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1. Introduction

Indentation is a primary modality for characterizing the 
mechanical properties of a large variety of materials. The 
load-relaxation curve obtained during a displacement/strain-
hold experiment can reveal intrinsic properties of a visco-
elastic material when an appropriate model is fit to the data 

[1, 2]. Exponential parameters from a Prony series applied to 
a load-relaxation curve are frequently considered in polymer 
characterizations [3], while the mechanics community pre-
fers classical constitutive models such as the Maxwell model 
[4–6], the Kelvin–Voigt model [7–9] and standard linear solid 
models [10–12]. Combinations of these elementary models 
have also been applied to improve model fits while estimating 
viscoelastic parameters [13–15]. One common element of all 
these modeling approaches is to find a good balance between 
model simplicity and experimental fitting accuracy. Increasing 
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the parametric dimension generally renders better fits, but 
increases the difficulty of translating model parameters into a 
concise set of intrinsic mechanical properties.

Fractional-derivative (FD) models have been applied in 
part to solve this dilemma. FD models represent viscoelastic 
material responses more closely than integer-order models 
and with fewer parameters [16–19]. Fractional-derivative 
models are a combination of spring and fractional-order 
dashpot elements that reflects both elastic and time-dependent 
viscous mechanical behavior. The model fits load-relaxation 
data well despite a small number of fit parameters. Fractional 
Maxwell model, fractional Kelvin–Voigt (KVFD) model and 
fractional standard linear solid models have been widely used 
to describe the mechanical response of a variety of biological 
tissues as well as tissue-mimicking phantoms [20–25]. As for 
modeling load-relaxation curves, KVFD was shown to repre-
sent soft polymer dynamics very well, and the corresponding 
model parameters have been interpreted in terms of the mate-
rial properties of elasticity and viscosity [25].

A majority of load-relaxation tests apply step compressions 
mainly for the analytical convenience of deriving a step-hold 
relaxation response solution. However, it is difficult to apply 
a near-step strain without creating oscillating transients that 
are more representative of the measurement device than the 
material. Unless the transients are accurately modeled, sig-
nificant errors in model parameters are generated. In contrast, 
the ramp-hold relaxation experiment dramatically improves 
model-fit stability by not generating measurement artifacts 
[26–29]. The analytical solution for the ramp-hold experiment 
can be derived by combining the Boltzmann integral with the 
constitutive equation  of a given model assuming a closed-
form integral formula can be found. Recently, Mattice et al 
[28] proposed a method based on a generalized Maxwell–Arm 
Wiechert model where no analytical solution was available 
for spherical-indentation testing. Instead, a correction factor 
was applied analogous to that of the ramp-hold applied stress 
solution for a creep experiment to correct fitted parameters 
from a step solution. The analysis demonstrated the feasibility 
and advantages of using ramp-hold applied strains to perform 
load-relaxation tests [28].

In this report, we explore models for estimating viscoelastic 
properties using the ramp-hold relaxation paradigm. Integer-
order models expressed as Prony-series are compared to frac-
tional-order expressions based on the Kelvin–Voigt material 
model. Performance of the analytical solution in describing 
the time-dependent mechanical response was examined using 
soft viscoelastic polymers with systematically varied vis-
cosity. We studied the effects of different experimental con-
ditions on KVFD parameter estimations; e.g. we varied the 
duration of the relaxation time series included in the model 
fits, the strain rates of the applied ramp deformations, and we 
compared measurements using spherical indention with those 
of plate compression. Results are evaluated based on estima-
tion precision and measurement independence. Conclusions 
and recommendations for experimental protocols using the 
ramp-hold relaxation test are offered.

2. Theory

2.1. KVFD model

The Kelvin–Voigt fractional derivative (KVFD) model 
describes the time-dependent relaxation behavior of visco-
elastic materials. Strengths of this model include its flexibility 
for describing different types of materials with just three 
parameters. The linear KVFD model is illustrated in figure 1.

Stress σ is predicted from the applied strain ε given the 
relaxation modulus G of the material through the Boltzmann 
superposition integral [29, 30],
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For the KVFD model, the constitutive equation  for the 
stress–strain relationship can be expressed by the following 
fractional-derivative equation [31] 
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where E0 is the elastic modulus, η is a viscosity coefficient, 
and α is a real number between (0,1) that defines the deriva-
tive order. Letting η τ= αE0 , the relaxation time constant τ is 
used in place of η to give the second form of equation (2) to 
define a 3D feature set for materials characterization ( )α τE , ,0 .

The Laplace transforms of equations  (1) and (2) can be  
equated to show the relaxation modulus for the KVFD  
model is
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where ( ) ∫Γ =
∞ − −z t te dt z

0
1  is a Gamma function.

In the following sections, we derive a mathematical solu-
tion for the ramp-hold relaxation test based on the KVFD 
model for both the spherical-indenter and plate-compressor 
geometries. These are the analytic solutions fit to relaxation 
time series, including the ramp deformation, to estimate the 
3D feature set.

Figure 1. Schematic representation of the KVFD model.
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2.2. Spherical indenter, ramp-hold relaxation solution

A hemi-spherical indentation tip is pressed into the surface of 
a large-size sample at constant velocity, after which the probe 
position is held fixed as we monitor relaxation of the force on 
the probe over time.

A force–displacement relation is used in place of a stress–
strain relation modeling spherical indentation data. The 
Boltzmann integral expression for spherical indentation under 
displacement control was shown to be [28] 

( ) ( ) ( )
∫ τ

τ
τ

τ= −P t
R

G t
h8

3

d

d
d ,

t

0

3/2

 (4)

where ( )P t  is the force and ( )h t  is the displacement depth of 
the indenter tip into the sample. The ramp-hold displacement 
function is
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where Tr is the duration of the ramp and k is the velocity of the 
indenter tip during that time.

The time-varying force response predicted to occur 
during the ramp-hold relaxation test is derived by combining 
equations (3)–(5),
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where ( ) ( ) ( ) ( )∫= − > >− −B x y t t t x Re y, 1 d Re 0, 0x y
0

1 1 1  

is a complete beta function and ( ) ( )∫= −− −B a x y t t t; , 1 d
a x y

0
1 1   

afor 0, 1[ ]∈  is an incomplete beta function.
The step-hold displacement function is ( ) ( )=h t h u tmax , 

where ( )u t  is the unit step function. So equation (1) reduces to
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A detailed derivation is provided in the appendix.

2.3. Plate compression, ramp-hold relaxation solution

In this experiment, a plate larger than the sample surface 
compresses a cylindrical sample from above and we assume 
free-slip boundary conditions. The sample is placed on a flat 
immovable surface with its side boundaries free to expand.  
A ramp displacement compresses the sample and is held fixed 
as the force on the plate is measured over time.

The time-dependence of the ramp-hold strain function 
is similar to equation  (5), except that the strain ( )ε t  is used 
instead of displacement ( )h t . Using the Boltzmann integral 
expression from equation  (1), the stress-relaxation response 
for the plate compressor is [29] 
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The step-hold strain function is ( ) ( )ε ε=t u t0 , which reduces 
equation (1) to
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3. Materials and methods

3.1. Materials

The viscoelastic samples in this experiment are made of  
gelatin powder, deionized water and a skin cream each in spe-
cific weight percentages. Gelatin powder (Type B, Rousselot 
Inc., Dubuque IA) was mixed with deionized water in a beaker 
at room temperature, and heated in a 70 °C water basin for 
45 min. The beaker was covered by aluminum foil to prevent 
water evaporation. It was stirred every 5 min until visually 
clear. After the gelatin–water mixture was removed from the 
water bath, it was cooled at room temperature to 30 °C, cream 
was added and stirred well until visibly homogeneous, and 
then the mixture is poured into cylindrical molds to congeal. 
The cylindrical mold is precisely machined to ensure a high 
degree of axial symmetry and flat, parallel end surfaces. Since 
samples retain their shape after being removed from the mold, 
they present a flat parallel surface to the plate compressor.

Cream (Vanicream, Pharmaceutical Specialties, Inc. 
Rochester, MN) was added to the molten gelatin as water 
was removed and the gelatin concentration held fixed in 
order to increase the viscosity of the sample without signifi-
cantly changing stiffness. This gel–cream mixture is a solidi-
fied emulsion of cream particles suspended in liquid gelatin 
that is allowed to congeal into a solid. These samples express 
viscoelastic properties in the range of soft biological tissues. 
In contrast, gelatin gels constructed without the cream parti-
cles generally respond elastically to compression [36]. The 
molds used to form samples for spherical indentation testing 
are 50 mm in diameter and 20 mm in height. The molds used 
to form samples for plate testing are 37.5 mm in diameter 
and 19 mm in height. All samples were covered with plastic 
wrap and stored at room temperature for 16 h after construc-
tion and before mechanical testing. It is very important that 
the sample-manufacturing process be exactly reproduced in 
detail for material properties to be reproducible day to day.

Three different samples were prepared with the same gelatin 
concentrations (5% by weight). The concentrations of cream 
were 5%, 15%, and 50% by weight, and the corresponding 
deionized water concentrations were 90%, 80%, and 45%, 
respectively. These three samples are labeled Gel5Cream5, 
Gel5Cream15, and Gel5Creal50 in the results section.

Meas. Sci. Technol. 27 (2016) 025702
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3.2. Experiment

Mechanical testing employed the TA-XTPlus Texture 
Analyzer with two compression probes: a spherical-tipped 
indenter with 5 mm diameter and a flat plate compressor 
having a diameter larger than the cylindrical samples. Load-
relaxation tests with ramp deformations were performed on 
each sample at room temperature.

The spherical indenter has a diameter one tenth that of 
the sample diameter to minimize boundary effects. The max-
imum displacement of the spherical probe into the top surface 
of the sample was always =h 1 mmmax . However, the probe 
speed was varied between 0.01–5.0 mm s−1 to give a range 
of ramp times. Afterward, the probe was held in place for 
200–300 s while the decaying force on the probe from vis-
cous relaxation was measured. All tests were conducted with 
deionized water on top of the samples to minimize surface 
adhesion forces. We verified that water was not significantly 
absorbed by the samples during the experiments, and thus the 
mechanical properties of the phantom were not significantly 
influenced by the water. Specifically, force–displacement 
measurements made with water on the top sample surface 
and processed according to Hertzian contact theory to find 
an elastic modulus were found to be equivalent to force–dis-
placement measurements made without water on the sample 
and processed according to JKR theory. The agreement was 
within measurement error provided the measurements were 
completed within an hour [32].

For plate-compression, samples were removed from the 
mold carefully before testing and placed on a flat surface. The 
top surface of the sample was displaced =h 1 mmmax  toward 
the bottom surface at a ramp speed of 0.1 mm s−1 to give ramp 
times of Tr  =  10 s. Samples were held for 300 s to measure 
stress relaxation.

We established the initial contact point of the plate with the 
sample surface as follows. In a preliminary step, we compressed 
the sample at very low constant speed (0.01 mm s−1) before 
attempting the ramp relaxation test. A short-time moving-
average filter was applied to the recorded force-versus-time 
curve to filter a small amount of load-cell noise as we detected 
the point at which the force first deviates from zero. We then 
positioned the probe at this point, waited at least 1 min to let 
the sample recover, and started the ramp-load relaxation experi-
ment. Because the opposing sample surfaces were flat and par-
allel, this simple method provided a reproducible contact point.

Figure 2. KVFD fitting of a measured ramp-hold relaxation curve for 5Gel5Cream sample using spherical indentation. The measured 
force-relaxation curve is shown as blue dots and the best-fit model curve is shown as a red dotted line. The experimental data in the zoomed 
figure is down sampled a factor of 10 in the ramp phase and 50 in the holding phase.

Table 1. KVFD model parameters estimated from different durations of the relaxation data (top row) for the 5Gel15Cream sample using 
spherical indentation. Values shown are from measurements made on one sample.

Time (s) 0–20 0–50 0–100 0–300 10–20 10–50 10 –100 10–300 CV1 CV2

 E0 (Pa) 2038.2 2032.1 2027.8 2021.3 2109.9 2096.2 2077.6 2068.1 0.0035 0.009
α 0.134 0.135 0.135 0.135 0.133 0.135 0.135 0.135 0.0037 0.0037
τ (s) 28.388 29.292 29.792 30.192 19.292 22.692 25.692 29.092 0.0264 0.1730

Note: CV1 values are coefficients of variation for fits including the ramp phase of the relaxation curve. CV2 values do not include the initial 10 s ramp phase.

Table 2. DMW models parameters estimated from different 
durations of the relaxation data (holding phase only) for the 
5Gel15Cream sample using spherical indentation. CV2 values may 
be compared with those in table 1.

Time (s) 10–20 10–50 10–100 10–300 CV2

C0 (Pa) 1553.2 3265.9 3308.6 3116.4 0.2997
αf 0.566 0.614 0.587 0.580 0.0488
τ1  (s) 7.47 2.485 3.66 121.00 1.7314
τ2 (s) 2.02 46.44 41.33 9.17 0.9053

Meas. Sci. Technol. 27 (2016) 025702
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3.3. Model fitting

3.3.1. Parameter estimation for the ramp-hold relaxation test 
and KVFD model. The ramp-hold relaxation curves for 
spherical indentation and plate compression tests were fitted 
to the KVFD analytical solutions of equations  (6) and (8), 
respectively. For each relaxation curve, model parameters E0, 
α, and τ were varied, and the set of parameters generating the 
least-squared error between model and data became the esti-
mates. Parameters were initially selected manually to approxi-
mate the fit, which became the initial values for least-squares 
regression fits in MATLAB. The KVFD solutions for ramp 
relaxation curves describe the entire ramp-and-hold experi-
mental time series. Thus any data segments from the curve 
should yield the same parameter estimation within numeri-
cal uncertainties. Due to noise in the experimental data, the 
least-squares fitting algorithm can truncate the search early if 
it becomes trapped in local optimal points. Manually selecting 
the initial values eliminated this problem.

It should be noted that for plate-compression tests only, there 
is a very small linear drift of the relaxation stress not explained 
by the model. A similar effect was reported in [34]. Drifting 
might be caused by instrument drift during measurements span-
ning 300 s or, more likely, as the assumed nonslip boundary con-
ditions may have a small amount of friction that delays sample 
expansion during plate compression. We added the weak linear 
trend term a∙t to the model after the 10 s ramp concluded to 
improve the quality of fit. Values for slope constant a were found 
to range between  −0.004 and  −0.001 in our experiments.

3.3.2. Parameter estimation for the ramp-hold relaxation test 
and DMW model. Parameters analogous to those of the 
KVFD set were obtained from a second-order Prony series 
assuming a Double Maxwell–arm Wiechert (DMW) model 
[28], yielding a relaxation modulus G(t) given by

( ) ( ) ( )τ τ= + − + −G t C C t C texp / exp / .0 1 1 2 2 (10)

As others reported [28], there is no analytic solution for the 
time-varying force. If we analyze the relaxation curve during 
the holding phase only, we can assume the force Pr(t) has a 
form similar to equation (10),

( ) ( ) ( )τ τ= + − + −P t B B t B texp / exp / .r 0 1 1 2 2 (11)

The ramp correction technique shown in equation  (12) was 
adopted from the work of Mattice et al [28]. If the correction 
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r
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parameters can be corrected using

( ) ( )( )
= =C

B

h R
C

B

h R8 /3
,

RCF 8 /3
.k

k

k

0
0

max
3/2

max
3/2 (12)

This technique gives equations  that relate Bk obtained by 
fitting equation (11) to relaxation data and Ck in equation (10). 
Two metrics derived from the model parameters: the infinite-
time relaxation modulus ( )∞G  and fraction number αf  are 
calculated to compare with their KVFD counterparts E0 and 
α for examining model stability under different experimental 
conditions. ( )∞G  is set equal to C0 from equation (10), and αf  
is defined as:
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3.3.3. Statistical metrics. The coefficient of determination R2 
was calculated to indicate the goodness of the fit between min-
imum least-squares model equations and the measured relax-
ation time series. In the next section, we vary the duration of 
the relaxation curve included in the fitting process to observe 
changes in model parameter estimates for KVFD and DMW 
models. Comparisons were made by computing the coeffi-
cients of variation (CV). CV is defined as the standard devia-
tion of parameter estimates for equivalent gel samples divided 
by the mean parametric value. Two-sided Students T-test was 
applied to determine whether spherical indentation and plate 
compression testing on the same samples yielded statistically 
equivalent parameter estimates.

4. Results

There are no established standards for calibrating viscoelastic 
measurements in soft materials, although comparisons among 
independent measurement techniques can test for precision 

Table 3. KVFD parameter estimates from different durations of the plate compression relaxation curve. Sample used is 5Gel15Cream. 
CV1 includes the initial 10 s ramp data and CV2 does not. Values shown are from measurements on one sample.

Time (s) 0–20 0–50 0–100 0–300 10–20 10–50 10–100 10–300 CV 1 CV 2

E0 (Pa) 2019.7 2031.1 2029.6 2029.4 2089.3 2039.3 2032.0 2031.0 0.0026 0.0136
α 0.135 0.1360 0.1360 0.1360 0.134 0.135 0.135 0.136 0.0037 0.006
τ (s) 80.53 76.56 77.06 73.64 30.56 56.83 61.62 70.37 0.0367 0.3124

Table 4. DMW parameter estimates from different durations of the plate compression relaxation curve. Sample used is 5Gel15Cream. CV1 
includes the initial 10 s ramp data and CV2 does not.

Time (s) 0–20 0–50 0 –100 0–300 10–20 10–50 10 –100 10–300 CV 1 CV 2

C0 (Pa) 3902.0 3664.0 3521.0 3299.0 3333.1 3567.7 3558.2 3216.5 0.0704 1.410
αf 0.646 0.329 0.293 0.314 0.239 0.194 0.192 0.277 0.0380 0.1371
τ1 (s) 1.02 25.49 46.22 99.98 91.37 34.98 41.83 169.1 0.7335 0.9758
τ2 (s) 10.59 2.04 4.39 7.22 46.57 31.97 22.54 20.03 0.3968 0.6087

Meas. Sci. Technol. 27 (2016) 025702
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and consistency [32]. A model-based solution can be valuable 
for predicting viscoelastic properties from load-relaxation 
time series if it satisfies the following coupled criteria: (1) The 
model reliably predicts sample responses with few parame-
ters; (2) Parameter estimates are robust to changes in experi-
mental variables and conditions; (3) The same model applies 
to different materials having a variety of mechanical proper-
ties in a range of interest.

In this study, we approached validation of the KVFD model 
solution for a ramp-hold relaxation test by first identifying a 
stable, reproducible, viscoelastic material. We then made a 
series of measurements varying several key experimental 
parameters and observed the variability of KVFD model 
parameters, ( )α τE , ,0 . The precision of estimates was exam-
ined by comparing KVFD results to those of the DMW model 
using spherical indentation and plate compression testing over 
a range of experimental variables. We also varied the material 
properties of the test samples within a small range of soft bio-
logical tissues to test model applicability.

4.1. Impact of relaxation time on the variability of estimated 
model parameters

For this study, the sample labeled 5Gel15Cream (5% gelatin, 
15% cream, 80% water) is subjected to a force/stress relax-
ation test. The ramp time Tr is fixed at 10 s for both spherical 
indentation and plate compression. Figure 2 gives an example 
of the relaxation data from spherical indentation and the best 
fit to the model given by equation (6). The four time durations 
studied are indicated on the time axis in figure 2.

4.1.1. Spherical indentation. Parameter values are estimated 
by fitting the KVFD ramp solution to different time durations 
of the relaxation data. Results are listed in table 1. The coef-
ficient of variation (CV) reflects the reproducibility of the  
fitting results for the different durations indicated in the first 

row of the table. CV1 represents the variability of fitting the 
ramp and the holding phase of the force–measurement time 
series up to the time indicated, and CV2 represents the vari-
ability of fitting only the holding phase, which begins at 10 s.

First, we find there is no significant change in α when model 
fitting the holding phase at various durations with or without the 
initial 10 s of ramp data. α is the most stable material parameter 
in this study; it is robust to variations in experimental param-
eters. Second, the elastic modulus E0 has the lowest coefficient 
of variation when the ramp data is included in the fit (CV1). 
Also, including the ramp phase, we find that modulus esti-
mates decrease about 4%. Similarly, time constant estimates τ 
are most precise when the ramp data are included in the fitting 
procedure, and excluding the ramp biases τ estimates. Noise in 
the recording of the time-varying force means that curve-fitting 
results may not be unique; the best fits are strongly influenced 
by the initial values supplied to the regression. We believe that 
by including the ramp time in the fitting procedure, the chance 
of finding that one parameter set that best describes the entire 
time period is increased, thus the parameters generated are less 
dependent on the duration of the force data.

Fitting the DMW model to the same relaxation data, we 
find the results summarized in table  2. Because there is no 
analytic solution for ramp loading, only the holding phase was 
fitted to equation (11). Model parameters are found for ramp 
indentation using equations (12) and (13).

Among the DMW parameters,  αf stands out as relatively 
stable, however the other parameters are sensitive to the dura-
tion of the relaxation data selected for inclusion in model  
fitting. Compared with KVFD model parameters E0, α, and τ 

Figure 3. Illustration of KVFD model fits to data from 5Gel15Cream samples acquired using ramp times between 0.2 and 100 s. Points 
plotted are experimental relaxation data and the curves use the best-fit KVFD model-based solutions. Experimental data are down sampled 
by factors of 10–50 in the ramp phase and 120 in the holding phase for display purposes.

Table 5. Coefficient of determination R2 for goodness fitting 
measurement of 5Gel15Cream sample and the KVFD model.

Tr (s) 0.2 2 10 20 33 50 100

R2 0.968 0.979 0.988 0.988 0.988 0.989 0.988

Meas. Sci. Technol. 27 (2016) 025702



H M Zhang et al

7

parameters, DMW parameters C0, αf  and time constants τ1 
and τ2 have CVs that are 4–30 times larger. Greater estima-
tion precision indicates a uniqueness of the KVFD solution 
across the entire measurement time. In summary, the KVFD 
ramp solution for spherical indentation (equation (6)) reliably 
and precisely describes the entire relaxation time series with 
less parametric variability that the DMW model. Including the 
ramp portion of the relaxation data improves the fit, which 
yields more precise model parameter estimates. We cannot 
expect the two models to give the same values, but we do 
expect the estimates for each model to be independent of the 
duration of the data used in the model fitting procedures.

4.1.2. Plate compression. The analysis was repeated for plate 
compression on 5Gel15Cream samples. Parameter estimates 
are found from the solution derived for the KVFD model and 
plate compression geometry in equation (8). These results are 
listed in table 3. For comparison, fitted results using the DMW 
model also for plate compression and the same durations of 
relaxation data are summarized in table 4. Note that the ana-
lytical solution for the DMW model during the ramp loading 
period can be derived for plate compression but not spherical 
indentation.

From the data in tables 3 and 4, we again find the KVFD 
model parameters are much more stable with respect to the 
duration of the relaxation curve when compared with those of 
the DMW model. Notice too that the KVFD model has fewer 
and more precisely estimated parameters, which offer major 
advantages when these parameters are mapped into elasticity 
image data provided contrast is also transferred with high 
fidelity.

4.2. Impact of ramp time Tr on model parameter estimates

Tr should not influence parametric estimates provided the 
model fits the measurements equally well over a practical 
range of applied indention speeds. For spherical indentation, 
we applied a strain of 0.05 over a range from 0.2 to 100 s. 

Below a Tr threshold value, quickly deforming the sample 
to approximate a step function is likely to create an under-
damped response in the instrument that is not accounted for 
by the model. The variability of parameters estimated from 
the KVFD ramp solution for ramp durations between 0.2 
and 100 s are repeated on several 5Gel15Cream samples. We 
waited at least 30 min between measurements for samples 
to fully recover before the next test. All measurements were 
made on three 5Gel15Cream samples from the same batch.

Figure 3 shows the fitting results for Tr values of 0.2 s, 33 s, 
50 s and 100 s. The R2 metric for the same ramp times are 
found in table 5, which shows the data are well described by 
the best-fit model especially for Tr  ⩾10 s. R2 will not equal 1 
because of signal-independent noise in the time-varying force 
measurements. These results suggest that material properties 
are not strain-rate dependent in this range and the model con-
sistently accounts for the force relaxation occurring during the 
ramp deformation.

It is expected that all of the curves in figure 3 will converge 
at large relaxation times because the elastic modulus at infinite 
time ( )∞G  is equal to E0 in the KVFD model, which does not 
depend on Tr. As shown in figure 3, relaxation curves for dif-
ferent ramp times tend to converge for relaxation time  >250 s 
except at Tr  =  0.2 s, suggesting the step-relaxation response is 
biased by the measurement process.

The stability of the three KVFD parameter estimates can 
be assessed from the plots of figure 4. When Tr is between 
10–50 s, all three parameters are influenced very little by Tr. 
Among all 3 parameters, α has the smallest CV because it is 
only sensitive to the shape of the relaxation curve, whereas 
E0 is influenced by the amplitude that depends on the initial 
contact between the probe and the sample surface. Variability 
in initial contact is well known to cause uncertainty in model-
parameter estimates. α is the most stable parameter, while τ is 
significantly more dependent on Tr compared with E0 and α.

Very small Tr can approximate a step deformation. However, 
indenting at high probe velocity introduces uncertainties from 
instrument oscillations. As shown in figure 4 when Tr  ⩽  10 s, 

Figure 4. Estimated parameters for the 5Gel15Cream sample measured for different ramp times, Tr. Measurements are indicated by the 
mean points  ±1 sd. Means are averaged over data from three samples. Lines are added only to clarify trends.
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estimated parameters deviate from values obtained at longer 
ramp times where a plateau is reached.

Ramp deformations are preferred over steps; nevertheless, 
measurements should be made over a range of Tr when inves-
tigating different sample types to ensure a plateau is reached. 
If Tr is too long, the measurement system might drift or 
sample properties might change. For this emulsion, parameter 
estimates are stable for 10  ⩽  Tr  ⩽  50 s. Others also found that 
short-ramp relaxation data fit to a step-relaxation solution can 
result in big parameter errors [28, 33].

4.3. Samples with varying properties

In the above two sections, we studied the stability of param-
eters estimated by the KVFD and DMW models of ramp 

relaxation data on one type of sample (5Gel15Cream). In this 
section, samples with different viscosities are examined for 
different stress–strain probe geometries.

Samples with three different cream concentrations (5%, 
15%, 50%) and the same gelatin concentration (5%) were 
constructed. 3–5 samples from the same batch of each mate-
rial type were prepared for analysis. The entire recorded time 
series including the ramp phase were fitted to the proposed 
ramp solutions. Figure  5 shows examples of experimental 
relaxation curves and corresponding model predictions for 
each sample concentration for tests using spherical indenta-
tion (top) and plate compression (bottom). The models repre-
sent the experimental data very well; i.e. R2  ⩾  0.98.

Table 6 contains the numerical values of model parameters 
from spherical indentation and plate compression tests. The 

Figure 5. Spherical indention (top) and plate compression (bottom) test measurements (points) along with best-fit KVFD solutions (lines). 
The three curves correspond to the samples listed in the legend. The experimental curve is down sampled by a factor of 5–10 in the ramp 
phase and 100–150 in the holding phase.
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results for the two geometries agree within one standard devi-
ation of the measurement. Students T-test suggested that the 
two measurements have no significant difference for all cream 
concentrations at the 0.05 significance level. The high consist-
ency of estimates comparing two testing geometries further 
confirms the reliability of utilizing the ramp solution of the 
KVFD model to describe viscoelastic properties.

5. Discussion

Experimental error contributes uncertainty to model param-
eter estimates. Except for the random error from force/ 
displacement sensors, parameter uncertainty could originate 
from several sources in this study.

First, inaccuracies in recording indentation depth hmax can 
add significant bias to parameter estimations, especially E0. 
Unlike stiff materials, it is challenging to identify the moment 
of first contact with the indenter probe when studying soft, 
wet tissue-like materials. Any deviation from the exact inden-
tion depth, including surface roughness, biases E0.

Second, errors occur as part of the fitting process. Least-
squares fitting of experimental data to model functions is chal-
lenging because of noise in the force measurements, which 
enables the regression algorithm to settle into local minima 
rather than the global minimum that we hope to find. The 
problem is amplified as the number of model parameters 
increases. Experience enabled us to select model parameters 
when initiating numerical searches that were close to those 
giving a global minimum error. Fitting the full duration of 
the ramp-hold relaxation curve yields more precise parameter 
estimates by avoiding local minima traps. Also, the concise 
feature set of the KVFD model coupled with the ramp-hold 
stimulus leads to more reliable parameter estimates.

Third, despite our best efforts to manufacture uniform test 
materials reproducibly, there remains variations in material 
properties within and among the samples tested. The mechan-
ical properties of hydrogels are affected by the details of 
thermal history, including manufacturing temperature, heating 
duration, cooling rates and time and temperature at which the 
cream is added. The fact that gelatin stiffness varies over time 
when chemical cross linkers are not used and with pH further 
makes the sample elastic modulus vulnerable to measurement 
variations [35]. We were aware of these influences and made 
every effort to minimize all material property variations by 
standardizing the sample manufacturing process.

Finally, the boundary conditions of the sample are another 
common source of variation in indentation testing of soft 
materials. Inner-sample stress variations near stiff or soft 
boundaries influence force measurements. The general rule 
of thumb for spherical indentation is for the diameter of the 
probe to be less than one tenth of the sample diameter. We 
confirmed the validity of this rule for representative gelatin 
samples recently [32]. Indented samples were 50 mm in diam-
eter for a 5 mm probe diameter.

We verified that Tr does not produce significant changes 
in model parameter estimates provided Tr is larger than 10 s 
in these emulsion samples. Including the ramp deformation, 
model fits involving force/stress relaxation data from 50–300 s 
in duration yield equivalent results.

Samples were deformed using two geometries in this 
study: spherical indentation and plate compression. Each has 
advantages under different situations. The spherical indenter 
minimizes the effects of irregular sample geometries and has 
fewer boundary effects as long as the diameters of the samples 
are much larger than indenter. Spherical indentation also has 
no strict requirement on surface flatness, as long as a small flat 
region can be found. It is widely used to characterize viscoe-
lastic materials. However, depending on the dynamic range 
of the load cell, spherical indentation may not be ideal for 
very soft materials (<3 kPa) as the contact area is too small 
to generate sufficient force to avoid significant quantization 
errors in digital force measurements. In contrast, plate com-
pression increases the net force in soft materials, using more 
of the dynamic range of the sensor, but requires the sample 
surface to be very flat. Also sample area and height must be 
precisely measured since they strongly influence stress and 
strain calculations. Moreover, plate compression of samples 
induces a small drift in relaxation force over time when the 
frictional forces at the sample-plate surface are non-uniform. 
The choice between the two geometries depends on sample 
properties, where spherical indentation is preferred except for 
very soft samples.

6. Conclusion

Closed-form solutions for ramp-relaxation testing of soft visco-
elastic materials involving the KVFD model give precise esti-
mates of model parameters for spherical indention and plate 
compression within a broad range of experimental conditions. 
These parameters can be interpreted in terms of viscoelastic 

Table 6. Comparison of parameter estimates from spherical indentation and plate compression testing using the KVFD model and 
emulsion samples with cream concentrations of 5%, 15%, and 50% to vary the viscosity. The mean value for measurements obtained on 
3–5 samples at each cream concentration are shown and the error bars are  ±1 sd.

Sample 5% 15% 50%

Spherical indention tests E0 1782.51  ±  53.20 2020.92  ±  28.31 1952.51  ±  20.62
α 0.0768  ±  0.002 0.135  ±  0.001 0.209  ±  0.002
τ 38.69  ±  19.82 34.31  ±  13.61 150.6741  ±  11.48

Plate compression tests E0 1754.90  ±  56.61 2029.30  ±  57.73 1942.31  ±  32.12
α 0.0798  ±  0.002 0.136  ±  0.005 0.216  ±  0.007
τ 47.56  ±  21.21 68.80  ±  36.06 159.46  ±  15.77
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properties of the material. Step deformation experiments should 
be avoided when possible. The consistency of results shown in 
this report suggests that experimentally independent estimates 
are possible by fitting models to measurements spanning the 
entire force-relaxation time series. Other rheological models 
should be explored, but our results suggest the ramp-relaxation 
experiment combined with the concise parameter set of the 
KVFD model offers much estimation stability and precision. 
Since there are no standard materials for calibrating relaxation 
measurements, we cannot claim to measure intrinsic material 
properties. Nevertheless, the high precision and independence 
of the results on experimental parameters suggests this approach 
offers advantages for mechanical measurements of soft mate-
rials in the elastic modulus range of many soft tissues (<10 kPa) 
where precise measurements can be difficult to achieve.
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Appendix

A.1. Spherical indenter, ramp-hold relaxation solution for 
KVFD model

Using the Boltzmann integral expression for spherical inden-
tation under distance control, the relaxation force response is 
given by
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The relaxation modulus for KVFD model is
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The ramp displacement condition can be expressed by
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By combining (A.3) and (A.4), we obtain
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a Beta function. Thus from (A.5) and (A.6), and letting 
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where, ( ) ( )∫= −− −B x a b t t t; , 1 d
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1 1  is the incomplete Beta 

function.
Thus from (A.5) and (A.9), and letting η τ= αE0 , we obtain
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Combining (A.7) and (A.10), the ramp-hold relaxation solu-
tion is
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