID), and the gray
bars are that for the conventional power-Doppler (PD) estimator for the DC
cancellation and FIR clutter filters. Results at 0.4 ml/min in (A) and (B) are
by definition the same as those at 0.1 ml/min in (C) and (D). Error bars denote
±2 standard errors for 300 trials.

D. Experiment II: Discrimination

Experiment II estimated the efficiency for perfusion dis-

crimination of PD estimators. Here we measured the ability

of power-Doppler method to discriminate various perfusion

rates when compared to perfusion at 0.1 ml/min in Fig. 7 (A)

and (B). Comparisons are also made relative to 0.4 ml/min in

Fig. 7 (C) and (D). Discriminating two perfusion states is more

challenging than detection, as quantified by the lower AUC

values in Fig. 7 (A) and (C) relative those in Fig. 6 (A). Along

with lower overall AUC values, we find that PD estimators are

also less efficient at discrimination than detection.

E. Experiment III: PRF and Frequency Resolution

We expect the pulse-repetition frequency (PRF) to have a

different influence on perfusion-detection performance than

it does on arterial-flow estimation since aliasing is not a

limiting factor in perfusion estimation. For perfusion esti-

mation, the total time spanned by packet samples is very

influential because it determines the frequency resolution of

a Fourier basis. Conditions that improve frequency resolution

also increased the number of samples in the B eigen-subspace,

which improves perfusion discrimination.

Fig. 8 shows the results of two experiments that demonstrate

the value of high-frequency resolution. In (a), we increase

the packet size by increasing PRF without changing the total

duration of slow-time measurements to find no measurable
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Fig. 8. Plots of detection AUC at 0.4 ml/min perfusion measured from the
ID test statistic as a function of pulse-repetition frequency (PRF). In (A), the
total time duration of the echo vector is fixed at 0.1864 s and the vector size
varies as 0.1538×PRF pulses. In (B), the vector size is fixed at 100 pulses
while time duration varies as 100/PRF s. Error bars denote ±2 standard errors
for 300 trials.

change in ID detection performance. Conversely, in Fig. 8(b)

we fix the packet size at 100 and allow the increase in PRF

to decrease the total duration spanned by the packet. We

find performance decreases with the reduction in frequency

resolution. The change in AUC between PRF = 217 Hz (0.83)

and 650 Hz (0.76) is modest, but the corresponding change

in efficiency via Eq. 9 is a factor of 2, which is highly

significant. The best performance for perfusion detection and

discrimination is found at a PRF less than 1kHz and the largest

packet size that preserves signal ergodicity.

F. Experiment IV: Effects of PCA Filtering

Fig. 9 illustrates how the number of echo vectors used to

estimate the covariance matrix influences ID performance with

and without PCA filtering of the training set. In Fig. 9(a),

where we used a packet size of 50 pulses, a plateau is

reached near AUC � 0.65. We only need 400 training vectors

to achieve ideal-discriminator performance because the AUC

does not increase using a larger number of training vectors.

In the plateau region, PCA filtering has no influence on AUC.

However, as the number of training vectors falls below 400,

we find AUC also falls as errors in covariance estimates

increase; below 400 training vectors, we are not estimating

the ideal-discriminator response. We see that the reduction in

AUC values below 400 vectors is less using PCA-filtered echo

signals to estimate Σx because we generate fewer covariance

errors by suppressing the clutter and noise components.

Fig. 9. Changes in detection AUC at 0.4 ml/min as a function of the number
of vectors used to estimate the covariance matrices (training samples) and test-
vector length (packet size). Test-vector sizes are (A) 50, (B) 100, and (C) 150
pulses. Points marked (o) are for the ID estimator in which the echoes used to
estimate covariance were unfiltered. Points marked (x) use PCA-filtered echo
signals. Note that the point at the far right in each plot is for 3000 training
vectors. Error bars denote ±2 standard errors for 300 trials.

Increasing the test vector packet size to 100 in Fig. 9(b)

and to 150 in Fig. 9(c) at fixed PRF raises the detection-

performance plateau because of increased in frequency res-

olution. However, we must increase the training set to 800

vectors or more before a plateau is reached.

The data of Fig. 9 show that ID performance is not affected

by echo-data filtering, although PCA-filtering generates fewer

covariance estimation errors leading to performance estimates

closer to the ideal discriminator. It also provides evidence

that clutter filtering is not fundamental to achieving optimal

discriminability when statistical properties of the echo signal

are known or can be measured; the need for clutter filtering de-

pends on the requirements of the perfusion estimator adopted.

The following computational times were measured using
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Fig. 10. Conventional power-Doppler image of phantom perfusion at 0.6
ml/min (right) and that obtained using the ID estimator (left) for the same
recorded echo data. Results are coded in color and overlaid on the B-
mode image. The image is a cross sectional view of the dialyzer cartridge
diagrammed in Fig. 1.

an Intel processor i5-4300U CPU, 2.50GHz running MATLAB

2013b. The average time to compute Q matrices (training) was

0.028s without PCA filtering and 0.106s with PCA filtering.

The computational time for testing was 0.068s per data set.

G. Experiment V: Imaging

We illustrate in Fig. 10 the effects of lower detection

efficiency by comparing standard Doppler estimation with a

statistical estimator inspired by the ID approach. Note that

this method is only possible because we have training sets of

known perfusion rates.

Perfusion was estimated for the phantom of Fig. 1 by

extending Eq. (4) to M-ary hypothesis testing using

�k(x) = ln
p(x|k)
p(x|0) � dk + xTQkx , (15)

where dk = log(|Σx|0|/|Σx|k|) is the logarithm of the ratio of

deteriminants, Qk = Σ−1
x|0 −Σ−1

x|k and k ∈ {1, 2, · · · , 19, 20}
denotes the 20 nonzero perfusion states between 0.1 and 2.0

ml/min for which covariances were estimated. The perfusion

estimate at each location is found from Qk that maximizes

the test statistic,

D(x) = argmin
k

(�k(x)) . (16)

The procedure for estimating the covariance matrices is the

same as that in Section II-D. Then we estimated �k(x) for

all the test data in the 2-D spatial window shown in Fig. 10.

Test vectors consist of 40 (200 Hz × 0.2 s) slow-time echo

signals at each window position over a 400-sample axial range

((15.4 mm × 20 samples/μs)/(0.77 mm/μs)=400 samples) and

a 65 scan line lateral range ((25.8 mm)/(0.4 mm/scanline) =

65 scan lines). The total number of test vectors is 400 × 65,

one for each point in the white box of Fig. 1, and each

test vector has 40 samples. The image on the left side of

Fig. 10 was obtained by color coding the results of the test

vector by Eq. (16) at each pixel according to the twenty flow

states possible and superimposing those values on the B-mode

image. A conventional Doppler image with the same color

mapping is shown on the right.

IV. DISCUSSION

The efficiency of conventional power-Doppler methods

using FIR clutter filtering for detecting and discriminating

perfusion-like blood velocities without contrast enhancement

is in the range of 20-50%. This finding suggests there may

be more efficient label-free perfusion estimators. Examining

Eq. (4) we see that the strategy of the ideal discriminator is to

use the entire covariance matrix in decision making, which is

only possible if the states being compared are known statisti-

cally. Each echo covariance matrix is a specific combination of

properties of the interrogating pulse and scatterer reflectivity

and motion. Conventional power Doppler methods do not

apply the covariance matrix during the power calculation,

which means they sub-optimally weight echo signals during

the squaring and summing process.

Perfusion images are enhanced to reveal flows that are closer

to the true value by properly weighting each test vector with

covariance information. We demonstrated enhanced flow in

the phantom via the image of Fig. 10, however, this approach

is only possible when the true covariance estimate can be

accurately estimated for a known flow condition. Future work

includes development of statistical flow estimators that intro-

duce covariance matrix information into process. Even if the

method is sub-optimal, independently validated in vivo testing

will be able to quantify benefits. Importantly, the methods

described in this paper can be applied to any new estimator

to measure its discrimination efficiency and be compare those

results with standard approaches to evaluate efficacy.

There are two further issue with respect to our study to note.

The high attenuation of the dialyzer cartridge fibers reduces the

echo SNR because of greater attenuation and less penetration.

Also we assumed spectrally white acquisition noise in Eq. (1)

despite there being a slight reduction in the noise spectrum

(∼1.6 dB) from zero frequency to Nyquist (red-shifted noise).

Nevertheless, both conditions apply equally to �(x) for ID and

PD methods and therefore estimator efficiency is not affected.

For the same reasons, we expect the efficiency of discrimina-

tion for superficial and deep tumors to be roughly equivalent

even though the performance for detecting perfusion in deep

tumors is lower than for superficial tumors.
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