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Abstract— We have been developing the ideal observer formal-
ism for sonography, which is based on the best-possible diagnostic
performance. The ideal performance was compared to that of
trained human observers to estimate the visual efficiency for
discriminating lesion features. We find that humans are generally
less than 10% efficient at accessing visual information essential
for breast cancer diagnosis. In seeking ways to improve this
process, we must first establish a connection between standard
ROC observer metrics and instrument properties used in system
design. In radiography, that relationship is made through the
lesion signal-to-noise ratio SNRI . SNR2

I , which describes task
information, is simply related to contrast and spatial resolutions
and noise power. Those relations break down for sonography due
to the quadratic form of the ideal observer. Our goal in this paper
is to establish a rigorous connection between ideal performance
and engineering design metrics, which has directly applications
for sonographic system design and optimization.

Index Terms - Breast sonography, ideal observer, image qual-
ity, Kullback-Leibler divergence, task-based design.

I. INTRODUCTION

In task-based design, the quality of a medical imaging
system is measured in the context of a clinical task by observer
performance, assessed through the gold standard method of
ROC analysis [1]. The ROC curve depicts the probability of
detection as a function of false-alarm rate. For binary decisions
that are normally distributed with equal variance, the area
under the curve (AUC) is adopted as a scalar metric of overall
task performance.

Wagner and Brown [2] established a connection between
ideal performance and instrument properties through the lesion
signal-to-noise ratio for the ideal observer, SNRI , which is
monotonically related to AUC and is equal to the detectability
index dA if the test statistic is normally distributed. They
showed that SNRI defines the information in the visual tasks,
and factorized into the spatial resolution, noise power, and
large-area contrast resolution of the instruments. These ideas
have formed the foundation of medical image quality analysis
for the last 30 years as they applied to most medical imag-
ing modalities including radiography, computed tomography,
magnetic resonance, and position emission tomography. Their
work was successful extended to sonography and applied to
B-mode images, but it was exact only under very stringent
conditions [3].

Applying the analysis to sonography, but now in the radio-
frequency (RF) domain, we could relax many of the stringent
assumptions [4], [5]. However, the quadratic form of the
ideal observer with respect to echo data is inconsistent with
the Wagner-Brown theory. In this paper, we introduce the
Kullback-Leibler divergence, J [6], a concept rooted in infor-
mation theory, to define task information for sonography. We
use Monte-Carlo studies involving RF echo data to compute
J and connect it to the ideal observer performance. J is
then related analytically to instrument properties. In this way,
we can rigorously connect task information to both human
observer performance and engineering design properties for
typical visual tasks required to discriminate malignant from
benign breast lesion features [4]. The goal of this paper is to
further the development of a rigorous framework for medical
sonography on par with other modalities.

II. IDEAL OBSERVER ANALYSIS

Details of the ideal observer analysis for breast lesion
detection in sonography were provided previously [4], [5].

SIGNAL MODELING. In consultation with a radiologist, we
selected five sonographic features characteristic of breast le-
sion diagnosis. These features define five visual tasks, and
are graphically illustrated in low-right corner of Fig. 2. Task
1 is detection of a low-contrast circular lesion; Tasks 2-4
are discriminations between lesion boundary features; and
Task 5 is to discriminate between high-contrast hypoechoic
and anechoic lesions. More complex lesion features can be
synthesized from these five elementary features.

Each task includes two classes of data specified by a pair
of masks Si(x, y) that define the geometry and contrast of
feature patterns for i = 1 malignant and i = 0 benign
features. Task difficulty is controlled through the object con-
trast factor defined by the difference between two masks,
∆S(x, y) [4]. Object scattering functions for the i th class
of data fi(x, y) are formed by multiplying the mask by
white Gaussian noise fields (WGN ∼ N (0, σ2

obj)), such
that fi(x, y) = WGN(x, y) ×

√
Si(x, y). Consequently, the

scattering functions for each class fi are amplitude-modulated
(nonstationary) random fields.



We simulated RF echo data vectors for the ith class gi from
sampled random object scattering vector fi ∼ N (0,Σobj),
with covariance matrix Σobj. Modeling the ultrasonic imaging
system as a noisy linear transformation, the RF data are
obtained through gi = Hfi + n. System matrix H transforms
scattering vectors fi into RF echo data gi that includes
additive, signal-independent, zero-mean acquisition noise
n ∼ N (0, σ2

nI), where I is the identity matrix. Noise variance
σ2
n is adjusted relative to object background variance σ2

obj

to produce a background echo SNR0 = 32 dB; SNR0 is
the ratio of signal energy to noise energy. N × N object
and M × M data fields are lexicographically reordered to
form N2 × 1 and M2 × 1 vectors, respectively, f and g.
H has dimensions M2 × N2, and has rows composed of
pulse-echo impulse responses. If M = N and the impulse
response is shift invariant, H is a block-Toeplitz matrix that
we approximate as circulant for fast computation. System
parameters were selected to model a 1-D linear array on a
Siemens Antares system [5].

ENCODING TASK FEATURES IN SCATTERING FUNCTIONS.
In sonography, received signals from random media are
produced by the detection of mostly incoherent acoustic
backscattered wave energy [4]. Feature contrast in random
scattering objects therefore is modeled using a nonstationary
covariance matrix, Σobj = σ2

obj(I + Si). Si is a diagonal
matrix formed by re-ordering the mask Si(x, y), which
defines the shape and amplitude of lesions as distinct from
background media. Σobj is diagonal with nonzero elements
given background variance σ2

obj of the WGN process that are
modulated by the addition of Si.

IDEAL OBSERVER. The optimal discriminator of these two
classes of signals is given by the Bayesian ideal observer [1].
The covariance matrix of gi is found from two component
covariances,

Σi = HΣobjH
t +Σn = σ2

objH(I+ Si)H
t + σ2

nI , (1)

if we can model imaging as a linear system. Denoting the
multivariant normal probability densities for gi as pi(g), the
ideal observer operating on RF echo signals is given by the
log likelihood ratio [1]

λ(g) = ln
p1(g)

p0(g)
. (2)

Reducing (2) and eliminating terms unrelated to g, because
they do not modify detection performance, we adopt the
simpler test statistic, T , given by

T (g) =
1

2
gt(Σ−1

0 −Σ−1
1 )g . (3)

The ideal observer, which makes decisions by comparing T
to a threshold, achieves the largest AUC for any observer of
this task. It is significant that T is a quadratic function of
g, which occurs because feature contrast in encoded in the
object covariance Σobj rather than its mean.
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Fig. 1. Plots of the detection probability PD and the false alarm probability
PF as functions of threshold t, where −∞ < t < ∞. J equals the area
between the two curves.

PERFORMANCE METRICS. Visual discrimination performance
for different processing approaches was quantified from the
results of two-alternative force-choice (2AFC) experiments
[4]. From the percentage of correct responses, we measure
AUC. The standard detectability index dA of the ideal observer
is converted from AUC via [1]

dA = 2erf−1(2AUC− 1) , (4)

where erf(·) is the error function and erf−1(·) is its inverse.
d2A is a psychophysical measure for the ideal observer that is
compared with that for a test observer to estimate absolute
discrimination efficiency. d2A ranges from 0 to ∞ as AUC
moves from 0.5 to 1.

When observer responses are normally distributed, AUC can
be calculated through SNRI , which is defined from moments
of the test statistic (3),

SNR2
I =

(E1{T} − E0{T})2

(var1{T}+ var0{T})/2
, (5)

where Ei{T} and vari{T} are means and variances of the
test statistic conditioned on class i being true. SNRI is the
separation between response means in units of their average
variance. For normally distributed response data, SNRI = dA.
Also for normally distributed T , AUC is related to dA and
SNRI, which then connects task information, discrimination
efficiency, and instrument properties defining image quality.

III. TASK INFORMATION IN SONOGRAPHY

T is a quadratic function of g in sonography, and thus
it follows a noncentral chi-squared distribution [1] that de-
viates from normal more for edgy tasks 2 and 4. Thus
relationships between dA, AUC and SNRI in sonography are
more complex than in radiography. Which of these figures of
merit characterizes performance? The answer is dA, which
equals the Kullback-Leibler divergence J [6]. J measures
task information under 2AFC experimental conditions and
therefore it may be used to establish the validity of other
figures of merit for conditions where T is not be normally
distributed.



In terms of the probability density function for the two
classes,

J =

∫
dg (p1(g)− p0(g)) ln

p1(g)

p0(g)
. (6)

The difficulty in calculating J is that it involves the inverses
and determinants of large-size covariance matrices that are
difficult to compute. While inverses have been computed using
a power series expansion [4], determinant calculations remain
challenging. However, it can be shown that

J =

∫ ∞

−∞
dt [PD(t)− PF (t)] , (7)

where PD(t) = Pr (λ(g) > t|H1) is the probability of detec-
tion and PF (t) = Pr (λ(g) > t|H0) is the probability of a
false-alarm measured at decision threshold t.

Eq. (7) is illustrated graphically in Fig. 1. J can be found
numerically by integrating the difference between the two
probability curves. Covariance determinants are included as
additive constants in the log-likelihood ratio. Their influence is
to shift both curves along t by the same interval, and therefore
they do not affect the area calculation. Consequently, we can
plot PD and PF using T (g) instead of λ(g) to quickly and
accurately calculate J .

We computed d2A, SNR2
I , and J from (4), (5), and (7),

respectively, and plotted the results in Fig. 2 as functions of
object contrast. J , which defines task information, is statisti-
cally equivalent to d2A for all tasks. Difference are maximized
at 6.5% in Task 5 and within the computational errors. SNR2

I ,
however, is lower than the other metrics in Tasks 2 and 4.
The difference is up to 14.5% in Task 2 and larger than
computational errors.

The differences between SNR2
I and other figures of merit

for Tasks 2 and 4 might be expected because the areas en-
compassed by the task difference ∆S is small, suggesting the
central-limit theorem does not produce a normally distributed
T . The difference also suggests the relationship between SNRI

and dA is not exact. Thus it is better to begin with J when
attempting to related task information to image quality metrics,
as we do next.

IV. SONOGRAPHIC IMAGE QUALITY

Wagner and Brown [2] derived the following expression that
relates ideal observer performance to laboratory measurements
of image quality such as spatial resolution, noise power, and
signal contrast,

SNR2
I =

∫
∞

du

∫
∞

dv |∆S̃(u, v)|2 NEQ(u, v) , (8)

where NEQ(u, v) = |H̃(u, v)|2/σ2
n. |H̃(u, v)| is the magni-

tude of the system transfer function and σ2
n is the variance

of photon noise process. The expression is derived for a
linear shift-invariant (LSI) system and stationary noise, and
for low-contrast lesion detection (Task 1). NEQ characterizes
the ability of the instrument to transfer object contrast into
recorded data.

To derive an expression analogous to (8) for sonography,
we express J in terms of class covariances and then image
quality parameters. For the two class distributions with zero
mean and covariance matrices Σi [7],

J =
1

2
Tr

[(
Σ−1

0 −Σ−1
1

)
(Σ1 −Σ0)

]
. (9)

Inverting these large matrices can be achieved by a power
series expansion. Since we are examining the low-contrast
detection task we can truncate the expansion after the first
term to approximate (9) in closed form as

J ≈ 1

2
Tr

[
Σ−1

s (∆Σ1 −∆Σ0)Σ
−1
s (Σ1 −Σ0)

]
, (10)

where Σs and ∆Σi given by

Σs = σ2
objHHt + σ2

nI ,

∆Σi = σ2
objHSiH

t . (11)

Since Fig 2 shows that d2A ≃ J for all tasks and contrasts, we
substitute d2A for J and obtain

d2
A ≈ 1

2
Tr [Ks∆SKs∆S] . (12)

where Ks = HtΣ−1
s H and ∆S = σ2

obj(S1−S0) defines task
contrast.

Under the LSIV/stationary assumptions, Ks can be diago-
nalized using Fourier techniques as Ks = F−1K̃sF, where
F is the forward DFT matrix [1]. Since K̃s is diagonal, its
elements can be represented by a single index, K̃s(k, k) =
K̃s(k). Similarly, ∆S = F−1∆S̃F, and therefore (12) is
expressed as a double sum over frequency indices

d2A ≃ 1

2
Tr

[
K̃s∆S̃K̃s∆S̃

]
=

1

2

∑
k

∑
l

K̃s(k)∆S̃(k, l)∆S̃(l, k)K̃s(l). (13)

Since ∆S is diagonal, ∆S̃ is Hermitian and stationary, i.e.
∆S̃ (l , k) = ∆S̃∗(k , l) = ∆S̃ (l − k), in which ∆S̃ (k) is the
Fourier transform of ∆S but re-arranged into a column vector
before taking the transform.

Expressing (13) as a continuous function of 2-D spatial
frequency variable, u = (u, v), we have

d2A ≃ 1

2

∫
∞

du

∫
∞

du′ K̃s(u
′)
∣∣∣∆S̃(u− u′)

∣∣∣2 K̃s(u)

=

∫
∞

du
∣∣∣∆S̃ (u)

∣∣∣2 {
1

2
K̃s(u

′) ∗ K̃s(−u′)

}
(u)

=

∫
∞

du
∣∣∣∆S̃ (u)

∣∣∣2 ACF(u) . (14)

where K̃s is given by

K̃s(u, v) =

∣∣∣H̃(u, v)
∣∣∣2∣∣∣H̃(u, v)

∣∣∣2 σ2
obj + σ2

n

. (15)

Comparing (14) to (8), we find performance in both cases
depends on task contrast |∆S̃|2. However the autocorrelation
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Fig. 2. Comparison of ideal observer performance metrics d2A, J-divergence, and SNR2
I measured for five visual tasks. Curves are plotted as a function of

object contrast. The legend for Task 5 applies to all. The lower-right corner shows variance profiles for five tasks related to lesion discrimination.

function ACF(u) = 1
2K̃s(u) ∗ K̃s(−u) in sonography is

analogous to NEQ in radiography. It provides an avenue for
relating image quality metrics to task information.

V. DISCUSSION

When |∆S̃|2 ( see Fig. 2, low-right corner) is not much
larger in area than the 2-D speckle correlation area, the central-
limit theorem does not drive the observer response distribution
toward normal. Therefore SNRI in (8) is no longer directly
related to the ideal observer AUC. We replaced SNRI with
the Kullback-Leibler divergence J , a fundamental measure of
task information, and found through Monte Carlo studies that
J = d2A, which is related to AUC, for the five discrimination
tasks commonly found in breast lesion diagnosis. Thus AUC
measured in 2AFC experiments can be related to task infor-
mation J that can also be expressed in terms of image quality
parameters. These are the relationships we sought.

ACF(u) provides a rigorous connection between task infor-
mation and image quality parameters. It may be interpreted
as the number of independent samples of task information
being offered to the observer at spatial frequency u. K̃s(u) in
Eq. (15) resembles a generalized NEQ quantity [1] for photon
imaging in a variable background. Here acoustic speckle in
the RF signal is considered to be a random background.

Interpretation is easier when K̃ is written in the form

K̃s(u) =
SNR0 ×MTF2(u)

σ2
obj

(
SNR0 ×MTF2(u) + 1

) . (16)

SNR0 , |H(0, 0)|2σ2
obj/σ

2
n is the pixel SNR outside the target

area and 0 ≤ MTF ≤ 1 is the modulation transfer function.

Consider task 1, which has contrast energy concentrated at
low spatial frequencies. If the product SNR0 MTF2 is large
(good quality imaging system), then K̃s(u) ≃ 1/σ2

obj and
ACF(0) = B/σ4

obj. In this case, lesion detection is limited
by system bandwidth B. Center frequency, bandwidth, beam-
forming, and noise conditions are all represented by SNR0

and MTF(u) but not in a simple way. Nevertheless (14)-
(16) provide a foundation for image quality investigations for
task 1. Generalizing the analysis for all tasks and contrast
requires application of numerical techniques in (9) to evaluate
covariance matrices.
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