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Effects of Frequency and Bandwidth  
on Diagnostic Information Transfer  

in Ultrasonic B-Mode Imaging
craig K. abbey, nghia q. nguyen, and Michael F. Insana

Abstract—Transmitted pressure pulses in ultrasonic B-
mode imaging systems are commonly characterized by their 
center frequency and bandwidth. Both parameters are associ-
ated with tradeoffs in spatial resolution and signal-to-noise in 
ultrasonic system design, with no general understanding of 
where they are optimal when applied to specific clinical exams. 
We use the ideal observer and simple psychophysical studies 
with human observers to evaluate the efficiency of information 
transfer in B-mode imaging as a function of the transmitted 
pulse center frequency and fractional bandwidth.

Our approach uses a statistical model of backscatter rel-
evant to breast imaging, and a 2-D model of pulse propagation 
based on Rayleigh-Sommerfeld diffraction theory. The statis-
tics of the backscattered signal are combined in an ideal ob-
server calculation that quantifies the task-relevant information 
contained in the radio-frequency (RF) signal after delay-and-
sum beamforming. This is followed by a psychophysical evalu-
ation of observer performance on B-mode envelope-detected 
images in three simple tasks. This experimental design allows 
us to track the flow of diagnostic information through RF ac-
quisition and subsequent reading of the envelope image.

In a low-contrast detection task and a high-contrast bound-
ary discrimination task, optimal efficiency for human observers 
is observed at the highest center frequencies tested (15 MHz) 
and at moderate bandwidth (40%). For detection of scattering 
material in a high-contrast hypoechoic lesion, optimal efficiency 
was observed at lower center frequencies (5 MHz) and higher 
bandwidth (80%). The ideal observer analysis shows that this 
task dependence does not arise in the acquisition stage, where 
efficiency is maximized at 15 MHz with bandwidths of 60% or 
greater, but rather in the subsequent processing and reading 
of the envelope image. In addition, at higher frequencies more 
information is lost in the processing and reading than in the 
acquisition of reflected signals.

I. Introduction

Ultrasonic B-mode medical imaging systems rely 
on reflection of a transmitted pulse as the basis for 

forming an envelope-detected image of the body. The 
center frequency and bandwidth of the transmitted pulse 
are known to be important parameters that influence the 
quality of the resulting image [1], [2]. However, there are 
often tradeoffs that constrain these parameters. For ex-

ample, increased center frequency or bandwidth generally 
leads to higher spatial resolution but may suffer from re-
duced echo signal-to-noise ratio (esnr) because of tissue 
attenuation and acoustic-output constraints that limit the 
mechanical index of the pulse. It is not generally clear 
how parameters such as center frequency and bandwidth 
should be set in the presence of these tradeoffs. In this 
work, we use an ideal observer approach along with simple 
human observer studies to evaluate effects of center fre-
quency and bandwidth on B-mode imaging.

Ideally, optimal parameter settings will maximize the 
transfer of diagnostic information from the body of the 
patient to the observer reading the image, thereby maxi-
mizing diagnostic performance. In this work, the ideal ob-
server methodology [3], [4] is used as a way to quantify the 
transfer of diagnostic information. The ideal observer is 
defined as the optimal decision maker for some task of in-
terest given whatever form of data is presented. The ideal 
observer achieves the highest possible level of performance 
given the uncertainty in the data. as such, ideal observer 
methodology can be used to define the efficiency of diag-
nostic information transfer [5], [6]. an important capabil-
ity of the ideal observer approach is that it can be applied 
to various stages in the process of forming the final im-
age. For example, a good acquisition system will efficiently 
transfer information from the body of the patient to the 
rF signal. Effective processing of those acquired data will 
efficiently transfer information to the reader, resulting in 
improved diagnostic accuracy. comparing different stages 
makes it possible to identify where information is lost in a 
multi-stage process.

The ideal observer approach makes full use of the sta-
tistical properties of the data, which makes it problematic 
to define in clinical images of patients where complete 
probability density functions are unknown. Therefore, 
we use a simulation procedure with well-defined statisti-
cal properties to investigate simple diagnostic detection 
and discrimination tasks by the ideal observer as well as 
human-observer performance studies. The simulation pro-
cedure is based on rayleigh-sommerfeld diffraction theory 
[7], [8], which is used to model pulse propagation and re-
flection in an incoherent scattering medium as a function 
of the transmitted center frequency and bandwidth. Prop-
agation to the point of focus is used to determine peak 
rarefactional pressure, which constrains the maximum 
amplitude of the transmitted pulse according to its me-
chanical index. Echo signals are beamformed assuming the 
delay-and-sum method over a sub-aperture, and electronic 
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acquisition noise is added. We investigate three different 
classification tasks related to breast sonography used as 
an adjunct to screening mammography. These include de-
tection of a low-contrast hypoechoic lesion, discrimination 
of indistinct lesion margins in a high-contrast lesion, and 
discrimination of an anechoic lesion interior from one with 
a low-level echo pattern.

our analysis follows the suggestion of Wagner and 
Brown [9] and dissects the imaging process into two parts, 
acquisition and presentation. acquisition consists of the 
formation of a beamformed rF signal, whereas presenta-
tion refers to the subsequent processing and reading of a 
B-mode image. rigorous ideal observers are used to quan-
tify the efficiency of information transfer from the object 
being imaged to the rF signal. Psychophysical evaluations 
of reader performance in simple tasks are used to quantify 
efficiency of information transferred to task performance. 
In the case of the low-contrast detection task, the approxi-
mations of smith et al. [10] allow the construction of an 
additional ideal observer for the envelope images, thereby 
isolating this stage of processing.

We evaluate the three tasks across a range of trans-
mit center frequencies (3 to 15 MHz) and fractional band-
widths (20–80%). From a strict end-points perspective, 
it could be argued that observer performance is the only 
important performance measure because it characterizes 
the total performance of the system. However, the ideal 
observer analysis identifies the points in the process of 
forming and reading an image at which information is 
lost, which can be important for understanding and opti-
mizing systems. Taken in sum, the ideal observer analysis 
and human-observer performance studies reported here 
demonstrate how information progresses through B-mode 
imaging systems as a function of the center frequency and 
bandwidth of the transmitted pulse. In addition, they 
identify the limiting steps in the imaging process.

II. Theory

In this section we develop a relatively simple model, 
shown in Fig. 1, for pulse-echo signals in standard B-mode 

imaging. The underlying framework is rayleigh-sommer-
feld diffraction theory near the point of focus where Fres-
nel approximations are valid. The model will be used to 
evaluate the influence of center frequency and bandwidth 
on performance in simple tasks using features related to 
breast cancer detection and malignant/benign discrimina-
tion. It is worth noting that more accurate system simu-
lations can be achieved using field II [11], [12] or other 
acoustic propagation methods [13]. However, we find that 
this simple model is adequate to isolate the effects of fre-
quency and bandwidth for a generic demonstration of 
tradeoffs without the many other components of an actual 
system.

The main purpose of the model is to determine spatial 
sensitivity profiles to be used in an ideal-observer calcula-
tion. The spatial sensitivity profile describes the spatial 
distribution of field pressure that contributes to the re-
ceived signal at a given measurement time. an important 
component of the system is the amplitude of the pulse 
profile relative to the system noise, as expressed by the 
esnr. The model is also used to determine the maximum 
pulse amplitude allowable, subject to the constraint of an 
upper bound on the mechanical index. This conforms ap-
proximately to regulatory guidelines on linear-array trans-
ducers for B-mode imaging, in which mechanical consider-
ations generally limit pulse amplitudes well before thermal 
limits are of concern [14]–[16].

We will assume a field geometry relative to 1-d linear 
arrays, in which x represents the lateral direction, y rep-
resents the elevational direction, and z represents depth. 
The transducer face is presumed to lie in the x-y plane 
at depth z = 0 with the center of the transducer at the 
origin. We denote the focal depth as zF, and the speed of 
sound in the medium as c = 1540 m/s. For the purposes 
of this study, involving the tradeoffs in system parameters, 
we find it sufficient to work in the lateral and axial dimen-
sions, and we will neglect the elevational component.

rayleigh-sommerfeld (rs) diffraction theory specifies 
wave propagation through a complex frequency-dependent 
spatial field, ϕf (x, z), derived from a continuous wave set-

Fig. 1. components of the pulse-echo model. The Gaussian transmitted pressure amplitude (a) is shown for a 10 MHz, 60% bandwidth pulse. The 
resulting pressure waveform (b) at a 4-cm focus depth is used to find the peak rarefractional pressure (PrP) for determining the mechanical index. 
The spatial sensitivity function (c) is shown with a vertical propagation direction (arrow).
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ting [8]. The resulting pressure pulse at a position in space 
is then given by summing together the contributions of 
all frequencies weighted by the transmitted pressure am-
plitude, P0( f ). When a point of interest is relatively near 
the focus and relatively far from the transmission aperture 
(f-number >1) so that time delays are dominated by the 
depth, z, the pressure wave is computed as the integral,

 P x z t f P f x z ef
jtf( , , ) Re ( ) ( , ) .= { }−∫ d 0

2φ π  (1)

We will assume a rectangular transmission aperture of 
width Ax and height Ay (even though elevation is not ex-
plicitly modeled, aperture height still has a scaling effect 
on the amplitude of the pressure wave). near the focal re-
gion, where Fresnel approximations hold, the spatial field 
is given by
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where the final factor represents the effects of attenuation, 
which we attribute to the spatial field rather than the 
object function for simplicity. attenuation in the breast 
(combining fat and parenchyma) is specified roughly to be 
α = 0.75 dB/cm/MHz [17], [18].

For reasons of computation, it is advantageous to ap-
proximate this field under isoplanatic assumptions. These 
allow us to implement the system model using fast con-
volution methods that make evaluating the ideal observer 
much more tractable. We apply these to (2) by approxi-
mating z as zF at all places other than the complex phase 
factor. The result is the complex spatial field approxi-
mated to be
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A. Pulse Parameterization

The parameters of interest for this study (frequency 
and bandwidth) are embedded in the transmitted pres-
sure amplitude, P0( f ). These will generally be lower than 
the frequency and bandwidth of a system’s driving volt-
age, which is modulated by the transducer before inducing 
a pressure wave. We model the pressure amplitude as a 
Gaussian band in frequency, parameterized by the center 
frequency, fc, the fractional bandwidth, BF, and a constant 
pressure density, PMag, that controls the overall ampli-
tude of the pulse. The fractional bandwidth is defined as 
the full-width at half-maximum (FWHM; −6-dB range) 
of the transmitted pulse divided by its center frequency. 
For a Gaussian pulse amplitude, this results in a scaling 
constant of

 a
B fF= c

8 2ln( )
. (4)

The transmitted pressure amplitude is then given by

 P f P e ef f a f f a
0

1 2 1 22 2
( ) ,[( ) ] [( ) ]= +( )− − − +

Mag
/ / / /c c  (5)

which includes contributions in both positive and negative 
frequency bands. an example of the pressure amplitude 
for fc = 10 MHz and BF = 60% is shown in Fig. 1(a).

B. Mechanical Limit on Pulse Amplitude

The maximum allowable pulse amplitude in medical 
ultrasound is limited by mechanical and thermal consid-
erations as defined by regulatory agencies such as the Us 
Food and drug administration (Fda) [14]–[16]. However, 
for scanned linear arrays imaging soft tissue, mechanical 
limits are generally reached before thermal limits. Hence 
we will only evaluate a mechanical limit here.

We compute the mechanical index (MI) as the ratio of 
the peak rarefactional pressure [see Fig. 1(b)] of the trans-
mitted beam in attenuating tissue divided by the square-
root of the transmitted center frequency. This is meant to 
approximate the Fda regulatory guideline, which speci-
fies that peak rarefactional pressure be measured in water, 
and then derated by 0.3 dB/cm∙MHz to account for tissue 
attenuation. let zF be the depth of focus (4 cm in these 
experiments),

 MI
Ambient

c
=

−max( ( , , ))
,t

FP P z t

f

0
 (6)

where Pambient is the ambient pressure of the medium. 
MI must be 1.9 or less according to stipulations of the Us 
Fda [14]–[16]. note that (6) uses the nominal transmitted 
center frequency in the denominator, even though attenu-
ation will reduce the center frequency somewhat by the 
time a pulse reaches focus. We choose this because cen-
ter frequency measurements are typically made in water 
where there is relatively little attenuation. The pressure 
amplitude, PMag, in (5) is set to its maximum value by 
adjusting it so that MI = 1.9.

C. The Spatial Sensitivity Function

We consider a delay-and-sum beamformer, where the 
principle of reciprocity holds, resulting in a squaring of 
the transmitted field [8]. We will also model the frequency 
dependence of backscatter as part of the spatial sensitiv-
ity function (ssF) even though—like attenuation—it is 
actually a property of the medium. We follow previous 
literature [19]–[21] and model the backscattered pressure 
signal as a power law with an exponent of 1.3. The result-
ing spatial field is given by

 ψ φf fx z x z f( , ) ( , ) ..= 2 1 3  (7)

note that we do not include a scaling constant for the 
backscatter power law because this will be absorbed into 
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the conversion gain described below. The spatio-temporal 
impulse response function, h(x, z, t), models the contribu-
tion of a point, (x, z), to the received time signal at time t 
over an aperture located at the origin,

 h x z t f P f x z ef
jtf( , , ) Re ( ) ( , ) .= { }−∫ d 0

2ψ π  (8)

Under the iso-planatic assumptions in (3), the ssF can 
be written
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in which time and depth only enter through the difference 
t − 2z/c. Hence spatial sensitivity can be written as a two-
dimensional function:

 h x z t h x t z c( , , ) ( , ).= −sys /2  (10)

Fig. 1(c) shows an example ssF.
let γ(x, z) be the local acoustic impedance mismatch of 

the object being imaged, which is presumed to be static in 
time. The received rF backscattered signal, after delay-
and-sum beamforming, is modeled as [8]

 g t G x zh x t z c x z t( ) ( , ) ( , ) ( ),= − +∫C sysd d /2 γ ε  (11)

where Gc is a conversion gain from the applied force at 
the transducer face to an amplified voltage signal, and ε(t) 
is electronic acquisition noise. Use of a scalar conversion 
gain in (11) neglects any frequency dependence in trans-
duction. This choice has been made to most clearly dem-
onstrate the effects of transmit frequency of bandwidth 
under the assumption of an ideal receiver. The rationale 
for setting a specific value of the conversion gain is given 
below.

an image is generated by sampling the received signal 
over a set of laterally translated sub-apertures. let g[m, n] 
represent the mth time sample of the received signal at 
the nth sub-aperture position (i.e., the sub-aperture is 
centered at xn), then

 gm n G x zh x x t z c x z m nn m[ , ] ( , ) ( , ) [ , ].= − − +∫C sysd d /2 γ ε    

  (12)

noting that hsys is symmetric in x [i.e., hsys(x − xn , tm − 
2z/c) =  hsys(xn − x , tm − 2z/c)], we see that image forma-
tion is modeled as a noisy convolution with the ssF acting 
as the convolution kernel [5], [6], [22].

assuming the integral in (12) can be well approximated 
by sums over a sampled object, the rF data can be writ-
ten in matrix-vector notation as

 g H= +γ ε, (13)

where g is a column vector of rF data that includes all 
time samples (tm) at all aperture positions (xn), γ is the 
sampled object, H is a 2-d convolution matrix consisting 
of the kernel Gchsys evaluated at both the rF coordinates 
and the object sampling coordinates, and ε is a column 
vector of electronic noise. For simplicity, we will take the 
object sampling coordinates and the rF sampling coordi-
nates to be the same. In this case, the model of rF signal 
formation becomes
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note that the sampling in x is determined by the 0.2 mm 
spacing between array elements (Δx = 0.2 mm), and the 
sampling in z is determined by the 40 MHz sampling rate 
of the system and the speed of sound (Δz = 0.01925 mm). 
an example of the convolution kernel in H is seen in Fig. 
1(c). In practice, the convolution is implemented by dis-
crete Fourier transforms, which implies a non-physical 
wrap-around effect. However, this problem is minimized 
by constraining all diagnostic features in the test images 
to be located in the middle of the region of interest where 
wrap-around is not an issue [23].

The final step in image formation is the computation of 
an envelope image. an analytic signal is generated by aug-
menting the received signal with an imaginary component 
consisting of the signal’s Hilbert transform [24], [25]. The 
final envelope image, b, is the magnitude of the analytic 
signal. Because the analytic signal is a linear function of 
the rF, it can be represented by a complex valued matrix, 
A, to obtain

 b Ag= , (15)

where the absolute-value brackets are assumed to hold on 
an element by element basis. The computation of magni-
tude is irreversible and therefore causes any loss of infor-
mation relative to the rF signal.

D. Effects of Pulse Propagation

some effects of pulse propagation are shown in Fig. 2. 
a plot of normalized pulse amplitudes in Fig. 2(a) shows 
how propagation and reflection change the center fre-
quency and, to a smaller degree, the bandwidth of the 
transmitted pulse. This plot serves as a reminder that the 
transmission parameters we use to characterize the pulse 
throughout this work are not necessarily representative of 
the pulse after propagation and reflection in the medium.

The overall strength of the pulse is determined by the 
transmission parameters. We will measure pulse strength 
by the esnr. We define this as the ratio of the received 
signal variance due to the pulse (and reflective material in 
the medium) divided by the variance due to acquisition 
noise, which is assumed to be a constant for any transmis-
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sion scheme. To compute the esnr, we assume that the 
scattering field, γ in (13), is a white noise process with 
variance σγ

2. The variance due to the reflected pulse is as

 σ σγpulse C sysd d /2 2 2 2 2= ∫G x zh x z c( , ). (16)

let σε
2 be the variance of the acquisition noise, the esnr 

is then defined to be

 eSNR = pulseσ
σε

2

2 , (17)

which is converted to decibels by taking 10 log10 of the 
value in (17).

We use the esnr as a way to determine the conversion 
gain, Gc, in (11). laboratory measurement on the sie-
mens sonoline antares system (siemens Medical solu-
tions, Mountain View, ca) using uniform scattering me-
dia give an esnr of 30 dB for a 7 MHz pulse at 60% 
(FWHM) fractional bandwidth [26]. arbitrarily setting 
the noise variance and object variance components to uni-
ty, we solve for σpulse

2  in (17), and then solve for Gc in (16). 
The conversion gain is then fixed across all pulse transmis-
sion parameters.

Fig. 2(b) shows the effect of pulse parameters on esnr. 
at a 3-MHz transmit center frequency, there is little ef-
fect of attenuation on the frequency profile. In this case, 
the limit on MI allows lower bandwidth pulses to achieve 
a higher esnr because they will sum the pulse energy 
over a greater duration. as the transmit frequency is in-
creased, there is a small initial increase in esnr due to 
greater tissue reflectivity [see (7)], but this effect is quickly 
dominated by attenuation, which leads to a subsequent 
decrease. However, the effect of bandwidth is reversed at 
high center frequencies starting at 10 MHz and above. In 
this case, high fractional bandwidth means that the pulse 
will contain more low-frequency components that are less 
affected by attenuation. Frequency-dependent attenuation 
also explains the reduction in peak received frequency rel-
ative to transmit, as seen in Fig. 2(c).

Fig. 2 illustrates the sort of tradeoff that often con-
fronts imaging system designers and users. simple figures 
of merit such as esnr and peak frequency on receive of-
ten specify very different system settings for optimality. 
Esnr favors a low-frequency, low-bandwidth pulse, and 
peak frequency on receive favors a high-frequency, low-
bandwidth pulse. By either of these criteria, there is little 
reason to consider higher bandwidth signals. as we shall 
see later in performance assessments, both the ideal ob-
server and human-observer data suggest other settings are 
optimal.

III. Methods

our experiments consist of evaluating the effect of the 
transmitted pulse frequency and bandwidth on task per-
formance (to be defined below). Fig. 3 gives a sense of 
how these parameters influence the appearance of a simu-
lated hypoechoic lesion. The images shown are all gen-
erated from the same scattering object and assume the 
same realization of electronic noise. observer experiments 
were performed on sets of image data consisting of the 20 
different combinations of center frequency and fractional 
bandwidth seen in Fig. 3 in three different tasks described 
below for a total of 60 different conditions.

A. Defining the Tasks

Three different tasks are evaluated in this work, all 
having features related to breast cancer detection and 
malignant/benign discrimination that have been used in 
previous publications [5], [6]. Each task focuses on a dif-
ferent feature, and therefore the resulting images repre-
sent an idealized model of disease that is amenable to 
simple detection and discrimination tasks. The tasks are 
as follows: detection of a subtle hypoechoic lesion (Task 
1), discriminating a poorly defined lesion boundary from a 
well circumscribed boundary (Task 3), and discrimination 
of some scattering matter in a hypoechoic lesion interior 

Fig. 2. Propagation effects in the model. The bandwidth plots (a) show pulse amplitudes (normalized to 0 dB) at transmit, focus, and receive. The 
center frequency of the pulse is 10 MHz, and the fractional bandwidth (BW) is 60% on transmit. The effect of propagation is a reduction in the peak 
frequency and a slight narrowing of the bandwidth. (b) Echo signal-to-noise ratio (esnr) drops with frequency because of tissue attenuation, but at 
a rate dependent on the bandwidth. Frequency-dependent attenuation also reduces the peak received frequency (PrF) of received signals relative to 
transmit (c), where the peak frequency is equivalent to the pulse center frequency. 
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(Task 5). In all three tasks, the lesion (when present) is 
6 mm in diameter. The task numbers are chosen to cor-
respond with previous studies using these features.

Each task consists of two classes of images representing 
malignant or benign conditions. Each class is specified by 
a covariance matrix on the object reflectivity vector, γ, in 
(13). We will assume that reflectivity of the object being 
imaged is a Gaussian white-noise process, which corre-
sponds to incoherent scatter generating fully developed 
image speckle [27]. specular reflections, which would be 
implemented as a nonzero mean to the process, are ne-
glected in this work. We will generically denote the benign 
object covariance matrix (i.e., class 0) of a task as a di-
agonal matrix, σγ

2
0( ),I S−  where S0 represents the devia-

tion from a uniform white-noise process. The malignant 
object covariance matrix (i.e., class 1) is given by the di-
agonal matrix σγ

2
1( ).I S−  Hence, information for discrimi-

nating malignant from benign is contained in the differ-
ence between the S0 and S1 components of the object 
covariance matrices. once the task covariance matrices 
are determined, an object can be simulated by sampling 
from the appropriate multivariate Gaussian distribution:

 
Malignant: MVN( )

Benign: MVN( )

γ

γ

∼

∼

0 I S

0 I S

, ( )

, ( ) .

σ

σ

γ

γ

2
1

2
0

−

−
 (18)

Examples of the three tasks considered here are shown 
in Fig. 4. For Task 1, the benign class is characterized by 
a uniform scattering field, S0 = 0. The malignant class is 
a circular region of lower variance. In this case, S1 = θL, 
where the diagonal elements of L form a circular disk with 
values of 1 inside a 6 mm diameter at the center of the 
image. The circular disk is blurred by a Gaussian kernel 
with a standard deviation of 0.1 mm to reduce pixelation 
effects in the variance maps. The feature parameter, θ, 
controls the difficulty of the task. as θ gets larger, the 
lesion gets more hypoechoic and thus easier to detect. Ex-
amples of the two variance maps associated with this task, 
and example envelope images for a 7-MHz system at 60% 
fractional bandwidth are shown in Fig. 4(a). For Task 3, 
the benign class is represented by a strong hypoechoic 
lesion, S0 = 0.95L, whereas the malignant lesion is this 
profile blurred by a Gaussian kernel. In this case, the fea-
ture parameter is the standard deviation (in both x and 
z directions) of the blurring kernel, and increasing this 
parameter makes the lesion boundary less distinct and 
thus easier to discriminate from the sharp boundary of 
a well-circumscribed benign lesion. If we define the 2-d 
vector s0 as the diagonal elements of S0, then the diago-
nal elements of S1 are defined by s1, where the sharp le-
sion profile has been blurred through convolution with a 
Gaussian kernel of width [i.e., s1 = s0 * k(θ), where k(θ) 

Fig. 3. Example images. Envelope images of a hypoechoic lesion obtained from simulations across the range of transmit frequency and bandwidth 
(BW) parameters are shown.
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is the Gaussian kernel]. Examples of the variance maps 
and sample envelope images for this task are shown in Fig. 
4(b). In Task 5, the benign class is again characterized by 
a strong hypoechoic lesion (S0 = 0.95L). But in this case, 
the malignant class is represented by more scattering ma-
terial within the lesion, and thus S1 = (0.95 − θ)L. In this 
task, increasing θ has the effect of leaving more scattering 
variance in the lesion, thus making it easier to detect. Fig. 
4(c) shows examples of the variance maps for Task 5 with 
sample envelope images.

The feature parameters have different meanings in the 
three tasks, but it is helpful to put the differences between 
classes in all three tasks on a common scale. To do this, we 
use a definition of object contrast from prior work [5], [6],

 C x z S n m S n m
mn

= −∑∑∆ ∆ 1 0[ , ] [ , ], (19)

where S1[n, m] is the variance map associated with the 
malignant class, and S0[n, m] is associated with the benign 
class. In all three tasks, contrast is monotonically increas-
ing with the feature parameter.

B. The Ideal Observer

We use the concept of the ideal observer, an optimal 
discriminant function, to measure the information loss be-
tween steps in the process. For two-class tasks, the ideal 
observer is based on the likelihood ratio, log-likelihood 
ratio, or monotonic equivalents, which can be shown to be 
optimal under a variety of measures [3], [4], and have been 
derived previously in the context of ultrasound imaging 
[5], [6], [23], [28]. In this work, the ideal observer is used 
at the object stage, the rF acquisition stage, and at the 
envelope image stage in Task 1. In all cases the effect is to 
reduce the data set of that particular stage to a decision 
variable from which performance can be determined, as 
described below in section III-c.

Eq. (18) gave the class covariance matrices of the sam-
pled object γ. Under Gaussian assumptions, these can be 

used to define an equivalent to the log-likelihood ratio test 
statistic for a particular feature parameter [5],

 λObj( ) (( ) ( ) ) .γ γ γ= − − − −− −1
2 1

1
0

1T I S I S  (20)

note that the matrix inverses are readily computed be-
cause the matrices are diagonal. There are no effects of 
the ssF here because the object precedes acquisition of 
an echo signal and is only constrained by the assumed 
40 MHz sampling rate.

linear propagation through the noisy system model 
in (13) results in a multivariate Gaussian model for the 
beamformed rF data,

 
Malignant:  MVN
Benign: MVN

g 0
g 0

∼

∼

, ,
, ,

Σ
Σ

1

0

( )

( )
 (21)

where Σi c
T= − +σ σγ ε

2 2H I S H I( )  is the covariance matrix 
for class i (i = 0 or 1), and σε

2 is the variance of the (white) 
electronic noise. The log-likelihood ratio for rF signals is 
similar to the expression for the sampled object [5], [6],

 λRF( ) ( ) .g g g= − −− −1
2 1

1
0

1T Σ Σ  (22)

note that properties of the acquisition system now enter 
into the ideal observer computation through the class co-
variance matrices that are dependent on H and σε.

The covariance matrices in (22) are not diagonal, and 
are generally non-stationary as well, leaving a potential 
problem inverting them because of their large size. This 
problem can be mitigated by using an iterative power-se-
ries approach [6]. The power series converges very rapidly 
for Task 1, where 2 iterations are used, but requires more 
iterations for Tasks 3 and 5, where 30 or 50 iterations are 
used, respectively.

Because of the nonlinearity in (15), the statistics of en-
velope images are more complicated and analytic expres-
sions for their statistical properties are not known [22]. 

Fig. 4. discrimination tasks. Examples of the variance maps and sample envelope images for hypoechoic lesion detection (a), discrimination of a less 
distinct lesion boundary (b), and detection of additional scattering material within the lesion (c). Feature parameters are exaggerated compared 
with the experiments to facilitate display.
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This makes a rigorous derivation of the ideal observer for 
envelope images difficult. smith and Wagner [10] derived 
an approximation to the ideal observer in the limit of low 
contrast and large area target, which we refer to as the 
smith-Wagner (sW) approximation. These conditions are 
met in Task 1, and hence we use the sW observer to evalu-
ate the effect of generating an envelope image in this task. 
The sW approximate ideal observer test statistic is

 λSW( ) ( )b b S S b= − −
1
2 1 0
T . (23)

C. Observer Performance and Efficiency

Monte-carlo sampling is used to generate random ar-
rays of object reflectivity, as described in (18), and these 
are used to generate decision variables for the ideal ob-
server at the various stages of image formation. These 
decision variables are converted into a measure of task 
performance, the proportion correct denoted PC, which is 
equivalent to area under an roc curve [3], [29]. For a 
given task (1, 3, or 5) at a given stage (object, rF, or 
envelope), let λj

+ ( j = 1, …, N+) generically represent de-
cision variables from the malignant class, and let λk

− (k = 
1, …, N−) generically represent decision variables from 
the benign class. Proportion correct is then calculated as

 P
N N j k

k

N

j

N

C = + −
+ −

==

−+

∑∑1

11

Ψ( , ),λ λ  (24)

where Ψ returns 1 if the first argument is greater than the 
second, 1/2 if the two are equal, and zero otherwise.

The goal of the modeling was to determine the value of 
the feature parameter leading to a targeted Pc of 79.4%. 
This performance level was chosen to match the threshold 
in the human-observer studies. small pilot studies were 
used to find an approximate threshold, and then a larger 
study involving 2000 sample images per class was run at 
the approximate threshold and ±10% of this value. a cu-
mulative Gaussian psychometric function was fit to the 
three data points, and the threshold value was derived 
from the fitted curve. This threshold value was converted 
to contrast according to (19).

For comparing different stages of the imaging process, 
we use an ideal-observer efficiency measure [5], [6], which 
is defined as the ratio of squared contrasts at the different 
stages. For example, the absolute efficiency of the imag-
ing process is defined by comparing the squared contrast 
threshold of the human observer to that of the ideal ob-
server acting on the object,

 ηAbs
Obj

Hum
=
C
C

2

2 . (25)

Because the threshold contrast of the ideal observer at the 
object stage will always be less than the human observer 

threshold, up to estimation error, efficiency is confined to 
the range from zero to one.

absolute efficiency includes all effects of acquiring a 
signal, transforming it into an envelope image, and effects 
of the reader interpreting displayed images. However, it 
is useful to isolate different steps in this process. For this 
purpose, relative efficiency measures are used, which con-
sist of the squared-contrast ratio between any two steps in 
the image formation and decision process. Following work 
of Wagner and Brown [9], we define an acquisition stage, 
consisting of the transformation from a sampled object to 
an rF signal, and a presentation stage, consisting of pro-
cessing, display, and reading of the image. The absolute 
efficiency in (25) is the product of both of these relative 
efficiencies,

 η η ηAbs
Obj

Hum

Obj

RF

RF
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Acq Pres= = =

C
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C
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2

2

2

2

2 . (26)

If low absolute efficiency is observed for a given condition, 
the relative efficiency analysis shows where the informa-
tion loss is occurring. In Task 1, where the smith-Wagner 
assumptions are valid, the relative efficiency of presenta-
tion can be further decomposed into envelope and reader 
components using the sW approximations,

 η η ηPres
RF

Hum

RF

Env

Env

Hum
Env Hum= = =

C
C

C
C

C
C

2

2

2

2

2

2 . (27)

We note the additional possibility of having human ob-
servers perform tasks using the scan-converted rF signal 
displayed as an image. Informal psychophysical studies 
(data not shown) suggest that this is a very inefficient 
mode of display for ultrasound images.

D. Human Observer Studies

all human-observer performance studies were conduct-
ed under IrB-approved human-subject protocols at the 
authors’ institutions. Envelope images were evaluated psy-
chophysically using a two-alternative forced-choice adap-
tive staircase methodology [30], [31]. In each experimental 
condition, subjects performed a series of forced-choice tri-
als in which two envelope images were presented side by 
side, as in Fig. 4. subjects responded by indicating the 
image from the malignant class. Unlike Fig. 4, the im-
ages were randomized so that subjects did not know a 
priori on which side the malignant image appeared. The 
staircase procedure was based on a commonly used three-
up, one-down scheme [31], where the feature parameter 
remained at the same level until either the subject had 
three sequential trials correct (the feature parameter was 
reduced) or the subject made an incorrect decision (the 
feature parameter was increased). Increases and decreases 
were 22% relative to the current feature value. Under rea-
sonable assumptions on the smoothness of the underlying 
psychometric functions, these staircases were designed to 
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fluctuate about the target threshold at which the observer 
achieves 79.4% correct responses.

a round of piloting experiments utilizing 100 trials was 
conducted for each subject to get a rough idea of the 
threshold in each condition. For each test run, the starting 
value of the feature parameter in the staircase was double 
the approximate threshold from the piloting. The first 25 
trials of the staircase were considered burn-in trials and 
were not used in the final threshold estimate. The geomet-
ric mean of the feature parameter in the next 75 trials was 
used as the threshold for the test run, as shown in Fig. 
5. The threshold parameters were converted to contrast 
using (19), and then averaged across the three test runs. 
The resulting threshold estimates came from a total of 225 
trials per subject in each condition.

subjects performed trials in a darkened room using an 
lcd clinical review monitor (Mdrc 1119, Barco, Kortri-
jk, Belgium) that was calibrated to the dIcoM standard 
over the luminance range of 0.12 cd/m2 to 168.4 cd/m2. 
calibration and luminance measurements were checked by 
a spot photometer (Barco). software for displaying the 
images and recording subject responses was written by 
the authors. subject responses were recorded by captur-
ing a mouse click on the image they decided to classify as 
malignant. subjects had unlimited time to view the pair 
of images in each trial, but typically gave a response after 
about 1 s. after each trial, feedback was given in the form 
of text saying “right” or “wrong” displayed for 200 ms.

IV. results and discussion

A. Observer Performance

Fig. 6 shows absolute efficiency averaged across 4 sub-
jects with standard errors. absolute efficiency ranges from 
0.2 to 8% across all experiments. note that an efficiency of 
6.5% means that human observers require on average four 
times the contrast of the ideal observer to achieve equal 
values of Pc. These results show the settings of center fre-
quency and bandwidth that are optimal for the tasks at 
hand, up to the limits of statistical inference. absolute ef-
ficiency is generally well below 100%, which suggests that 
a considerable fraction of diagnostic information is lost 
in all cases. relative efficiencies are used below to show 
where in the process of image formation and reading these 
losses occur.

recall from (25) that absolute efficiency consists of the 
energy threshold of the ideal observer acting on the object 
ideally sampled on a 0.019-mm interval (corresponding to 
40 MHz) to the estimated threshold for human observ-
ers of the image data. The sampled-object ideal observer 
threshold is not concerned with the limitations of an im-
aging system and is therefore independent of the transmit 
center frequency or bandwidth. Therefore, cobj is constant 
within each task, and absolute efficiency is inversely pro-
portional to the threshold contrast energy of the subjects. 
The sampled-object ideal observer serves to normalize the 
observed thresholds to a measure of the total diagnostic 
information incorporated on the human observer’s deci-
sions.

In Task 1 and Task 3, absolute efficiency generally 
increases with center frequency regardless of the band-
width. The effect of bandwidth changes over the frequency 
range tested; efficiency steadily increases with bandwidth 
at the lowest center frequencies (3 MHz), but appears to 
peak at 40% bandwidth at the highest center frequencies 
(15 MHz). In Task 5, absolute efficiency appears to peak 
at approximately 5 MHz for all bandwidths greater than 
20%. Thus we find some degree of task dependence in the 
optimal center frequency and bandwidth settings. How-
ever, as noted previously, efficiency is generally low, which 
motivates the efficiency analysis as a way to understand 
where diagnostic information is being lost.

B. Efficiency of Information Transfer

Eq. (26) shows how the absolute efficiency plotted in 
Fig. 6 can be decomposed into relative efficiency measures 
that track the transfer of information through the acquisi-
tion of rF data and the subsequent steps, which we gener-
ically refer to as presentation, to a final observer decision. 
The two panels of plots in Fig. 7 show relative efficiency 
of acquisition and presentation in each of the three tasks.

In all cases, the relative efficiency of acquisition in-
creases with center frequency regardless of the bandwidth, 
although the curves appear to flatten somewhat above 
10 MHz. relative efficiency also generally increases with 

Fig. 5. staircase psychophysical data. Example data from the 3-up, 
1-down staircase procedure are plotted showing how the target param-
eters vary during a run. The threshold estimate for the run is the geo-
metric mean after 25 trials of burn-in. The average of three such runs is 
used as the threshold estimate for each observer in each condition.
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bandwidth, particularly at low center frequencies. at high 
center frequencies, higher bandwidth improves relative ef-
ficiency up to 60% bandwidth. note that the relative ef-
ficiency of acquisition is computed exclusively from Mon-
te-carlo simulation studies with the ideal observer using 
2,000 sample images, and hence errors are negligible.

a striking feature of these plots is the similarity of 
performance across the three tasks. From the perspective 
of the acquisition system, in which the goal is to maxi-
mize diagnostic information in a recorded signal, Fig. 7(a) 
shows that high frequency and high bandwidth are opti-
mal irrespective of the task. This corresponds well with 
our general intuition about system design, where higher 

bandwidth and frequency are considered desirable. They 
also stand in contrast to the optimal echo snr or peak 
received frequency shown in Fig. 2.

Fig. 7(b) shows the loss of information resulting from 
presentation. The plots are not similar across tasks, with 
flat or mild increases in efficiency with center frequency 
for Tasks 1 and 3, and a more substantial drop in effi-
ciency for Task 5. The lowest bandwidth (20%) usually 
exhibits the highest relative efficiency. Thus, some of the 
bandwidth-related losses in efficiency appear to be made 
up in the presentation stage. comparison of the two pan-
els in Fig. 7 shows that the relative efficiency of presenta-
tion is often substantially lower than acquisition (note the 

Fig. 6. absolute efficiency results. average absolute efficiency across subjects is plotted as a function of the transmit center frequency for each of the 
4 tested fractional bandwidths (FBW). note that the legend in (a) applies to all three graphs. Error bars represent standard errors across subjects.

Fig. 7. Information transfer in acquisition and presentation. The upper panel (a) shows the relative efficiency of the rF signal (ηobj-rF), and the lower 
panel (b) shows the relative efficiency of the subsequent presentation for each task. The product of the two is the absolute efficiency of Figure 6.
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different scales on the y-axis of the plots). Thus, it would 
appear that in the majority of conditions tested, relatively 
more information is lost in the conversion to an envelope 
and subsequent reading of the displayed image than in the 
acquisition of the rF signal.

as mentioned above, in Task 1 the large-area low-con-
trast assumptions necessary for the sW approximations 
are achieved. In this case we can decompose the relative 
efficiency of presentation into envelope and reader compo-
nents as described in (27). Plots of these two stages are 
shown in Fig. 8. The relative efficiency of the envelope im-
ages in Fig. 8(a) generally increases with center frequency 
after an initial dip at 5 MHz. The measure is insensitive to 
bandwidth until the center frequency is above 10 MHz. at 
this point the lower bandwidth pulses show substantially 
higher relative efficiency.

Trends in the relative efficiency of reading in Fig. 8(b) 
are somewhat the opposite, decreasing with center fre-
quency and dependent on bandwidth across the range of 
center frequencies. The results suggest that readers are 
not able to fully capitalize on the increased information 
available in images acquired with higher frequency and 
higher bandwidth pulses.

C. Implications

The relative efficiency of acquisition, plotted in Fig. 
7(a), shows where further improvements in acquisition 
may be found. For example, efficiency curves appear to be 
still increasing at the 15 MHz limit of these experiments, 
suggesting that higher center frequencies may continue 
this trend. Furthermore, these results are calculated at 
an rF echo data sampling rate of 40 MHz. If the sam-
pling rate was increased, the ideal observer acting on the 
sampled object would likely perform even better, leaving 
more room for improvement at the level of the rF signal. 
By contrast, there is less motivation for maintaining high 
fractional bandwidth at these high frequencies given the 
observed saturation in performance. It should be noted 
that this finding may not hold for shallower targets where 
frequency-dependent attenuation is a smaller factor.

The findings with presentation efficiency show that the 
single largest relative loss of information occurs after ac-
quisition of an rF signal. This suggests that substantial 
improvements in imaging may be made without neces-
sarily changing the acquisition hardware at all. In Task 
1, where we can assess formation of an envelope image 
and independent reading of that image, we see that the 
envelope step loses approximately the same amount of 
information (relatively) as the reading step. alternative 
methods for computing an envelope, for example apply-
ing a Wiener filter to the rF signal before demodulation 
([5], [6], [23]), may be able to reduce the loss in this step. 
a possibility for addressing limitations in the observers is 
task-specific processing of the envelope image.

The study reported here was designed to give a general 
assessment of frequency and bandwidth effects. However, 
several specific choices were made regarding the transduc-

er aperture, depth of focus, tissue scattering properties, 
and other parameters. Furthermore, we neglect effects of 
aberration, reverberation, focal errors, and tissue-depen-
dent attenuation, which would require fundamental modi-
fications of the transmit-receive model in (11). although 
it is possible that other parameter choices could change 
some of the findings, they also show the broad applicabil-
ity of the approach.

V. conclusions

The purpose of this work has been to investigate the 
transfer of diagnostic information in B-mode imaging as 
a function of center frequency and fractional bandwidth 
of the transmitted pulse. conventional wisdom would sug-
gest that increasing either of these is beneficial. However, 
when pulse transmission is subject to a limit on mechani-
cal index, there is a tradeoff between these parameters and 
the received esnr. The ideal observer recasts these trad-

Fig. 8. Envelope analysis of Task 1 using smith-Wagner (sW) approxi-
mations. The sW approximations allow further decomposition of the 
presentation efficiency into envelope and reader components. at low cen-
ter frequencies, the relative loss of information is greater in the envelope 
than the reader, but this situation reverses at high center frequencies. 
FBW = fractional bandwidth.



IEEE TransacTIons on UlTrasonIcs, FErroElEcTrIcs, and FrEqUEncy conTrol, vol. 59, no. 6, JUnE 20121126

eoffs in terms of diagnostic information transfer, which 
can resolve this ambiguity.

When the entire process of acquisition and presenta-
tion is considered, we find the optimal center frequency 
and bandwidth to be task dependent. High center frequen-
cy (15 MHz) and moderately high fractional bandwidth 
(60%) in a low-contrast detection task (Task 1) and high-
contrast boundary discrimination task (Task 3), whereas 
low center frequency (5 MHz) and high bandwidth (80%) 
are optimal for a weakly scattering lesion interior task 
(Task 5). However, when the process is broken into ac-
quisition and presentation stages, we find that the task 
dependence arises in the presentation stage, suggesting 
that task-specific processing may resolve this problem 
rather than task-specific hardware. We also find that the 
larger proportional loss of diagnostic information is usu-
ally found in the presentation stage, particularly as the 
center frequency exceeds 10 MHz. This suggests that care-
ful processing of high-frequency rF echo signals may lead 
to even better visual discrimination performance.

We have tried to emphasize the strong constraints and 
assumptions used to make the comparisons we report. 
Many of these are not inherent to the ideal observer ap-
proach and can be overcome by careful and focused inves-
tigations. The ideal observer analysis allows us to better 
understand the mechanisms that lead to these optimal 
points. High center frequencies lead to more efficient rF 
acquisition, and moderate bandwidth allows better trans-
mission of information into the envelope image.
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