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Abstract— We show that the minimum-variance (MV), Wiener-
filtered (WF), and other beamformers can be derived as approxi-
mations to the ideal-observer’s strategy for lesion feature discrim-
ination. We analyze breast lesion discrimination performance for
five beamformers. Four of the five include matching filtering of
receive-channel signal before summation, because there is no loss
of task information in the RF signals due to this beamforming.
Differences among beamformers occur depending on how they
prepare RF signals for demodulation. Generally the MV and
WF beamformers decorrelate the echo signals the most before
demodulation, which transfers more task information into the
B-mode data. We find the WF beamformer performs better than
others because it is the closest approximation to the ideal observer
strategy. The MV beamformer requires an additional low-rank
approximation that handicaps performance for discriminating
four of the five lesion features, but performs well for the fifth
task because reducing rank filters data that is well matched to the
task 5 feature spectrum. However, similarly reducing the rank
of the WF filter makes it the beamformer of choice.

Index Terms - breast cancer, ideal observer, task-based design

I. INTRODUCTION

The computational speed and configuration flexibility of
current digital beamformers in medical sonographic systems
now make it realistic to consider implementing more com-
plex alternatives to the current standard of delay-and-sum
(DS) beamforming. Several research groups have applied the
minimum-variance (MV) beamformer to sonography that was
pioneered by Capon and Frost for other applications, and they
found improvements in spatial and contrast resolutions [1],
[2]. The MV beamformer selects receive-channel filters that
minimize the weighted array power output in all directions
except along the beam axis. Recently, Nisel et al. [3] described
a Wiener-filter (WF) beamforming approach, which minimizes
the mean-squared error instead of the variance. The WF
beamformer further improved contrast resolution compared
with the MV approach, especially under low echo-signal-
to-noise (eSNR) conditions. Although both were shown to
improve image metrics, there remains a larger question of how
to predict the performance of any beamformer for achieving
diagnostic objectives.

We propose using ideal Bayesian observer analysis as a
basis for beamformer design and evaluation. This paper builds

on our initial development [4]. In this report, we derive the
MV and WF approaches from the test statistic of the ideal
observer to evaluate their relative performances for the task
of discriminating breast lesion features. One advantage of the
ideal observer methodology is its ability to relate sonographic
instrument properties (resolution and noise figures) directly
to observer performance for features that can be specified
exactly [5], [6]. Observers are trained humans or algorithms
that evaluate criteria according to the rules of decision theory.
Another advantage of this approach is the ability to track task
information flow through the image formation and diagnostic
processes. Since the ideal observer provides an upper bound
for task performance, comparisons with practical-observer
performance defines the efficiency of an imaging instrument
for delivering task information to observers.

In this paper, we show that MV and WF beamformers can
be expressed as different approximations to the ideal observer
strategy. Both apply a matched filter to each receive-channel
signal that is composed of the channel’s pulse-echo impulse
response. After summation, each method filters the beam-
formed RF echoes prior to envelope detection, but the filters
are different because they reflect the minimum variance versus
minimum mean-squared error strategies. The performance of
both beamformers was measured for five discrimination tasks
involving breast lesion features. The results varied predictably
depending on the nature of the task and on how well each
beamformer was able to approximate the strategy of the ideal
observer for that task.

II. METHODS

A. Analysis.

Sonograms are formed in two stages. Acquisition yields the
formation of beamformed RF echo signals and display results
in the formation of the B-mode image. These are described,
respectively, by the following three equations [5], [6],

g = Hf + n , gBF = Bg and b = OgBF . (1)

f , g, gBF, and b are vectors describing backscatter in the
object, pre- and post-beamformed RF echo data, and B-
mode image of the object being examined, respectively. They
are each discrete 2-D signals arranged into column vector
by lexicographical reordering. n is acquisition noise of the



system, H is a linear system matrix mapping object scattering
in the spatial domain to echo data in the time domain, and B is
the operation of channel summing resulting in beamformed RF
signals. Finally O is a nonlinear image reconstruction operator
that converts RF data into B-mode images.

We represent RF signals from each receive channel by

g =


g0

g1

...
gN−1

 =


H0

H1

...
HN−1

 f +


n0

n1

...
nN−1

 = Hf + n , (2)

where gj is the RF echo signal from element 0 ≤ j ≤ N − 1.
Hj describes the transmit aperture characteristics and receive
properties of the jth receive channel. Channel acquisition
noise nj is modeled as a zero-mean white Gaussian process
with variance σ2

n. As B is the operation that sums echo signals
across receiver channels, we can write the beamformed RF
signal as

gBF = HBFf+nRF , where HBF = BH and nBF = Bn .

Each lesion feature has a unique benign-malignant signature
pair that are labeled i = 0 or 1, respectively. The probability
density function (pdf) of object scattering for the ith class of
data is modeled by a zero-mean, uncorrelated, nonstationary,
multivariate normal process:

pi(f) = N (0, σ2
obj(I+ Si)) for i = 0, 1 . (3)

σ2
obj(I + Si)) is the covariance matrix, I is the identity

matrix, and diagonal matrix Si defines deviations in uniform
background tissue scattering that specify features of the ith

class. Diagnostic information about lesion features is contained
in the covariance.

The pdf for gi corresponding to fi are

pi(g) = N (0,Σi) for i = 0, 1 ,where

Σi = σ2
objH (I+ Si)H

t + σ2
nI (4)

is the covariance matrix of the echo signals. eSNR is adjusted
by varying the echo strength via σ2

obj.
The ideal observer’s strategy for distinguishing the two

classes of data is described by a test statistic given as the
log-likelihood ratio,

λ(g) = ln
p1(g)

p0(g)
−→ gt(Σ−1

0 − Σ−1
1 )g . (5)

The right side of (5) is formed by eliminating terms that do not
depend on g. Larger values of λ indicate a greater likelihood
for class 1 condition than class 0. Applying this strategy
guarantees optimal performance under the assumptions.

We also use the Smith-Wagner (SW) observer as the ideal
observer on B-mode images b. The SW observer test statistic
is given by [7]

λSW(b) = bt(S1 − S0)b . (6)

The performance of ideal and SW observer is calculated
numerically through Monte-Carlo studies. Details of those
studies are provided in [4]–[6].

B. Approximations to the Ideal Observer Strategy

The beamforming strategy of the ideal observer is hidden
within the compact express of (5). We can obtain insights
by applying the Woodbury matrix inverse identity [8] to the
inverse of covariance matrices as given by,

(A+BCD)−1 = A−1−A−1B(C−1+DA−1B)−1DA−1 ,
(7)

provided matrices A and C are invertible.
Applying (7) to the expression for Σ−1

i in (4), we obtain

Σ−1
i = σ−2

n I− σ2
objσ

−2
n H

(
(I+ Si)

−1 +Kn

)−1
σ−2
n Ht ,

(8)
where Kn , σ2

objH
tH/σ2

n . Consequently, the test statistic is

λ(g) = σ2
objσ

−2
n gtH

(
Ψ−1

1 −Ψ−1
0

)
Htgσ−2

n , (9)

where Ψi = (I+ Si)
−1 +Kn.

The expanded expression for λ(g) in (9) reveals the ideal
strategy for beamforming. The first step is to calculated Htg
and gtH, which combine matched filtering on each receive
channel signal with a summation across channels. We showed
this irreversible process preserves the information in the RF
echo signal [4], but there is no guarantee the information
will survive the B-mode display stage in a form accessible
by observers. In fact, we measured a significant loss of task
performance if the envelope image is computed immediately
after matched filtering [4]. Let’s continue to explore the other
factors involved with the ideal observer’s strategy.

Assuming Kn or HtH is invertible, we apply (7) to Ψi and
find

Ψ−1
i = K−1

n −K−1
n

(
K−1

n + I+ Si

)
K−1

n . (10)

Substituting (10) into (9), we obtain

λ(g) = σ2
objσ

−2
n gtHK−1

n (Φ−1
0 −Φ−1

1 )σ−2
n K−1

n Htg , (11)

where Φi = K−1
n + I+ Si , i = 0 or 1.

The ideal observer test statistic in (11) can be explored
further by adopting the first-order approximation of (I +
A)−1 ≃ I−A to calculate, Φ−1

i [5], where A , K−1
n + Si:

Φ−1
i ≃ I− (K−1

n + Si) and

λ(g) ≃ σ2
objσ

−2
n gtHKn

−1(S1 − S0)σ
−2
n Kn

−1Htg .(12)

The first-order approximation in (12) describes filtered echo
signals σ−2

n Kn
−1Htg that are squared and multiplied by the

task difference ∆S = S1−S0. Since ∆S is a diagonal matrix,
λ(g) is not changed if we replacing σ−2

n Kn
−1Htg by its

envelope. Comparing this result to the form of Smith-Wagner
observer in (6), we interpret σ−2

n Kn
−1Htg as helping to

preserve the ideal observer’s test statistic as it passes through
demodulation. Thus, ideal performance or task information is
maximized at the display stage. This interpretation is accurate
provided the first-order approximation in (12) is valid.

With Kn given in (8), the term σ−2
n Kn

−1Htg is recognized
as the Generalized Sidelobe Canceller (GSC) or Frost beam-
former of the RF data g [9]. It is the MV beamformer when
the element impulse responses are known. In our analysis,



known impulse responses were required to model the ideal
observer for the condition of signal known statistically. It
explains the difference between the MV beamformer derived
in this analysis and that from [1], [2].

The validity of the first-order approximation in (12) can
be poor under low eSNR conditions; i.e., the eigenvalues of
K−1

n are large. To improve the approximation, we use a new
decomposition of Φi = (K−1

n + I) + Si . Consequently,

Φ−1
i ≈ (K−1

n + I)−1 − (K−1
n + I)−1Si(K

−1
n + I)−1 and

λ(g) ≈ σ2
objσ

−2
n gtH(Kn + I)−1

× (S1 − S0)σ
−2
n (Kn + I)−1Htg . (13)

Similarly, σ−2
n (Kn + I)−1Htg = (σ2

objH
tH + σ2

nI)
−1Htg

helps preserve task information through the demodulation
process of display. It is the Wiener filter beamformer [9].
This form also requires the assumption that the first-order
approximation (13) is accurate.

We showed above that MV and WF beamformers are
both approximations of the ideal strategy. In both cases, they
spatially decorrelate the RF echo signals before demodulation,
which preserves more task information as compared with the
delay-and-sum (DS) and matched filter (MF) beamformers.
Before measuring discrimination efficiencies as described be-
low, we predict that the WF beamformer should outperform
the MV beamformer based solely on the observation that WF
is a better approximation to the ideal observer strategy for
low eSNR. In the visual discrimination efficiencies shown
below, values close to one mean that the SW observer of
the B-mode image performs equivalently to the ideal observer
of the RF echo signal, and therefore all task information is
transferred into the image. The caveat is that we do not know
the performance of the SW observer relative to the human
observer except for Task 1.

The requirement that the inverse of (HtH) exist and be
well conditioned challenges the experimental validation of our
analysis. A full treatment of this issue is beyond the scope of
this conference paper but a brief discussion of these important
computational issues is given below.

C. Discrimination Tasks.

Through discussions with a radiologist, we identified five
features of breast lesions commonly sought to visually dif-
ferentiate benign lesions from malignant ( [5], Fig. 2). Task
1 is detection of low-contrast hypoechoic lesions; Task 2
is discrimination of an elongated eccentric lesion from a
circular lesion; Task 3 is discrimination of a soft, poorly
defined boundary from a well circumscribed lesion; Task 4
is discriminating boundary irregularities (spiculations) from a
well-circumscribed lesion; and Task 5 is discriminating a very
weakly scattering hypoechoic interior from an anechoic inte-
rior. Task difficulty is controlled through contrast parameter C
that governs the difference between variance maps Si for the
two classes. C is defined in [5].
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Fig. 1. (a) The impulse responses from receiver channels generated with
Field II [10]. (b) The normalized eigenvalue spectrum of HtH with a cutoff
at -40 dB to implement the MV beamformer. (c) Example pair of B-mode
images for task 4 using the beamformers DS, MF, WF, MV, and WFapp. The
latter method is WF with the same low-rank approximation applied to MV.

III. RESULTS

Examples of image simulations are found in Fig. 1. Pulse
echo psfs at the receive channel in Fig. 1(a) are generated
by using the Field II program [10], with parameters from the
Siemens Sono-line Antares system and the VF 10-5 linear
array transducer [6].

The number active tx-rx elements 96. Based on the psfs
of those element, we implemented DS, MF, WF and MV
beamformers. Since H has a very large size, a circulant
assumption was made for each Hj providing advantages
in computation [5]. The MV beamformer involves the ill-
conditioned matrix product (HtH)

−1, which requires a low-
rank approximation. Fig. 1(b) shows the normalized eigenvalue
spectrum of HtH. By cutting-off frequency contributions less
than -40 dB, the MV is implemented as the pseudoinverse of H
[9]. Since system modeling is changed slightly with the low-
rank approximation, we also implemented the WF beamformer
with the same low-rank approximation for comparisons and
refer to it as WFapp.

Fig. 1(c) shows an example of B-mode images for Task
4 with the spiculated “malignant” lesion on the right in all
cases. Among the 5 beamformers, the MF beamformer has the
largest speckle. The effects of the WF and MV beamformers
are to reduce speckle sizes and clarify lesion boundaries.
Visually comparing WF and MV images, WF appears to have
a better spatial resolution but lower contrast resolution. The
WF beamformer with the low-rank approximation (WFapp)
appears to have a spatial resolution on par with the MV and
a somewhat improved contrast resolution.

Beamformer performance is quantified using observer ef-
ficiency that, in this case, characterizes the loss of task
information through demodulation. The efficiency is calculated
by

η =

(
CI

CSW

)2

, (14)
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Fig. 2. Observer efficiencies on B-mode images with different beamformers.
An efficiency of 1 indicates that all task information is passed from RF echo
signals into B-mode images. Error bars indicate one standard error.

where C is the contrast factor for a feature and subscripts SW
and I refer to values obtained from SW and ideal observers.

The efficiencies of the 5 beamformers applied to 5 lesion
features are plotted in Fig. 2. The efficiency of MF is always
the lowest. The WF and MV make substantial improvements
for the first four tasks, but in Task 5 (anechoic/hypoechoic),
the efficiency of WF is reduced to approximately that of the
DS (10.08% vs 8.85%). In Task 5, efficiency for MV is larger
(15.71%), however, the WFapp outperforms all others. The
improvement of WFapp in comparison with the MV is very
small in the first four tasks (less than 2%) but significant Task
5 (7.45%). To compare with the WF full rank, WFapp has
lower efficiency in the first four tasks, but higher in Task 5
(23.16% vs 10.08%).

IV. DISCUSSIONS

We found by applying ideal observer analysis that the
minimum variance (MV) and Wiener filter (WF) beamformers
are each approximations to the ideal strategy. In forming B-
mode imaging, there are two irreversible processes that reduce
task information. The first loss occurs in beamforming at the
acquisition stage, and the second loss occurs in demodulation
at the display stage. While beamforming compresses signals
from multiple elements within an aperture, demodulation dis-
cards the phase component of RF data as required to interface
with the human eye-brain system.

In [4], we found that the MF beamformer preserves task
information transferred from the receive channels to the
beamformed RF echo signals. However, the MF beamformer
results in a relatively large loss of task information during
demodulation. Observer efficiency for MF is the lowest for
all five visual tasks. In this study, we found that MF should
be followed by de-blurred operations, which occur with the
WF and MV beamformers. De-blurring helps preserve task
information through demodulation. Visually, these beamform-
ers reduce the speckle sizes and clarify the lesion definition
at the boundaries. Both beamformers improve SW observer
efficiency.

The difference between WF and MV beamformers is the
term σ2

nI. The importance of the term comes from the require-
ment for accurate first-order approximation to the covariance

matrix inverse. The better approximation of the WF beam-
former improves the SW observer performance. Therefore WF
should outperforms MV in all five tasks. The improvement
is significant when (σ2

objH
tH/σ2

n)
−1 has large eigenvalues

(low eSNR). This finding agrees with the results from [3] but
ours is based on the ideal observer formalism. Implementation
of the MV, however, requires a low-rank approximation that
changes the system model. To compare the two beamformers,
we apply the same low-rank approximation to give the WFapp
beamformer. The results show that the efficiencies of WFapp
are higher than those of MV in all five tasks as predicted
from the analysis. Compared to WF, the efficiency of WFapp
is lower in the first four tasks but higher in Task 5. This finding
is explained by noting that the noise filtering advantages
of rank reduction are well matched to the spatial-frequency
requirements of Task 5.

Since approximations are adopted that may reduce the
potential gains in task performance, the final results should be
evaluated using human observer studies. Also the SW observer
is a reliable performer for Task 1 but only approximate
for other tasks. It is possible that improvements in the SW
observer performance, or perhaps develop of a model observer
that response similar to human observers, will modify these
efficiencies somewhat, as it has in our previous studies [5],
[6].
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